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Abstract

In this paper� we consider the model�checking problem for ��calculus and show that

it is equivalent to the non�emptiness problem of a certain class of automata on in�nite

binary trees� We also present e�cient model�checking algorithms for two rich subclasses

of ��calculus formulas and relate their expressive power to well known extensions of

branching time temporal logics�

� Introduction

In this paper we consider the problem of model checking for di�erent fragments of proposi�
tional ��calculus� This logic was studied by many authors ��� �	
 for specifying the properties
of concurrent programs� It has been shown �see ���� ��� 

� to be as expressive of automata
on in�nite trees� Most of the known temporal and dynamic logics can be translated into this
logic�

The model checking problem for this logic was �rst considered in ���
� In that paper�
the authors presented an algorithm that is of complexity O��mn�l��� where m is the length
of the formula� n is the size of the Kripke structure and l is the number of alternations of
least and greatest �xed points in the given formula� Thus the complexity of the algorithm
is exponential in the length of the formula� Since then there have been other algorithms
�	� �� �

 that were presented� Although some of these algorithms have lower complexity than
the original algorithm� their complexity is still exponential� Algorithms of linear complexity
�both in the size of the structure and the formula� were given ��
 for the case when there is
no alternation of least and greatest �xed points in the given formula�
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In this paper� we consider the model�checking problem for the full ��calculus and show
that this problem is equivalent to the non�emptiness problem of parity tree automata con�
sidered in ���� 

� More speci�cally� we show that the model checking problem for ��calculus
is reducible to the non�emptiness problem for parity tree automata of size O�mn� where m
and n are as de�ned above� We also show that the non�emptiness problem of parity tree
automata of size p is reducible to the model checking problem for ��calculus in which the
size of the Kripke structure is O�p� and the length of the formula is O�p�� This shows that
there is an e�cient algorithm for one of them i� there is such an algorithm for the other�
We also show that the model�checking problem for ��calculus is in NP�co�NP�

Next� we consider the model checking problem for di�erent fragments of the ��calculus�
We �rst consider two fragments called L�� L� where L� is a subset of L�� We present model
checking algorithms for these fragments which are of complexity O�mnp� where m is the
length of the formula and n is the size of the structure and p is the alternation depth of
the formula �de�ned in section ��� The formulas in L� and L� allow arbitrary nesting of
the least and greatest �xed points� However� they restrict how the modal operators and the
boolean connectives can appear in the formula� More speci�cally� L� is the set of formulas
containing least and greatest �xed points� the modal operator �R� in which negations only
apply to atomic propositions and which satisfy the following restrictions� where ever � is
used� at least one of the two conjuncts is a propositional formula� L� is the set of formulas
satisfying the following restrictions� negations can be applied only to closed formulas �i�e�
formulas without free variables�� where ever � appears� at least one of the two conjuncts is a
closed formula� The fragment L� is shown to be exactly as expressive as the branching time
temporal logic ECTL� considered in ���
� ECTL� is the extended version of CTL� in which
��regular expressions are used as path formulas� We show that L� is exactly as expressive as
the set of formulas of in ECTL� of the form E�W � where E is the existential path quanti�er
and W is a ��regular expression�

Preliminary version of this paper was �rst presented in ��
� This is one of the earliest
papers that reduced model�checking problem for ��calculus �and other branching time logics
to tree automata� to the emptiness problem of tree automata� Since then there were other
works that explored relationships between model�checking for ��calculus and the emptiness
problem for automata� In particular� ���
 showed the equivalence to the emptiness problem
for alternating string automata� Results relating the model�checking problem to the empti�
ness problem of tree automata have also been reported in ��
� In that work as well as our work
�cf� ��
� an essential notion is to model check a branching mu�calculus formula by taking the
product of its syntax diagram with the Kripke� In ��
 it was explicitly articulated that this
syntax diagram de�ned an alternating tree automaton� a topic also discussed in �

� Since
the publication of our result ��
 showing that the model�checking problem for ��calculus is
in NP�co�NP� there have been other results on this problem� in particular� ���
 establishes
a slightly stronger result showing that the above problem is in UP�co�UP�

The work described in ��
 �which appeared after ��
� presents on�the��y model�checking
algorithms for the logics L� and L�� these algorithms are of complexity O�jf j � alt level�f� �
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�jSj � jRj�� where alt level�f� is the level of alternations of �s and �s in f � The de�nition
of alt level�f�� given in ��
� is di�erent from our de�nition of alt depth�f��

Our paper is organized as follows� Section � contains de�nitions and notation� Section
	 contains the result showing the equivalence of the model checking problem for the full
��calculus and non�emptiness problem for the parity tree automata� Section � presents the
model checking algorithms for the logics L� and L�� Section � presents expressiveness results
for the logics L� and L��

� De�nitions and Notation

In this section we de�ne the syntax and semantics of the di�erent fragments of the logic
��calculus� Let P and X be two disjoint sets of elements� The elements of P will be called
atomic propositions and are usually denoted by P�� P�� � ��� The elements of X will be called
variables and are usually denoted by x� y� ���� The formulae of ��calculus are formed using
the symbols from P� X � the propositional connectives � and �� the modal operator �R�� and
the symbol ��

The set of well�formed formulas of ��calculus are de�ned inductively� The symbols true

and false are well�formed formulas� Every atomic proposition and every variable are well�
formed formulas� If f and g are well�formed formulas then �f � f � g and �R�f are also
well�formed formulas� In addition� if f is a well�formed formula in which all the occurrences
of the variable x are in the scope of an even number of negations then �x�f� is also a
well�formed formula�

We say that a variable x is a free variable in a formula f if there is an occurrence of x
in f which is not in the scope of some �x� Let free�var�f� denote all the variables that are
free in f � A variable which appears in f and which is not free� is called a bound variable� A
formula without any free variables is called a closed formula� We de�ne the semantics of the
formulas in ��calculus with respect to a Kripke structure� A Kripke structure K over the set
of atomic propositions P is a triple �S�R� L� where S is a �nite set of states� R � S �S is a
total binary relation �i�e� �x�y�x� y� 	 R��� and L � S 
 �P � With each state s� L associates
a set of atomic propositions that are true in that state� We assume that all Kripke structures
are de�ned over the set P of atomic propositions unless otherwise stated� Let f be a formula
with free�var�f� � fx�� ���� xkg� An evaluation � for f is a mapping that associates with each
variable in free�var�f� a subset of S� If free�var�f� is empty then there is a unique empty
evaluation � for f � For a given Kripke structure K� we de�ne a functionM�K�f� from the set
of evaluations for f to the subsets of S� by induction on the structure of f as follows�

� M�K�P ���� � fs � P 	 L�s�g where P is an atomic proposition�

� M�K�f�g���� �M�K�f���
���M�K�g���

��� where �� and ��� are restrictions of � to the free
variables of f and g respectively�

� M�K��f���� � S �M�K�f�����

	



� M�K��R�f���� � fs � �s� 	 M�K�f���� such that �s� s
�� 	 Rg�

� M�K��xf���� �
T
f���x� �M�K�f���

�� � ���x� where �� is an extension of � such that for
all y 	 free�var�f� and y 
� x� ���y� � ��y�g�

In the above de�nition� it is to be noted that the value ofM�K��xf���� is given as a least
�xed point� For a closed formula f � we say that a state s inK satis�es f �written asK� s j� f�
i� s 	 M�K�f����� We de�ne derived connectives de�ned as follows� f � g � ���f � �g��
f 
 g � ��f �g�� �R�f � ��R��f � �yf�y� � ��x��f��x��� It is to be noted that while �x
denotes the least �xed point �y denotes the greatest �xed point operator� A formula that
has no variables and no occurrence of � and � will be called a constant� A constant formula
that has no occurrence of the modal operators �R���R� is called a propositional formula�
The following lemma gives a well known property of greatest �x points and can be proven
from the basic de�nitions�

Lemma ��� Let K be any Kripke structure� �x�f� be any formula and � be any evaluation
for �x�f�� Then�
M�K��xf���� �

S
f���x� �M�K�f���

�� � ���x� where �� is evaluation for f and is an extension
of � such that for every y 	 free�var�f� such that y 
� x� ���y� � ��y�g�

By using DeMorgan�s laws� the identities ��yf�y� � �x��f��x�� and ��R�f � �R��f �
we can transform any formula into an equivalent formula in which all negations apply only
to the atomic propositions� Such formulas will be called normalized formulas� In our paper
we will be interested in these types of formulas� A formula of the form �xf � resp�� �xf�
will be called a ��formula �resp�� ��formula��

We assume� throughout the paper� that each variable appearing in a formula is bound at
most once� This means that we can not have two sub�formulas of the form �x�g� and �x�h�
appearing in a formula� If this property is not satis�ed� then by renaming the variables
we can obtain an equivalent formula that satis�es this property� For any formula f � we let
SF �f� denote the set of sub�formulas of f �

With a normalized formula f � we de�ne a positive integer alt depth�f� as follows� For this�
we �rst de�ne the notions �actually� binary relations on SF �f�� direct active sub�formulas
and active sub�formulas as follows� Let f be a ��formula or a ��formula� i�e� f � �x�f ��
where � 	 f�� �g� We say that a sub�formula g of f is a direct active sub�formula of f if g 
� f
�i�e� g is a strict sub�formula� and the variable x appears in g� It is fairly straightforward to
show that the binary relation �direct active sub�formula� is a partial order� The transitive
closure of this partial order is the relation �active sub�formula�� Formally� g is an active
sub�formula of f � if there exists a sequence �or a chain� of sub�formulas h�� h�� ���� hk such
that h� � f � hk � g and for each i �� � i 	 k� hi�� is a direct sub�formula of hi�

Example� Let f be the formula �x�P��g� where g � �y��P��x��h� and h � �z�y�P���
It is easy to see that g is a direct sub�formula of f and h is a direct sub�formula of g�

The following is an alternate way of de�ning active sub�formulas� Let f be any open or
closed formula� Construct a graph Hf � called syntax graph of f � as follows� Take the parse
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tree for the formula f � and for each leaf node in the parse tree that is a variable x which is
bound in f � add a back edge from x to the unique sub�formula in the parse tree that binds
x� i�e� the unique sub�formula of the form �x�g�� where � 	 f�� �g� The above back edges
create cycles in Hf � It is fairly easy to show that g is an active sub�formula of f i� there is
a path from g to f in Hf �

Now� we de�ne alt depth�f� as follows�

� For a ��formula f � alt depth�f� � � if f has no active ��sub�formulas in it� otherwise
alt depth�f� � � �maxfalt depth�g� � gis an active ��sub�formula of fg�

� For a ��formula f � alt depth�f� � � if f has no active ��sub�formulas in it� otherwise
alt depth�f� � � �maxfalt depth�g�� g is an active ��sub�formula of fg�

� For any formula f � de�ne
alt depth�f� � maxfalt depth�g�� g is a ��sub�formula or a ��sub�formula of fg�

Equivalently� we can de�ne alt depth�f� to be the maximum number of alternations of
�s and �s in any chain of direct active sub�formulas starting with f �i�e� each sub�formula
in the chain is a direct active sub�formula of the preceding one��

Example� The alternation depth of the formula �x��y�P� � �R�y�� �R�x� is zero� Note
that the ��sub�formula is not an active sub�formula of the main formula� On the other hand
the alternation depth of� the slightly di�erent formula� �x��y��P� � x� � �R�y� � �R�x� is
one�

For �nite Kripke structures� the least �xed point can be computed by iteration starting
with an empty set and iterating until a �xed point is reached� Similarly� the greatest �xed
point can be computed by starting from the set containing all states and iterating until a
�xed pont is reached� These results are due to Tarski�Knaster�

� Relationship between Model Checking and Au�

tomata

In this section we explore the relationship between the model checking problem for ��calculus
and the emptiness problem for automata on in�nite trees� More speci�cally� we show that the
model checking problem for the complete logic ��calculus is equivalent under linear reductions
to the emptiness problem of a particular type of automata on in�nite trees� called parity
automata� This shows that there is an e�cient model checking algorithm for ��calculus i�
there is an e�cient algorithm for checking emptiness of parity automata�

A corollary of the above result is that the model checking problem for formulas of ��
calculus which are of the form �y�g� where g is in normal form and � is the only �xed point
operator appearing in g� is equivalent to the non�emptiness problem for Buchi tree automata

First� we de�ne parity tree automata �introduced in �
� ��
�� A parity tree automaton A
on in�nite binary trees is a ��tuple � � Q� q�� �� F � where  is the input alphabet� Q is the
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set of automaton states� q� is the initial states� � � �Q� �
 �Q�Q is the next move relation
and F � �F�� F�� ���� Fk� where F�� F�� ���� Fk is a sequence of mutually disjoint subsets of
Q� We call F as the acceptance condition� Note that� for any a 	  and q 	 Q� ��q� a�
is a set of pairs of the form �q�� q��� where q� and q�� are automaton states� Intuitively� if
the automaton is in state q and reads input a in the current node then the state of the
automaton on the left child is going to be q� and its state on the right child is going to be
q��� Let p � �p�� ���pi� ���� be an in�nite sequence of states of the automaton A� We say that
p satis�es the acceptance condition of A if the following condition is satis�ed� there exists
an even number l� � � l � k� such that some state in Fl appears in�nitely often in p and
each of the states in the set �

S
l�j�k Fj� only appears �nitely often in p� A path p in the

automaton A is a �nite or in�nite sequence p�� ���� pi� ��� of states of the automaton such that
the following condition is satis�ed� for each i � �� pi 	 Q and for some a 	  and some
q� 	 Q� either �pi��� q

�� 	 ��pi� a� or �q
�� pi��� 	 ��pi� a��

We denote the nodes of the in�nite binary tree by the set f�� �g�� We let ! denote this
in�nite binary tree� For any x� y 	 f�� �g�� we let xy denote the concatenation of the strings
x and y� The root node of ! is the empty string� for any node x� x� and x�� respectively�
denote the left and right child of x� An in�nite path 
 in the tree is an in�nite sequence of
nodes starting with root node and such that each succeeding node is a child of the preceding
node� A labeled tree r is a function with domain !� For a labeled tree r� the label of any
node x 	 ! is r�x��

An input � to the automaton is a labeled tree with range  � i�e� the label of each node
is from  � A run of r of A starting from state q on input � is itself a labeled tree with
range Q such that the root node is labeled with q and the labeling of all other nodes is
consistent with the transitions of the automaton� formally� r � f�� �g� 
 Q associates a state
of the automaton with each node of the tree� such that r��� � q� and for any x 	 f�� �g�

�r�x��� r�x��� 	 ��r�x�� ��x��� We simply state that r is a run of A on input � if it is a run
of A starting from state q� �i�e� the initial state of A� on input � � Let r be a run starting
from some state q on input � � For any in�nite sequence 
 � 
�� 
�� ���� 
i� ���� where each 
i is
a node in !� we let r�
� denote the in�nite sequence of automaton states r�
��� ���� r�
i�� ����
We say that r�
� satis�es the acceptance condition of A if the following condition is satis�ed�
there exists an even number l� � � l � k� such that some state in Fl appears in�nitely often in
r�
� and each of the states in the set �

S
l�j�k Fj� only appears �nitely often in r�
�� The run

r is an accepting run of A if for every in�nite path 
� r�
� satis�es the acceptance condition
of A� We say that the automaton A accepts an input � i� there exists an accepting run r
of the automaton on the input � � We de�ne the size of an automaton A � � � Q� q�� �� F �
to be the sum of the cardinality of Q� the total number of transitions �i�e� total number of
triples of the form �q� a� q�� such that q 	 Q� a 	  and q� 	 ��q� a�� and the sum of the
cardinalities of all sets in F �

A Buchi automaton is a parity tree automaton in which the accepting condition F is of
length one� i�e� it has only one set� Note that this de�nition is equivalent to the standard
de�nition of Buchi tree automaton�
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Theorems 	�� and 	�� show the equivalence of the model�checking problem for ��calculus
and the emptiness problem parity tree automata� We need the following de�nitions in the
proofs of these theorems�

Let f be a ��calculus formula� possibly having some free variables� Recall that SF �f�
denotes the set of sub�formulas of f � Let K � �S�R� L� be a given Kripke structure� We
de�ne a directed graph GK�f � �V�E�� where V is the set of vertices and E is the set of
edges� de�ned as follows� The node set V � f�s� g� � s 	 S� g 	 SF �f�g� Essentially� there is
one node in V corresponding to each state in S and each sub�formula of f � The set of edges
leaving the node �s� g� are� de�ned according to the outermost connective of the sub�formula
g� as follows�

� If g � P� or g � �P� where P� is an atomic proposition or g � x and x is a free variable
in f then there is exactly one edge from �s� g� to itself�

� If g � x and x is a bound variable in the formula f and g� is the largest sub�formula
of f such that g� � �x�g��� or g� � �x�g���� then there is exactly one edge leaving �s� g�
and this edge is to �s� g���

� If g � �x�g�� or g � �x�g��� then there is an edge from �s� g� to �s� g�� and this is the
only edge from �s� g��

� If g � g� � g�� or g � g� � g��� then there are two edges from �s� g�� to the nodes �s� g��
and �s� g����

� If g � �R�g� or g � �R�g�� then for each state s� such that �s� s�� 	 R� there is an edge
from �s� g� to �s�� g���

Roughly speaking� GK�f is a product graph of the K and the syntax graph of f � i�e� the
graph Hf � A path in GK�f is a �nite sequence of nodes such that there is an edge in E from
each node in the path to the succeeding node� A path starting and ending with the same
node is a cycle� A strongly connected subgraph of GK�f is a set of nodes C such that there is
a path between every pair of nodes in C passing only through the nodes of C� A strongly
connected component �scc� is a maximal strongly connected subgraph�

We say that a cycle C in GK�f � is a ��cycle �respectively� ��cycle� if the longest sub�
formula appearing in a node on C is ��sub�formula �respectively� ��sub�formula�� We call a
node �s� h� in V to be an ��node if h is of the form h� �h� or is of the form �R�h� and �s� h�
has at least two successors �i�e� edges to two distinct nodes�� All other nodes in V are called
��nodes� We call �s� h� to be an atomic node if h is P or �P for some atomic proposition
P � Note that if �s� h� is a ��node then either it is an atomic node� or h is a variable� or a
��sub�formula� or a ��sub�formula� or a sub�formula of the form �R�h�� or a sub�formula of
the form �R�h� and �s� h� has only one successor�

Lemma ��� The graph GK�f satis�es the following properties�






� Assume that there is an edge from �s� g� to �s�� g�� in GK�f �

� If g � �R�g� or g � �R�g� then �s� s�� 	 R� otherwise� s� � s�

� If g is not a variable then g� is a sub�formula of g� If g is a variable then g is a
sub�formula of g��

� For any node �s� g� in GK�f � there is a path from �s� g� to a node on a cycle i� g has
at least one variable in it �i�e� g is not a constant	�

� Let C be strongly connected subgraph of GK�f of cardinality greater than one� and let
g be the longest formula appearing in all the nodes on C� Then� g is a ��sub�formula
or a ��sub�formula� In addition� all other sub�formulas appearing in some node of C
themselves are active sub�formulas of g�

Theorem ��� Given a Kripke structure K � �S�R� L� and any ��calculus formula f and
a state s� 	 S� we can obtain a parity tree automaton A of size O��jSj � jRj�jf j� in time
O��jSj� jRj�jf j� such that

� the number of sets in the acceptance condition of A is alt depth�f� � ��

� A accepts at least one input i� K� s� j� f �

Proof� We prove the theorem for the more general case where f may be an open formula�
i�e� a formula having free variables� Corresponding to the formula f � the Kripke structure
K� an evaluation � for f and a state s of K� we construct an automaton AK�f���s such that
AK�f���s accepts at least one input i� s 	 MK�f����

Corresponding to K and f � �rst we construct the directed graph GK�f � �V�E� as
de�ned earlier� We transform GK�f in to another graph G

�
K�f � �V �� E �� so that every node

in it has at most two successors� i�e� two edges leaving it� The node set V � � V � V �� where
V �� is a new set of nodes� The sets V �� and E � are de�ned below� Consider any node u 	 V �
If the number of successors of u in GK�f is at most � then all edges leaving u in GK�f are also
present in G�

K�f � i�e� all such edges are members of E
�� Now consider a node u such that it

has more than two successors in GK�f � Corresponding to each such u we have the following
nodes and edges in G�

K�f � Let the number of successors of u be l where l � �� Let u�� u�� ���� ul
be the successors of u in GK�f � We introduce l � � new nodes �u� ��� �u� ��� ���� �u� l� ��� All
these nodes are members of V �� �note that �u� i� is distinct from ui or any other node in V ��
We have the following edges in G�

K�f � There are two edges from u" to nodes u� and �u� ���
for each i� � � i 	 l � �� there are two edges from �u� i� " to nodes ui�� and �u� i � ���
�nally� there are two edges from �u� l� �� to nodes ul�� and ul� It is easy to see that in G�

K�f

there is a path from u to each of the original successors passing through the intermediate
vertices� The type of the new nodes is de�ned to be the same as that of u� i�e� each of
them is de�ned to be a ��node if u is a ��node� etc� After this� each ��node has exactly two
successors� while a ��node has either one or two successors� It is not hard to see that jV �j is
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bounded by jV j� jEj and E � is bounded by �jEj� Thus the size of G�
K�f � jV �j� jE �j is at

most thrice the size of GK�f �
The automaton AK�f���s� � � � Q� q�� �� F � is de�ned as follows� The state set Q of the

automaton is simply V �� the initial state q� is �s�� f�� the input alphabet  has only one
symbol� say symbol a� The transitions of A are de�ned as follows� For any node u� ��u� a�
consists of the following pairs� if u is a ��node then ��u� a� � f�v� v� � �u� v� 	 E �g� if u is a
��node then ��u� a� � f�v� v�� � �u� v�� �u� v�� 	 E �g� Note that V � � V � V ��� We say that
a state�node u 	 V is a g�state �or g�node� if u 	 V and u � �s� g� for some s 	 S� An
atomic node is a P �node for some atomic proposition P �

Let k � alt depth�f�� Now� we de�ne an alternating sequence C�� ���� Ck�� of sets of ��
sub�formulas and ��sub�formulas as follows� All even numbered sets contain ��sub�formulas
and all odd numbered sets contain ��sub�formulas de�ned as follows� For each i � �� ���� k��
Ci is de�ned as follows� If i is an even number then Ci is exactly the set of all ��sub�formulas
whose alternation depth is i or i� �� If i is an odd number then Ci is exactly the set of all
��sub�formulas whose alternation depth is i or i � �� Note that C� contains all alternation
free ��sub�formulas� If k�� is even �resp�� odd� then Ck�� contains all ��sub�formulas �resp��
��sub�formulas� of alternation depth k� It is possible some of the Cis are empty sets�

Example� Let f be the formula �x�g�P�� where g � �y�x��R�h� and h � �z�y�z�P���
It is not hard to see that alt depth�f� � � and C� � fhg� C� � fgg� C� � ffg�

Now� we de�ne the acceptance condition F � �F�� F�� ���� F��k���� as follows�
F� � �S �C��� U� �U� where U�� U� are as de�ned below� U� is the set of all atomic nodes
u such that u is of the form �s� P � and P 	 L�s�� or is of the form �s��P � and P 
	 L�s�� U�

is the set of all nodes of the form �s� x� such that x is a free variable in f and s 	 ��x��
For � 	 i 	 �k� Fi � S � Ci�

Since the input alphabet of AK�f���s� has a only one symbol a� there is only one input
to the automaton which is the labeled binary tree in which all nodes are labeled with a�
we denote this input as � � In the remainder of the proof whenever we refer to a run of an
automaton then the input is assumed to be � �

Lemma ��� A run r of AK�f���s� is accepting i� for every in�nite path 
 of ! r�
� satis�es
one of the following two properties �recall that r�
� is the sequence of automaton states along
the path given by the run r	�


� The maximal length sub�formula g such that�for some s� �s� g� appears in�nitely often
in r�
� is a ��formula �i�e� the maximum length sub�formula that appears in�nitely
often in r�
� is a ��formula	�

�� Some node of the form �s� g�� satisfying the following condition� appears forever from
a certain point in r�
��
g is a literal �i�e� is of the form P or �P 	 which is satis�ed in s� or g is a free variable
x of f such that s 	 ��x��

�



Proof� First assume that r is an accepting run� Let 
 be an in�nite path in the binary
tree� and r�
� denote the sequence of states that appear in the run r along the path 
� Let
C be the set of automaton states that appear in�nitely often in r�
�� Since r is an accepting
run� there exists an even number i such that Fi �C 
� �� and for all j � i Fj �C � � �recall
that Fis are the subsets in the accepting condition of the automaton�� It should be easy to
see that C is a strongly connected subgraph of G�

K�f � From the way we have de�ned GK�f

and G�
K�f � it follows that either C contains a single state of the form �s�� P � or �s���P � or

�s�� x� where x is a free variable in f � or C does not contain any such state� In the former
case the second property of the lemma holds� Now consider the later case� Let D � fh �
for some s�� �s�� h� 	 Cg� Let g be the maximum length sub�formula in D� From lemma
	��� it follows that g is either a ��sub�formula or ��sub�formula� and for every g� 	 D either
g� � g or g� is an active sub�formula of g� If g is a ��sub�formula then it would imply that
alt depth�g� � alt depth�g�� for every ��sub�formula g� 	 D� this would imply that every
node in C of the form �s�� g� belongs to Fj for some j � i� which contradicts our earlier
assumption� Hence g is a ��formula� i�e� property � of the lemma is satis�ed� The other
direction of the lemma is proved on similar lines and is left to the reader�

Now� we continue the proof of the theorem� First� we need the following notation� For
any c� we let �c
 denote the labeled binary tree which labels all nodes with c� Let r be
any labeled binary tree and x be a node in !� i�e� x 	 f�� �g�� We de�ne another labeled
binary tree restriction�r� x� as follows� for every y 	 f�� �g�� restriction�r� x��y� � r�xy��
Intuitively� restriction�r� x� is the restriction of r to the sub�tree rooted at x�

Let X � f�� �g� be a set of nodes such that no element in X is a pre�x of another element
in X� i�e� all the elements in X are incomparable� Also� let H be a function that associates a
labeled binary treeH�x� with each element x 	 X� For each labeled binary tree r and for each
X�H as de�ned above� we de�ne another labeled binary tree� denoted by modified�r�X�H��
as follows� For every y 	 f�� �g�� the value of modified�r�X�H��y� is as given below� If
there exist x 	 X and z 	 f�� �g� such that y � xz then modified�r�X�H��y� � H�x��z�
�note that such x and z are going to be unique since X is a set of incomparable elements��
otherwise modified�r�X�H��y� � r�y�� Intuitively� if y is a member of a subtree rooted at
some node in x 	 X then the label given by modified�r�X�H� is the same as that given by
H�x�� otherwise it is same as that given by r�

Suppose f is a formula of the form �x�g� or of the form �x�g�� Then the only di�erence
between the graphs GK�f and GK�g is the following� The single edge from every node of the
form �s� x� leads to the node �s�f� in GK�f � while in GK�g this edge leads back to �s� x�� As a
consequence� the following lemma holds�

Lemma ��� Let f be a formula of the form �x�g� or �x�g�� Let � be an evaluation for f
and �� be an evaluation for g which is an extension of �� Then the following properties hold�


� Any �nite or in�nite path p of AK�g����s which has no x�nodes is also a path of AK�f���s�
Further more� if p is in�nite then p satis�es the acceptance condition of AK�g����s i� it
satis�es the acceptance condition of AK�f���s�

��



�� Let r be a run of the automaton AK�f���s such that for all z 	 f�� �g�� r�z� is not a
x�state� Then restriction�r� �� � restriction�r� ��� Further more� restriction�r� �� is
a run of AK�g����s� and it is an accepting run i� r is an accepting run�

The proof of the theorem follows from the following lemma�

Lemma ��� For a given formula f � Kripke structure K � �S�R� L�� an evaluation � for f
and a state s� 	 S�
s� 	 MK�f��� i� the automaton AK�f���s� accepts the input � � i�e� the automaton accepts at
least one input�

Proof� The lemma is proved by induction on the structure of f � The proof is trivial for
the base cases when f is of the form P or �P where P is an atomic proposition� or for the
case when f is a variable� The cases of the induction steps are given below�

f � f� � f�� By induction assume that the lemma holds for f� and f�� Now assume that
s� 	 MK�f���� This implies that s� 	 MK�f���� and s� 	 MK�f����� By induction there exist
accepting runs r�� r� of the automata AK�f����s� and AK�f����s��respectively� De�ne a run r of
AK�f���s� as follows� r��� � �s�� f� �i�e� the root is labeled with �s�� f��� restriction�r� �� � r�
and restriction�r� �� � r� �i�e� the left and right sub�trees are labeled just as r� and r�
respectively�� From the way we de�ned the automata AK�f���s�� it should be easy to see that
r is an accepting run� Hence � is accepted by AK�f���s�� To show the other way� assume
� is accepted by AK�f���s� and let r be an accepting run of AK�f���s�� It should be easy to
see that restriction�r� �� and restriction�r� �� are accepting runs of AK�f����s� and AK�f����s��
respectively� By induction� we see that s� 	 MK�fi��� for i � �� �� Hence s� 	 MK�f����

The induction steps for the cases when f � f� � f�� f � �R�f� or f � �R�f� are fairly
straightforward from the de�nition and are left to the reader�

f � �x�g� � Let � be any evaluation for f � Now we de�ne an in�nite sequence
���� �

�
�� ���� �

�
i� ��� of evaluations for g such that� for each i � �� ��i is an extension of � de�

�ned as follows� if i � � then ��i�x� � �� otherwise� ��i�x� � MK�g��
�
i���� Since x appears

positively in g� it is the case that for each i � �� ��i���x� � ��i�x�� By Tarski�Knaster theorem�
we haveMK�f��� � �i	�MK�g��

�
i��

By induction on i� we prove that� for every s 	 MK�g��
�
i�� there is an accepting run of

AK�f���s� To prove the base case �i�e� the case when i � ��� assume that s 	 MK�g��
�
��� By the

induction hypothesis of the lemma� there is an accepting run r� of AK�g���

�
�s� since �

�
��x� � ��

from the way we de�ned the acceptance condition of AK�g���

�
�s� it should be clear that none

of the the nodes is labeled by a pair of the form �s�� x� by the run r� �i�e� for all y 	 f�� �g�

and for all s� 	 S� r��y� 
� �s�� x��� Let r be the labeled tree such that r��� � �s� f��
restriction�r� �� � r� and restriction�r� �� � r� �i�e�� r labels the root node with �s� f� and
the restriction of r to the left and right sub�trees is same as r��� From lemma 	�	� it should
be clear that r is an accepting run of the automaton AK�f���s�

As the induction hypothesis� assume that
�A� for all j � i and for all s 	 MK�g��

�
j�� there is an accepting run of AK�f���s�

��



Now consider any element s 	 MK�g��
�
i��� such that s 
	 MK�g��

�
j� for any j � i� By the

induction hypothesis of the lemma� we see that there is an accepting run r� of AK�g���

i��
�s� Let

Z be the set of all z 	 f�� �g� such that r��z� is an x�state �i�e� is of the form �s�� x�� and
no proper pre�x of z has this property �i�e� r��z� is labeled with a pair of the form �s�� x�
and no proper ancestor of z is similarly labeled�� It is easy to see that all elements in Z are
incomparable �i�e� none of them is a proper pre�x of the other�� Let Z � � fz�� z� � z 	 Zg�
Now we de�ne a function H that associates a run with each element in Z �� Let z� 	 Z �� Then
there exists z 	 Z such that z� � z� of z� � z�� Clearly r��z� � �s�� x� for some s� 	 S�
Since r� is an accepting run of AK�g���

i��
�s and from the way we de�ned this automaton� it is

the case that s� 	 ��i���x�� Since �
�
i���x� � MK�g��

�
i�� it is the case that s

� 	 MK�g��
�
i�� From

the induction hypothesis �A�� we see that there exists an accepting run of AK�f���s�� Now we
de�ne H�z�� to be any such accepting run of AK�f���s�� Now we construct a run r of AK�f���s

as follows� r��� � �s� f� and restriction�r� �� � restriction�r� �� � modified�r�� Z �� H�
�i�e�� the root node is labeled with �s� f�� restrictions of r to the left sub�tree� similarly to the
right sub�tree� is the labeled tree obtained by modifying r� in the following way� for any node
which is of the form z�y for some z� 	 Z �� y 	 f�� �g�� its label is H�z���y�� for any other node
its label is same as that given by r��� Now we show that r is an accepting run of AK�f���s�
Consider any in�nite path 
 � 
�� ���� 
i� ��� in the tree ! starting from the root node� Now
we have the following two cases� ��� �i such that r�
i� is an x�state � i�e� r�
i� � �s�� x� for
some s� 	 S� in this case let i be the smallest such integer� from the way we de�ned r� both
labeled trees restriction�r� 
i�� and restriction�r� 
i�� are acceptance runs of AK�f���s�� hence
r�
i���� r�
i���� ��� satis�es the acceptance condition of AK�f���s� and hence it also satis�es
the acceptance condition of AK�f���s� ��� No such i exists� hence r�
��� r�
��� ��� satis�es the
acceptance condition of AK�g���

i��
�s� from lemma 	�	� it is seen that r�
��� ��� also satis�es the

acceptance AK�f���s� Hence r is an accepting run of AK�f���s�
Now� we show that for every state s of K� if there is an accepting run r of AK�f���s then

s 	 MK�f���� we prove the later by showing that s 	 MK�g��
�
i� for some i � ��

Let r be an accepting run of AK�f���s� Since r is an accepting run� on every in�nite path p
of the binary tree the number of nodes z such that r�z� is a x�state is �nite� further more we
assume that on every path no two nodes are labeled by r with the same pair of the form �s�� x�
�if this property is not satis�ed we can always get another run that satis�es this property by
pumping down using standard pumping lemma type argument�� As a consequence� on every
path� the number of nodes z such that r�z� is a x�state is bounded by jSj� Let m�r� denote
the maximum number of nodes z� on any path of the binary tree� such that r�z� is a x�state�
By induction on the value of m�r�� we show that s 	 MK�g��

�
m�r��� this would automatically

imply that s 	 MK�f���� The base case is when m�r� � �� In this case� there is no node z
such that r�z� is a x�state� From lemma 	�	� we see that the restriction�r� �� is an accepting
run of AK�g���

�
�s� from the induction hypothesis of the lemma it follows that s 	 MK�g��

�
���

Now as an induction hypothesis assume �B� given below�
�B� for every state s 	 S� if there is an accepting run r of AK�f���s such that m�r� � i then
s 	 MK�g��

�
i��

��



Now� let s be a state and r be an accepting run of AK�f���s such that m�r� � i � �� Let
Z be the set of all nodes z in the binary tree ! such that r�z� is a x�state and no proper
ancestor of z satis�es this property �i�e� z is the �rst such state on the path from the root
to z such that r�z� is a x�state�� Consider any z 	 Z and let r�z� � �s�� x� for some s� 	 S�
It should be easy to see that r�z�� � r�z�� � �s�� f�� Let r� � restriction�r� z��� It
should be easy to see that r� is an accepting run of AK�f���s� and m�r�� � i� By the induction
hypothesis �B�� it follows that s� 	 MK�g��

�
i�� i�e� s

� 	 ��i���x�� Now� de�ne a run r� such
that for every z� 	 f�� �g�� r��z�� is de�ned as follows� If z� is a descendant of some node
z 	 Z then r��z�� � r�z�� otherwise r��z�� � r�z��� From our previous observations and using
��� of lemma 	�	� it should be easy to see that r� is an accepting run of AK�g���

i��
�s� From the

induction hypothesis of the lemma it follows that s 	 MK�g��
�
i����

f � �x�g�� Assume that s� 	 MK�f���� Let C � MK�f���� and �� be an evaluation
for g which is an extension of � such that ���x� � C� Clearly� MK�g��

�� � C� By the
induction hypothesis of the lemma� we see that for each s 	 C there is an accepting run rs of
AK�g����s� From the way we de�ned AK�g����s� it should be easy to see that if the run rs labels
any node z with �s�� x� then s� 	 C �this is because all the descendants of z are also labeled
with �s�� x�� and every in�nite path in this subtree satis�es the acceptance condition of the
automaton which requires s� to be in ���x��� Using these labeled trees� we construct a labeled
in�nite graph H as follows� We �rst put together all the labeled binary trees rs �s 	 C��
we distinguish the nodes in the di�erent binary trees� Corresponding to each tree rs� we
introduce an additional node as and label it with �s� f�� we introduce two directed edges
from as to the root of rs� Now consider any node z in rs that is labeled with �s

�� x�� Clearly�
all descendants of z are also labeled with �s�� x�� Let z� and z�� be the two children of z� We
modify the tree as follows� We discard all the nodes in the left and right subtrees of z� and z���
From each of the nodes z� and z��� we introduce two edges to the newly introduced node as�

�two edges are needed so that when we unwind the graph later� we get a binary tree�� This
modi�cation is done for every pair of children z�� z�� of nodes of the form z in each labeled
tree rs �s 	 C�� Let H be the resulting labeled graph� Now consider any in�nite path p in
H starting from a node labeled with a pair of the form �s� f� �i�e� a new node as introduced
earlier�� If p contains in�nite number of nodes that are labeled with pairs of the form �s�� x�
then p also contains in�nite number of nodes labeled with pairs of the form �s�� f�� since f is
the longest formula appearing in the label of any node on p and it is a ��formula� it follows
that the sequence of labels of nodes on the path p satis�es the acceptance condition of the
automaton AK�f���s� If p contains only a �nite number of nodes that are labeled with pairs
of the form �s�� x� then there exists a su�x of p that is entirely contained with in a labeled
tree rs�� for some s�� 	 C� clearly in this case� the sequence of labels of nodes on p satis�es
the acceptance condition of AK�g����s��� and from lemma 	�	 it follows this sequence of labels
on p also satis�es the acceptance condition of AK�f���s� From this we see that� for each of the
nodes as �i�e� each node labeled with a pair of the form �s� f��� the labeled in�nite binary
tree that we get when we unwind the graph H starting from as gives us an accepting run of
AK�f���s� Hence� AK�f���s has an accepting run for each s 	 C� This holds when s � s��

�	



To prove the lemma in the other direction� assume that there is an accepting run r of
AK�f���s�� Let C be the set of all s such that some node in the tree is labeled with �s� f� �i�e�
for some u 	 f�� �g�� r�u� � �s� f��� and let �� be an evaluation for g which is an extension
of � such that ���x� � C� Also� let z be any node in the tree which is labeled with �s� f� for
some s �i�e� s 	 C�� Let z� and z�� be the two children of z� clearly� r�z�� � r�z��� � �s� g�� Let
r� be the restriction of r to the sub�tree rooted at z�� i�e� r� � restriction�r� z�� �note that
for every u 	 f�� �g� r��u� � r�z�u��� From r�� we de�ne another run r�� as follows� Let U be
the set of all u 	 f�� �g� such that r��u� is a x�state and no proper ancestor of u is labeled
with a x�state �i�e� there is no u� which is a proper pre�x of u such that r��u�� is a x�state��
Consider any u 	 U and let r��u� � �s�� x� for some s� 	 S� With u we associate a labeled
tree H�u� such that every node is labeled with �s�� x� �i�e� �y 	 f�� �g�� H�u��y� � �s�� x���
Note that H is a function with domain U � Let r�� � modified�r�� U�H� �for any node y
which is a descendant of some u 	 U � r���y� � r��u� and for all other y� r���y� � r��y���
Consider any in�nite path p in the binary tree� If there exists any node on p whose label
under r�� is an x�state then the labels of all succeeding nodes in p are also x�states and hence
the sequence of labels in p satis�es the acceptance condition of AK�g����s� On the other hand�
if none of the nodes on p is labeled with a x�state by r�� then the sequence of labels on p given
by r�� is same as that given by r�� this sequence of labels satis�es the acceptance condition of
AK�f���s� and from lemma 	�	� we see that this sequence of labels also satis�es the acceptance
condition of AK�g����s� Hence r

�� is accepting run of AK�g����s� By induction hypothesis of the
lemma it follows that s 	 MK�g��

�� and hence MK�g��
�� � C� i�e� MK�g��

�� � ���x�� From
the property of the maximal �x points as given by lemma ���� it follows that C �MK�f����
Since s� 	 C� it follows that s� 	 MK�f����

Theorem ��� Given a parity tree automaton A � � � Q� q�� �� F �� we can obtain a Kripke
structure K whose size is linear in the size of A and a ��calculus formula f which is linear
in the length of the acceptance condition� and a state s� in K� such that

� alt depth�f� � �� the number of sets in F � and

� A accepts at least one input i� K� s� j� f �

Proof� The proof uses similar techniques as those given in �

�
Without loss of generality� we can assume that the alphabet of A is a singleton consisting

of the symbol a� Let the acceptance condition F be given by the sequence of k � � sets
�F�� F�� ���� Fk���� Now� we de�ne a sequence of k sets �G�� G�� ���� Gk��� as follows� Let
G� � Q �

S
��i��k��� Fi� For � � i � k � �� let Gi � Fi��� For each i� � � i 	 k� let Pi

be a new atomic proposition and P � � fPi � � � i 	 kg� We de�ne the Kripke structure
K � �S�R� L� over the set of atomic propositions P � as follows� S � Q � �Q � Q � Q��
that is� the elements of S are of the form s� or of the form �s�� s�� s�� where s�� s�� s� are
the automaton states� Corresponding to every triple of automaton states s�� s�� s� 	 Q
such that �s�� s�� 	 ��s�� a�� R has the following edges� an edge from the node s� to the

��



node �s�� s�� s��� an edge from �s�� s�� s�� to s� and an edge from �s�� s�� s�� to s�� Formally�
R � f�s�� �s�� s�� s���� ��s�� s�� s��� s��� ��s�� s�� s��� s�� � s�� s�� s� 	 Q and �s�� s�� 	 ��s�� a�g�

For each s 	 S� L�s� is de�ned as follows� if s 	 Q then L�s� � fPig where i 	 k is the
unique integer such that s 	 Gi� otherwise� L�s� � ��

f is given by the following formula�
�k��xk���k��xk�������x��

W
��i�k�Pi � �R��R�xi��

where �k������� is an alternating sequence �s and �s ending with ��
Now we show that K� q� j� f i� A accepts at least one input� To show this� we prove

a more general result� First� for each l � ��� �� ���� k � �� we de�ne a set of formulas #l

de�ned as follows�
#�� is the set of variables of the form y where y 
	 fx�� x�� ���� xk��g�
For each l � �� ���� k � �� #l is the set of formulas of the form
gl�y� � �lxl�l��xl�������x��

W
��i�k�Pi � �R��R�xi� � y�

where �l����� is an alternating sequence of �s and �s ending with � and y is any variable not
in fx�� x�� ���� xk��g�

We need the following de�nitions� Let � � ��� ���� �i� ��� be any in�nite sequence of states
of the of the automaton A� We de�ne maxindex��� to be the maximum integer u 	 k such
that some state in Gu appears in�nitely in �� We de�ne two conditions cond� and cond�
with parameters as follows� Let � be any in�nite sequence of states as given above and l� m
be integers such that � � m � l 	 k� We de�ne cond���� l�m� to be the following condition�
For all i � �� �i 	 �G��G������Gl� andmaxindex��� is an odd number andmaxindex��� �
m�
Let C be any subset of states of the automaton A� We de�ne cond���� l� C� to be the
following condition�
There exists an i � � such that �i 	 C and for all j such that � � j 	 i� �j 	 �G��G�����Gl��

We have the following lemma which is similar to theorem ��� of �

�

Lemma ��	 Let l be an integer such that �� � l 	 k� s 	 Q be any state and � be any
evaluation for gl� Then� for every formula gl�y� 	 #l � as given above	� gl�y� is satis�ed at
the node s in K with respect to � �i�e� s 	 MK�gl���	 i� there exists a run r of the automaton
A starting from state s such that for every in�nite path 
 � 
�� 
�� ���� 
i� ��� of the binary
tree ! at least one of the following conditions is satis�ed�


� l � � and cond��r�
�� l� l� holds� i�e� for all i � �� r�
i� 	 �G� � G� � ���Gl� and
maxindex�r�
�� is an odd number�

�� l � � and cond��r�
�� l� ��y�� holds� i�e� there exists an i � � such that r�
i� 	 ��y�
�i�e� y is satis�ed at node r�
i� with respect to the evaluation � 	� and for all j�
� � j 	 i� r�
j� 	 �G� �G� � ���Gl��


� l � �� and r�
�� 	 ��y��

��



Before we prove lemma 	��� we complete the proof of theorem 	��� First� observe that
A accepts at least one input i� there exists a run r of A starting from q� such that� for
every in�nite path 
 in the binary tree !� maxindex�r�
�� is an odd number� Let � be the
evaluation for the formula gk���y� such that ��y� � �� It is easy to see that � for any s 	 Q�
the formula f is satis�ed at node s in K i� the formula gk���y� is satis�ed at node s in
K with respect to the evaluation �� From lemma 	��� we see that gk���y� is satis�ed at s
with respect to � i� there exists a run r of A starting from s such that for every path 
 in
! maxindex�r�
�� is an odd number �note that this is due to the fact that condition � is
not satis�ed as ��y� � ��� Putting all the above observations together� we get the proof of
theorem 	���

Proof of lemma ��	� We prove the lemma by induction on l� The base case is when
l � ��� By de�nition g�� � y for some y 
	 fx�� x�� ���� xk��g� In this case the lemma holds
trivially� Assume that the lemma holds for all values of l up to p� Now consider the case
when l � p � �� Now� we write gp�� as �p��xp���h� where
h � �pxp�����x��

W
��i�p�Pi � �R��R�xi� � �Pp�� � �R��R�xp��� � y��

Observe that h has two free variables xp��� y� while gp�� has only one free variable which
is y� Now we have two cases� The �rst case is when p � � is an odd number� In this case�
h � �xp���h�� We prove the induction step for this case as follows� Let � be any evaluation
for gp��� Let �

�
�� �

�
�� ���� �

�
q� ��� be evaluations for h which are extensions of � such that the

following conditions are satis�ed� ����xp��� � S� for each q � �� ��q�� � MK�h��
�
q�� From

Tarski�Knaster theorem� we know that MK�gp����� �
T
q	�MK�h��

�
q�� Now� we need the

following lemma�

Lemma ��
 Let ���� ���� �
�
q� ��� be evaluations for h as de�ned above� For all q � �� for all

s� 	 Q� s� 	 MK�h��
�
q� i� there exists a run r� of A starting from s� such that for every path


� � 
��� ���� 

�
i� ��� of the binary tree ! at least one of the following conditions holds�

�a� cond��r��
��� p � �� p� holds� and further more� the number of values of j such that
r��
�j� 	 Gp�� �i�e�� the cardinality of the set fj � r��
�j� 	 Gp��g	 is less than or equal
to q�

�b� For some i � �� r��
�i� 	 ��y� and for all j such that � � j 	 i� r��
�j� 	 �G��G�����Gp���
�i�e� cond��r��
��� p��� ��y�� holds	 and further more� the number of values of j �� such
that j � 	 i and r��
�j�� 	 Gp��� is less than or equal to q�

�c� For some i � �� r��
�i� 	 Gp�� and for all j such that � � j 	 i� r��
�j� 	 �G� �G���� �
Gp��� �i�e� cond��r

��
��� p� �� Gp��� holds	 and further more� the number of values of
j �� such that j � 	 i and r��
�j�� 	 Gp��� is equal to q�

Proof � The lemma can be proven by induction on q� In the basis step as well as the
induction step of the proof� we use the inductive hypothesis of lemma 	��� To do this we
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use the following approach� Let h� be the formula �Pp�� � �R��R�xp��� � y� Observe that
h� is a sub�formula of h� In h we replace the sub�formula h� by a new variable z� Let
h�� be the resulting formula� For each q � �� we de�ne an evaluation ���q for h

�� such that
���q�z� � MK�h���

�
q�� To prove the basis as well as the induction step of the the lemma� we

apply the inductive hypothesis of lemma 	�� for h�� and the evaluation ���q �i�e� apply lemma
	�� by using h�� in place of gl and evaluation �

��
q in place of ��� The details of the proof are

straightforward and are left to the reader� �
Now we continue with the proof of the inductive step for the �rst case of lemma 	���

To prove the inductive step in one direction� assume that r is any run of A starting from
s such that for every in�nite path 
 of the binary tree ! either cond��r�
�� p � �� p � ��
or cond��r�
�� p � �� ��y�� holds� Assume that cond��r�
�� p � �� p � �� is satis�ed� Let
q � � be any integer� Now we show that s 	 MK�h��

�
q�� We have two sub�cases� The �rst

sub�case is when the cardinality of the set fi � r�
i� 	 Gp��g is greater than q� in this
sub�case it is straightforward to see that cond��r�
�� p � �� Gp��� holds and condition �c�
of lemma 	�� is satis�ed for r and 
� The second sub�case is when the cardinality of the
set fi � r�
i� 	 Gp��g is less than or equal to q� in this sub�case� it should be easy to see
that cond��r�
�� p� �� p� holds and hence condition �a� of lemma 	�� is satis�ed� Thus� for
every q � �� either condition �a� or �c� of lemma 	�� is satis�ed for r and 
� Similarly� it
can be shown that if cond��r�
�� p � �� ��y�� holds then� for every q � �� condition �b� or
�c� of lemma 	�� is satis�ed for r and 
� From lemma 	�� we see that� for every q � ��
s 	 MK�h��

�
q�� hence� we see that s 	 MK�gp������

To prove the inductive step in the other direction� assume that s 	 MK�gp������ By
Tarski�Knaster theorem� we know that s 	 MK�h��

�
q� for every q � �� Now� consider the

case when q � jQj where jQj is the cardinality of Q� Clearly� s 	 MK�h��
�
q�� Hence� from

lemma 	��� we see that there exists a run r� such that for every in�nite path 
� of ! one of
the three conditions of lemma 	�� is satis�ed� Now� we construct a run r such that either
condition � or condition � of lemma 	�� is satis�ed for every path 
 of !�

First we de�ne a graph H from which the run r can be constructed� Let U be the set
of of all u 	 ! satisfying the following three properties� �i� r��u� 	 Gp��� �ii� for every
ancestor u� of u � u� 
	 ��y�� �iii� there exists exactly one proper ancestor ��u� of u such that
r����u�� � r��u� � this means that no other proper ancestor of u has this property�� For
each u 	 !� let parent�u� denote the parent of u in ! � note parent�u� is the string obtained
by deleting the rightmost bit in x�� The graph H is obtained from the tree ! by making the
following change� for each u 	 U � the edge from parent�u� to u is replaced by an edge from
parent�u� to ��u�� we call such an edge as a back edge and all other edges are called forward
edges� Formally� H is de�ned as follows� The nodes of the labeled graph H are elements of
! � fu � u is a descendant of some element in Ug� For every node u in H� the edges from
u are de�ned as follows� for each b 	 f�� �g� there is an edge from u to u� where u� is given
below� If ub is a node in H then u� � ub and in this case the edge is called a forward edge�
otherwise ub has to be in U � and in this case� u� � ��ub� and the edge is called back edge�
The node u� is called a left successor of u if b � �� otherwise� it is called a right successor of
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u� It is not hard to see the � is a node in H�
Claim� For every in�nite path 
 � 
�� 
�� ���� 
i� ��� in H starting from �� either

cond��r��
�� p� �� p� �� or cond��r��
�� p� �� ��y�� is satis�ed�
Proof of the claim� We consider two cases� The �rst case is when 
 contains a �nite

number of back edges� Now� we consider the �rst case� Assume that 
 contains at least one
back edge and let i be the maximum integer such that the edge 
i to 
i�� is a back edge�
Clearly� for every j � i� 
j is an ancestor of some node in U in the tree !� and from the
de�nition of U it follows that r��
j� 
	 ��y�� since every in�nite path 
� of ! passing through

j satis�es either �a� or �b� or �c� of lemma 	��� it follows that r

��
j� 	 �G��G�� ����Gp����
Let 
�� denote the the sequence 
i��� 
i��� ���� i�e� 
�� is the su�x of 
 starting from 
i���
Now� it is easy to see that there exists an in�nite path � in the tree ! having 
�� as a su�x�
In this path� every node u appearing before 
i�� satis�es the following properties� u is an
ancestor of 
i�� in ! and hence is also a node in H� since� 
i�� is a parent of some node
in U �because there is a back edge from 
i���� u is an ancestor of some node in U and
hence r��u� 
	 ��y�� From the above observations it is easy to see that � is also a path
in H� Recall that we are considering the case when q � jQj� Now� we show that either
cond��r��
���� p � �� p� or cond��r��
���� p � �� ��y�� is satis�ed� If cond��r��
���� p � �� p� is
satis�ed then it would imply that cond��r��
�� p� �� p� �� is satis�ed since 
�� is a su�x of

� If cond��r��
���� p � �� ��y�� is satis�ed then it would imply that cond��r��
�� p � �� ��y��
is satis�ed since for all j � i� r��
j� 
	 ��y�� Since � is a path in the tree ! it satis�es
either condition �a�� �b� or �c� of lemma 	��� If � satis�es condition �a� then it would imply
that cond��r��
���� p� �� p� �� is satis�ed since 
�� is a su�x of �� Now assume that � does
not satisfy condition �a� of lemma 	��� Now we show that condition �b� of lemma 	�� is
satis�ed� Suppose �b� is not satis�ed� This implies that � satis�es condition �c� of lemma
	��� Hence there exists some i� � � satisfying the following three properties� �i�r���i�� 	 Gp��

and for all j � 	 i�� r���j�� 	 G� � ���Gp��� �ii� the cardinality of the set fj
� � j � 	 i� and

r���j�� 	 Gp��g is exactly q��iii� for all j � � i�� r���j�� 
	 ��y�� �property �iii� is satis�ed since
we assumed condition �b� of lemma 	�� does not hold�� From the above three properties and
the assumption that q � jQj� using the pigeon hole principle� we see that for some j � � i��
�j� 	 U � However� this contradicts our earlier observation that � is a path in H� Hence �
satis�es condition �b� of lemma 	��� Since� for all j � i � �� r���j� 
	 ��y� and 
�� is a su�x
of �� it follows that cond��r��
���� p��� ��y�� holds� Hence the claim holds for the case when
the number of back edges in 
 is a �nite number greater than zero� If 
 has no back edges
then we use tha same argument as above by taking � to be 
�

Now consider the other case when 
 contains an in�nite number of back edges� In this
case� for every i � �� 
i is an ancestor of some node in U in the tree !� hence� r��
i� 	
�G� �G� � ���Gp��� �this can be seen using the same argument given at the beginning of last
paragraph�� Further more� there exists in�nite number of values of i such that r��
�i�� 	 Gp��

and hence maxindex�r��
�� � p � �� From this� it follows that cond��r��
�� p � �� p � ��
holds� �

Now we de�ne the run r to be the run obtained by unwinding the graph H starting from
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the node �� To de�ne r formally� we �rst de�ne a function � from ! to the nodes of H
inductively as follows� ���� � �� for every u 	 !� ��u�� is the left successor of ��u� and
��u�� is the right successor of u� Now� for every u 	 !� we de�ne r�u� to be r����u���

Now we show that r satis�es the condition of lemma 	��� Let 
 � 
�� ���� 
i� ��� be any
in�nite path in !� Consider the sequence ��
� � ��
��� ���� ��
i�� ���� It should be easy to
see that ��
� is a path in H starting from �� From the previous claim we see that either
cond��r����
��� p��� p��� �and hence cond��r�
�� p��� p���� or cond��r����
��� p��� ��y��
�and hence cond��r�
�� p � �� ��y��� is satis�ed� hence either condition � or condition � of
lemma 	�� is satis�ed for r and 
 with l � p��� This completes the induction step of lemma
	�� for the case when p� � is odd�

In the case when p � �� �p�� is � and in this proof of the induction step is simpler�
In the proof� we use Tarski�Knaster theorem for least �x points� The details are fairly
straightforward and are left to the reader�
�

Consider a formula of the form �xf where f is in normalized form and has no further
�s appearing in it� The alternation depth of this formula is one� Further more� all its strict
sub�formulas have an alternation depth of zero� The automaton constructed by the above
theorem will have three sets F�� F�� F� where F� corresponds to the atomic propositions� F�

corresponds to all the ��sub�formulas and F� corresponds to the main formula� In this case�
it can be shown that we can discard F� and combine F� and F� in to a single set to get an
acceptance condition with one set� which becomes a Buchi automaton�

Corollary ��� The model checking problem for formulas of the form �xf where f is in
normalized form and has no further �s appearing in it is equivalent to checking non�emptiness
of Buchi tree automata�

Using the above corollary� it is easy to see that the model�checking problem for CTL can
be reduced to the emptiness problem for Buchi automata�

Theorem ��� The model checking problem for the full ��calculus is in NP�co�NP� For�
mally� the set T of encodings of all triples �K� s�� f� satisfying the following condition is in
NP�co�NP� K is a Kripke structure� s� is a state in K and f is a ��calculus formula such
that K� s� j� f �

Proof� From theorem 	��� we see that the model�checking problem for ��calculus� i�e� the
set T � is polynomial time reducible to the emptiness problem of parity tree automata� The
later problem has been shown to be in NP �see ��
�� This implies that the model�checking
problem is also in NP� To see that model�checking for ��calculus is in co�NP� we show that the
complement T � of T is polynomial time reducible to T � For this observe that �K� s�� f� 	 T �

i� s� does not satisfy f � s� does not satisfy f i� s� satis�es �f � i�e� �K� s���f� 	 T �

��



� Model Checking for the restricted Logics

In this section� we present e�cient procedure for model�checking for the two logics L� and
L��

First� we de�ne the two logics L� and L�� L� is the smallest set C of formulas satisfying
the following conditions�

�� P � X � C�

�� If f� g 	 C then f � g� �R�f � �x�f� and �x�f� are also in C�

	� If f is an atomic proposition� i�e� f 	 P� then �f 	 C�

�� If f� g 	 C and at least one of them is a propositional formula then f � g 	 C�

Rule 	 states that negations can only be applied to atomic propositions� Rule � states
that if we have a conjunction one of the two conjuncts has to be a propositional formula�
Any formula in L� is called a L��formula� Note that all L��formulas are in normalized form�
Intuitively� the above restrictions imply that a L��formula is almost like a linear�time formula�

Let L� be the smallest set C of formulas satisfying conditions ����	a and �a where 	a and
�a are as given below�

�a� If f 	 C and is a closed formula then �f 	 C�

�a� If f� g 	 C and at least one them is a closed formula then f � g 	 C�

It is to be noted that the formula f in rule 	 should be an atomic proposition while in
rule 	a it can be any closed L��formula� Similarly� in rule �� at least one of f and g has to
be an atomic proposition� while in �a� at least one of them has to be a closed formula� As
a consequence� rules � and � are special cases of rules �a and �a respectively� From this� it
should be easy to see that L� is a subset of L�� The expressive power of L� is characterized
by theorems ��� and ���� given in the next section�

First� we consider the logic L� and present an e�cient model�checking algorithm for this
logic� This algorithm� as we show later� can be easily extended to the logic L�� Note that
in a L��formula all the negations apply only to the atomic propositions and hence every
L��formula is in normalized form� Further more� the �R� operator does not appear in a
L��formula�

Now� assume that we are given a L��formula f and a Kripke structure K � �S�R� L��
Now� we present an algorithm that determines all states in S that satisfy f � the algorithm
�rst constructs the graph GK�f and labels its nodes as follows� The label of a node u is
maintained in the variable label�u�� Each of these variables takes one of the three values"
true� false� NIL� and is initialized to the value NIL� During the execution of the algorithm�
the values of these variables will be set to true or false� When once a variable is set to one
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of these two values� it will never be changed� Furthermore� for any node u � �s� g�� at the
end of the execution of the algorithm� label�s� g� � true i� K� s j� g�

At any time during the execution of the algorithm� if label�u� � NIL then we say that
node u is unlabeled at that time� We say that a path is unlabeled if all the nodes on the path
are unlabeled� Let n be the length of the formula f � We execute the following algorithm on
the graph GK�f �

�� For each node u 	 V � label�u�� NIL�

�� For each g 	 SF �f� in increasing lengths of g� and for each s 	 S� update label�u��
where u � �s� g�� as follows�

� g � P � If P 	 L�s� then label�u�� true else label�u�� false�

� g � �P � If P 
	 L�s� then label�u�� true else label�u�� false�

� g � g� � g�� �
If for all successors u� of u it is the case that label�u�� � true then label�u�� true�
If for some successor u� of u such that label�u�� � false then label�u�� false� In
other cases� label�u� is unchanged �i�e� � NIL��

� g � g� � g�� or g � �R�g� �
If for some successor u� of u label�u�� � true then label�u�� true�
If for all successors u� of u it is the case that label�u�� � false then label�u�� false�
In other cases� label�u� is unchanged�

� None of the above� label�u� is unchanged�

	� For each unlabeled node u 	 V � if there exists an unlabeled path from u to an unlabeled
��cycle then label�u�� true�

�� For each unlabeled node u� label�u�� false�

Theorem ��� After the execution of the above algorithm� for any node u � �s� g� in GK�f

where g is a closed sub�formula� label�u� � true i� K� s j� g�

Proof� First� it is to be noted that after the execution of step � of the above algorithm�
the following conditions are satis�ed� For each node u � �s� g� where g is a constant�
label�u� 
� NIL� For this case� it should be easy to see that label�s� g� � true i� K� s j� g�
Also� for every node u � �s� g� such that label�s� g� � NIL� there is at least one successor
node u� such that label�u�� � NIL� In addition� if g � g� � g��� then for one successor u��
label�u�� � true and for the other successor u��� label�u��� � NIL� Due to this property� each
��node is e�ectively a ��node�

Now� from theorem 	��� we see that a closed sub�formula g is satis�ed in state s i� there
is an accepting run of the automaton AK�g���s where � is the empty evaluation� Since each
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node in GK�f is e�ectively a ��node� it is not di�cult to see that if the node �s� g� is still
unlabeled after step �� then s satis�es g i� there is an unlabeled path in GK�f that satis�es
the acceptance condition of the automaton AK�g���s� i�e� i� the longest sub�formula appearing
in�nitely often on the path is a ��formula� this happens i� there is an unlabeled path from
�s� g� to an unlabeled ��cycle� Step 	 detects all such nodes and labels them as true� Step
� labels all other nodes as false�

Complexity
Below� we discuss the complexity of the above algorithm� First� it is to be noted that

the number of vertices in GK�f � i�e� jV j� is O�jSjjf j�� The number of edges in GK�f � i�e�
jEj � O�jRjjf j � jSjjf j�� It is not di�cult to see that steps �� �� � and � can all be
implemented in time linear in �jV j� jEj��

Step 	 can be implemented using an algorithm of complexity O�alt depth�f��jV j� jEj���
This algorithm works as follows� It �rst identi�es all nodes that lie on unlabeled ��cycles as
follows� For each i � alt depth�f�� let Hi denote the directed graph obtained by restricting
GK�f to nodes of the form �s� h� where h is a sub�formula of f such that alt depth�h� � i�
i�e� Hi � �Vi� Ei� where Vi � f�s� h� � �s� h� 	 V and alt depth�h� � ig� and Ei � f�u� v� �
�u� v� 	 E and u� v 	 Vig� We say that a strongly connected component �scc� C of Hi is
a ��scc if the longest sub�formula appearing in any node of C� i�e� the longest g such that
�s� g� appears in C for some s� is a ��sub�formula� The following lemma gives us a condition
for identifying all nodes that lie on ��cycles in GK�f �

Lemma ��� A node �s� g� 	 V lies on a ��cycle in GK�f i� there exists an i � alt depth�g�
such that the scc of Hi that contains �s� g� is a ��scc�

Proof� In one direction� it is trivial to see that if the scc in Hi that contains �s� g� is a ��scc
then this scc itself gives a ��cycle in GK�f that contains �s� g�� To prove the other direction�
assume that �s� g� lies on a ��cycle L in GK�f � Let �s

�� h� be a node on L such that h is
the longest sub�formula� Clearly� h is a ��sub�formula� From lemma 	��� we see that g is a
sub�formula of h and hence alt depth�h� � alt depth�g�� Now consider the graph Hi where
i � alt depth�h�� It should be easy to see that both �s�� h� and �s� g� belong to the same
scc in Hi� Further more� if h

� is the longest sub�formula appearing in this scc then h� has to
be ��sub�formula� this is because h is a sub�formula of h� and alt depth�h�� � i�

To identify all nodes in GK�f that lie on a ��cycle we do as follows� For each i �
�� �� ���� alt depth�f�� we construct the graph Hi and identify all the nodes in each ��scc�
These are exactly the required nodes� Since� each Hi is of size at most the size of GK�f � it
is easy to see that this step takes time O�alt depth�f��jV j� jEj��� The remainder of step 	
can be implemented in time O�jV j � jEj�� Thus the over all complexity of the algorithm is
O�alt depth�f��jV j � jEj��� Substituting for jV j and jEj in terms of jSj and jRj� we get an
over all complexity which is O�jf j � alt depth�f� � �jSj� jRj���

The above algorithm can be naturally extended to the logic L� with the same complexity�
Let f be an L� formula and K � �S�R� L� be Kripke structure� In order to �nd all states
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in K that satisfy f we invoke procedure check� as described below� with arguments f and
K� This procedure� on input g and the structure K �� identi�es certain sub�formulas and
recursively determines all the states that satisfy these sub�formulas� after this it replaces
all such sub�formulas in g by new atomic propositions� called auxiliary propositions� the
resulting formula will be a L��formula� it model�checks for this formula using the previous
algorithm� First� we need the following de�nition� A strict sub�formula g� of g is called a
signi�cant sub�formula if it contains at least one variable and it is a closed sub�formula�

The procedure check� with input formula g and input structure K � � �S �� R�� L�� over
the set of atomic propositions P� works as follows�

If g has no signi�cant sub�formulas then g is a L��formula� In this case� we use
the algorithm for L��formulas to determine all states that satisfy g� Otherwise�
we do the following� First� we determine all maximal signi�cant sub�formulas�
Let g�� ���� gk be all such sub�formulas� For each i � �� ���� k� we recursively invoke
check to determine all states in K � that satisfy gi� We introduce new atomic
propositions Q�� ���� Qk� Let P

� � P � fQ�� ���� Qkg� We de�ne a new Kripke
structure K �� over the set of atomic propositions P � as follows� K �� � �S �� R�� L���
where for each state s 	 S �� L���s� � $L��s� � fQj � s 	 MK��gj���g� Note that
the sets of states and transitions of K �� are same as those of K �� the labeling of
each state is extended to include the new atomic proposition� Qj 	 L���s� i� gj
is satis�ed in state s of K �� For each i � �� ���� k� we replace each occurrence of
gi in g by Qi� Let g

� be the resulting formula� It should be easy to see that g�

is a L��formula� It is also not di�cult to see that g
� is satis�ed at a state s in

K �� i� g is satis�ed at the same state s in K �� Now� we use the previous model�
checking algorithm for L��formulas to determine all states in K

�� that satisfy g��
The procedure check returns this set of states as the answer�

It is to be noted that procedure check eventually terminates since the number of signi��
cant occurrences of operators decreases in each recursive invocation�

Using appropriate data structures� it is not hard to see that this model�checking algorithm
can be implemented so that it runs in time O�jf j � alt depth�f� � �jSj� jRj���

� Expressive Power of the Restricted Logic

We compare the expressive power of the logics to well known branching time temporal logics�
Consider the branching time temporal logic CTL�� Let the ECTL� �given in ���
� denote
the extended version of the logic CTL� where each path formula can be as expressive as
��regular expressions� Below� we de�ne the syntax and semantics of ECTL�� First we de�ne
regular expressions over a �nite alphabet  inductively as follows� the empty set �� the empty
string � and every member of  are regular expressions� if U� V are regular expressions then
U�� UV� �U � V � are regular expressions� As usual� with each regular expression R over  �

�	



we associate a set� L�R�� of �nite strings over  de�ned inductively as follows� L��� is the
empty set� L��� is the singleton set containing the empty string� for any a 	  � L�a� � fag�
L�UV � is the set of strings obtained by concatenating some string from L�U� with some
string from L�V � in that order� L�U�� is the set of all strings obtained by concatenating zero
or more strings belonging to L�U�� L��U � V �� � L�U� � L�V �� For a regular expression
U and integer n � �� we let Un denote the regular expression obtained by concatenating U
with itself n� �� for example U� � U� U� � UU � we let U� denote the regular expression ��

An ��regular expression W over a �nite alphabet  is a �nite union
bigcup��i�n Ui�Vi�

� where� for each � � i � n� Ui and Vi are regular expressions over  �
With the ��regular expression W � we associate a set L�W � of in�nite strings over  de�ned
as follows� First� for each � � i � n� let L�Ui��L�Vi� denote the set of �nite strings denoted
by the regular expressions Ui and Vi� respectively� We require that� for each � � i � n� the
empty string is not in L�Vi�� For each � � i � n� we let L�Ui�Vi�

�� denote the set of ��strings
obtained by concatenating an in�nite sequence of �nite strings 
�� 
�� ���� 
j� ��� in that order�
where 
� 	 L�Ui� and for each j � �� 
j 	 L�Vi�� If either Ui or Vi is � then L�Ui�Vi�

�� is
the empty set� Now we de�ne L�W � to be the set of ��strings

S
��i�n L�Ui�Vi�

���
Now we de�ne the syntax and semantics of ECTL� formulas� The formulas of ECTL�

are formed using the symbols for atomic propositions drawn from P� the propositional con�
nectives �� vee and �� the path quanti�ers E�A and the ��regular expressions� The set of
ECTL� formulas is the smallest set satisfying the following conditions�

� Every P 	 P is a ECTL� formula�

� If f and g are ECTL� formulas then �f and f � g are also ECTL� formulas�

� IfW is a ��regular expression over a �nite alphabet  � fa�� a�� ���� ang and f�� f�� ���� fn
are ECTL� formulas then E�W �f�� f�� ���� fn�� is a ECTL� formula�

We de�ne the semantics of ECTL� formulas in a Kripke structure K � �S�R� L� as
follows� For a formula f � we let K� s j� f to denote that f is satis�ed at state s in the
structure K� The relation j� is de�ned by induction on the structure of f as follows�

� K� s j� P i� P 	 L�s��

� K� s j� f� � f� i� K� s j� f� or K� s j� f��

� Let W be a ��regular expression over  � fa�� ���� ang and let f�� ���� fn be ECTL�
formulas� Then K� s j� E�W �f�� f�� ���� fn�� if there exists an in�nite path p �
�p�� ����� pj� ���� in the structure K �i�e� for each j � �� �pj� pj��� 	 R� starting from the
state s �i�e� p� � s� and there exists an in�nite string 
�� 
�� ����� 
j� ��� in L�W � such
that the following condition is satis�ed� for each j � �� if 
j � ai �for some � � i � n�
then K� pj j� fi�

The following theorem states that L� is at least as expressive as ECTL��

��



Theorem 	�� Corresponding to every ECTL� formula f � there exists a closed formula T �f�
in the logic L� such that the following condition is satis�ed� for every Kripke structure K and
every state s of the Kripke structure� K� s j� f i� s 	 MK�T �f����� �Recall that � is the unique
empty evaluation for closed formulas	� Further more� if f is of the form E�W �f�� ���� fn��
where W is a ��regular expression and f�� ���� fn are propositional formulas then T �f� is a
L��formula�

Proof� In order to prove the theorem� we need the following notation� de�nitions and
lemmas� Let g be a ��calculus formula� Let �Q�� ���Qk� be a sequence of distinct symbols such
that each Qi is either an atomic proposition or a variable appearing free in g� Let �h�� ���� hk�
be a sequence of ��calculus formulas� Now� we de�ne g�h�� h�� ���� hk
Q�� Q�� ���� Qk� to be the
formula obtained by replacing every occurrence of Qi in g by hi� for each i � �� �� ���� k� It is
not hard to see that g�h�� h�� ���� hk
Q�� Q�� ���� Qk� is a well�formed formula� The following
lemma relates the semantics of a formula of the form g�h
x� with the semantics of g and h�
It can be proven by straightforward induction on the structure of g�

Lemma 	�� Let g and h be formulas such that g has one free variable x and h has one free
variable y� Then� g�h
x� is a formula with free variable y� For any Kripke structure K and
any evaluation � for g�h
x�� MK�g�h	x���� � MK�g��

�� where �� is an evaluation for g such
that ���x� � MK�h����

Let U be any regular expression over the alphabet  � fa�� ����� ang� We de�ne a ��
calculus formula T ��U� over the atomic propositions a�� ���� a� with a free variable x such that
the following property is satis�ed� T ��U� is satis�ed at any state s of a Kripke structure K
under an evaluation � i� there exists a string � in the language of U and a �nite path p
in K starting from s and ending in a state that satis�es x such that the successive atomic
propositions in the string � are satis�ed in the successive states of p� T ��U� is de�ned
inductively on the structure of U as follows�

� If U � aj for some aj 	  then T ��U� � aj � �R�x�

� If U � �U� � U�� then T
��U� � T ��U�� � T ��U���

� If U � �U�U�� then T
��U� � T ��U���T

��U��
x��

� If U � �U��
� then T ��U� � �y�x � T ��U���y
x���

Lemma 	�� Let U be any regular expression over the alphabet  � For any Kripke structure
K � �S�R� L� over the set of atomic propositions  and for any evaluation � for T ��U� the
following condition is satis�ed� s 	 MK�T ��U���� i� there exists a �nite string � � ��� ��� ���� �m
in L�U� and there exists a �nite path p � p�� p�� ���� pm�� in K such that pm�� 	 ��x� and
for each i � �� �� ���� m� �i 	 L�pi��

��



Proof� The proof is by induction on the structure of U � The proof is trivial for the case
when U � aj for some aj 	  and for the case when U � U� � U�� Now consider the case
when U � �U�U��� By de�nition� T

��U� � T ��U���T
��U��
x�� From lemma ���� we have

MK�T ��U���� �MK�T ��U����
�� where ���x� �MK�T ��U������ using the induction hypothesis for

U�� we get s 	 MK�T ��U���� i� there exists a �nite path p
� � p��� ���� p

�
m��� starting from s and

there exists a string �� � ���� ����� �
�
m� in L�U�� such that for each i � �� �� ���� m�� ��i 	 L�p�i� and

p�m��� 	 ���x�� By using the induction hypothesis for U�� we see that p
�
m��� 	 MK�T ��U����

i� there exists a path p�� � p���� ���� p
��
m���� starting from p�m��� �i�e� p

��
� � p�m���� and a string

��� � ���� � ���� �
��
m�� in L�U�� such that� for each j � �� ���� m��� ���j 	 L�p��j � and p

��
m���� 	 ��x�� It

should b easy to see that the lemma is satis�ed for U by taking p to be the concatenation
of p��� p

�
�� ���� pm� and p��� and � to be the concatenation of �� and ����

Now consider the case when U � �U��
�� We de�ne a sequence of languages Z�� Z�� ���� Zi� ���

as follows� Z� is the set containing the empty string� For i � �� Zi � Zi�� � L��U��
i��

Essentially� Zi consists of all strings obtained by concatenating n strings from L�U�� for some
n � i� It is easy to see that L��U��

�� �
S
i	� Zi� Let g denote the formula �x�T ��U���y
x���

Note that g has two free variables x and y� Let ���� �
�
�� ���� �

�
i� ��� be evaluations for g de�ned

as follows� ����y� � �� ����x� �
rho�x�� and for each i � �� ��i�x� � ��x�� ��i�y� � MK�g��

�
i���� From Tarski�Knaster

theorem� we know thatMK�T ��U���� �
S
i	�MK�g��

�
i�� By induction on i� we show that

�I� for any state s� s 	 MK�g��
�
i� i� there exists a path p � p�� ���� pm�� in K starting from s

and a string � � ��� ���� �m in Zi such that pm�� 	 ��x� and for each j � �� ���� m� �j 	 L�pj��
To see the base case of I� i�e� when i � �� recall that g is the formula x � T ��U���y
x��

Since ����y� � �� it is not hard to see that MK�g��
�
�� � ��x�� From this observation� it

is not hard to see that �I� holds for the base case by using � to be the empty string and
p to be the path of length zero� Now we prove the induction step� Assume that �I� holds
for all values of i � k� Now consider the case when i � k � �� Now s 	 MK�g��

�
k���

i� s 	 ��k���x� or s 	 MK�T ��U���y	x���
�
k���� By the induction hypothesis for the lemma�

we see that s 	 MK�T ��U���y	x���
�
k��� i� there exists a path p� � p��� ���� p

�
m��� and a string

�� � ���� ����� �
�
m� in L�U�� such that p

�
m��� 	 ��k���y� and for each j � �� ���� m�� ��j 	 L�p�j��

since ��k���y� � MK�g��
�
k�� from the induction hypothesis of �I� we see that p�m��� 	 ��k���y�

i� there exists a path p�� � p���� ���� p
��
m�� in K starting from p�m��� �i�e� p

��
� � p�m���� and a

string ��� � ���� � ���� �
��
m in Zk such that p

��
m�� 	 ��x� and for each j � �� ���� m� ���j 	 L�p��j ��

Putting all the observations together� it should be easy to see that the induction step for I
holds by taking the p to be the path p��� p

�
�� ���� p

�
m� followed by the the path p�� and � to be

�� � ���� �
Now consider the ��regular expression U � V �W �� where V�W are regular expressions

over the alphabet  � fa�� ���ang� Corresponding to U � we de�ne a formula T
���U� over

the atomic propositions a�� ���� an as follows� T ���U� � T ��V ����xT ��W ��
x�� Note that
T ��V �� T ��W � have one free variable x� and T ���U� has no free variables� T ���U� is obtained
by substituting �xT ��W � for every occurrence of x in T ��V ��

��



Lemma 	�� Let U be the ��regular expression V �W �� over the alphabet  � For any Kripke
structure K � �S�R� L� over the set of atomic propositions  and for any state s 	 S�
the following condition is satis�ed� s 	 MK�T ���U���� i� there exists an in�nite string � �
��� ��� ���� �i� ��� in L�U� and there exists an in�nite path p � p�� p�� ���� pi� ��� in K starting
from s �i�e� p� � s	 such that for each i � �� �i 	 L�pi��

Proof� First we prove property �J� given below� The lemma follows easily from this prop�
erty�
�J� For any t 	 S� t 	 MK��xT ��W ���� i� there exists an in�nite path p

� � p��� ���� p
�
j� ��� in

K starting from t and there exists an in�nite string �� � ���� ����� �
�
j� ��� in L�W

�� such that�
for each j � �� ��j 	 L�p�j��

Let ��� ��� ���� �i� ��� be evaluations for T
��W � de�ned as follows� ���x� � S� for each i � ��

�i���x� � MK�T ��W ���i�� By induction on i� it can easily be shown that
�J �� for any t 	 S� t 	 �i�x� i� there exists a �nite path p�� � p���� ���� p

��
m�� in K starting

from t and a �nite string ��� � ���� � ���� �
��
m in L�W i� such that p��m�� 	 �i�x� and for each

j � �� ���� m� ���j 	 L�p��j ��
The proof of �J �� is fairly straight forward and is left to the reader� From Tarski�Knaster

theorem� we see that MK��xT ��W ���� �
T
i	� �i�x�� We have t 	 MK��xT ��W ���� i� for each

i � �� t 	 �i�x� i� for each i � �� there exists a �nite path p�� � p���� ���� p
��
m�� in K starting

from t and a �nite string ��� � ���� � ���� �
��
m in L�W i� such that p��m�� 	 �i�x� and for each

j � �� ���� m� ���j 	 L�p��j �� From this and the fact that K is a �nite structure �and hence has
bounded number of successors for each state�� it is easy to see that property �J� holds� �

Now we continue with the proof of theorem ���� For any ECTL� formula f we de�ne
T �f� inductively on the structure of f as follows�

� If f � P for some P 	 P then T �f� � P � If f � �f� then T �f� � �T �f��� If
f � f� � f� then T �f� � T �f�� � T �f���

� If f � E�W �f�� f�� ���� fn�� where W is a ��regular expression over an alphabet
 � fa�� ���� ang then T �f� is de�ned as follows� Let W �

S
��i�k Ui�Vi�

� where
Vi and Wi are regular expressions over  � For each i� such that � � i � k�
let gi � T ���Ui�Vi�

���T �f��� T �f��� ���� T �fn�
a�� a�� ���� an�� Recall that the atomic
propositions appearing in T ���Ui�Vi�

�� are from the set  � Note that the formula
T ���Ui�Vi�

���T �f��� T �f��� ���� T �fn�
a�� a�� ���� an� is obtained from T ���Ui�Vi�
�� by re�

placing every occurrence of ai by T �fi� for each i � �� ���� k�

It is not hard to see that T �f� as de�ned above is a closed formula in the logic L�� Using
earlier lemmas� by induction on the structure of f � it is straightforward to prove that T �f�
satis�es the condition of the theorem� Further more� it is easy to see that if f is a formula of
the form E�W �f�� ���� fn�� where W is a ��regular expression and f�� ���� fn are propositional
formulas then T �f� is a L��formula� ��

The following theorem states that ECTL� is at least as expressive as the logic L��

�




Theorem 	�� For every closed L��formula f there exists a ECTL� formula %�f� such that�
for every Kripke structure K and every state s� s 	 MK�f��� i� K� s j� %�f�� Further more�
if f is a L��formula then %�f� is a formula of the form E�W �f�� ���� fn�� where f�� ���� fn are
propositional formulas�

Proof� First we prove the theorem for L� formulas and then extend it to L� formulas�
Let  � f� � � � Pg�  is �nite since P is �nite� Let RE� � denote the regular
expression �� � �� � ����m where ��� ��� ���� �m are all the elements of  � Let K � �S�R� L�
be any Kripke structure over the set of atomic propositions P� For any �nite or in�nite path
p � p�� p�� ���� pi� ��� in K� we let L�p� denote the sequence L�p��� L�p��� ���� L�pi�� ����

Now� we have the following lemma�

Lemma 	�� Let f be any L��formula and x�� ���� xk be the set of variables that appear free
in f � Then there exist regular expressions Rf��� Rf��� ���� Rf�k and an ��regular expression Wf

over the alphabet  such that the following property is satis�ed� for every Kripke structure
K � �S�R� L�� for every evaluation � for f and for all states s 	 S� s 	 MK�f��� i� one
of the following two conditions holds� �i	 there exists an in�nite path p starting from s �i�e�
p� � s	 such that L�p� 	 L�Wf�� �ii	 there exists a �nite path p � p�� ���� pi� pi�� starting
from s and an integer j� � � j � k� such that L�p�� ���� pi� 	 L�Rj� and pi�� 	 ��xj��

Proof� Note that a special case of the above lemma is when f is a closed formula� In this
case� s 	 MK�f��� i� condition �i� of the lemma is satis�ed� For an arbitrary L��formula
f � we prove the lemma by induction on the structure of f � The base cases are when f is a
variable or an atomic proposition or negation of an atomic proposition� When f is a variable�
say x�� then the lemma is satis�ed with Rf�� being � �in this case� L�R�� is the singleton set
containing the empty string� and Wf being the empty set� It is trivial to see the proof for
the other base cases� Now we consider the following induction cases�

� Assume f � �R�g� Assume that the lemma holds for g� The set of free variables of f
is exactly same as the set of free variables of g� De�ne Wf � RE� �Wg� and for each
j� � � j � k� let Rf�j � RE� �Rg�j� It is straightforward to see that the lemma also
holds for f using the above values for Wf and Rf�j for each j � �� ���� k�

� Assume f � �xk�� �g�� Let x�� ���� xk�� be the free variables of g� By the induction
hypothesis assume that the lemma holds for g� De�ne Wf to be �Rg�k���

�Wg� For each
j� � � j � k� de�ne Rf�j � �Rg�k���

�Rg�j�

By using Tarski�Knaster theorem for least �x points� we know that MK�f��� �
S
r	�MK�g��

�
r� where each ��r is an extension of �r such that �

�
��xk��� � �� and

for each r � �� ��r���xk��� � MK�g��
�
r�� By induction on r and using the induction

hypothesis for the lemma� it is fairly easy to show that s 	 MK�g��
�
r� i� one of the fol�

lowing two properties holds� �i� there exists an in�nite path p starting from s such that
L�p� 	 L��Rg�k���

mWg� for some m � r� �ii� there exists a �nite path p � p�� ���� pi��

��



and some n � k� such that pi�� 	 ��j�xn� and L�p�� ���� pi� 	 L��Rg�k���
mRg�n� for some

m � r� From this� it is easy to see that the lemma holds for for f with the above
de�ned values for Wf and Rf�m for each m � �� ���� k�

� Assume f � �xk�� �g�� As before� let x�� ���� xk�� be the free variables of g� Assume
that the lemma holds for g� De�ne Wf to be �Rg�k���

�Wg � �Rg�k���
�� For each j�

� � j � k� de�ne Rf�j � �Rg�k���
�Rg�j�

Let ���� �
�
�� ���� �

�
r� ��� be a sequence of evaluations for g such that each of them is an exten�

sion of �� ����xk��� � S� and for each r � �� ��r���xk��� � MK�g��
�
r�� By using Tarski�

Knaster theorem for greatest �x points� we know thatMK�f��� �
T
r	�MK�g��

�
r�� By

induction on r and using the induction hypothesis for the lemma� it is fairly easy to
show that s 	 MK�g��

�
r� i� one of the following three properties holds� �i� there exists

an in�nite path p starting from s such that L�p� 	 L��Rg�k���
mWg� for some m � r�

�ii� there exists a �nite path p � p�� ���� pi�� starting from s and some n � k such that
pi�� 	 ��r�xn� and L�p�� ���� pi� 	 L��Rg�k���

mRg�n� for some m � r� �iii� there exists a
�nite path p starting from s such that L�p� 	 Rr��

g�k���

Assume that property �i� or property �ii� is satis�ed for some r� Consider the smallest
value of r� say u� for which either �i� or �ii� is satis�ed� in this case� it should be easy
to see that �i� or �ii� is satis�ed with m � u� it is also not hard to see that �i� or �ii�
is satis�ed for all r � u� further more� this also implies that there is a �nite path p
starting from s such that L�p� 	 L��Rg�k���

u and hence property �iii� is satis�ed for all
r 	 u� Thus� if property �i� or �ii� is satis�ed for some r� then for all r � �� either �i� or
�ii� or �iii� is satis�ed� From this and previous observations� we see that s 	 MK�f����
i� for all r � �� s 	 MK�g��

�
r�� i� there exists an r � � such that property �i� or �ii� is

satis�ed or for all r � � property �iii� is satis�ed� Since K is a �nite structure� it is not
hard to see that property �iii� is satis�ed for all r � � i� there exists an in�nite path
p starting from s such that L�p� 	 L��Rg�k���

��� Putting all the above observations
together� it is not hard to see that the lemma holds for f using the above de�nitions
for Wf and Rf�j for j � �� ���� k�

� The other cases are when f is of the form f� � f�� and is of the form P � f� where P is
an atomic proposition� Assuming that the lemma holds for f� and f�� it is fairly easy
to see that it also holds for f �

�

Now� we continue with the proof of theorem ���� Consider any arbitrary closed L��
formula f � Let g�� ���� gk be the maximal� closed� strict sub�formulas of f � �Note that no gi
is a sub�formula of any other gj�� By induction assume that� for each j� � � j � n� there
exists a ECTL� formula %�gl� such that K� s j� %�gj� i� s 	 MK�gj���� Let Q�� ���� Qk be
new atomic proposition symbols not present in P� Let f � be the formula obtained from f
by replacing each occurrence gj by Qj� for each j � �� ���� k� It is not hard to see that f � is

��



a closed L��formula� Now we de�ne a new Kripke K
� as follows� K � � �S�R� L�� where for

each s 	 S� L��s� � L�s�� fQj � s 	 MK�gj���g� Note that the states and transitions of K
are same as those of K �� It should be easy to see thatMK�f��� � MK��f �����

De�ne P � � P � fQ�� ���Qkg and  � � f� � � � P �g� Since f � is a closed formula� from
lemma ���� we see that there exists a ��regular expression Wf � over the alphabet  � such that
s 	 MK��f � i� there exists an in�nite path p in K � starting from s such that L��p� 	 L�Wf ���
Let ��� ��� ���� �u be all the elements of  

�� For each j � �� ���u� de�ne a propositional formula
p�j as follows� p

�
j � p�j�� � p

�
j�� where p

�
j�� �

V
P

j

P and p�j�� �
V
P
P ��
j

�P � Note that p�j��
is the conjunction of all atomic propositions in �j and p

�
j�� is the conjunction of negations of

atomic propositions not in �j� i�e� all those in P � � �j�
Now de�ne %��f� to be the ECTL� formula E�Wf ��p��� �p

�
�� ���� p

�
k��� It should be easy to

see that for any s 	 S� s 	 MK��f ���� i� the th ECTL� formula %��f� is satis�ed in state s
of K �� i�e�� K �� s j� %��f��

Now� for each j � �� ���� u� de�ne a ECTL� formula pj � pj�� � pj�� � pj�� � pj�� where
each pj�l for l � �� ���� � is de�ned as follows� pj�� �

V
P
P�
j

P � pj�� �
V
P
P�
j

�P �
pj�� �

V
Ql

j

%�gl�� pj�� �
V
Ql 	

j

�%�gl�� Note that pj�� is the conjunction of all %�gl�
such that Ql 	 �j� and pj�� is the conjunction of all �%�gl� such that Ql 
	 �j�

For each j � �� ���� u� it should be easy to see that K� s j� pj i� K �� s j� p�j� Now� de�ne
%�f� to be the ECTL� formula E�Wf ��p�� p�� ���� pu��� From the previous observation� we see
that K� s j� %�f� i� K �� s j� %��f�� However� from our earlier observations K �� s j� %��f� i�
s 	 MK��f ����� Since MK��f ���� � MK�f���� it follows that K� s j� %�f� i� s 	 MK�f����
Note that if f is a L��formula then %�f� is a formula of the form E�W �f�� ���� fn�� where
f�� ���� fn are propositional formulas� This completes the proof of theorem ���� �

The following corollary is immediate from theorems ��� and ����

Corollary 	�� The logic L� is exactly as expressive as ECTL�� and the logic L� is exactly as
expressive as the fragment of ECTL� consisting of all formulas of the form E�W �f�� ���� fn��
where W is a ��regular expression and f�� ���� fn are propositional formulas�

� Conclusion

In this paper� we considered the model�checking problem for ��calculus and have shown it
to be equivalent to the emptiness problem for parity tree automata� This shows that there
is an e�cient algorithm for one if and only there is an e�cient algorithm for the other� We
have also shown this problem to be in NP�co�NP�

We also considered two di�erent fragments of ��calculus� logics L� and L�� We gave
model checking algorithms for logics L� and L� which are of complexity O�mnp� where m is
the length of the formula and n is the size of the structure� and p is the alternation depth of
the formula� We have shown that the logic L� is as expressive as ECTL� given in ���
� In
additions to these results� we have shown that the model checking problem for the ��calculus
is equivalent to the non�emptiness problem of parity tree automata�

	�



It will be interesting to investigate if there is a model checking algorithm for the logics
L� and L� which is only of complexity O�mn�� Of course� determining if the model checking
problem for the full ��calculus is in P or not� is also an open problem�
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