
On model-checking for fragments of �-calculusE. A. Emerson A. P. SistlaFebruary 28, 19951 IntroductionIn this paper we consider the problem of modelchecking for di�erent fragments of proposi-tional �-calculus. This logic was studied by many authors [6, 9] for specifying the propertiesof concurrent programs. It has been shown to be as expressive of automata on in�nite trees.Most of the known temporal and dynamic logics can be translated into this logic.The modelchecking problem for this logic was �rst considered in [7]. In this paper, theauthors presented an algorithm that is O((mn)l+1) where m is the length of the formula, n isthe size of the Kripke structure and l is the number of alternations of least and greatest �xedpoints in the given formula. Thus the complexity of the algorithm is exponential in the lengthof the formula. Since then there have been other algorithms [3, 5, 10] that were presented.Modelcheckin algorithms for �-calculus based on Binary Decision Diagrams have been givenin [1]. Although some of these algorithms have lower complexity than the original algorithm,their complexity is still exponential. Algorithms of linear complexity (both in the size of thestructure and the formula) were given [7, 4] for the case when there is no alternation of leastand greatest �xed points in the given formula.In this paper, we consider the modelchecking problem for di�erent fragments of the �-calculus. We �rst consider two fragments called L1; L2 and give modelchecking algorithmsfor thesw fragments which are of complexity O(m2n) where m is the length of the formulaand n is the size of the structure. The formulas in L1 and L2 allow arbitrary nesting ofthe least and greatest �xed points. However, they restrict how the modal operators and theboolean connectives can appear in the formula. The fragment L2 is shown to be exactly asexpressive as the branching time temporal logic ECTL* considered in [12]. ECTL* is theextended version of CTL* in which the path formulas have the same expressive power as!-regular expressions.We also consider the model checking problem for another fragment L3. Formulas in L3are of the form �y(g) where � is the greatest �xed point operator and g is a formula thatdoes not contain any greatest �xed point operators and in which all negations only apply toatomic formulas only. We show that the modelchecking problem for formulas in L3 is closelyrelated to the non-emptiness problem for Buchi tree automata. More speci�cally, we show1

that the modelchecking problem for this logic is reducible to the non-emptiness problem forBuchi tree automata of size O(mn) where m and n are as de�ned above. We also show thatthe non-emptiness problem of Buchi tree automata of size p is reducible to the modelcheckingproblem for the logic L3 in which the size of the Kripke structure is O(p) and the length ofthe formula is a constant. This shows that there is an e�cient modelchecking algorithm forL3 (i.e. an algorithm of complexity less than quadratic complexity in mn) i� there is ane�cient algorithm (less than quadratic complexity) for the non-emptiness problem for Buchitree automata.The paper is organized as follows. Section 2 contains de�nitions and notation. Section3 de�nes two logics L1 and L2, and presents the modelchecking algorithms for these logics.Section 4 contains the results for the fragment L3.2 De�nitions and NotationIn this section we de�ne the syntax and semantics of the di�erent fragments of the logic�-calculus. Let P and X be two disjoint sets of elements. The elements of P will be calledatomic propositions and are usually denoted by P;Q; ::. The elements of X will be calledvariables and are usually denoted by x; y; :::. The formulae of �-calculus are formed usingthe symbols from P, X , the propositional connectives : and ^, the modal operator <R>, andthe symbol �.The set of well-formed formulas of �-calculus are de�ned inductively. The symbols trueand false are well-formed formulas. Every atomic proposition and every variable are well-formed formulas. If f and g are well-formed formulas then :f , f ^ g and <R>f are alsowell-formed formulas. In addition, if f is well-formed formula in which all the occurencesof the variable x are in the scope of an even number of negations then �x(f) is also awell-formed formula.In order to de�ne the semantics of the formulas of �-calculus, we need the followingde�nitions. For any formula f , we de�ne a �nite set of variables, denoted by free-var(f),inductively as follows. Intuitively, free-var(f) are all the variables that appear free in f .� free-var(P) = ; where P is an atomic proposition;� free-var(x) = fxg where x is a variable;� free-var(f ^ g)= free-var(f)[free-var(g);� free-var(<R>f) =free-var(:f) =free-var(f);� free-var(�xf) =free-var(f)� fxg.If x 2free-var(f) then we say that x is a free variable in f . A variable which appears inf and which is not free, is called a bound variable. A formula without any free variables is2

called a closed formula. We de�ne the semantics of the formulas in �-calculus with respectto a kripke structure. A kripke structure K is a triple (S;R;L) where S is a �nite set ofstates, R � S � S is a total binary relation (i.e. 8x9y(x; y) 2 R)), and L : S ! 2P . Witheach state s, L associates a set of atomic propositions that are true in that state. Let f be aformula with free-var(f) = fx1; :::; xkg. An evaluation � for f is a mapping that associateswith each variable in free-var(f) a subset of S. If free-var(f) is empty then there is a uniqueempty evaluation � for f . For a given kripke structure K, we de�ne a functionM(K;f) fromthe set of evaluations for f to the subsets of S, by induction on the structure of f as follows.� M(K;P)(�) = fs : P 2 L(s)g where P is an atomic proposition;� M(K;f^g)(�) =M(K;f)(�0)\M(K;g)(�00) where �0 and �00 are restrictions of � to the freevariables of f and g respectively;� M(K;:f)(�) = S �M(K;f)(�);� M(K;<R>f)(�) = fs : 9s0 2 M(K;f)(�) such that (s; s0) 2 Rg;� M(K;�xf)(�) = TfS 0 � S : S 0 = M(K;f)(�0) where �0(x) = S 0 and for all other y 2free-var(f), �0(y) = �(y)g.In the above de�nition, it is to be noted that the value of M(K;�xf)(�) is given as aleast �xed point. For �nite kripke structures, this least �xed point can also be computed byiteration starting with an empty set and iterating until a �xed point is reached. For a closedformula f , we say that a state s in K satis�es f (written as K; s j= f) i� s 2 M(K;f)(�).We de�ne derived connectives de�ned as follows: f _ g � :(:f ^ :g), f ! g � (:f _ g),[R]f � :<R>:f , �yf(y) � :�x(:f(:x)). It is to be noted that while �x denotes theleast �xed point �y denotes the greatest �xed pont operator. It is well known that on �nitestructures �x(f) can be computed by iteration starting with value x equal to S, the set ofall states.By using DeMorgan's laws, the identities :�yf(y) � �x(:f(:x)) and :[R]f � <R>:f ,we can transform any formula into an equivalent formula in which all negations apply onlyto the atomic propositions. In our paper we will be interested in these types of formulas.In addition, we assume throughout the paper that each variable appearing in a formula isbound at most once. This means that we can not have two subformulas of the form �x(g)and �x(h) appearing in a formula. If this property is not satis�ed, then by renaming thevariables we can obtain an equivalent formula that satis�es this property.For �nite kripke structures, the least �xed point can be computed by iteration startingwith an empty set and iterating until a �xed point is reached. Similarly, the greatest �xed3

point can be computed by starting from the set containing all states and iterating until a�xed pont is reached. This is formally stated in the following lemma due to Tarski/Knaster.Lemma 2.1 Let K = (S;R;L) be a �nite Kripke structure and g be a formula having a freevariable x. Let � be be an arbitrary evaluation on free-var(g) � fxg. De�ne sequences ofsubests Xj ; Yj as follows: X0 = ;; Y0 = S; for any j > 0, Xj =MK;g(�0j); Yj =MK;g(�00j)where �0j and �00j are extensions of � to the free-var(g) such that �0j(x) = Xj�1 and �00j (x) =Yj�1. Then �x(g) and �x(g) satisfy the following properties.� MK;�x(g)(�) = Xi where i is the smallest value of j such that Xj = Xj+1.� MK;�x(g)(�) = Yi where i is the smallest value of j such that Xj = Xj+1.� MK;�x(g)(�) �MK;�x(g)(�).� MK;�x(g)(�) = SfS : S �M(K;f)(�0) where �0(x) = S and for all other y 2 free-var(f),�0(y) = �(y)g.Now, we de�ne two fragments of the �-calculus L1 and L2 de�ned as follows. The set ofL1 formulas are exactly those that are formed using the following rules:1. All the members of P[X are L1-formulas; i.e. all atomic propositions and all variablesare L1-formulas.2. If f is a L1-formula that does not have any variables appearing in it then :f is alsoan L1-formula.3. If f and g are L1-formulas then f _ g, <R>f , �x(f) and �x(f) are L1-formulas.4. If f and g are L1-formulas such that at most one of them has variables appearing init, then f ^ g is a L1-formula.Let L2 be the set of formulas obtained by using rules (a) and (b) in place of 2 and 4.(a). If f is a closed L2-formula then :f is also an L2-formula.(b). If f and g are L2-formulas such that at most one of them is an open formula thenf ^ g is a L2-formula.It is easily seen that rules 2 and 4 are special cases of rules (a) and (b) respectively. Asa consequence, L1 is a subset of L2. 4

3 Modelchecking for the restricted LogicsIn this section, we present e�cient procedure for model-checking for the two logics L1 andL2. First, we consider the logic L1 and present an e�cient model-checking algorithm for thislogic. This algorithm, as we show later, can be easily extended to the logic L2.Let f be a closed formula in the logic L1. Let SF (f) denote the set of subformulas of f .The set SF (f) can be de�ned inductively. Let K = (S;R;L) be a given kripke structure.We de�ne a graph GK;f = (V;E), where V is the set of vertices and E is the set of edges,de�ned as follows. The node set V = f(s; g) : s 2 S; g 2 SF (f)g. Essentially, there is onenode in V corresponding to each state in S and each subformula of f . The set of edgesleaving the node (s; g) are, de�ned according to the outermost connective of the subformulag, as follows.� If g = P or g = :P where P is an atomic proposition then there are no edges leaving(s; g).� If g = x where x is variable and g0 is the largest subformula of f such that g0 = �x(g00)or g0 = �x(g00), then there is exactly one edge leaving (s; g) and this edge is to (s; g0).� If g = �x(g0) or g = �x(g0), then there is an edge from (s; g) to (s; g0) and this is theonly edge from (s; g).� If g = g0 ^ g00 or g = g0 _ g00, then there are two edges from (s; g), to the nodes (s; g0)and (s; g00).� If g = <R>g0, then for each state s0 such that (s; s0) 2 R, there is an edge from (s; g) to(s0; g0).The following observation follows from the de�nition of GK;f .Observation 3.1 Assume that there is an edge from (s; g) to (s0; g0) in GK;f . Then,� If g = <R>g0 then (s; s0) 2 R. Otherwise, s0 = s.� If g is not a variable then g0 is a subformula of g. If g is a variable then g is asubformula of g0.A path in GK;f is a �nite sequence of nodes such that there is an edge in E from eachnode in the path to the succeeding node. A path starting and ending with the same nodeis a cycle. A subformula g 2 SF (f) is called a �-subformula (respectively, a �-subformula)if g is of the form �x(f) (respectively, �x(f)). We say that a cycle C in GK;f , is a �-cycle(respectively, �-cycle) if the longest subformula appearing in a node on C is �-subformula(respectively, �-subformula). A subformula that has no variables appearing in it will becalled a constant. A node (s; g) in GK;f is called a ^-node if the outer most connective of gis ^, i.e. g is of the form g1 ^ g2. A node (s; g) is called a _-node if g is of the form g1 _ g2or is of the form <R>g1. 5

Lemma 3.1 1. For any node (s; g) in GK;f , there is a path from (s; g) to a node on acycle i� g has at least one variable in it (i.e. g is not a constant).2. Let C be a cycle and (s; g) be a node on it such that g is the longest formula appearingin all the nodes on C. Then, g is a �-subformula or a �-subformula. In addition, allother subformulas appearing in some node on C themselves are subformulas of g.Now, we label the nodes of GK;f as follows. With each node u 2 V , we maintain avariable label(u) that denotes the label of the node u. Each of these variables takes one ofthe three values|true; false; NIL, and is initialized to the value NIL. During the executionof the algorithm, the values of these variables will be set to true or false. When once avariable is set to one of these two values, it will never be changed. Furthermore, for anynode u = (s; g), at the end of the execution of the algorithm, label(s; g) = true i� K; s j= g.At any time during the execution of the algorithm, if label(u) = NIL then we say thatnode u is unlabeled at that time. We say that a path is unlabeled if all the nodes on the pathare unlabeled. Let n be the length of the formula f . We execute the following algorithm onthe graph GK;f .1. For each node u 2 V , label(u) NIL.2. For each g 2 SF (f) in increasing lengths of g, and for each s 2 S, update label(s; g)as follows.� g = P :If P 2 L(s) then label(s; g) true else label(s; g) false.� g = :P :If P =2 L(s) then label(s; g) true else label(s; g) false.� g = g0 ^ g00 :If label(s; g0) = true and label(s; g00) = true then label(s; g) true;If label(s; g0) = false or label(s; g00) = false then label(s; g) false.In other cases, label(s; g) is unchanged (i.e. = NIL).� g = g0 _ g00 :If label(s; g0) = true or label(s; g00) = true then label(s; g) true;If label(s; g0) = false and label(s; g00) = false then label(s; g) false.In other cases, label(s; g) is unchanged.� g = <R>g0 :If 9s0 such that (s; s0) 2 R and label(s0; g0) = true then label(s; g) true;6

If 8s0 such that (s; s0) 2 R label(s0; g0) = false then label(s; g) false.In all other cases, label(s; g) is unchanged (= NIL).� None of the above: label(s; g) is unchanged.3. For each unlabeled node u 2 V , if u lies on an unlabeled �-cycle then label(u) true.4. For each unlabeled node u 2 V , if there exists an unlabeled path from u to a node vsatisfying condition (a) or (b) given below then label(u) true.(a) v is a ^-node and if the two edges leaving v are to the nodes w0 and w00 thenlabel(w0) = label(w00) = true.(b) v is not a ^-node and there exists an edge from v to some node w such thatlabel(w) = true.5. For each unlabeled node u, label(u) false.It is to be noted that after the execution of step 2 of the above algorithm, the followingconditions are satis�ed. For all nodes u in GK;f such that there is no path connecting uto a node on a cycle, label(u) 6= NIL. From this and lemma 3.1, it automatically followsthat, for each node (s; g) in GK;f where g is a constant, label(s; g) 6= NIL. Also, for everynode (s; g) such that label(s; g) = NIL, there is at least one successor node u such thatlabel(u) = NIL. In addition, if g = g0 ^ g00, then for one successor u, label(u) = true and forthe other successor v, label(v) = NIL.Theorem 3.1 After the execution of the above algorithm, for any node u = (s; g) in GK;fwhere g is a closed subformula, label(u) = true i� K; s j= g.In order to prove the above theorem, we need some lemmas. First, it is to be noted thatafter the execution of step 2 of the above algorithm, the following conditions are satis�ed.For each node (s; g) in GK;f where g is a constant, label(s; g) 6= NIL. For the case wheng is a constant, it should be easy to see that label(s; g) = true i� K; s j= g. Considerany node (s; g) such that label(s; g) 6= NIL. For any evaluation � over the free variablesof g, the following property holds: s 2 MK;g(�) i� label(s) = true. For any node (s; g)where g is a �-formula or a �-formula, label(s; g) = NIL. Also, for every node (s; g) whereg = g0 ^ g00, for one successor u of the node (s; g), label(u) = true and for the other successorv, label(v) = NIL.Now, we prove that step 3 of the above algorithm is sound. To do this, we need thefollowing lemmas.Lemma 3.2 Let u0; u1; :::; uk be a path in GK;f after execution of step 2 of the above algo-rithm where for each i = 0; 1; :::; k � 1, ui is a ^-node or a _-node. Also, let ui = (si; gi).Then, each gi is a subformula of g0, and for any evaluation � on the free-var(g0), ifsk 2 MK;gk(�0) where �0 is a restriction of � to free-var(gk), then s0 2 MK;g0(�).7

The above lemma can be proved by a simple induction on the length of g0.Lemma 3.3 Let u0; u1; :::; uk be an unlabeled path in GK;f after the execution of step 2 ofthe above algorithm satisfying the following conditions: for each i > 0, ui = (si; gi), gi is astrict subformula of g0 and gk 2free-var(g0). Then, for any evaluation � over free-var(g0), ifsk 2 �(gk) then s0 2 MK;g0(�).Proof Let d(g0) be the depth of nesting of the �xed point operators in g0. We prove thelemma by induction on d(g0). Note that if g0 has no �- or �-subformulas then d(g0) = 0.The base case for induction is when d(g0) = 0. In this case, g0 has only the propositionalconnectives and the lemma follows trivially (note that for any ^-node on the path, thesuccessor of the node which is not on the path is labeled true). To prove the inductive step,assume that the lemma holds for all cases when d(g0) � p. Now, consider the case whend(g0) = p+1. Let I be the set of all values of i such that 0 � i < k and gi is a �-subformulaor a �-subformula such that d(gi) = p + 1. If I is empty then there is no i such that gi isa �- or a �-subformula and d(gi) = p + 1. In this case, it is easily seen that the inductivehypothesis can be directly applied to prove the induction step. The other case is when Iis non-empty. In this case it should be easy to see that for any i; j 2 I, it has to be thecase that gi = gj. Let i0 < i1::: < iq be the set of all integers in I and h = gi0. Now, his of the form �y(h0) or is of the form �y(h0) where d(h0) = p. By applying the inductionhypothesis to the path segment between uiq and uk, we see that siq 2 MK;h0(�0) where �0is an extension of � such that �0(y) = ;. By repeatedly applying the induction hypothesisto each of the path segments between uij+1 and uij+1 and by using lemma 2.1, it is easy tosee that sij 2 MK;h(�) for j such that 0 � j < q. Also, for each j such that 0 � j < i0, itis the case that uj is an ^-node or _-node. Using this and the fact that si0 2 MK;h(�), weconclude from lemma 3.2 that s0 2 MK;g0(�).The following lemma shows that step 3 of the above algorithm is sound.Lemma 3.4 Let� u0; u1; :::; uk = u0 be an unlabeled �-cycle in GK;f after execution of step 2 of the abovealgorithm;� ui = (si; gi) for 0 � i < k, where g0 = �x(g0) is the longest subformula appearing inany node of the cycle;� S = fsi : 0 � i < k; gi = g0g.Then, for any evaluation � on the free-var(g0), S �MK;g0(�).Proof Let I be the set of all i such that 0 � i < k and gi = g0. Let 0 = i0 < i1 < ::: < ip beall the members of I. Let �0 be an extension of rho to free-var(g0) such that �0(x) = S. By8

applying lemma 3.4 to the path segment between uir+1 to uir+1�1, for each r = 0; :::; p� 1,we see that S �MK;g0(�0). Now, applying lemma 2.1, we see that S �MK;g0(�).In the full paper we will give the remainder of the proof of theorem 3.1.Complexity and ExpressivenessBelow, we discuss the complexity of the above algorithm. First, it is to be noted thatthe number of vertices in GK;f , i.e. jV j, is O(jSjjf j). The number of edges in GK;f , i.e.jEj = O(jRjjf j + jSjjf j). It is not di�cult to see that steps 1, 2, 4 and 5 can all beimplemented in time linear in (jV j+ jEj). Step 3 can be implemented using an algorithm ofcomplexity O(jf j(jV j+ jEj)). This algorithm works as follows:For each �-subformula g of f and in the increasing lengths of g, consider the restrictionof GK;f to unlabeled nodes of the form (s; g0) where g0 is a subformula of g. For each stronglyconnected component C of the restricted graph, �nd the type of the longest subformula inany node of C; if this formula is a �-formula then mark all the nodes of C as nodes lying ona �-cycle.In the full paper we will show that the above algorithm correctly identi�es all the nodesthat lie on unlabelled �-cycles. Each iteration of the above algorithm can be implementedusing an algorithm of complexity O(jV j+ jEj). Thus, the overall complexity of step 3 of themain algorithm is O(jf j(jV j+jEj)). This will also be the complexity of the overall algorithm.Substituting for jV j and jEj in terms of jSj and jRj, we see that the overall complexity ofthe above algorithm is O(jf j2(jSj+ jRj)).The above algorithm can be naturally be extended to the logic L2 with the same com-plexity. We will present this in the full paper. Thus, modelchecking for L2 can also be donein time O(jf j2(jSj+ jRj)).We compare the expressive power of the logics to well known branching time temporallogics. Consider the branching time temporal logic CTL*. Let the ECTL* denote theextended version of the logic CTL* where each path formula can be as expressive as !-regular expressions. The following theorem will be proved in the full paper.Theorem 3.2 � The logic L1 is as expressive as the fragment of ECTL* consisting offormulas of the form E(p) where E is the existential path quanti�er and p is a pathformula which has no further state formulas with path quanti�ers.� The logic L2 is as expressive as ECTL*.We can also use the following alternate approach for model-checking for formulas in L2.However, this approach will have complexity O(jf j3(jSj + jRj)) which is worse than thecomplexity of the above method. We brie
y describe this procedure. Theorem 3.2 showsthat for each formula f in L1 there exists a formula of the form E(p) in ECTL*, where pis a path formula, such that f is equivalent to E(p). In fact, from f , we can construct aStreett string automaton Af (see [11]) with the following property: f is satis�ed at a nodes0 in a Kripke structure i� there exists an in�nite path from s0 that is accepted by Af .The number of states in the automaton Af will be O(jf j) and the number of pairs in the9

accepting condition will be O(jf j). Now to check if the formula f is satis�ed at state s0 ofK, we simply consider K as a string automaton and construct the product automaton ofAf and K and check for non-emptiness of this product automaton. The size of the productautomaton ,which is a Streett automaton, will be O((jSj+jRj)jf j) and the number of pairs inthe accepting condition will be O(jf j). Checking non-emptiness for this product can be done(using the approach of [8]) and the complexity of the procedure will be O(jf j3(jSj+ jRj)).4 Modelchecking for Other FragmentsIn this section we consider other fragments of �-calculus and explore the relationship betweenmodelchecking for these logics and the checking for emptiness of tree automata.Speci�cally, let L3 be the set of all formulas of �-calculus which are of the form �y(g)where g is in normal form, i.e. all negations are applied to atomic propositions only, and� is the only �xed point operator that appears in g, i.e. the �xed point operator � doesnot appear in g. No further restrictions are placed on the formula g. Note that the modeloperators [R], <R> and the boolean connectives ^ and _ can all appear in the formula gwithout any restrictions.We will show in this section that the modelchecking problem for the logic L3 is equivalentunder linear reductions to the emptiness problem of Buchi automata on in�nite trees. Thisresult shows that there is an e�cient model-checking algorithm, i.e. an algorithm that isless than quadratic complexity, i� there an e�cient algorithm for checking non-emptiness ofBuchi automata on in�nite trees. It is to be noted that there is an algorithm for the laterproblem which has quadratic complexity in the size of the automaton (i.e. the number ofstates + the number of transitions). There is no known algorithm of better complexity forthis problem.A Buchi automaton A on in�nite binary tree is a 5-tuple (�; Q; q0; �; F) where � is theinput alphabet, Q is the set of automaton states, q0 is the initial states, � : (Q��)! 2Q�Qis the next move relation and F � Q is the set of �nal states. Note that, for any a 2 �and q 2 Q, �(q; a) is a set of pairs of the form (q0; q00) where q0 and q00 are automaton states;Intuitively, if the automaton is in state q and reads input a in the current node then the stateof the automaton on the left child is going to be q0 and its state on the right child is going tobe q00. We denote the in�nite binary tree by the set f0; 1g�. An input to the automaton isa marked in�nite binary tree which is a function � : f0; 1g� ! �. A run of r of A on input� is a function r : f0; 1g� ! Q, associating a state of the automaton with each node of thetree, such that r(�) = q0, and for any x 2 f0; 1g� (r(x0); r(x1)) 2 �(r(x); � (x)). The run r isaccepting if for every in�nite sequence � in f0; 1g�, there exists in�nite number of pre�xesof �, say �0; �1; ::: such that for each i � 0 r(�i) 2 F .Lemma 4.1 Given a kripke structure K = (S;R;L) and a formula f 2 L3 and a states0, we can obtain a Buchi automaton automaton A of size O((jSj + jRj)jf j) such that A10

accepts at least one input i� K; s0 j= f ; in addition, this automaton can be obtained in timeO((jSj+ jRj)jf j) .Proof We brie
y sketch the proof here. Let f = �y(g) be the given formula which is in L3and K be the given Kripke structure. First we construct the graph GK;f = (V;E) as given inthe previous section. Recall that each node in V is of the form (s; h) where s 2 S and h is asubformula of f . The edge set E is as de�ned in the previous section. For example, when his of the form [R]h0, then for each (s; s0) 2 R there is an edge from (s; h) to (s; h0) in E. Wecall a node (s; h) in V to be an ^-node if h is of the form h1 ^h2 or is of the form [R]h1; wecall it to be an atomic node if h is P or :P for some atomic proposition P ; all other nodesin V are called _-nodes. We make the following assumption. Any non-atomic node has atmost two successors, i.e. two edges leaving it in E. If this condition is not satis�ed, we canintroduce new intermediate nodes and edges so that this property is satis�ed; actually, foreach node u with k successors, if k > 2 then we introduce k � 2 additional new nodes andk� 2 additional edges. As a consequence, the size of GK;f = jV j+ jEj at most doubles. Thetype of a new node that is introduced in the previous step is same as that of u, i.e. it is a^-node if u is a ^-node, etc.The states set of the automaton A is simply V , the initial state is (s0; f), the inputalphabet has only one symbol, say symbol a. The transitions and �nal states of A arede�ned as follows. The set of �nal states F is exactly the set of all nodes (s; h) such thath = y, or h = P and P 2 L(s), or h = :P and P =2 L(s). For any node u = (s; h), �(u; a)consists of the following pairs: if h = P or h = :P then �(u; a) = f(u; u)g; if h is _-nodethen �(u; a) = f(v; v) : (u; v) 2 Eg; if h is a ^-node then �(u; a) = f(v; v0) : v and v0 arethe successors of ug. It can easily be shown that the automaton accepts at least one inputi� K; s0 j= f . It is also not di�cult to see that the size of the automaton which is the totalnumber of states plus the number of transitions is O((jSj+ jRj)jf j).Lemma 4.2 Given a Buchi automaton A over in�nite binary trees we can obtain a Kripkestructure K whose size is linear in the size of A and a formula f in L3 of constant size anda state s0 in K, such that A accepts at least one input i� K; s0 j= f .Proof First we assume that the alphabet of A is a singleton consisting of the symbola. We give the informal description of the Kripke structure K = (S;R;L). S has thefollowing elements. We call each element of S as a node and each element of R as an edge.Corresponding to each automaton state s, there is one node in S which is also denoted bys. Corresponding to each pair of states (s1; s2), such that (s1; s2) 2 �(s; a) for some states, S has a node which we denote by the pair (s1; s2). R has the following edges. For eachs; s1; s2 such that (s1; s2) 2 �(s; a), there is an edge from the node s to the node (s1; s2) andthere are edges from (s1; s2) to s1 and to s2. There are three atomic propositions denotedby E;A and F . The atomic proposition is E holds exactly in all nodes of the form s, i.e.single states. The atomic proposition A holds exactly in all those nodes that are of the form11

(s1; s2), i.e. in pairs of states. The atomic proposition F holds exactly in all nodes s wheres is a �nal state of the automaton A.Let s0 be the initial state of the automaton. Let f be the formula�y[E ^ <R>�x(F ^ y _ E ^ <R>x _ A ^ [R]x)].It can be shown that K; s0 j= f i� A accepts at least one input.It is easy to see that the size of K is linear in the size of A.References[1] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill and J. Hwang, SymbolicModelchecking 1020 states and beyond, Proceddings of 5th Annual Symposiumon Logic in Computer Science, June 1990.[2] E. M. Clarke, E. A. Emerson, and A. P. Sistla, Automatic Veri�cation of �nite-state Concurrent Systems Using Temporal Logic Speci�cations, ACM Transac-tions on Programming Languages and Systems, 8(2):244-263, 1986.[3] R. Cleaveland, Tableu-based modelchecking in the propositional �-calculus , ActaInformatica, 27:725-747, 1990.[4] R. Cleaveland, B. Ste�en, A linear-time model-checking for alternation free modal�-calculus , Proceedings of the 3rd workshop on Computer Aided Veri�cation,Aalborg, LNCS, Springer-Verlag, July 1991.[5] R. Cleaveland, B. Ste�en, Faster model-checking for modal �-calculus , Proceed-ings of the 4th workshop on Computer Aided Veri�cation, Montreal, July 1991.[6] E. A. Emerson, E. M. Clarke, Fixed point characterization properties of parallelprograms, Proceedings of the International Conference on Automata, Languagesand Programming, 1980.[7] E. A. Emerson and C. Leis, E�cient model-checking in fragments of �-calculus, Proceedings of Symposium on Logic in Computer Science, 1986.[8] E. A. Emerson and C. Leis, Modalities for Model Checking, Science of ComputerProgramming, 1987.[9] D. Kozen, Results on propositional �-calculus, Theoretical Computer Science, 27,1983.[10] C. Stirling, D. Walker, Local model-checking in modal �-calculus, Proceedings ofTAPSOFT, 1989. 12

[11] R. S. Streett and E. A. Emerson, An automata theoretic decision procedure forPropositional �-calculus , Proceedings of the International Conference on Au-tomata, Languages and Programming, 1984.[12] M. Vardi and P. Wolper, Yet Another Process Logic, Proceedings of the workshopon Logics of Programs, Pittsburgh, 1983, also appeared in Lecture Notes inComputer Science.

13

