On model-checking for p-calculus and its fragments

E. A. Emerson* C. S. Jutlal A. P. Sistla*
June 22, 1999

Abstract

In this paper, we consider the model-checking problem for p-calculus and show that
it is equivalent to the non-emptiness problem of a certain class of automata on infinite
binary trees. We also present efficient model-checking algorithms for two rich subclasses
of p-calculus formulas and relate their expressive power to well known extensions of
branching time temporal logics.

1 Introduction

In this paper we consider the problem of model checking for different fragments of proposi-
tional p-calculus. This logic was studied by many authors [6, 13] for specifying the properties
of concurrent programs. It has been shown (see [18, 16, 7]) to be as expressive of automata
on infinite trees. Most of the known temporal and dynamic logics can be translated into this
logic.

The model checking problem for this logic was first considered in [10]. In that paper,
the authors presented an algorithm that is of complexity O((mn)"*!) where m is the length
of the formula, n is the size of the Kripke structure and [is the number of alternations of
least and greatest fixed points in the given formula. Thus the complexity of the algorithm
is exponential in the length of the formula. Since then there have been other algorithms
[3, 5, 17] that were presented. Although some of these algorithms have lower complexity than
the original algorithm, their complexity is still exponential. Algorithms of linear complexity
(both in the size of the structure and the formula) were given [4] for the case when there is
no alternation of least and greatest fixed points in the given formula.

!Department of Computer Science, University of Texas at Austin, Austin, Texas. This author’s research
is supported in part by the ONR grant N00014-89-J-1472 and Texas Advanced Technology Program Grant
003658-250.

2I.B.M. Thomas J. Watson Research Laboratories

3Department of Electrical Engineering and Computer Science, University of Illinois at Chicago, Chicago,
IL 60680. This author’s research is supported in part by NSF grant CCR-9212183.

In this paper, we consider the model-checking problem for the full p-calculus and show
that this problem is equivalent to the non-emptiness problem of parity tree automata con-
sidered in [15, 7]. More specifically, we show that the model checking problem for p-calculus
is reducible to the non-emptiness problem for parity tree automata of size O(mn) where m
and n are as defined above. We also show that the non-emptiness problem of parity tree
automata of size p is reducible to the model checking problem for p-calculus in which the
size of the Kripke structure is O(p) and the length of the formula is O(p). This shows that
there is an efficient algorithm for one of them iff there is such an algorithm for the other.
We also show that the model-checking problem for p-calculus is in NPNco-NP.

Next, we consider the model checking problem for different fragments of the p-calculus.
We first consider two fragments called Lq, L where L; is a subset of L,. We present model
checking algorithms for these fragments which are of complexity O(mnp) where m is the
length of the formula and n is the size of the structure and p is the alternation depth of
the formula (defined in section 2). The formulas in L; and L, allow arbitrary nesting of
the least and greatest fixed points. However, they restrict how the modal operators and the
boolean connectives can appear in the formula. More specifically, L, is the set of formulas
containing least and greatest fixed points, the modal operator <R> in which negations only
apply to atomic propositions and which satisfy the following restrictions: where ever A is
used, at least one of the two conjuncts is a propositional formula. L, is the set of formulas
satisfying the following restrictions: negations can be applied only to closed formulas (i.e.
formulas without free variables); where ever A appears, at least one of the two conjuncts is a
closed formula. The fragment L, is shown to be exactly as expressive as the branching time
temporal logic ECTL* considered in [19]. ECTL* is the extended version of CTL* in which
w-regular expressions are used as path formulas. We show that L, is exactly as expressive as
the set of formulas of in ECTL* of the form E(W) where F is the existential path quantifier
and W is a w-regular expression.

Preliminary version of this paper was first presented in [9]. This is one of the earliest
papers that reduced model-checking problem for p-calculus (and other branching time logics
to tree automata) to the emptiness problem of tree automata. Since then there were other
works that explored relationships between model-checking for p-calculus and the emptiness
problem for automata. In particular, [14] showed the equivalence to the emptiness problem
for alternating string automata. Results relating the model-checking problem to the empti-
ness problem of tree automata have also been reported in [2]. In that work as well as our work
(cf. [9]) an essential notion is to model check a branching mu-calculus formula by taking the
product of its syntax diagram with the Kripke. In [2] it was explicitly articulated that this
syntax diagram defined an alternating tree automaton, a topic also discussed in [7]. Since
the publication of our result [9] showing that the model-checking problem for p-calculus is
in NPNco-NP, there have been other results on this problem; in particular, [12] establishes
a slightly stronger result showing that the above problem is in UPNco-UP.

The work described in [1] (which appeared after [9]) presents on-the-fly model-checking
algorithms for the logics L; and Lo; these algorithms are of complexity O(|f|- alt_-level(f) -

(|S] + |R]|)) where alt_level(f) is the level of alternations of us and vs in f. The definition
of alt_level(f), given in [1], is different from our definition of alt_depth(f).

Our paper is organized as follows. Section 2 contains definitions and notation. Section
3 contains the result showing the equivalence of the model checking problem for the full
p-calculus and non-emptiness problem for the parity tree automata. Section 4 presents the
model checking algorithms for the logics L; and Ly. Section 5 presents expressiveness results
for the logics L, and Ls.

2 Definitions and Notation

In this section we define the syntax and semantics of the different fragments of the logic
p-calculus. Let P and X be two disjoint sets of elements. The elements of P will be called
atomic propositions and are usually denoted by P;, Ps,,... The elements of X will be called
variables and are usually denoted by z,%,.... The formulae of p-calculus are formed using
the symbols from P, X, the propositional connectives — and A, the modal operator <R>, and
the symbol pu.

The set of well-formed formulas of p-calculus are defined inductively. The symbols true
and false are well-formed formulas. Every atomic proposition and every variable are well-
formed formulas. If f and ¢ are well-formed formulas then —f, f A g and <R>f are also
well-formed formulas. In addition, if f is a well-formed formula in which all the occurrences
of the variable x are in the scope of an even number of negations then pz(f) is also a
well-formed formula.

We say that a variable z is a free variable in a formula f if there is an occurrence of x
in f which is not in the scope of some px. Let free-var(f) denote all the variables that are
free in f. A variable which appears in f and which is not free, is called a bound variable. A
formula without any free variables is called a closed formula. We define the semantics of the
formulas in p-calculus with respect to a Kripke structure. A Kripke structure K over the set
of atomic propositions P is a triple (S, R, L) where S is a finite set of states;, R C S x Sis a
total binary relation (i.e. Vz3y(x,y) € R)), and L : S — 27. With each state s, L associates
a set of atomic propositions that are true in that state. We assume that all Kripke structures
are defined over the set P of atomic propositions unless otherwise stated. Let f be a formula
with free-var(f) = {x1, ..., zx}. An evaluation p for f is a mapping that associates with each
variable in free-var(f) a subset of S. If free-var(f) is empty then there is a unique empty
evaluation e for f. For a given Kripke structure K, we define a function Mg) from the set
of evaluations for f to the subsets of S, by induction on the structure of f as follows.

o Mk.py(e) ={s: P € L(s)} where P is an atomic proposition;

o Mk trg)(p) = Mk, p)(p") N M k) (p") where p' and p” are restrictions of p to the free
variables of f and g respectively;

o Mg, -p)(p) =S — M pp);

® Mk <r>p(p) ={s:3s" € Mk (p) such that (s,s') € R};

o Mk uer)(p) = N{p' () : Mx,5)(p'") C p'(x) where p' is an extension of p such that for
all y € free-var(f) and y # 7, #(y) = p()}.

In the above definition, it is to be noted that the value of Mk .1 (p) is given as a least
fixed point. For a closed formula f, we say that a state s in K satisfies f (written as K, s = f)
iff s € Mk,5)(€). We define derived connectives defined as follows: fV g = =(=f A —g),
f—=g9=(=fVyg), [R1f=—-<R>~f, vyf(y) = ~pux(—~f(—z)). It is to be noted that while px
denotes the least fixed point vy denotes the greatest fixed point operator. A formula that
has no variables and no occurrence of i and v will be called a constant. A constant formula
that has no occurrence of the modal operators <R>,[R] is called a propositional formula.
The following lemma gives a well known property of greatest fix points and can be proven
from the basic definitions.

Lemma 2.1 Let K be any Kripke structure, vz(f) be any formula and p be any evaluation

for va(f). Then,
(kwap)(p) = U{p' (z) : M 5)(p") 2 p'(x) where p' is evaluation for f and is an extension

of p such that for every y € free-var(f) such that y # x, p'(y) = p(y)}.

By using DeMorgan’s laws, the identities —vy f(y) = px(—f(—-x)) and =[R] f = <R>—f,
we can transform any formula into an equivalent formula in which all negations apply only
to the atomic propositions. Such formulas will be called normalized formulas. In our paper
we will be interested in these types of formulas. A formula of the form pxf (resp., vz f)
will be called a p-formula (resp., v-formula).

We assume, throughout the paper, that each variable appearing in a formula is bound at
most once. This means that we can not have two sub-formulas of the form px(g) and px(h)
appearing in a formula. If this property is not satisfied, then by renaming the variables
we can obtain an equivalent formula that satisfies this property. For any formula f, we let
SF(f) denote the set of sub-formulas of f.

With a normalized formula f, we define a positive integer alt_depth(f) as follows. For this,
we first define the notions (actually, binary relations on SF(f)) direct active sub-formulas
and active sub-formulas as follows. Let f be a p-formula or a v-formula, i.e. f = dx(f')
where 6 € {v, u}. We say that a sub-formula g of f is a direct active sub-formula of f if g # f
(i.e. g is a strict sub-formula) and the variable x appears in g. It is fairly straightforward to
show that the binary relation “direct active sub-formula” is a partial order. The transitive
closure of this partial order is the relation “active sub-formula”. Formally, ¢ is an active
sub-formula of f, if there exists a sequence (or a chain) of sub-formulas hy, hs, ..., by, such
that hy = f, hy = ¢g and for each i (1 < i < k) h;;1 is a direct sub-formula of h;.

Example: Let f be the formula pz(P;Vg) where g = vy((PyAz)Vh) and h = pz(yV Py).
It is easy to see that ¢ is a direct sub-formula of f and A is a direct sub-formula of g.

The following is an alternate way of defining active sub-formulas. Let f be any open or
closed formula. Construct a graph Hy, called syntaz graph of f, as follows. Take the parse

4

tree for the formula f, and for each leaf node in the parse tree that is a variable x which is
bound in f, add a back edge from z to the unique sub-formula in the parse tree that binds
x, i.e. the unique sub-formula of the form dx(g') where 6 € {u,v}. The above back edges
create cycles in Hy. It is fairly easy to show that g is an active sub-formula of f iff there is
a path from g to f in Hy.

Now, we define alt_depth(f) as follows.

e For a p-formula f, alt_depth(f) = 0 if f has no active v-sub-formulas in it, otherwise
alt_depth(f) = 1 + max{alt_depth(g) : gis an active v-sub-formula of f}.

e For a v-formula f, alt_depth(f) = 0 if f has no active p-sub-formulas in it, otherwise
alt_depth(f) = 1 + max{alt_depth(g): g is an active p-sub-formula of f}.

e For any formula f, define
alt_depth(f) = maz{alt_depth(g): g is a p-sub-formula or a v-sub-formula of f}.

Equivalently, we can define alt_depth(f) to be the maximum number of alternations of
ps and vs in any chain of direct active sub-formulas starting with f (i.e. each sub-formula
in the chain is a direct active sub-formula of the preceding one).

Example: The alternation depth of the formula va(uy(P; V <R>y) A [R1z) is zero. Note
that the p-sub-formula is not an active sub-formula of the main formula. On the other hand
the alternation depth of, the slightly different formula, vz (uy((Pr A) V <R>y) A [R]z) is
one.

For finite Kripke structures, the least fixed point can be computed by iteration starting
with an empty set and iterating until a fixed point is reached. Similarly, the greatest fixed
point can be computed by starting from the set containing all states and iterating until a
fixed pont is reached. These results are due to Tarski/Knaster.

3 Relationship between Model Checking and Au-
tomata

In this section we explore the relationship between the model checking problem for p-calculus
and the emptiness problem for automata on infinite trees. More specifically, we show that the
model checking problem for the complete logic p-calculus is equivalent under linear reductions
to the emptiness problem of a particular type of automata on infinite trees, called parity
automata. This shows that there is an efficient model checking algorithm for p-calculus iff
there is an efficient algorithm for checking emptiness of parity automata.

A corollary of the above result is that the model checking problem for formulas of pu-
calculus which are of the form vy(g) where ¢ is in normal form and p is the only fixed point
operator appearing in g, is equivalent to the non-emptiness problem for Buchi tree automata

First, we define parity tree automata (introduced in [7, 15]). A parity tree automaton A
on infinite binary trees is a 5-tuple (X, @, qo, 9, F') where X is the input alphabet, @ is the

5

set of automaton states, qo is the initial states, § : (Q x) — 29%? is the next move relation
and F = (Fy, F1, ..., F) where Fy, F1, ..., F}, is a sequence of mutually disjoint subsets of
(). We call F as the acceptance condition. Note that, for any a € ¥ and ¢ € @, (g, a)
is a set of pairs of the form (¢’,¢") where ¢’ and ¢” are automaton states; Intuitively, if
the automaton is in state ¢ and reads input a in the current node then the state of the
automaton on the left child is going to be ¢’ and its state on the right child is going to be
q". Let p = (po,-..pi, -..) be an infinite sequence of states of the automaton A. We say that
p satisfies the acceptance condition of A if the following condition is satisfied: there exists
an even number [, 0 < [< k, such that some state in F; appears infinitely often in p and
each of the states in the set (U;;<j Fj) only appears finitely often in p. A path p in the
automaton A is a finite or infinite sequence py, ..., p;, ... of states of the automaton such that
the following condition is satisfied: for each + > 0, p; € @ and for some a € ¥ and some
q € Q, either (p;11,4") € §(pi,a) or (¢',piv1) € 6(p;, a).

We denote the nodes of the infinite binary tree by the set {0,1}*. We let I' denote this
infinite binary tree. For any z,y € {0, 1}*, we let zy denote the concatenation of the strings
x and y. The root node of I' is the empty string; for any node z, x0 and x1, respectively,
denote the left and right child of z. An infinite path o in the tree is an infinite sequence of
nodes starting with root node and such that each succeeding node is a child of the preceding
node. A labeled tree r is a function with domain I'. For a labeled tree r, the label of any
node z € I is r(x).

An input 7 to the automaton is a labeled tree with range ¥, i.e. the label of each node
is from X. A run of r of A starting from state ¢ on input 7 is itself a labeled tree with
range () such that the root node is labeled with ¢ and the labeling of all other nodes is
consistent with the transitions of the automaton; formally, r : {0, 1}* — @ associates a state
of the automaton with each node of the tree, such that r(¢) = ¢, and for any = € {0,1}*
(r(x0),r(x1)) € 6(r(x), 7(x)). We simply state that r is a run of A on input 7 if it is a run
of A starting from state gy (i.e. the initial state of A) on input 7. Let r be a run starting
from some state ¢ on input 7. For any infinite sequence o = 0y, 01, ..., 0;, ..., where each o; is
a node in I', we let r(0) denote the infinite sequence of automaton states r(0y), ..., 7(03), ...
We say that (o) satisfies the acceptance condition of A if the following condition is satisfied:
there exists an even number [, 0 < [< k, such that some state in F; appears infinitely often in
r(o) and each of the states in the set (U, ;<4 F;) only appears finitely often in (o). The run
r is an accepting run of A if for every infinite path o, (o) satisfies the acceptance condition
of A. We say that the automaton A accepts an input 7 iff there exists an accepting run r
of the automaton on the input 7. We define the size of an automaton A = (3, Q, qo, 9, F)
to be the sum of the cardinality of), the total number of transitions (i.e. total number of
triples of the form (g¢,a,q') such that ¢ € Q, a € ¥ and ¢’ € §(¢,a)) and the sum of the
cardinalities of all sets in F'.

A Buchi automaton is a parity tree automaton in which the accepting condition F' is of
length one, i.e. it has only one set. Note that this definition is equivalent to the standard
definition of Buchi tree automaton.

Theorems 3.1 and 3.2 show the equivalence of the model-checking problem for p-calculus
and the emptiness problem parity tree automata. We need the following definitions in the
proofs of these theorems.

Let f be a p-calculus formula, possibly having some free variables. Recall that SF(f)
denotes the set of sub-formulas of f. Let K = (S, R, L) be a given Kripke structure. We
define a directed graph Gg s = (V, E), where V is the set of vertices and E is the set of
edges, defined as follows. The node set V' = {(s,9) : s € S,g € SF(f)}. Essentially, there is
one node in V' corresponding to each state in S and each sub-formula of f. The set of edges
leaving the node (s, g) are, defined according to the outermost connective of the sub-formula
g, as follows.

e If g = P, or ¢ = = P; where P, is an atomic proposition or ¢ = x and z is a free variable
in f then there is exactly one edge from (s, g) to itself.

e If g = x and x is a bound variable in the formula f and ¢’ is the largest sub-formula
of f such that ¢’ = px(¢") or ¢' = vx(g"), then there is exactly one edge leaving (s, g)
and this edge is to (s, ¢').

o If g = px(g’) or g = va(g'), then there is an edge from (s, g) to (s,¢') and this is the
only edge from (s, g).

e Ifg=g Ng"org=g Vg" then there are two edges from (s, g), to the nodes (s, ¢')
and (s, g").

e If g =<R>¢' or g = [R]g¢/, then for each state s’ such that (s,s’) € R, there is an edge
from (s,g) to (¢, ¢').

Roughly speaking, Gk s is a product graph of the K and the syntax graph of f, i.e. the
graph Hy. A path in Gk is a finite sequence of nodes such that there is an edge in £ from
each node in the path to the succeeding node. A path starting and ending with the same
node is a cycle. A strongly connected subgraph of G s is a set of nodes C' such that there is
a path between every pair of nodes in C' passing only through the nodes of C. A strongly
connected component (scc) is a maximal strongly connected subgraph.

We say that a cycle C in Gg¢, is a v-cycle (respectively, p-cycle) if the longest sub-
formula appearing in a node on C' is v-sub-formula (respectively, p-sub-formula). We call a
node (s,h) in V' to be an A-node if A is of the form hy A hs or is of the form [R1h; and (s, h)
has at least two successors (i.e. edges to two distinct nodes). All other nodes in V' are called
V-nodes. We call (s, h) to be an atomic node if h is P or =P for some atomic proposition
P. Note that if (s,h) is a V-node then either it is an atomic node, or h is a variable, or a
p-sub-formula, or a v-sub-formula, or a sub-formula of the form <R>A’, or a sub-formula of
the form [R]1A' and (s, h) has only one successor.

Lemma 3.1 The graph G s satisfies the following properties.

7

e Assume that there is an edge from (s, g) to (s',¢") in Gk s.

— If g=<R>¢' or g = [R1¢' then (s,s') € R; otherwise, s' = s.

— If g is not a variable then ¢' is a sub-formula of g. If g is a variable then g is a
sub-formula of ¢'.

e For any node (s,q) in Gk ¢, there is a path from (s, g) to a node on a cycle iff g has
at least one variable in it (i.e. g is not a constant).

o Let C be strongly connected subgraph of G,y of cardinality greater than one, and let
g be the longest formula appearing in all the nodes on C'. Then, g is a p-sub-formula
or a v-sub-formula. In addition, all other sub-formulas appearing in some node of C
themselves are active sub-formulas of g.

Theorem 3.1 Given a Kripke structure K = (S, R, L) and any p-calculus formula f and
a state so € S, we can obtain a parity tree automaton A of size O((|S| + |R|)|f]) in time
O((|S]+ |R)|f|) such that

e the number of sets in the acceptance condition of A is alt_depth(f) + 2,

e A accepts at least one input iff K, sy = f.

Proof: We prove the theorem for the more general case where f may be an open formula,
i.e. a formula having free variables. Corresponding to the formula f, the Kripke structure
K, an evaluation p for f and a state s of K, we construct an automaton Ag 7 ,, such that
Ak 7.5 accepts at least one input iff s € Mk ¢(p).

Corresponding to K and f, first we construct the directed graph Gg; = (V,E) as
defined earlier. We transform Gk s in to another graph G'% ; = (V', E') so that every node
in it has at most two successors, i.e. two edges leaving it. The node set V' = VU V" where
V" is a new set of nodes. The sets V" and E' are defined below. Consider any node u € V.
If the number of successors of u in G’k ¢ is at most 2 then all edges leaving v in Gk ¢ are also
present in G’K,f, i.e. all such edges are members of E’. Now consider a node u such that it
has more than two successors in G . Corresponding to each such u we have the following
nodes and edges in G’ ;. Let the number of successors of u be [where [> 2. Let uy, ug, ..., u
be the successors of v in Gk . We introduce [— 2 new nodes (u, 1), (u,2), ..., (u,{ — 2). All
these nodes are members of V" (note that (u,) is distinct from u; or any other node in V).
We have the following edges in G’ ;. There are two edges from u— to nodes u; and (u, 1);
for each 4, 1 < i < [— 2, there are two edges from (u,i) — to nodes u;;; and (u,i + 1);
finally, there are two edges from (u,l—2) to nodes u; ; and u;. It is easy to see that in G’K,f
there is a path from u to each of the original successors passing through the intermediate
vertices. The type of the new nodes is defined to be the same as that of u, i.e. each of
them is defined to be a A-node if u is a A-node, etc. After this, each A-node has exactly two
successors, while a VV-node has either one or two successors. It is not hard to see that |V’ is

8

bounded by |V| + |E| and E' is bounded by 2|E|. Thus the size of G% ; = [V'|+ |E'| is at
most thrice the size of G s.

The automaton Ak f,s = (X,Q, q,0, F) is defined as follows. The state set @) of the
automaton is simply V', the initial state qo is (so, f), the input alphabet ¥ has only one
symbol, say symbol a. The transitions of A are defined as follows. For any node u, 6(u, a)
consists of the following pairs: if u is a V-node then d(u,a) = {(v,v) : (u,v) € E'}; if u is a
A-node then 6(u,a) = {(v,v") : (u,v), (u,v') € E'}. Note that V' = V UV". We say that
a state/node u € V' is a g-state (or g-node) if u € V and u = (s,g) for some s € S. An
atomic node is a P-node for some atomic proposition P.

Let k = alt_depth(f). Now, we define an alternating sequence Cy, ..., Cj1 of sets of -
sub-formulas and v-sub-formulas as follows. All even numbered sets contain v-sub-formulas
and all odd numbered sets contain p-sub-formulas defined as follows. For each ¢ =0, ..., k+1
C; is defined as follows. If 7 is an even number then C} is exactly the set of all v-sub-formulas
whose alternation depth is ¢ or 7 — 1. If 7 is an odd number then Cj is exactly the set of all
p-sub-formulas whose alternation depth is 7 or 7 — 1. Note that Cj contains all alternation
free v-sub-formulas. If £+1 is even (resp., odd) then Cy 1 contains all v-sub-formulas (resp.,
p-sub-formulas) of alternation depth k. It is possible some of the C;s are empty sets.

Example: Let f be the formula va(gV P;) where g = py(xV<R>h) and h = vz(yVzAPs).
It is not hard to see that alt_depth(f) = 2 and Cy = {h}; C; = {g}; Co = {f}.

Now, we define the acceptance condition F' = (Fp, Fi, ..., Fia,—_1)) as follows.

Fy = (S x Cy) UU; UU;, where Uy, Uy are as defined below. Uj is the set of all atomic nodes
u such that v is of the form (s, P) and P € L(s), or is of the form (s, =P) and P ¢ L(s). Us
is the set of all nodes of the form (s,) such that z is a free variable in f and s € p(z).

For 0 <1 <2k, F; =5 x C;.

Since the input alphabet of Ak, has a only one symbol a, there is only one input
to the automaton which is the labeled binary tree in which all nodes are labeled with a;
we denote this input as 7. In the remainder of the proof whenever we refer to a run of an
automaton then the input is assumed to be 7.

Lemma 3.2 A runr of Ak f,s, i accepting iff for every infinite path o of T’ r(o) satisfies
one of the following two properties (recall that (o) is the sequence of automaton states along
the path given by the run r).

1. The mazimal length sub-formula g such that,for some s, (s,q) appears infinitely often
in (o) is a v-formula (i.e. the mazimum length sub-formula that appears infinitely
often in r(o) is a v-formula).

2. Some node of the form (s, g), satisfying the following condition, appears forever from
a certain point in r(0):
g is a literal (i.e. is of the form P or =P) which is satisfied in s, or g is a free variable
x of f such that s € p(x).

Proof: First assume that r is an accepting run. Let ¢ be an infinite path in the binary
tree, and r(o) denote the sequence of states that appear in the run r along the path o. Let
C' be the set of automaton states that appear infinitely often in (o). Since r is an accepting
run, there exists an even number ¢ such that F;NC # 0, and for all j > i F; N C = 0 (recall
that Fs are the subsets in the accepting condition of the automaton). It should be easy to
see that C is a strongly connected subgraph of G’ ;. From the way we have defined Gy
and G' ;, it follows that either C' contains a single state of the form (s', P) or (s',=P) or
(s',z) where z is a free variable in f, or C' does not contain any such state. In the former
case the second property of the lemma holds. Now consider the later case. Let D = {h :
for some ', (s’,h) € C}. Let g be the maximum length sub-formula in D. From lemma
3.1, it follows that ¢ is either a p-sub-formula or v-sub-formula, and for every ¢’ € D either
g = g or ¢ is an active sub-formula of ¢g. If g is a p-sub-formula then it would imply that
alt_depth(g) > alt_depth(g') for every v-sub-formula ¢’ € D; this would imply that every
node in C' of the form (s, g) belongs to Fj; for some j > 4, which contradicts our earlier
assumption. Hence ¢ is a v-formula, i.e. property 1 of the lemma is satisfied. The other
direction of the lemma is proved on similar lines and is left to the reader. [|

Now, we continue the proof of the theorem. First, we need the following notation. For
any ¢, we let [c] denote the labeled binary tree which labels all nodes with ¢. Let r be
any labeled binary tree and x be a node in I, i.e. x € {0,1}*. We define another labeled
binary tree restriction(r,z) as follows: for every y € {0,1}*, restriction(r,z)(y) = r(zy).
Intuitively, restriction(r, x) is the restriction of r to the sub-tree rooted at x,

Let X C {0,1}* be a set of nodes such that no element in X is a prefix of another element
in X, i.e. all the elements in X are incomparable. Also, let H be a function that associates a
labeled binary tree H(x) with each element € X. For each labeled binary tree r and for each
X, H as defined above, we define another labeled binary tree, denoted by modi fied(r, X, H),
as follows. For every y € {0,1}*, the value of modified(r, X, H)(y) is as given below. If
there exist € X and z € {0,1}* such that y = wz then modified(r, X, H)(y) = H(z)(z)
(note that such = and z are going to be unique since X is a set of incomparable elements);
otherwise modified(r, X, H)(y) = r(y). Intuitively, if y is a member of a subtree rooted at
some node in z € X then the label given by modified(r, X, H) is the same as that given by
H(x), otherwise it is same as that given by r.

Suppose f is a formula of the form vz(g) or of the form pxz(g). Then the only difference
between the graphs G'x,r and Gk 4 is the following. The single edge from every node of the
form (s,) leads to the node (s,f) in Gk s, while in G 4 this edge leads back to (s,z). As a
consequence, the following lemma holds.

Lemma 3.3 Let [be a formula of the form vz(g) or ux(g). Let p be an evaluation for f
and p' be an evaluation for g which is an extension of p. Then the following properties hold.

1. Any finite or infinite path p of Ak 4, which has no x-nodes is also a path of A ¢,
Further more, if p is infinite then p satisfies the acceptance condition of Ak g s iff it
satisfies the acceptance condition of Ak 5 ..

10

2. Let v be a run of the automaton Ak y,s such that for all z € {0,1}*, r(z) is not a
x-state. Then restriction(r,0) = restriction(r,1). Further more, restriction(r,0) is
a run of Ak g ., and it is an accepting run iff r is an accepting run.

The proof of the theorem follows from the following lemma.

Lemma 3.4 For a given formula f, Kripke structure K = (S, R, L), an evaluation p for f
and a state sy € S,

so € Mg ¢(p) iff the automaton Ak g5, accepts the input T, i.e. the automaton accepts at
least one input.

Proof: The lemma is proved by induction on the structure of f. The proof is trivial for
the base cases when f is of the form P or =P where P is an atomic proposition, or for the
case when f is a variable. The cases of the induction steps are given below:

f = fi A\ fo: By induction assume that the lemma holds for f; and f;. Now assume that
sp € Mk, ¢(p). This implies that so € Mk 1, (p) and sp € Mg 1,(p). By induction there exist
accepting runs rq, ro of the automata Ak 1, 55, and Ag f, 5 so,r€spectively. Define a run r of
Ak 1.p.s0 as follows: 7(€) = (s, f) (i.e. the root is labeled with (s, f)), restriction(r,0) = r;
and restriction(r,1) = ry (i.e. the left and right sub-trees are labeled just as r; and 7y
respectively). From the way we defined the automata Ak, ,,, it should be easy to see that
r is an accepting run. Hence 7 is accepted by Ak f,s,- To show the other way, assume
T is accepted by Ak f,s, and let r be an accepting run of Ak s, It should be easy to
see that restriction(r,0) and restriction(r,1) are accepting runs of Ak f, , s, and Ax f, 50,
respectively, By induction, we see that s € M ,(p) for i =1,2. Hence sy € Mk f(p).

The induction steps for the cases when f = f1 V fo, f = [R]1f; or f = <R>f; are fairly
straightforward from the definition and are left to the reader.

[= px(g) : Let p be any evaluation for f. Now we define an infinite sequence
00> P1s s Py ... Of evaluations for g such that, for each i > 0, p} is an extension of p de-
fined as follows: if i = 0 then p(z) = 0; otherwise, pj(x) = Mg 4(p;_,). Since = appears
positively in g, it is the case that for each ¢ > 0, pi,,(z) D pj(x). By Tarski/Knaster theorem,
we have MK,f(p) = UizoMK,g(p;).

By induction on i, we prove that, for every s € Mg 4(p}), there is an accepting run of
Ak f.ps- To prove the base case (i.e. the case when i = 0), assume that s € Mg 4(p})). By the
induction hypothesis of the lemma, there is an accepting run r’ of Ak g,p,s; since po(z) = 0,
from the way we defined the acceptance condition of A, s, it should be clear that none
of the the nodes is labeled by a pair of the form (s',z) by the run ' (i.e. for all y € {0,1}*
and for all s € S, 7'(y) # (s',x)). Let r be the labeled tree such that r(e¢) = (s, f),
restriction(r,0) = r' and restriction(r,1) = r' (i.e., r labels the root node with (s, f) and
the restriction of r to the left and right sub-trees is same as 7’). From lemma 3.3, it should
be clear that r is an accepting run of the automaton Ag ¢, .

As the induction hypothesis, assume that
(A) for all j <4 and for all s € M 4(p};), there is an accepting run of Ak s,

11

Now consider any element s € Mg ¢(p;,;) such that s ¢ Mg ,4(p}) for any j <i. By the
induction hypothesis of the lemma, we see that there is an accepting run r’ of AK’g’pIiJrl’s' Let
Z be the set of all z € {0,1}* such that 7'(z) is an z-state (i.e. is of the form (s',x)) and
no proper prefix of z has this property (i.e. r'(z) is labeled with a pair of the form (s, z)
and no proper ancestor of z is similarly labeled). It is easy to see that all elements in Z are
incomparable (i.e. none of them is a proper prefix of the other). Let 7' = {20,21 : z € Z}.
Now we define a function H that associates a run with each element in Z'. Let 2’ € Z'. Then
there exists z € Z such that 2/ = 20 of 2/ = z1. Clearly r'(z) = (s,x) for some s’ € S.
Since 7’ is an accepting run of AK’Q’P'Z-H’S and from the way we defined this automaton, it is
the case that s’ € p (). Since p},,(x) = Mg4(p}), it is the case that s' € Mg 4(p}). From
the induction hypothesis (A), we see that there exists an accepting run of Ak s ,s. Now we
define H(z') to be any such accepting run of Ak f,s. Now we construct a run r of Ag ¢,
as follows: r(¢) = (s, f) and restriction(r,0) = restriction(r,1) = modified(r',Z', H)
(i.e., the root node is labeled with (s, f); restrictions of r to the left sub-tree, similarly to the
right sub-tree, is the labeled tree obtained by modifying 7’ in the following way: for any node
which is of the form z'y for some 2’ € Z', y € {0,1}*, its label is H(2')(y); for any other node
its label is same as that given by r’). Now we show that r is an accepting run of Ag ¢,
Consider any infinite path ¢ = oy, ..., 0y, ... in the tree I' starting from the root node. Now
we have the following two cases: (1) 3i such that r(0;) is an a-state , i.e. r(0;) = (s,) for
some s’ € S; in this case let ¢ be the smallest such integer; from the way we defined r, both
labeled trees restriction(r, 0;0) and restriction(r, o;1) are acceptance runs of Ag ¢, ¢; hence
r(0it1),7(0it2), ... satisfies the acceptance condition of Ak ,s and hence it also satisfies
the acceptance condition of Ak s,s. (2) No such i exists; hence r(oy),7(032), ... satisfies the
acceptance condition of AK,g,pfiH,s; from lemma 3.3, it is seen that r(oy), ... also satisfies the
acceptance Ak ¢, . Hence r is an accepting run of Ag ;.

Now, we show that for every state s of K, if there is an accepting run r of Ak s, then
s € Mk ¢(p); we prove the later by showing that s € My 4(p}) for some i > 0.

Let r be an accepting run of Ax f,,. Since r is an accepting run, on every infinite path p
of the binary tree the number of nodes z such that r(z) is a z-state is finite; further more we
assume that on every path no two nodes are labeled by r with the same pair of the form (s,)
(if this property is not satisfied we can always get another run that satisfies this property by
pumping down using standard pumping lemma type argument). As a consequence, on every
path, the number of nodes z such that r(z) is a z-state is bounded by |S|. Let m(r) denote
the maximum number of nodes z, on any path of the binary tree, such that r(z) is a z-state.
By induction on the value of m(r), we show that s € Mg 4(p;,(,)); this would automatically
imply that s € Mg ¢(p). The base case is when m(r) = 0. In this case, there is no node z
such that r(z) is a z-state. From lemma 3.3, we see that the restriction(r,0) is an accepting
run of Ag g s; from the induction hypothesis of the lemma it follows that s € Mk 4(0h)-

Now as an induction hypothesis assume (B) given below.

(B) for every state s € S, if there is an accepting run r of Ag s, such that m(r) =i then
5 € Micg(ph).

12

Now, let s be a state and r be an accepting run of Ay, such that m(r) =i+ 1. Let
Z be the set of all nodes z in the binary tree I such that r(z) is a a-state and no proper
ancestor of z satisfies this property (i.e. z is the first such state on the path from the root
to z such that r(2) is a z-state). Consider any z € Z and let (z) = (s',z) for some s’ € S.
It should be easy to see that r(20) = r(z1) = (¢, f). Let 1 = restriction(r, z0). It
should be easy to see that 7 is an accepting run of Ak ¢, and m(r;) < i. By the induction
hypothesis (B), it follows that s’ € Mg 4(p}), i.e. s' € pi,;(x). Now, define a run 7’ such
that for every 2’ € {0,1}*, r'(2') is defined as follows. If 2’ is a descendant of some node
z € Z then r'(2') = r(2), otherwise 7'(2') = r(2'). From our previous observations and using
(1) of lemma 3.3, it should be easy to see that 7’ is an accepting run of AK,H,P'Z-JFM' From the
induction hypothesis of the lemma it follows that s € Mg 4(pf,)-

f = vxz(g): Assume that sop € Mg f(p). Let C = Mg ¢(p), and p’ be an evaluation
for g which is an extension of p such that p/(z) = C. Clearly, Mg 4(p') = C. By the
induction hypothesis of the lemma, we see that for each s € C' there is an accepting run r, of
Ak g,p,s- From the way we defined Ak 4y s, it should be easy to see that if the run r, labels
any node z with (s',z) then s’ € C' (this is because all the descendants of z are also labeled
with (s',z), and every infinite path in this subtree satisfies the acceptance condition of the
automaton which requires s’ to be in p'(z)). Using these labeled trees, we construct a labeled
infinite graph H as follows. We first put together all the labeled binary trees r; (s € C);
we distinguish the nodes in the different binary trees. Corresponding to each tree rg, we
introduce an additional node a; and label it with (s, f); we introduce two directed edges
from a, to the root of ;. Now consider any node z in ¢ that is labeled with (s', x). Clearly,
all descendants of z are also labeled with (s, x). Let 2’ and z” be the two children of 2. We
modify the tree as follows. We discard all the nodes in the left and right subtrees of 2’ and z".
From each of the nodes 2’ and 2", we introduce two edges to the newly introduced node ay
(two edges are needed so that when we unwind the graph later, we get a binary tree). This
modification is done for every pair of children 2', z” of nodes of the form z in each labeled
tree rs (s € C). Let H be the resulting labeled graph. Now consider any infinite path p in
H starting from a node labeled with a pair of the form (s, f) (i.e. a new node ay introduced
earlier). If p contains infinite number of nodes that are labeled with pairs of the form (s,)
then p also contains infinite number of nodes labeled with pairs of the form (s', f); since f is
the longest formula appearing in the label of any node on p and it is a v-formula, it follows
that the sequence of labels of nodes on the path p satisfies the acceptance condition of the
automaton Ag f,,. If p contains only a finite number of nodes that are labeled with pairs
of the form (s',z) then there exists a suffix of p that is entirely contained with in a labeled
tree e for some s” € C; clearly in this case, the sequence of labels of nodes on p satisfies
the acceptance condition of Ak g4 » ¢, and from lemma 3.3 it follows this sequence of labels
on p also satisfies the acceptance condition of Ag ¢, .. From this we see that, for each of the
nodes a, (i.e. each node labeled with a pair of the form (s, f)), the labeled infinite binary
tree that we get when we unwind the graph H starting from a, gives us an accepting run of
Ak fps- Hence, Ak s, has an accepting run for each s € C'. This holds when s = s,.

13

To prove the lemma in the other direction, assume that there is an accepting run r of
Ak t.p.s,- Let C be the set of all s such that some node in the tree is labeled with (s, f) (i.e.
for some u € {0,1}*, r(u) = (s, f)), and let p' be an evaluation for g which is an extension
of p such that p'(z) O C. Also, let z be any node in the tree which is labeled with (s, f) for
some s (i.e. s € C'). Let 2’ and 2" be the two children of z; clearly, 7(z') = r(2") = (s, ¢). Let
r’ be the restriction of r to the sub-tree rooted at z', i.e. ' = restriction(r,z') (note that
for every u € {0,1}* r'(u) = r(2'u)). From r', we define another run r" as follows. Let U be
the set of all u € {0,1}* such that 7'(u) is a z-state and no proper ancestor of u is labeled
with a z-state (i.e. there is no u' which is a proper prefix of u such that r'(u') is a z-state).
Consider any u € U and let 7'(u) = (¢,x) for some s’ € S. With u we associate a labeled
tree H(u) such that every node is labeled with (s',z) (i.e. Yy € {0,1}*, H(u)(y) = (s',2)).
Note that H is a function with domain U. Let r" = modified(r',U, H) (for any node y
which is a descendant of some u € U, r"(y) = r'(u) and for all other y, r"(y) = r'(y)).
Consider any infinite path p in the binary tree. If there exists any node on p whose label
under 7" is an x-state then the labels of all succeeding nodes in p are also z-states and hence
the sequence of labels in p satisfies the acceptance condition of Ak 4 s, On the other hand,
if none of the nodes on p is labeled with a z-state by 7" then the sequence of labels on p given
by r” is same as that given by r’; this sequence of labels satisfies the acceptance condition of
Ak f.p,s, and from lemma 3.3, we see that this sequence of labels also satisfies the acceptance
condition of Ak, . Hence r" is accepting run of Ag 4, By induction hypothesis of the
lemma it follows that s € Mk 4(p') and hence Mg 4(p') 2 C, i.e. Mgy(p') 2 p'(z). From
the property of the maximal fix points as given by lemma 2.1, it follows that C' C Mg ¢(p).
Since so € C, it follows that sy € Mg ¢(p). |

Theorem 3.2 Given a parity tree automaton A = (X,Q, qo, 9, F'), we can obtain a Kripke
structure K whose size is linear in the size of A and a p-calculus formula f which is linear
in the length of the acceptance condition, and a state sy in K, such that

e alt_depth(f) = 1+ the number of sets in F, and

e A accepts at least one input iff K, s9 = f.

Proof: The proof uses similar techniques as those given in [7].

Without loss of generality, we can assume that the alphabet of A is a singleton consisting
of the symbol a. Let the acceptance condition F' be given by the sequence of k — 1 sets
(Fy, F1, ..., Fy_5). Now, we define a sequence of k sets (G, G4, ...,Gi_1) as follows. Let
Gy =Q — Ui<ic@r—1) Fi- For 1 < i < k—1,let G; = F;_1. Foreach i, 0 <i <k, let P,
be a new atomic proposition and P’ = {P; : 0 <i < k}. We define the Kripke structure
K = (S,R, L) over the set of atomic propositions P’ as follows: S = QU (Q X Q x Q);
that is, the elements of S are of the form s; or of the form (s1, s2, s3) where sy, s9, 53 are
the automaton states. Corresponding to every triple of automaton states s, Ss,s3 € @
such that (s1,s2) € 0(s1,a), R has the following edges: an edge from the node s; to the

14

node (s1, $2, 83), an edge from (s, s2, $3) to s and an edge from (s, s, $3) to s3. Formally,
R = {(s1, (51, 82, 53)), ((s1, 82, 53),52), ((s51,$2,53),83): S1, 82,83 € Q and (82, s3) € d(s1,a)};

For each s € S, L(s) is defined as follows: if s € @) then L(s) = {P;} where i < k is the
unique integer such that s € G;; otherwise, L(s) = 0.

f is given by the following formula:

Ak—1Tk—1Ap—2Tk—2.--AoZo(Vo<icr (P A <R>[R]x;))
where \;_1...)\g is an alternating sequence us and vs ending with pu.

Now we show that K, qy = f iff A accepts at least one input. To show this, we prove
a more general result. First, for each | = —1,0,...,k — 1, we define a set of formulas A,
defined as follows.

A_ is the set of variables of the form y where y ¢ {xg, 1, ..., Tp_1}-

For each [= 0,...,k — 1, A; is the set of formulas of the form

a(y) = NmA—izio1 Aoxo(Vocick (P A <R>[R1z;) V)

where ;...\ is an alternating sequence of us and vs ending with p and y is any variable not
in {zg, 1, ..., Tp_1}-

We need the following definitions. Let 7 = 7, ..., 7;, ... be any infinite sequence of states
of the of the automaton A. We define mazindex(r) to be the maximum integer u < k such
that some state in G, appears infinitely in 7. We define two conditions condl and cond2
with parameters as follows. Let 7w be any infinite sequence of states as given above and [, m
be integers such that 0 < m <[< k. We define condl(m, [, m) to be the following condition:
For alli > 0, m; € (GoUG1U...UG)) and mazxindex(r) is an odd number and mazindex(mw) <
m.

Let C' be any subset of states of the automaton A. We define cond2(w,[,C) to be the
following condition:
There exists an ¢ > 0 such that 7; € C' and for all j such that 0 < j < i, 7; € (GoUG,...UGY).

We have the following lemma which is similar to theorem 4.1 of [7].

Lemma 3.5 Let | be an integer such that —1 < [< k, s € QQ be any state and p be any
evaluation for g;. Then, for every formula g;(y) € A; (as given above), gi(y) is satisfied at
the node s in K with respect to p (i.e. s € Mg 4,(p)) iff there exists a run r of the automaton
A starting from state s such that for every infinite path o = oy, 071, ...,0;,... of the binary
tree I' at least one of the following conditions is satisfied.

1. 1 > 0 and condl(r(o),l,1) holds, i.e. for all i > 0, r(0;) € (Go UGy U ...G;) and
mazxindex(r(o)) is an odd number.

2. 1> 0 and cond2(r(o),l, p(y)) holds, i.e. there exists an i > 0 such that r(o;) € p(y)
(i.e. y is satisfied at node r(o;) with respect to the evaluation p), and for all j,
0< j < i, ’I“(O'j) € (GO U Gl U Gl)

3. l=—=1 and r(0oo) € p(y).

15

Before we prove lemma 3.5, we complete the proof of theorem 3.2. First, observe that
A accepts at least one input iff there exists a run r of A starting from ¢y such that, for
every infinite path o in the binary tree I', maxindex(r(o)) is an odd number. Let p be the
evaluation for the formula g 1(y) such that p(y) = 0. It is easy to see that , for any s € @,
the formula f is satisfied at node s in K iff the formula g;_1(y) is satisfied at node s in
K with respect to the evaluation p. From lemma 3.5, we see that gi_1(y) is satisfied at s
with respect to p iff there exists a run r of A starting from s such that for every path o in
I' maxindex(r(o)) is an odd number (note that this is due to the fact that condition 2 is
not satisfied as p(y) = 0). Putting all the above observations together, we get the proof of
theorem 3.2.

Proof of lemma 3.5: We prove the lemma by induction on /. The base case is when
[= —1. By definition g_; = y for some y ¢ {xg, 1, ...,x5_1}. In this case the lemma holds
trivially. Assume that the lemma holds for all values of [up to p. Now consider the case
when [= p+ 1. Now, we write g,11 as Ap+12p41(h) where
h = App...AZo(Vo<icp(Pi A <R>[R1z;) V (Ppyr A<R>[RIzpy1) V y).

Observe that h has two free variables x,.1,y, while g,,1 has only one free variable which
is y. Now we have two cases. The first case is when p + 1 is an odd number. In this case,
h = vz,y1(h). We prove the induction step for this case as follows. Let p be any evaluation
for g,41. Let pg, Py, .-, p)), ... be evaluations for h which are extensions of p such that the
following conditions are satisfied: pj(zp11) = S; for each ¢ > 0, p,,; = Mg n(p,). From
Tarski-Knaster theorem, we know that Mg, ., (p) = Ngz0 Mk n(p,). Now, we need the
following lemma.

Lemma 3.6 Let py, ..., pl,, ... be evaluations for h as defined above. For all ¢ > 0, for all
s' € Q, 5" € Mg n(p,) iff there exists a Tun r' of A starting from s' such that for every path

o' = o0y,...,0,... of the binary tree I' at least one of the following conditions holds.

(a) condl(r'(c"),p + 1,p) holds, and further more, the number of values of j such that
r'(0) € Gpya (i.e., the cardinality of the set {j : r'(0}) € Gpy1}) is less than or equal
to q.

(b) Forsomei >0, r'(0}) € p(y) and for all j such that0 < j < i, r'(0}) € (GoUG!...UGp1)
(i.e. cond2(r'(o"),p+1,p(y)) holds) and further more, the number of values of j', such
that j' < i and r'(0) € Gpy1, is less than or equal to q.

(c) For some i >0, r'(0) € Gpy1 and for all j such that 0 < j <4, r'(0}) € (Go U Gy... U
Gpi1) (i.e. cond2(r'(o'),p+1,Gpi1) holds) and further more, the number of values of

j's such that j' <i and r'(c}) € Gpy1, is equal to q.
Proof : The lemma can be proven by induction on ¢. In the basis step as well as the
induction step of the proof, we use the inductive hypothesis of lemma 3.5. To do this we

16

use the following approach. Let hy be the formula (P,;; A <R>[R]z,41) V y. Observe that
hy is a sub-formula of A. In h we replace the sub-formula h; by a new variable z. Let
h" be the resulting formula. For each ¢ > 0, we define an evaluation pj for h" such that
ph(2) = Mg, (p,). To prove the basis as well as the induction step of the the lemma, we
apply the inductive hypothesis of lemma 3.5 for A" and the evaluation p (i.e. apply lemma
3.5 by using A" in place of g; and evaluation pjj in place of p). The details of the proof are
straightforward and are left to the reader. O

Now we continue with the proof of the inductive step for the first case of lemma 3.5.
To prove the inductive step in one direction, assume that r is any run of A starting from
s such that for every infinite path o of the binary tree I' either condl(r(o),p + 1,p + 1)
or cond2(r(o),p + 1,p(y)) holds. Assume that condl(r(o),p + 1,p + 1) is satisfied. Let
q > 0 be any integer. Now we show that s € Mg x(p),). We have two sub-cases. The first
sub-case is when the cardinality of the set {i : r(o;) € Gpi1} is greater than ¢; in this
sub-case it is straightforward to see that cond2(r(o),p + 1,Gp41) holds and condition (c)
of lemma 3.6 is satisfied for » and o. The second sub-case is when the cardinality of the
set {i : r(0;) € Gpy1} is less than or equal to ¢; in this sub-case, it should be easy to see
that cond1(r(c),p+ 1,p) holds and hence condition (a) of lemma 3.6 is satisfied. Thus, for
every q > 0, either condition (a) or (c) of lemma 3.6 is satisfied for r and o. Similarly, it
can be shown that if cond2(r(o),p + 1, p(y)) holds then, for every ¢ > 0, condition (b) or
(c) of lemma 3.6 is satisfied for r and o. From lemma 3.6 we see that, for every ¢ > 0,
s € Mg n(p),); hence, we see that s € Mg g, (p).

To prove the inductive step in the other direction, assume that s € Mg, . (p). By
Tarski-Knaster theorem, we know that s € Mg s(p) for every ¢ > 0. Now, consider the
case when ¢ = [Q| where |Q] is the cardinality of (). Clearly, s € Mg n(p),). Hence, from
lemma 3.6, we see that there exists a run 7’ such that for every infinite path ¢’ of T one of
the three conditions of lemma 3.6 is satisfied. Now, we construct a run r such that either
condition 1 or condition 2 of lemma 3.5 is satisfied for every path o of I.

First we define a graph H from which the run r can be constructed. Let U be the set
of of all u € T satisfying the following three properties: (i) r'(u) € Gp41; (ii) for every
ancestor u' of u , v’ ¢ p(y); (iil) there exists exactly one proper ancestor y(u) of u such that
r'(y(u)) = r'(u) (this means that no other proper ancestor of u has this property). For
each u € T, let parent(u) denote the parent of u in ' (note parent(u) is the string obtained
by deleting the rightmost bit in x). The graph H is obtained from the tree I' by making the
following change: for each u € U, the edge from parent(u) to u is replaced by an edge from
parent(u) to y(u); we call such an edge as a back edge and all other edges are called forward
edges. Formally, H is defined as follows. The nodes of the labeled graph H are elements of
I' —{u : uis a descendant of some element in U}. For every node u in H, the edges from
u are defined as follows: for each b € {0, 1}, there is an edge from u to u' where ' is given
below. If ub is a node in H then u' = ub and in this case the edge is called a forward edge;
otherwise ub has to be in U, and in this case, v’ = y(ub) and the edge is called back edge.
The node u' is called a left successor of u if b = 0; otherwise, it is called a right successor of

17

u. It is not hard to see the € is a node in H.

Claim: For every infinite path ¢ = o09,01,...,0;,... in H starting from ¢, either
condl(r'(o),p+ 1,p+ 1) or cond2(r'(0),p + 1, p(y)) is satisfied.

Proof of the claim: We consider two cases. The first case is when o contains a finite
number of back edges. Now, we consider the first case. Assume that o contains at least one
back edge and let ¢+ be the maximum integer such that the edge o; to 0,11 is a back edge.
Clearly, for every j < i, 0; is an ancestor of some node in U in the tree I', and from the
definition of U it follows that 7'(0;) ¢ p(y); since every infinite path ¢’ of I' passing through
o; satisfies either (a) or (b) or (c) of lemma 3.6, it follows that '(0;) € (GoUG1U...UGp41).
Let ¢” denote the the sequence o;,1,0;2, ..., i.e. ¢” is the suffix of o starting from o;,;.
Now, it is easy to see that there exists an infinite path 7 in the tree I" having ¢” as a suffix.
In this path, every node u appearing before ;. satisfies the following properties: u is an
ancestor of 0;,1 in I' and hence is also a node in H; since, 0;41 is a parent of some node
in U (because there is a back edge from o0;,1), u is an ancestor of some node in U and
hence r'(u) ¢ p(y). From the above observations it is easy to see that 7 is also a path
in H. Recall that we are considering the case when ¢ = |@Q|. Now, we show that either
cond1(r'(a"),p + 1,p) or cond2(r'(0"),p + 1, p(y)) is satisfied. If condl(r'(c"),p + 1,p) is
satisfied then it would imply that cond1(r'(c),p+ 1, p + 1) is satisfied since ¢” is a suffix of
o. If cond2(r'(c"),p + 1, p(y)) is satisfied then it would imply that cond2(r'(o),p + 1, p(y))
is satisfied since for all j < ¢, 7'(0;) ¢ p(y). Since 7 is a path in the tree I' it satisfies
either condition (a), (b) or (c) of lemma 3.6. If 7 satisfies condition (a) then it would imply
that cond1(r'(c"),p + 1,p+ 1) is satisfied since ¢” is a suffix of 7. Now assume that 7 does
not satisfy condition (a) of lemma 3.6. Now we show that condition (b) of lemma 3.6 is
satisfied. Suppose (b) is not satisfied. This implies that 7 satisfies condition (c) of lemma
3.6. Hence there exists some i’ > 0 satisfying the following three properties: (i)r'(m;) € Gpi1
and for all j' < @', r'(mj1) € Go U ...Gpiq; (ii) the cardinality of the set {j' : j' < ¢ and
r'(mj) € Gpi1} is exactly ¢;(iii) for all j' <d', r'(7j) ¢ p(y). (property (iii) is satisfied since
we assumed condition (b) of lemma 3.6 does not hold). From the above three properties and
the assumption that ¢ = |Q|, using the pigeon hole principle, we see that for some j' < ',
7y € U. However, this contradicts our earlier observation that 7 is a path in H. Hence 7
satisfies condition (b) of lemma 3.6. Since, for all j <i+ 1, r'(7;) ¢ p(y) and ¢” is a suffix
of 7, it follows that cond2(r'(¢"),p+1, p(y)) holds. Hence the claim holds for the case when
the number of back edges in ¢ is a finite number greater than zero. If o has no back edges
then we use tha same argument as above by taking 7 to be o.

Now consider the other case when o contains an infinite number of back edges. In this
case, for every i > 0, o; is an ancestor of some node in U in the tree I'; hence, r'(0;) €
(GoUG 1 U...Gpy1) (this can be seen using the same argument given at the beginning of last
paragraph). Further more, there exists infinite number of values of i such that r'(0(i)) € Gpi1
and hence mazindex(r'(0)) = p+ 1. From this, it follows that condl(r'(o),p + 1,p + 1)
holds. O

Now we define the run r to be the run obtained by unwinding the graph H starting from

18

the node €. To define r formally, we first define a function ¢ from I' to the nodes of H
inductively as follows: ¢(e) = ¢; for every u € T', ¢(u0) is the left successor of ¢(u) and
¢(ul) is the right successor of u. Now, for every u € I', we define r(u) to be r'(¢(u)).

Now we show that r satisfies the condition of lemma 3.5. Let ¢ = oy, ..., 0y, ... be any
infinite path in I'. Consider the sequence ¢(0) = ¢(0p), ..., #(0;), It should be easy to
see that ¢(o) is a path in H starting from e. From the previous claim we see that either
cond1(r'(¢(0)), p+1,p+1) (and hence condl(r(o),p+1,p+1)) or cond2(r'(¢(o)), p+1, p(y))
(and hence cond2(r(c),p + 1,p(y))) is satisfied; hence either condition 1 or condition 2 of
lemma 3.5 is satisfied for r and o with [= p+ 1. This completes the induction step of lemma
3.5 for the case when p 4+ 1 is odd.

In the case when p + 1, A,11 is i and in this proof of the induction step is simpler.
In the proof, we use Tarski-Knaster theorem for least fix points. The details are fairly
straightforward and are left to the reader.

(I

Consider a formula of the form vxf where f is in normalized form and has no further
vs appearing in it. The alternation depth of this formula is one. Further more, all its strict
sub-formulas have an alternation depth of zero. The automaton constructed by the above
theorem will have three sets Fy, F, F5 where Fj corresponds to the atomic propositions, Fi
corresponds to all the p-sub-formulas and F; corresponds to the main formula. In this case,
it can be shown that we can discard F; and combine Fj and F5 in to a single set to get an
acceptance condition with one set, which becomes a Buchi automaton.

Corollary 3.1 The model checking problem for formulas of the form vxf where f is in
normalized form and has no further vs appearing in it is equivalent to checking non-emptiness
of Buchi tree automata.

Using the above corollary, it is easy to see that the model-checking problem for CTL can
be reduced to the emptiness problem for Buchi automata.

Theorem 3.3 The model checking problem for the full p-calculus is in NPNco-NP. For-
mally, the set T of encodings of all triples (K, so, f) satisfying the following condition is in
NPNco-NP: K is a Kripke structure, sqo is a state in K and f is a p-calculus formula such

that K, s = f.

Proof: From theorem 3.1, we see that the model-checking problem for p-calculus, i.e. the
set T, is polynomial time reducible to the emptiness problem of parity tree automata. The
later problem has been shown to be in NP (see [8]). This implies that the model-checking
problem is also in NP. To see that model-checking for p-calculus is in co-NP, we show that the
complement 7" of T' is polynomial time reducible to 7". For this observe that (K, so, f) € T"
iff so does not satisfy f; so does not satisfy f iff sy satisfies —f, i.e. (K,so,—f) € T. [|

19

4 Model Checking for the restricted Logics

In this section, we present efficient procedure for model-checking for the two logics L; and
L.

First, we define the two logics Ly and L,. L; is the smallest set C of formulas satisfying
the following conditions.

1. PUX C C.

2. If f,g € C then fV g, <R>f, pz(f) and vz(f) are also in C.

3. If f is an atomic proposition, i.e. f € P, then =f € C.

4. If f,g € C' and at least one of them is a propositional formula then f A g € C.

Rule 3 states that negations can only be applied to atomic propositions. Rule 4 states
that if we have a conjunction one of the two conjuncts has to be a propositional formula.
Any formula in L, is called a L;-formula. Note that all L;-formulas are in normalized form.
Intuitively, the above restrictions imply that a L;-formula is almost like a linear-time formula.

Let Ly be the smallest set C' of formulas satisfying conditions 1,2,3a and 4a where 3a and
4a are as given below:

3a. If f € C' and is a closed formula then —f € C.
da. If f,g € C and at least one them is a closed formula then f A g € C.

It is to be noted that the formula f in rule 3 should be an atomic proposition while in
rule 3a it can be any closed Lo-formula. Similarly, in rule 4, at least one of f and g has to
be an atomic proposition, while in 4a, at least one of them has to be a closed formula. As
a consequence, rules 2 and 4 are special cases of rules 2a and 4a respectively. From this, it
should be easy to see that L; is a subset of L,. The expressive power of L, is characterized
by theorems 5.1 and 5.2. given in the next section.

First, we consider the logic L; and present an efficient model-checking algorithm for this
logic. This algorithm, as we show later, can be easily extended to the logic L,. Note that
in a Li-formula all the negations apply only to the atomic propositions and hence every
L,-formula is in normalized form. Further more, the [R] operator does not appear in a
Lq-formula.

Now, assume that we are given a L;-formula f and a Kripke structure K = (S, R, L).
Now, we present an algorithm that determines all states in S that satisfy f. the algorithm
first constructs the graph Gk s and labels its nodes as follows. The label of a node u is
maintained in the variable label(u). Each of these variables takes one of the three values—
true, false, NI L, and is initialized to the value NIL. During the execution of the algorithm,
the values of these variables will be set to true or false. When once a variable is set to one

20

of these two values, it will never be changed. Furthermore, for any node u = (s, g), at the
end of the execution of the algorithm, label(s, g) = true iff K, s = g.

At any time during the execution of the algorithm, if label(u) = NIL then we say that
node u is unlabeled at that time. We say that a path is unlabeled if all the nodes on the path
are unlabeled. Let n be the length of the formula f. We execute the following algorithm on
the graph Gk f.

1. For each node u € V, label(u) < NIL.

2. For each g € SF(f) in increasing lengths of ¢, and for each s € S, update label(u),
where u = (s, g), as follows.

e g=P: If Pc L(s) then label(u) < true else label(u) < false.

g=—P: If P¢ L(s) then label(u) + true else label(u) + false.
e g=gNg":
If for all successors u' of u it is the case that label(u') = true then label(u) «+ true;

If for some successor u' of u such that label(u') = false then label(u) < false. In
other cases, label(u) is unchanged (i.e. = NIL).

e g=¢g'Vg'org=<R>g":
If for some successor u' of u label(u') = true then label(u) < true;
If for all successors u' of u it is the case that label(u') = false then label(u) <+ false.
In other cases, label(u) is unchanged.

e None of the above: label(u) is unchanged.

3. For each unlabeled node u € V, if there exists an unlabeled path from u to an unlabeled
v-cycle then label(u) < true.

4. For each unlabeled node u, label(u) < false.

Theorem 4.1 After the execution of the above algorithm, for any node u = (s,g) in Gk s
where g is a closed sub-formula, label(u) = true iff K, s = g.

Proof: First, it is to be noted that after the execution of step 2 of the above algorithm,
the following conditions are satisfied. For each node u = (s,g) where ¢ is a constant,
label(u) # NIL. For this case, it should be easy to see that label(s, g) = true iff K,s = ¢.
Also, for every node u = (s, ¢g) such that label(s,g) = NIL, there is at least one successor
node u' such that label(u') = NIL. In addition, if ¢ = ¢’ A ¢", then for one successor u/,
label(u') = true and for the other successor u”, label(u") = NIL. Due to this property, each
A-node is effectively a V-node.

Now, from theorem 3.1, we see that a closed sub-formula ¢ is satisfied in state s iff there
is an accepting run of the automaton Ak, ,s where p is the empty evaluation. Since each

21

node in Gk s is effectively a V-node, it is not difficult to see that if the node (s, g) is still
unlabeled after step 2, then s satisfies g iff there is an unlabeled path in Gk ; that satisfies
the acceptance condition of the automaton Ak g, i.e. iff the longest sub-formula appearing
infinitely often on the path is a v-formula; this happens iff there is an unlabeled path from
(s,g) to an unlabeled v-cycle. Step 3 detects all such nodes and labels them as true. Step
4 labels all other nodes as false. [

Complexity

Below, we discuss the complexity of the above algorithm. First, it is to be noted that
the number of vertices in Gk, i.e. |V, is O(]S||f]). The number of edges in Gk, i.e.
|E| = O(|R||f| + |S||f]). It is not difficult to see that steps 1, 2, 4 and 5 can all be
implemented in time linear in (|V| + |E]).

Step 3 can be implemented using an algorithm of complexity O(alt_depth(f)(|V|+ |E|)).
This algorithm works as follows: It first identifies all nodes that lie on unlabeled v-cycles as
follows. For each ¢ < alt_depth(f), let H; denote the directed graph obtained by restricting
G'k,r to nodes of the form (s, h) where h is a sub-formula of f such that alt_depth(h) < i,
ie. H; = (V;, E;) where V; = {(s,h) : (s,h) € V and alt_depth(h) < i}, and E; = {(u,v) :
(u,v) € E and u,v € V;}. We say that a strongly connected component (scc) C' of H; is
a v-scc if the longest sub-formula appearing in any node of C', i.e. the longest g such that
(s,g) appears in C for some s, is a v-sub-formula. The following lemma gives us a condition
for identifying all nodes that lie on v-cycles in G ¢.

Lemma 4.1 A node (s, g) € V lies on a v-cycle in Gk ¢ iff there exists an i > alt_depth(g)
such that the scc of H; that contains (s, g) is a v-scc.

Proof: In one direction, it is trivial to see that if the scc in H; that contains (s, g) is a v-scc
then this scc itself gives a v-cycle in Gk ; that contains (s, g). To prove the other direction,
assume that (s, g) lies on a v-cycle L in Gk . Let (s',h) be a node on L such that A is
the longest sub-formula. Clearly, h is a v-sub-formula. From lemma 3.1, we see that g is a
sub-formula of h and hence alt_depth(h) > alt_depth(g). Now consider the graph H; where
i = alt_depth(h). Tt should be easy to see that both (s',h) and (s, g) belong to the same
scc in H;. Further more, if A/ is the longest sub-formula appearing in this scc then A’ has to
be v-sub-formula; this is because h is a sub-formula of A’ and alt_depth(h') < i. |

To identify all nodes in Gk, that lie on a v-cycle we do as follows. For each i =
0,1,...,alt_depth(f), we construct the graph H; and identify all the nodes in each v-scc.
These are exactly the required nodes. Since, each H; is of size at most the size of Gk ¢, it
is easy to see that this step takes time O(alt_depth(f)(|V|+ |E])). The remainder of step 3
can be implemented in time O(|V| + |E]). Thus the over all complexity of the algorithm is
O(alt_depth(f)(|V']| + |E|)). Substituting for |V| and |F| in terms of |S| and |R|, we get an
over all complexity which is O(|f]| - alt_depth(f) - (|S| + |R])).

The above algorithm can be naturally extended to the logic L, with the same complexity.
Let f be an Ly formula and K = (S, R, L) be Kripke structure. In order to find all states

22

in K that satisfy f we invoke procedure check, as described below, with arguments f and
K. This procedure, on input g and the structure K’, identifies certain sub-formulas and
recursively determines all the states that satisfy these sub-formulas; after this it replaces
all such sub-formulas in g by new atomic propositions, called auxiliary propositions; the
resulting formula will be a L;-formula; it model-checks for this formula using the previous
algorithm. First, we need the following definition. A strict sub-formula ¢’ of ¢ is called a
significant sub-formula if it contains at least one variable and it is a closed sub-formula.

The procedure check, with input formula ¢ and input structure K’ = (S, R, L") over
the set of atomic propositions P, works as follows.

If g has no significant sub-formulas then ¢ is a L;-formula. In this case, we use
the algorithm for L;-formulas to determine all states that satisfy g. Otherwise,
we do the following. First, we determine all maximal significant sub-formulas.
Let g1, ..., gx be all such sub-formulas. For each 1 =1, ..., k, we recursively invoke
check to determine all states in K’ that satisfy g;. We introduce new atomic
propositions @1, ..., Qz. Let P’ = P U{Q1,...,Qr}. We define a new Kripke
structure K" over the set of atomic propositions P’ as follows. K" = (S', R', L")
where for each state s € S, L"(s) = L'(s) U{Q; : s € Mgy, (€)}. Note that
the sets of states and transitions of K" are same as those of K'; the labeling of
each state is extended to include the new atomic proposition; Q; € L"(s) iff g;
is satisfied in state s of K'. For each ¢ = 1, ..., k, we replace each occurrence of
g; in g by Q;. Let ¢’ be the resulting formula. It should be easy to see that ¢’
is a Li-formula. It is also not difficult to see that ¢’ is satisfied at a state s in
K" iff g is satisfied at the same state s in K’'. Now, we use the previous model-
checking algorithm for L;-formulas to determine all states in K" that satisfy ¢'.
The procedure check returns this set of states as the answer.

It is to be noted that procedure check eventually terminates since the number of signifi-
cant occurrences of operators decreases in each recursive invocation.

Using appropriate data structures, it is not hard to see that this model-checking algorithm
can be implemented so that it runs in time O(|f]| - alt_depth(f) - (|S| + |R|))-

5 Expressive Power of the Restricted Logic

We compare the expressive power of the logics to well known branching time temporal logics.
Consider the branching time temporal logic CTL*. Let the ECTL* (given in [19]) denote
the extended version of the logic CTL* where each path formula can be as expressive as
w-regular expressions. Below, we define the syntax and semantics of ECTL*. First we define
regular expressions over a finite alphabet ¥ inductively as follows: the empty set (), the empty
string € and every member of ¥ are regular expressions; if U, V' are regular expressions then
U*, UV, (U Vv V) are regular expressions. As usual, with each regular expression R over ¥,

23

we associate a set, L(R), of finite strings over ¥ defined inductively as follows: £(() is the
empty set; L(¢) is the singleton set containing the empty string; for any a € X, L(a) = {a};
L(UV) is the set of strings obtained by concatenating some string from L£(U) with some
string from £(V') in that order; L(U*) is the set of all strings obtained by concatenating zero
or more strings belonging to L(U); L((U VV)) = L(U)U L(V). For a regular expression
U and integer n > 0, we let U™ denote the regular expression obtained by concatenating U
with itself n — 1; for example U' = U, U? = UU; we let U® denote the regular expression e.

An w-regular expression W over a finite alphabet X is a finite union
bigcupi<i<n U;(V;)* where, for each 1 < i < n, U; and V; are regular expressions over X.
With the w-regular expression W, we associate a set L(W) of infinite strings over ¥ defined
as follows. First, for each 1 < i <mn, let L(U;), L(V;) denote the set of finite strings denoted
by the regular expressions U; and V;, respectively. We require that, for each 1 <7 < n, the
empty string is not in £(V;). For each 1 < i < n, we let L(U;(V;)*) denote the set of w-strings
obtained by concatenating an infinite sequence of finite strings oy, 09, ..., 0, ... in that order,
where oy € L(U;) and for each j > 2, 0; € L(V}). If either U; or V; is 0 then L(U;(V;)“) is
the empty set. Now we define L£(1¥) to be the set of w-strings U;<j<n, L(U;(Vi)*).

Now we define the syntax and semantics of ECTL* formulas. The formulas of ECTL*
are formed using the symbols for atomic propositions drawn from P, the propositional con-
nectives A,vee and -, the path quantifiers £/, A and the w-regular expressions. The set of
ECTL* formulas is the smallest set satisfying the following conditions.

e Every P € P is a ECTL* formula.
e If f and g are ECTL* formulas then —f and f V g are also ECTL* formulas.

e If W is a w-regular expression over a finite alphabet ¥ = {ay, as, ..., a, } and fi, fo, ..., fn
are ECTL* formulas then E(W(fy, fa, ..., fn)) is a ECTL* formula.

We define the semantics of ECTL* formulas in a Kripke structure K = (S,R, L) as
follows. For a formula f, we let K,s = f to denote that f is satisfied at state s in the
structure K. The relation = is defined by induction on the structure of f as follows.

o K,s=Piff P e L(s).
[] K,S):fl\/fz iﬁK,S):fl or K,S):fQ.

e Let W be a w-regular expression over ¥ = {ay,...,a,} and let fi,..., f, be ECTL*
formulas. Then K,s = E(W(f1, f2,..., fn)) if there exists an infinite path p =
(po, -+, Pj, -..) in the structure K (i.e. for each j > 0, (pj, pj1+1) € R) starting from the
state s (i.e. pp = s) and there exists an infinite string o, o1,, 05, ... in L(WW) such
that the following condition is satisfied: for each j > 0, if 0; = a; (for some 1 < i < n)

then K,p; = fi.

The following theorem states that L, is at least as expressive as ECTL*.

24

Theorem 5.1 Corresponding to every ECTL* formula f, there exists a closed formula T(f)
in the logic Ly such that the following condition is satisfied: for every Kripke structure K and
every state s of the Kripke structure, K,s |= f iff s € Mg r)(€). (Recall that € is the unique
empty evaluation for closed formulas). Further more, if f is of the form E(W (fi,..., fn))
where W is a w-regular expression and fi, ..., fn are propositional formulas then T(f) is a
L1 -formula.

Proof: In order to prove the theorem, we need the following notation, definitions and
lemmas. Let g be a p-calculus formula. Let (@1, ...Qx) be a sequence of distinct symbols such
that each (); is either an atomic proposition or a variable appearing free in g. Let (hq, ..., hg)
be a sequence of p-calculus formulas. Now, we define g(hy, ha, ..., hi/Q1, Qs, ..., Qr) to be the
formula obtained by replacing every occurrence of (); in g by h;, for each ¢ = 1,2, ..., k. It is
not hard to see that g(hy, ha, ..., hi/Q1, Qs, ..., Q) is a well-formed formula. The following
lemma relates the semantics of a formula of the form g(h/xz) with the semantics of g and h.
It can be proven by straightforward induction on the structure of g.

Lemma 5.1 Let g and h be formulas such that g has one free variable x and h has one free
variable y. Then, g(h/x) is a formula with free variable y. For any Kripke structure K and
any evaluation p for g(h/x), Mgk gn/z)(p) = Mig(p') where p' is an evaluation for g such
that p/(x) = Mica(p).

Let U be any regular expression over the alphabet ¥ = {ay,....,a,}. We define a pu-
calculus formula 7"(U) over the atomic propositions ay, ..., az with a free variable x such that
the following property is satisfied: 7"(U) is satisfied at any state s of a Kripke structure K
under an evaluation p iff there exists a string § in the language of U and a finite path p
in K starting from s and ending in a state that satisfies x such that the successive atomic
propositions in the string § are satisfied in the successive states of p. T'(U) is defined
inductively on the structure of U as follows:

o If U = a; for some a; € ¥ then T"(U) = a; A <R>z.
o IfU = (UyVUs) then T'(U) = T'(Uy) v T'(Us).

o IfU = (U1 Us) then T'(U) = T'(UL)(T"(Uz) /).

o If U = (Uy)* then T'(U) = py(z VvV T'(Ur)(y/z)).

Lemma 5.2 Let U be any reqular expression over the alphabet 2. For any Kripke structure
K = (S,R, L) over the set of atomic propositions ¥ and for any evaluation p for T'(U) the
following condition is satisfied: s € Mg rw)(p) iff there exists a finite string § = &y, 01, ..., O
in L(U) and there exists a finite path p = po,p1, ..., Pms1 in K such that pp1 € p(x) and
for each i = 0,1,....,m, 6; € L(p;).

25

Proof: The proof is by induction on the structure of U. The proof is trivial for the case
when U = a; for some a; € ¥ and for the case when U = U; V U,. Now consider the case
when U = (U;Us). By definition, T7(U) = T'(Uy)(T'(Uz)/x). From lemma 5.1, we have
Mg rwy(p) = Miaw,)(p') where p'(x) = Mg w,)(p). using the induction hypothesis for
Uy, we get s € Mg) (p) iff there exists a finite path p’ = pj, ..., pl/,, starting from s and
there exists a string ' = dg,, 0, in L(Uy) such that for each i = 0,1, ...,m/, 0; € L(p};) and
Pri1 € P'(z). By using the induction hypothesis for Us, we see that pl, ., € Mg w,(p)
iff there exists a path p" = pg, ..., pmu 4 starting from pl, ., (i.e. py = p;,.,) and a string
6" = 0.y Oy in L(Uy) such that, for each j = 0,...,m", 67 € L(p}) and pjn .y € p(x). Tt
should b easy to see that the lemma is satisfied for U by taking p to be the concatenation
of py, Py, ---, pmy and p”; and 6 to be the concatenation of ¢’ and §".

Now consider the case when U = (U;)*. We define a sequence of languages Zy, Z1, ..., Z;, ...
as follows. Zj is the set containing the empty string. For i > 0, Z; = Z;_; U L((U1)").
Essentially, Z; consists of all strings obtained by concatenating n strings from £(U;) for some
n <. It is easy to see that L((U1)*) = U;>o Zi. Let g denote the formula (x VvV T'(Uy)(y/x)).
Note that g has two free variables z and y. Let p}, p,, ..., p, ... be evaluations for g defined
as follows: pp(y) = 0, py(x) =
rho(z); and for each i > 0, pi(z) = p(x), pi(y) = Mxky(p;_). From Tarski-Knaster
theorem, we know that Mg w)(p) = Uiso Mk 4(p;). By induction on 7, we show that
(I) for any state s, s € M 4(p}) iff there exists a path p = py, ..., pms+1 in K starting from s
and a string § = 0y, ..., Om in Z; such that p,,11 € p(z) and for each j =0,...,m, 0; € L(p,).

To see the base case of I, i.e, when i = 0, recall that ¢ is the formula = v T"(Uy)(y/z).
Since py(y) = 0, it is not hard to see that Mg 4(py) = p(z). From this observation, it
is not hard to see that (I) holds for the base case by using 0 to be the empty string and
p to be the path of length zero. Now we prove the induction step. Assume that (I) holds
for all values of ¢ < k. Now consider the case when ¢ = k+ 1. Now s € Mg 4(pj.q)
iff s € phpi(x) or s € Mgy y/e)(Pre1)- By the induction hypothesis for the lemma,
we see that s € Mg r1v,)(y/2)(Pry1) I there exists a path p' = pg, ..., pl,q and a string
6" = 0y, er, Opy in L(Uy) such that pr. .,y € pf4(y) and for each j = 0,...,m’, §; € L(p});
since pj 1 (y) = Mgk g(p},), from the induction hypothesis of (I) we see that pl, 1 € pj.1(y)
iff there exists a path p" = pg,...,pl, ., in K starting from p!, ., (ie. p; = pl,,,) and a
string 6" = dg, ..., 0y, in Z, such that pj, ., € p(x) and for each j = 0,...,m, 07 € L(p}).
Putting all the observations together, it should be easy to see that the induction step for I
holds by taking the p to be the path py, pi, ..., pl,, followed by the the path p” and § to be
(51 . (5”‘ D

Now consider the w-regular expression U = V(W)“ where V, W are regular expressions
over the alphabet ¥ = {ay,...a,}. Corresponding to U, we define a formula 7"(U) over
the atomic propositions ay, ..., a, as follows: T"(U) = T'(V)((vaT'(W))/x). Note that
T'(V),T'(W) have one free variable z, and 7" (U) has no free variables. 7"(U) is obtained
by substituting vaT'(W) for every occurrence of x in T'(V).

26

Lemma 5.3 Let U be the w-reqular expression V(W)“ over the alphabet X. For any Kripke
structure K = (S, R, L) over the set of atomic propositions ¥ and for any state s € S,
the following condition is satisfied: s € Mg pnw)(€) iff there exists an infinite string 6 =
30501y +oey 04y . in L(U) and there exists an infinite path p = po,p1, ..., Di, ... in K starting
from s (i.e. po = s) such that for each i >0, 6; € L(p;).

Proof: First we prove property (J) given below. The lemma follows easily from this prop-
erty.

(J) Foranyte S, t € Mgyarw)(e) iff there exists an infinite path p' = pj, ..., pj, ... in
K starting from ¢ and there exists an infinite string 6’ = dp, ..., d}, ... in L(W*) such that,
for each j > 0, §; € L(pj).

Let po, p1, .-+, Pi, --- be evaluations for T"(W) defined as follows: pg(x) = S; for each i > 0,
pi+1(x) = Mg rw)(pi). By induction on 4, it can easily be shown that
(J') forany t € S,t € p;i(x) iff there exists a finite path p” = p(]’,. . Priq in K starting
from ¢ and a finite string 6" = 47, ...,0,, in £(W?) such that p, ., € p;(x) and for each
j=0,..,m, 8 € L(pj).

The proof of (J') is fairly straight forward and is left to the reader. From Tarski-Knaster
theorem, we see that Mg ,.rw)(€) = Nizo pi(z). We have t € Mg o1 w)(e) iff for each
i >0,t€ pj(x) iff for each ¢ > 0, there exists a finite path p" = p(]’,. . Piq in K starting
from ¢ and a finite string 6" = 47, ..., 0., in L(W?) such that p),_; € p;(x) and for each
j=0,...,m,d; € L(p}). From this and the fact that K is a finite structure (and hence has
bounded number of successors for each state), it is easy to see that property (J) holds. O

Now we continue with the proof of theorem 5.1. For any ECTL* formula f we define
T(f) inductively on the structure of f as follows.

e If f = P for some P € Pthen T(f) = P. If f = —f; then T(f) = =T(f1). If
f = hVfethen T(f) = T(f1) VT(f2)

° If f = EW(f1, fay ..y fn)) where W is a w-regular expression over an alphabet

{ai,...,an} then T(f) is defined as follows. Let W = U;<;<; Us(V;)* where

V; and W; are regular expressions over Y. For each i, such that 1 < i < k,

let g = T"(UV))NT(f1),T(f2), ..., T(fn)/a1,02,...,a,). Recall that the atomic

propositions appearing in 7"(U;(V;)¥) are from the set . Note that the formula

T"(U;(Vi)* /T (f1), T(f2), .., T(fn)/a1, az, ...,a,) is obtained from T"(U;(V;)¥) by re-
placing every occurrence of a; by T'(f;) for each i = 1,..., k.

It is not hard to see that T'(f) as defined above is a closed formula in the logic L. Using
earlier lemmas, by induction on the structure of f, it is straightforward to prove that 7'(f)
satisfies the condition of the theorem. Further more, it is easy to see that if f is a formula of
the form E(W(f1,..., fn)) where W is a w-regular expression and fi, ..., f,, are propositional
formulas then T'(f) is a L;-formula. O.

The following theorem states that ECTL* is at least as expressive as the logic Ls.

27

Theorem 5.2 For every closed Ly-formula f there exists a ECTL* formula ©(f) such that,
for every Kripke structure K and every state s, s € M ¢(€) iff K,s = O(f). Further more,
if f is a Li-formula then O(f) is a formula of the form E(W (f1,..., fn)) where f1,..., fn are
propositional formulas.

Proof: First we prove the theorem for L; formulas and then extend it to L, formulas.
Let ¥ = {¢ : ¢ C P}. X is finite since P is finite. Let RE(X) denote the regular
expression ¢; V @2 \V ..., Where ¢, ¢a, ..., ¢, are all the elements of . Let K = (S, R, L)
be any Kripke structure over the set of atomic propositions P. For any finite or infinite path
P = Po,P1y .-y Diy ... in K, we let L(p) denote the sequence L(py), L(p1), ..., L(p;), ...

Now, we have the following lemma.

Lemma 5.4 Let f be any Li-formula and x4, ...,) be the set of variables that appear free
in f. Then there exist reqular expressions Ry, Ry, ..., Ry and an w-reqular expression Wy
over the alphabet ¥ such that the following property is satisfied: for every Kripke structure
K = (S,R, L), for every evaluation p for f and for all states s € S, s € Mg ¢(p) iff one
of the following two conditions holds: (i) there exists an infinite path p starting from s (i.e.
po = s) such that L(p) € L(Wy); (it) there exists a finite path p = py, ..., p;, i1 Starting
from s and an integer j, 1 < j <k, such that L(po, ...,pi) € L(R;) and p;+1 € p(z;).

Proof: Note that a special case of the above lemma is when f is a closed formula. In this
case, s € Mg ¢(p) iff condition (i) of the lemma is satisfied. For an arbitrary L;-formula
f, we prove the lemma by induction on the structure of f. The base cases are when f is a
variable or an atomic proposition or negation of an atomic proposition. When f is a variable,
say x1, then the lemma is satisfied with Ry, being € (in this case, £(R;) is the singleton set
containing the empty string) and W} being the empty set. It is trivial to see the proof for
the other base cases. Now we consider the following induction cases.

e Assume f = <R>g. Assume that the lemma holds for g. The set of free variables of f
is exactly same as the set of free variables of g. Define W; = RE(X)W,, and for each
J,1<j <k let Ry; = RE(X)R,;. It is straightforward to see that the lemma also
holds for f using the above values for Wy and Ry ; for each j =1, ..., k.

e Assume f = pwpyq (g), Let 21, ..., 2551 be the free variables of g. By the induction
hypothesis assume that the lemma holds for g. Define Wy to be (R x+1)*W,. For each
j, 1 S] S k, define Rf,j = (Rg,k+1)*Rg,j-

By using Tarski-Knaster theorem for least fix points, we know that Mg ¢(p) =
Uyso MKk g(p.) where each pl. is an extension of p, such that pj(zgy1) = 0, and
for each 7 > 0, pl.;(T411) = Mrg4(pl). By induction on r and using the induction
hypothesis for the lemma, it is fairly easy to show that s € Mg 4(pl.) iff one of the fol-
lowing two properties holds: (i) there exists an infinite path p starting from s such that
L(p) € L((Rgxs+1)"Wy) for some m < r; (ii) there exists a finite path p = po, ..., pit1

28

and some n < k, such that p;11 € pj(zn) and L(po, ..., p;) € L((Rgrt1)"Ryn) for some
m < r. From this, it is easy to see that the lemma holds for for f with the above
defined values for W; and Ry, for each m =1, ..., k.

Assume f = vapyq (g). As before, let xq, ..., 24,1 be the free variables of g. Assume
that the lemma holds for g. Define Wy to be (Ry 1) Wy U (Ryx+1)”. For each j,
1 S] S k, define Rfyj = (Rg,k+1)*Rg,j-

Let pg, pi, -+, ., ... be a sequence of evaluations for g such that each of them is an exten-
sion of p, py(zr1) = S, and for each 7 > 0, pl. 1 (¥k41) = Mg 4(p.). By using Tarski-
Knaster theorem for greatest fix points, we know that Mg ¢(p) = N~ Mk 4(p.). By
induction on 7 and using the induction hypothesis for the lemma, it is fairly easy to
show that s € Mg 4(p..) iff one of the following three properties holds: (i) there exists
an infinite path p starting from s such that L(p) € L((Rgx+1)"W,) for some m < r;
(ii) there exists a finite path p = py, ..., pi;1 starting from s and some n < k such that
Pit1 € plL(xn) and L(po, ...,p;) € L((Ry+1)™Rgyn) for some m < r; (iii) there exists a
finite path p starting from s such that L(p) € R},

Assume that property (i) or property (ii) is satisfied for some r. Consider the smallest
value of r, say u, for which either (i) or (ii) is satisfied; in this case, it should be easy
to see that (i) or (ii) is satisfied with m = w; it is also not hard to see that (i) or (ii)
is satisfied for all » > w; further more, this also implies that there is a finite path p
starting from s such that L(p) € L((Ry+1)" and hence property (iii) is satisfied for all
r < u. Thus, if property (i) or (ii) is satisfied for some r, then for all r > 0, either (i) or
(ii) or (iil) is satisfied. From this and previous observations, we see that s € Mg ;(p),
iff for all 7 > 0, s € Mg 4(p).), iff there exists an 7 > 0 such that property (i) or (ii) is
satisfied or for all » > 0 property (iii) is satisfied. Since K is a finite structure, it is not
hard to see that property (iii) is satisfied for all » > 0 iff there exists an infinite path
p starting from s such that L(p) € L((Ry41)*). Putting all the above observations
together, it is not hard to see that the lemma holds for f using the above definitions
for Wy and Ry for j = 1,..., k.

The other cases are when f is of the form f; V f5, and is of the form P A f; where P is
an atomic proposition. Assuming that the lemma holds for f; and fs, it is fairly easy
to see that it also holds for f.

Now, we continue with the proof of theorem 5.2. Consider any arbitrary closed Lo-

formula f. Let g1, ..., gx be the maximal, closed, strict sub-formulas of f. (Note that no g;
is a sub-formula of any other g;). By induction assume that, for each j, 1 < j < n, there
exists a ECTL* formula ©(g;) such that K,s |= O(g;) iff s € Mg, (e). Let Qq,...,Qx be
new atomic proposition symbols not present in P. Let f' be the formula obtained from f
by replacing each occurrence g; by @;, for each j = 1,...,k. It is not hard to see that f’ is

29

a closed L;-formula. Now we define a new Kripke K’ as follows. K’ = (S, R, L") where for
each s € S, L'(s) = L(s)U{Q; : s € Mg, (€)}. Note that the states and transitions of K
are same as those of K'. It should be easy to see that Mg f(€) = Mg p(€).

Define P! = PU{Q1,...Qk} and &' = {¢ : ¢ C P'}. Since f' is a closed formula, from
lemma 5.4, we see that there exists a w-regular expression Wy over the alphabet ¥’ such that
s € M g iff there exists an infinite path p in K’ starting from s such that L'(p) € L(Wp).
Let @1, ¢o, ..., ¢, be all the elements of ¥'. For each j = 1, ...u, define a propositional formula
p; as follows: p; = pl | Ap;, where p;, = Apeg; P and Pig = Apepr—g; 7P. Note that Pja
is the conjunction of all atomic propositions in ¢; and pj , is the conjunction of negations of
atomic propositions not in ¢;, i.e. all those in P’ — ¢;.

Now define ©'(f) to be the ECTL* formula E(Wy (p}, .p5, ..., p})). It should be easy to
see that for any s € S, s € Mg p(€) iff the th ECTL* formula ©'(f) is satisfied in state s
of K' ie., K',s = O'(f).

Now, for each j = 1,...,u, define a ECTL* formula p; = p;1 A pj2 A Djs A pja where
each pj; for [= 1,...,4 is defined as follows. pj1 = Apepng; P Pj2 = Apep—g, F;
Pis = Ngieo;, ©(@1); Pia = Agige, ©(g1). Note that p;3 is the conjunction of all ©(g)
such that Q; € ¢;, and p; 4 is the conjunction of all =0(g;) such that Q; ¢ ¢;.

For each j = 1,...,u, it should be easy to see that K, s |= p; iff K', s |= p. Now, define
O(f) to be the ECTL* formula E(Wy (p1,p2, ..., pu)). From the previous observation, we see
that K, s = O(f) iff K', s = ©'(f). However, from our earlier observations K', s = ©'(f) iff
s € Mg p(€). Since Mg p(€) = Mg s(e), it follows that K,s = O(f) iff s € Mk f(e).
Note that if f is a L;-formula then ©(f) is a formula of the form E(W (fi, ..., fn)) where
f1, ..., fn are propositional formulas. This completes the proof of theorem 5.2. O

The following corollary is immediate from theorems 5.1 and 5.2.

Corollary 5.1 The logic Ly is exactly as expressive as ECTL¥*, and the logic L, is exactly as
expressive as the fragment of ECTL* consisting of all formulas of the form E(W (f1,..., fa))
where W 1s a w-reqular expression and fi, ..., f, are propositional formulas.

6 Conclusion

In this paper, we considered the model-checking problem for p-calculus and have shown it
to be equivalent to the emptiness problem for parity tree automata. This shows that there
is an efficient algorithm for one if and only there is an efficient algorithm for the other. We
have also shown this problem to be in NPNco-NP.

We also considered two different fragments of p-calculus, logics L; and L,. We gave
model checking algorithms for logics L; and Ly which are of complexity O(mnp) where m is
the length of the formula and n is the size of the structure, and p is the alternation depth of
the formula. We have shown that the logic L is as expressive as ECTL* given in [19]. In
additions to these results, we have shown that the model checking problem for the p-calculus
is equivalent to the non-emptiness problem of parity tree automata.

30

It will be interesting to investigate if there is a model checking algorithm for the logics
L, and L which is only of complexity O(mn). Of course, determining if the model checking
problem for the full p-calculus is in P or not, is also an open problem.

References

[1] G. Bhatt, R. Cleaveland, Efficient Local Model-checking for Fragments of the
Modal ji-calculus, Proceedings of the International Conference on Tools and Al-
gorithms for Construction and Analysis of Systems, Passau, Germany, March
1996; Springer-Verlag Lecture Notes in Computer Science 1055, pp 107-126.

(2] O. Bernholtz, M. Vardi, P. Wolper, An Automata Theoretic Approach to Branch-
ing Time Modelchecking Proceedings of the 6th International Conference on Com-
puter Aided Verification, CAV 94, Stanford, California, June 1994.

3] R. Cleaveland, Tableuz-based model checking in the propositional p-calculus ,
Acta Informatica, 27:725-747, 1990.

[4] R. Cleaveland and B. Steffen, A linear-time model-checking for alternation free
modal p-calculus , Proceedings of the 3rd workshop on Computer Aided Verifi-
cation, Aalborg, LNCS, Springer-Verlag, July 1991.

[5] R. Cleaveland and B. Steffen, Faster model-checking for modal ji-calculus , Pro-
ceedings of the 4th workshop on Computer Aided Verification, Montreal, July
1991.

6] E. A. Emerson, E. M. Clarke, Characterizing correctness properties of parallel
programs Using Fizpoints, Proceedings of the International Conference on Au-
tomata, Languages and Programming, 1980.

(7] E.A. Emerson and C. S. Jutla, Tree Automata, Mu-calculus and Determinacy,
Proceedings of the 1991 IEEE Symposium on Foundations of Computer Science.

8] E. A. Emerson, Automata, Tableauz, and Temporal Logics, Proceedings of the
Conference on Logics of Programs, Brooklyn College, New York, NY, Springer-
Verlag Lecture Notes in Computer Science #193, pp. 7988, June 1985.

9] E. A. Emerson, C. Jutla, A. P. Sistla, On Model-checking for fragments of
p-calculus, Fifth International Conference on Computer Aided Verification,
Elounda, Greece, June/July 1993.

[10] E. A. Emerson and C. Leis, Efficient model-checking in fragments of p-calculus
, Proceedings of Symposium on Logic in Computer Science, 1986.

31

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

E. A. Emerson and C. Leis, Modalities for Model Checking, Science of Computer
Programming, 1987.

M. Jurdzinski, Deciding the winner in parity games is in UPNco-UP, Information
Processing Letters 68(3), 119-124(1998).

D. Kozen, Results on the propositional ji-calculus, Theoretical Computer Science,
27, 1983.

A. Mader, Verification of Modal Properties Using Boolean Equation Systems,
Munchen Tech-Univ, Dissertation 1997.

A.W. Mostowski, Regular Expressions for Infinite trees and a standard form
of automata, in: A. Skowron, ed., Computation Theory, LNCS, vol 208, 1984,
Springer-Verlag.

D. Niwinski, Fixed-points Vs. Infinite Generation, Proceedings of the Third IEEE
Symposium on Logic in Computer Science, 1988.

C. Stirling, D. Walker, Local model-checking in modal ji-calculus, Proceedings of
TAPSOFT, 1989.

R. S. Streett and E. A. Emerson, An automata theoretic decision procedure for
Propositional p-calculus , Proceedings of the International Conference on Au-
tomata, Languages and Programming, 1984.

M. Vardi and P. Wolper, Yet Another Process Logic, Proceedings of the workshop
on Logics of Programs, Pittsburgh, 1983, also appeared in Lecture Notes in
Computer Science.

32

