On model-checking for fragments of p-calculus

E. A. Emerson A. P. Sistla
February 28, 1995

1 Introduction

In this paper we consider the problem of modelchecking for different fragments of proposi-
tional p-calculus. This logic was studied by many authors [6, 9] for specifying the properties
of concurrent programs. It has been shown to be as expressive of automata on infinite trees.
Most of the known temporal and dynamic logics can be translated into this logic.

The modelchecking problem for this logic was first considered in [7]. In this paper, the
authors presented an algorithm that is O((mn)*!) where m is the length of the formula, n is
the size of the Kripke structure and [is the number of alternations of least and greatest fixed
points in the given formula. Thus the complexity of the algorithm is exponential in the length
of the formula. Since then there have been other algorithms [3, 5, 10] that were presented.
Modelcheckin algorithms for p-calculus based on Binary Decision Diagrams have been given
in [1]. Although some of these algorithms have lower complexity than the original algorithm,
their complexity is still exponential. Algorithms of linear complexity (both in the size of the
structure and the formula) were given [7, 4] for the case when there is no alternation of least
and greatest fixed points in the given formula.

In this paper, we consider the modelchecking problem for different fragments of the p-
calculus. We first consider two fragments called Ly, L and give modelchecking algorithms
for thesw fragments which are of complexity O(m?n) where m is the length of the formula
and n is the size of the structure. The formulas in [y and Ly allow arbitrary nesting of
the least and greatest fixed points. However, they restrict how the modal operators and the
boolean connectives can appear in the formula. The fragment Lo is shown to be exactly as
expressive as the branching time temporal logic ECTL* considered in [12]. ECTL* is the
extended version of CTL* in which the path formulas have the same expressive power as
w-regular expressions.

We also consider the model checking problem for another fragment Ls. Formulas in Ls
are of the form vy(g) where v is the greatest fixed point operator and ¢ is a formula that
does not contain any greatest fixed point operators and in which all negations only apply to
atomic formulas only. We show that the modelchecking problem for formulas in L3 is closely
related to the non-emptiness problem for Buchi tree automata. More specifically, we show

that the modelchecking problem for this logic is reducible to the non-emptiness problem for
Buchi tree automata of size O(mn) where m and n are as defined above. We also show that
the non-emptiness problem of Buchi tree automata of size p is reducible to the modelchecking
problem for the logic Ls in which the size of the Kripke structure is O(p) and the length of
the formula is a constant. This shows that there is an efficient modelchecking algorithm for
Ls (i.e. an algorithm of complexity less than quadratic complexity in mn) iff there is an
efficient algorithm (less than quadratic complexity) for the non-emptiness problem for Buchi
tree automata.

The paper is organized as follows. Section 2 contains definitions and notation. Section
3 defines two logics L1 and L2, and presents the modelchecking algorithms for these logics.
Section 4 contains the results for the fragment L3.

2 Definitions and Notation

In this section we define the syntax and semantics of the different fragments of the logic
p-calculus. Let P and X be two disjoint sets of elements. The elements of P will be called
atomic propositions and are usually denoted by P, (), ... The elements of X will be called
variables and are usually denoted by z,¥,.... The formulae of p-calculus are formed using
the symbols from P, X', the propositional connectives = and A, the modal operator <R>, and
the symbol p.

The set of well-formed formulas of p-calculus are defined inductively. The symbols true
and false are well-formed formulas. Every atomic proposition and every variable are well-
formed formulas. If f and ¢ are well-formed formulas then —f, f A g and <R>f are also
well-formed formulas. In addition, if f is well-formed formula in which all the occurences
of the variable x are in the scope of an even number of negations then pa(f) is also a
well-formed formula.

In order to define the semantics of the formulas of p-calculus, we need the following
definitions. For any formula f, we define a finite set of variables, denoted by free-var(f),
inductively as follows. Intuitively, free-var(f) are all the variables that appear free in f.

o free-var(P) =) where P is an atomic proposition;
e free-var(z) = {x} where z is a variable;

o free-var(f A g)= free-var([f)Ufree-var(g);

o free-var(<R>f) =free-var(—f) =free-var(f);

o free-var(uxf) =free-var(f) — {z}.

If « efree-var(f) then we say that x is a free variable in f. A variable which appears in
f and which is not free, is called a bound variable. A formula without any free variables is

called a closed formula. We define the semantics of the formulas in p-calculus with respect
to a kripke structure. A kripke structure K is a triple (S5, R, L) where S is a finite set of
states, R C S x S is a total binary relation (i.e. Vo3y(z,y) € R)), and L : S — 2. With
each state s, L associates a set of atomic propositions that are true in that state. Let f be a
formula with free-var(f) = {x1,...,2x}. An evaluation p for f is a mapping that associates
with each variable in free-var(f) a subset of S. If free-var(f) is empty then there is a unique
empty evaluation € for f. For a given kripke structure &', we define a function M x sy from
the set of evaluations for f to the subsets of 5, by induction on the structure of f as follows.

o M py(e) ={s: P € L(s)} where P is an atomic proposition;

o Mk irg)(p) = M 5)(p") N M) (p") where p’ and p" are restrictions of p to the free
variables of f and ¢ respectively;

. M(K,—'f)(p) =5 - M(K,f)(p);
o Mx<rop(p) = {s:3s" € My p)(p) such that (s,s") € R};

o Mixywn(p) = NS C 518 = Mg 5)(p') where p'(x) = 5" and for all other y €
free-var(f), p'(y) = ply)}.

In the above definition, it is to be noted that the value of M(I‘:Wf)(p) is given as a
least fixed point. For finite kripke structures, this least fixed point can also be computed by
iteration starting with an empty set and iterating until a fixed point is reached. For a closed
formula f, we say that a state s in K satisfies f (written as K,s = f) iff s € M g)(¢).
We define derived connectives defined as follows: f Vg ==(=f A-g), f —¢g=(-fVyg),
[R1f = —
—f, vyf(y) = —pax(—-f(-x)). It is to be noted that while px denotes the
least fixed point vy denotes the greatest fixed pont operator. It is well known that on finite
structures va(f) can be computed by iteration starting with value x equal to S, the set of
all states.

By using DeMorgan’s laws, the identities vy f(y) = pa(—=f(—2)) and = [R]1f = <R>—f,
we can transform any formula into an equivalent formula in which all negations apply only
to the atomic propositions. In our paper we will be interested in these types of formulas.
In addition, we assume throughout the paper that each variable appearing in a formula is
bound at most once. This means that we can not have two subformulas of the form px(g)
and pa(h) appearing in a formula. If this property is not satisfied, then by renaming the
variables we can obtain an equivalent formula that satisfies this property.

For finite kripke structures, the least fixed point can be computed by iteration starting
with an empty set and iterating until a fixed point is reached. Similarly, the greatest fixed

point can be computed by starting from the set containing all states and iterating until a
fixed pont is reached. This is formally stated in the following lemma due to Tarski/Knaster.

Lemma 2.1 Let K = (S, R, L) be a finite Kripke structure and g be a formula having a free
variable x. Let p be be an arbitrary evaluation on free-var(g) — {x}. Define sequences of
subests X], i as follows: Xo = 0,Yy = S; for any j > 0, X; = Mg ,(p}),Y; = M]@g()
where p' and pY are extensions of p to the free-var(g) such that pi(x) = X;o1 and pl(z) =
Yi—1. Then pa(g) and va(g) satisfy the following properties.

o MI& (g P

X where ¢ is the smallest value of j such that X; = X;44.

® Mg a =Y, where ¢ is the smallest value of j such that X; = X 4.

MI& wa((P)
ULS : 5 € Mg 5)(p') where p'(x) = S and for all other y € free-var(f),

) =

P)

) <
'MAW) =
Py)=py)}.

Now, we define two fragments of the u-calculus Ly and Ly defined as follows. The set of
L4 formulas are exactly those that are formed using the following rules:

()
()
o Mg uw(g)(p
(P
ply

1. All the members of PUAX are Lq-formulas; i.e. all atomic propositions and all variables
are [-formulas.

2. If fis a Li-formula that does not have any variables appearing in it then —f is also
an L,-formula.

3. If f and g are Li-formulas then fV g, <R>f, px(f) and va(f) are Ly-formulas.

4. It f and ¢ are Ly-formulas such that at most one of them has variables appearing in
it, then f A ¢ is a Li-formula.

Let Ly be the set of formulas obtained by using rules (a) and (b) in place of 2 and 4.

(a). If f is a closed Ly-formula then —f is also an Ly-formula.
(b). If f and g are Ly-formulas such that at most one of them is an open formula then
f A gisa Ly-formula.

It is easily seen that rules 2 and 4 are special cases of rules (a) and (b) respectively. As
a consequence, Ly is a subset of L,.

3 Modelchecking for the restricted Logics

In this section, we present efficient procedure for model-checking for the two logics [, and
Ly. First, we consider the logic Ly and present an efficient model-checking algorithm for this
logic. This algorithm, as we show later, can be easily extended to the logic L,.

Let f be a closed formula in the logic Ly. Let SF(f) denote the set of subformulas of f.
The set SF(f) can be defined inductively. Let K = (S, R, L) be a given kripke structure.
We define a graph G s = (V, F), where V is the set of vertices and F is the set of edges,
defined as follows. The node set V = {(s,9) : s € 5,9 € SF(f)}. Essentially, there is one
node in V' corresponding to each state in S and each subformula of f. The set of edges
leaving the node (s, ¢g) are, defined according to the outermost connective of the subformula
g, as follows.

o If g= P or ¢ =P where P is an atomic proposition then there are no edges leaving
(s,9)-

e If ¢ = « where x is variable and ¢’ is the largest subformula of f such that ¢’ = pa(¢”)
or ¢’ = va(g"”), then there is exactly one edge leaving (s, ¢) and this edge is to (s,¢’).

o If g = pa(g’) or g = va(g’), then there is an edge from (s,¢) to (s,¢’) and this is the
only edge from (s, ¢).

e lfg=¢g Ng"org=yg" Vg" then there are two edges from (s, g), to the nodes (s,¢’)
and (s, g").

o If g = <R>¢’, then for each state s’ such that (s,s’) € R, there is an edge from (s, g) to
(s',4").
The following observation follows from the definition of G ;.

Observation 3.1 Assume that there is an edge from (s,g) to (s',¢") in Gx 5. Then,
o [fg=<R>¢ then (s,s') € R. Otherwise, s’ = s.

o If g is not a variable then ¢ is a subformula of g. If ¢ is a variable then ¢ is a
subformula of ¢'.

A path in Gk s is a finite sequence of nodes such that there is an edge in F from each
node in the path to the succeeding node. A path starting and ending with the same node
is a cycle. A subformula g € SF(f) is called a g-subformula (respectively, a v-subformula)
if ¢ is of the form pa(f) (respectively, va(f)). We say that a cycle C in Gk s, is a v-cycle
(respectively, p-cycle) if the longest subformula appearing in a node on C' is v-subformula
(respectively, p-subformula). A subformula that has no variables appearing in it will be
called a constant. A node (s,¢) in G s is called a A-node if the outer most connective of ¢
is A, i.e. g is of the form ¢4 A g2. A node (s,¢) is called a V-node if ¢ is of the form g¢; V g5
or is of the form <R>g;.

Lemma 3.1 1. For any node (s,q) in Gg ¢, there is a path from (s,g) to a node on a
cycle iff g has at least one variable in it (i.e. g is not a constant).

2. Let C be a cycle and (s,g) be a node on it such that g is the longest formula appearing
in all the nodes on C'. Then, g is a p-subformula or a v-subformula. In addition, all
other subformulas appearing in some node on C themselves are subformulas of g.

Now, we label the nodes of G s as follows. With each node v € V, we maintain a
variable label(u) that denotes the label of the node u. Each of these variables takes one of
the three values—true, false, N1 1, and is initialized to the value N1L. During the execution
of the algorithm, the values of these variables will be set to true or false. When once a
variable is set to one of these two values, it will never be changed. Furthermore, for any
node u = (s,g), at the end of the execution of the algorithm, label(s, g) = true iff K, s |=g.

At any time during the execution of the algorithm, if label(u) = NIL then we say that
node u is unlabeled at that time. We say that a path is unlabeled if all the nodes on the path
are unlabeled. Let n be the length of the formula f. We execute the following algorithm on
the graph G ;.

1. For each node u € V', label(u) « NIL.

2. For each ¢ € SF(f) in increasing lengths of ¢, and for each s € 5, update label(s, g)
as follows.

e g=PF:
If P € L(s) then label(s,g) « true else label(s, g) « false.

g=—F:
If P ¢ L(s) then label(s,g) « true else label(s, g) « false.

s g=9g'Ng":
If label(s, ¢') = true and label(s, ¢") = true then label(s,g) < true;
If label(s, ¢') = false or label(s, g") = false then label(s, g) « false.

In other cases, label(s,g) is unchanged (i.e. = NIL).

e g=9'Vyg":
If label(s, ¢') = true or label(s, g") = true then label(s,g) < true;
If label(s, ¢') = false and label(s, ¢g") = false then label(s,g) < false.

In other cases, label(s,¢) is unchanged.

o g =<R>¢ :
If 35" such that (s,s") € R and label(s', g') = true then label(s, g) « true;

6

IfVs' such that (s,s") € R label(s', ¢') = false then label(s, g) « false.
In all other cases, label(s,g) is unchanged (= NIL).

e None of the above: label(s, ¢g) is unchanged.

3. For each unlabeled node u € V', if u lies on an unlabeled v-cycle then label(u) « true.

4. For each unlabeled node u € V, if there exists an unlabeled path from u to a node v
satisfying condition (a) or (b) given below then label(u) < true.
(a) v is a A-node and if the two edges leaving v are to the nodes w’ and w” then
label(w') = label(w") = true.
(b) v is not a A-node and there exists an edge from v to some node w such that
label(w) = true.

5. For each unlabeled node u, label(u) « false.

It is to be noted that after the execution of step 2 of the above algorithm, the following
conditions are satisfied. For all nodes u in G s such that there is no path connecting u
to a node on a cycle, label(u) # NIL. From this and lemma 3.1, it automatically follows
that, for each node (s, g) in G s where ¢ is a constant, label(s,g) # NIL. Also, for every
node (s,¢) such that label(s,g) = NIL, there is at least one successor node u such that
label(u) = NIL. In addition, if g = ¢’ A ¢”, then for one successor u, label(u) = true and for
the other successor v, label(v) = NIL.

Theorem 3.1 After the execution of the above algorithm, for any node u = (s,q) in G g
where g is a closed subformula, label(u) = true iff K,s = g.

In order to prove the above theorem, we need some lemmas. First, it is to be noted that
after the execution of step 2 of the above algorithm, the following conditions are satisfied.
For each node (s,g) in Gk s where g is a constant, label(s,g) # NIL. For the case when
g is a constant, it should be easy to see that label(s,g) = true iff K,s | g¢. Consider
any node (s,g) such that label(s,g) # NIL. For any evaluation p over the free variables
of g, the following property holds: s € My ,(p) iff label(s) = true. For any node (s,¢)
where ¢ is a p-formula or a v-formula, label(s,g) = NIL. Also, for every node (s,g) where
g =g Ng", for one successor u of the node (s,¢), label(u) = true and for the other successor
v, label(v) = NIL.

Now, we prove that step 3 of the above algorithm is sound. To do this, we need the
following lemmas.

Lemma 3.2 Let ug, uy,...,u be a path in G 5 after execulion of step 2 of the above algo-
rithm where for each i = 0,1,...,k — 1, u; is a A-node or a V-node. Also, let u; = (s, ¢:).
Then, each g; is a subformula of go, and for any evaluation p on the free-var(gy), if
sk € My, (p') where p' is a restriction of p to free-var(gy), then so € Mg 4(p).

7

The above lemma can be proved by a simple induction on the length of go.

Lemma 3.3 Let ug, uy, ..., u; be an unlabeled path in Gk ; after the execulion of step 2 of
the above algorithm satisfying the following conditions: for each i > 0, u; = (s;,¢9:), gi is a
strict subformula of go and gi, €free-var(go). Then, for any evaluation p over free-var(go), if
sk € plgr) then so € Mg 4(p).

Proof Let d(go) be the depth of nesting of the fixed point operators in go. We prove the
lemma by induction on d(go). Note that if gy has no p- or v-subformulas then d(go) = 0.
The base case for induction is when d(go) = 0. In this case, go has only the propositional
connectives and the lemma follows trivially (note that for any A-node on the path, the
successor of the node which is not on the path is labeled true). To prove the inductive step,
assume that the lemma holds for all cases when d(go) < p. Now, consider the case when
d(go) = p+ 1. Let I be the set of all values of ¢ such that 0 < ¢ < k and g¢; is a g-subformula
or a v-subformula such that d(g;) = p+ 1. If I is empty then there is no 7 such that g; is
a p- or a v-subformula and d(g;) = p + 1. In this case, it is easily seen that the inductive
hypothesis can be directly applied to prove the induction step. The other case is when [
is non-empty. In this case it should be easy to see that for any 7,57 € [, it has to be the
case that ¢; = ¢g;. Let ¢p < 21... < 1, be the set of all integers in [and h = g¢;,. Now, h
is of the form py(h') or is of the form vy(h') where d(h’) = p. By applying the induction
hypothesis to the path segment between u;, and uy, we see that s; € Mg (p') where p/
is an extension of p such that p'(y) = 0. By repeatedly applying the induction hypothesis
to each of the path segments between u; 41 and w;,,, and by using lemma 2.1, it is easy to
see that s;, € My u(p) for j such that 0 < j < ¢. Also, for each j such that 0 < j < i, it
is the case that u; is an A-node or V-node. Using this and the fact that s;; € Mg ,(p), we
conclude from lemma 3.2 that so € My 4, (p). |
The following lemma shows that step 3 of the above algorithm is sound.

Lemma 3.4 Let

® Ug, Uy, ..., u; = Uy be an unlabeled v-cycle in G s after execulion of step 2 of the above
algorithm;

o u; = (s;,0:) for 0 < i < k, where go = va(g') is the longest subformula appearing in
any node of the cycle;

o S={s5:0<i<k,9;= g0}
Then, for any evaluation p on the free-var(go), S C Mg 4(p).

Proof Let I be the set of all ¢ such that 0 <7 < £k and ¢; = go. Let 0 =19 < 13 < ... < ¢, be
all the members of I. Let p’ be an extension of rho to free-var(¢’) such that p’(x) = 5. By

applying lemma 3.4 to the path segment between u; 41 to u; 1, for each r = 0,...,p — 1,
we see that S C Mg 4(p’). Now, applying lemma 2.1, we see that S C My 4 (p). [|

In the full paper we will give the remainder of the proof of theorem 3.1.

Complexity and Expressiveness

Below, we discuss the complexity of the above algorithm. First, it is to be noted that
the number of vertices in Gk ¢, i.e. |V, is O(|S||f]). The number of edges in Gk s, i.e.
|E| = O(R||f| + |SI|f]). It is not difficult to see that steps 1, 2, 4 and 5 can all be
implemented in time linear in (|V|+ |E|). Step 3 can be implemented using an algorithm of
complexity O(|f|(|V]| + |E|)). This algorithm works as follows:

For each v-subformula ¢ of f and in the increasing lengths of ¢, consider the restriction
of Gk s to unlabeled nodes of the form (s, ¢’) where ¢’ is a subformula of g. For each strongly
connected component C' of the restricted graph, find the type of the longest subformula in
any node of C'; if this formula is a v-formula then mark all the nodes of (' as nodes lying on
a v-cycle.

In the full paper we will show that the above algorithm correctly identifies all the nodes
that lie on unlabelled v-cycles. Each iteration of the above algorithm can be implemented
using an algorithm of complexity O(|V| 4+ |F|). Thus, the overall complexity of step 3 of the
main algorithm is O(|f|(|V|+|£])). This will also be the complexity of the overall algorithm.
Substituting for |V| and |E| in terms of |S| and |R|, we see that the overall complexity of
the above algorithm is O(|f|*(]S] + |R])).

The above algorithm can be naturally be extended to the logic Ly with the same com-
plexity. We will present this in the full paper. Thus, modelchecking for Ly can also be done
in time O([f*(]S]+ |R])).

We compare the expressive power of the logics to well known branching time temporal
logics. Consider the branching time temporal logic CTL*. Let the ECTL* denote the
extended version of the logic CTL* where each path formula can be as expressive as w-
regular expressions. The following theorem will be proved in the full paper.

Theorem 3.2 o The logic Ly is as expressive as the fragment of ECTL* consisting of
formulas of the form FE(p) where E is the exvistential path quantifier and p is a path
formula which has no further state formulas with path quantifiers.

o The logic Ly is as expressive as KCTL*.

We can also use the following alternate approach for model-checking for formulas in L.
However, this approach will have complexity O(|f]*(|S| + |R])) which is worse than the
complexity of the above method. We briefly describe this procedure. Theorem 3.2 shows
that for each formula f in Ly there exists a formula of the form E(p) in ECTL*, where p
is a path formula, such that f is equivalent to F(p). In fact, from f, we can construct a
Streett string automaton Ay (see [11]) with the following property: f is satisfied at a node
so in a Kripke structure iff there exists an infinite path from sq that is accepted by Aj.
The number of states in the automaton A; will be O(|f|) and the number of pairs in the

9

accepting condition will be O(|f]). Now to check if the formula f is satisfied at state sy of
K, we simply consider K as a string automaton and construct the product automaton of
Ay and K and check for non-emptiness of this product automaton. The size of the product
automaton ,which is a Streett automaton, will be O((|S|+|R])|f|) and the number of pairs in
the accepting condition will be O(|f|). Checking non-emptiness for this product can be done
(using the approach of [8]) and the complexity of the procedure will be O(|f>(|.S| + | R|)).

4 Modelchecking for Other Fragments

In this section we consider other fragments of u-calculus and explore the relationship between
modelchecking for these logics and the checking for emptiness of tree automata.

Specifically, let L3 be the set of all formulas of p-calculus which are of the form vy(g)
where ¢ is in normal form, i.e. all negations are applied to atomic propositions only, and
p 1s the only fixed point operator that appears in g, i.e. the fixed point operator v does
not appear in ¢g. No further restrictions are placed on the formula g. Note that the model
operators [R], <R> and the boolean connectives A and V can all appear in the formula ¢
without any restrictions.

We will show in this section that the modelchecking problem for the logic L3 is equivalent
under linear reductions to the emptiness problem of Buchi automata on infinite trees. This
result shows that there is an efficient model-checking algorithm, i.e. an algorithm that is
less than quadratic complexity, iff there an efficient algorithm for checking non-emptiness of
Buchi automata on infinite trees. It is to be noted that there is an algorithm for the later
problem which has quadratic complexity in the size of the automaton (i.e. the number of
states + the number of transitions). There is no known algorithm of better complexity for
this problem.

A Buchi automaton A on infinite binary tree is a 5-tuple (X, @, go, 6, F') where ¥ is the
input alphabet, Q is the set of automaton states, qo is the initial states, § : (Q x ¥) — 29*¢
is the next move relation and £ C () is the set of final states. Note that, for any a« € X
and ¢ € Q, 6(q,a) is a set of pairs of the form (¢, ¢”) where ¢" and ¢” are automaton states;
Intuitively, if the automaton is in state ¢ and reads input « in the current node then the state
of the automaton on the left child is going to be ¢" and its state on the right child is going to
be ¢”. We denote the infinite binary tree by the set {0,1}*. An input to the automaton is
a marked infinite binary tree which is a function 7 : {0,1}* — 3. A run of r of A on input
7 is a function r : {0,1}* — @, associating a state of the automaton with each node of the
tree, such that r(¢) = ¢o, and for any « € {0,1}* (r(z0),r(z1)) € 6(r(x),7(x)). The run r is
accepting if for every infinite sequence o in {0,1}*, there exists infinite number of prefixes
of o, say og, 01, ... such that for each 1 > 0 r(0;) € F.

Lemma 4.1 Given a kripke structure K = (S, R, L) and a formula f € Ls and a state
S0, we can obtain a Buchi automaton automaton A of size O((|S| + |R|)|f|) such that A

10

accepts at least one input iff K,so E f; in addition, this automaton can be obtained in time

O(([ST+ I&DISIT) -

Proof We briefly sketch the proof here. Let f = vy(g) be the given formula which is in Ls
and K be the given Kripke structure. First we construct the graph G s = (V, E) as given in
the previous section. Recall that each node in V' is of the form (s, h) where s € S and & is a
subformula of f. The edge set F is as defined in the previous section. For example, when h
is of the form [R]A', then for each (s,s’) € R there is an edge from (s, h) to (s,h’') in £. We
call a node (s, %) in V to be an A-node if h is of the form hq A hy or is of the form [R]1hq; we
call it to be an atomic node if & is P or =P for some atomic proposition P; all other nodes
in V are called V-nodes. We make the following assumption. Any non-atomic node has at
most two successors, i.e. two edges leaving it in £. If this condition is not satisfied, we can
introduce new intermediate nodes and edges so that this property is satisfied; actually, for
each node u with k successors, if & > 2 then we introduce k — 2 additional new nodes and
k — 2 additional edges. As a consequence, the size of Gy = |V|+ |F| at most doubles. The
type of a new node that is introduced in the previous step is same as that of u, i.e. it is a
A-node if u is a A-node, etc.

The states set of the automaton A is simply V, the initial state is (sq, f), the input
alphabet has only one symbol, say symbol a. The transitions and final states of A are
defined as follows. The set of final states ' is exactly the set of all nodes (s, h) such that
h=y,orh=PFPand P € L(s),or h = =P and P ¢ L(s). For any node u = (s, h), 6(u,a)
consists of the following pairs: if h = P or h = =P then 6(u,a) = {(u,u)}; if h is V-node
then é6(u,a) = {(v,v) : (u,v) € E}; if h is a A-node then é6(u,a) = {(v,v’) : v and v’ are
the successors of u}. It can easily be shown that the automaton accepts at least one input
ift K,so | f. It is also not difficult to see that the size of the automaton which is the total
number of states plus the number of transitions is O((|.S| + |R])|f]). |

Lemma 4.2 Given a Buchi automaton A over infinite binary trees we can obtain a Kripke
structure K whose size is linear in the size of A and a formula f in L3 of constant size and
a state sq in K, such that A accepts at least one input iff K,s0 E f.

Proof First we assume that the alphabet of A is a singleton consisting of the symbol
a. We give the informal description of the Kripke structure K = (S, R,L). S has the
following elements. We call each element of S as a node and each element of R as an edge.
Corresponding to each automaton state s, there is one node in S which is also denoted by
s. Corresponding to each pair of states (s1,$2), such that (s1,s2) € 6(s,a) for some state
s, S has a node which we denote by the pair (s1,s2). R has the following edges. For each
8,81, 82 such that (s1,s2) € 6(s,a), there is an edge from the node s to the node (s, ;) and
there are edges from (s1,$2) to s; and to s3. There are three atomic propositions denoted
by E, A and F. The atomic proposition is F holds exactly in all nodes of the form s, i.e.
single states. The atomic proposition A holds exactly in all those nodes that are of the form

11

(81, 82), i.e. in pairs of states. The atomic proposition F' holds exactly in all nodes s where
s 1s a final state of the automaton A.
Let sg be the initial state of the automaton. Let f be the formula
vy[E A <R>px(F Ay V EA<R>zV AA [Rlz)].
It can be shown that K, sq = f iff A accepts at least one input.

It is easy to see that the size of K is linear in the size of A. [
References
[1] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill and J. Hwang, Symbolic

Modelchecking 10?° states and beyond, Proceddings of 5th Annual Symposium
on Logic in Computer Science, June 1990.

E. M. Clarke, E. A. Emerson, and A. P. Sistla, Automatic Verification of finite-
state Concurrent Systems Using Temporal Logic Specifications, ACM Transac-
tions on Programming Languages and Systems, 8(2):244-263, 1986.

R. Cleaveland, Tableu-based modelchecking in the propositional p-calculus , Acta
Informatica, 27:725-747, 1990.

R. Cleaveland, B. Steffen, A linear-time model-checking for alternation free modal
p-calculus | Proceedings of the 3rd workshop on Computer Aided Verification,
Aalborg, LNCS, Springer-Verlag, July 1991.

R. Cleaveland, B. Steffen, Faster model-checking for modal p-calculus , Proceed-
ings of the 4th workshop on Computer Aided Verification, Montreal, July 1991.

E. A. Emerson, E. M. Clarke, Fized point characterization properties of parallel
programs, Proceedings of the International Conference on Automata, Languages
and Programming, 1980.

E. A. Emerson and C. Leis, Efficient model-checking in fragments of p-calculus
, Proceedings of Symposium on Logic in Computer Science, 1986.

E. A. Emerson and C. Leis, Modalities for Model Checking, Science of Computer
Programming, 1987.

D. Kozen, Results on propositional j1-caleculus, Theoretical Computer Science, 27,

1983.

C. Stirling, D. Walker, Local model-checking in modal p-calculus, Proceedings of
TAPSOFT, 1989.

12

[11] R. S. Streett and E. A. Emerson, An automata theoretic decision procedure for
Propositional p-calculus , Proceedings of the International Conference on Au-
tomata, Languages and Programming, 1984.

[12] M. Vardi and P. Wolper, Yet Another Process Logic, Proceedings of the workshop
on Logics of Programs, Pittsburgh, 1983, also appeared in Lecture Notes in
Computer Science.

13

