Formal Model and Verification

Exercise 5: Finite state machines

** In the following, we assume finite-state models are non-halting and do not have a final state. Please draw the finite-state models with our model editor in REDLIB Sourceforge webpage.

1. Please draw a finite-state model for the following vending machine M that accepts nickels, dimes, and quarters. M accepts changes until 35 cents has been put in. It gives changes back for any amount greater than 35 cents. Then the customer can push buttons to receive a cola, a root beer, or a ginger ale.
2. Please draw a finite-state model M that reads in an infinite bit string from the least significant bit. M outputs 1 if the bit string read in so far is divisible by 3 ; and 0 otherwise.
3. Please answer the meaning of the following expressions in the state of $s:(a=3, b=10, c=5)$
a. $\left\langle a+3^{*} b^{*} c, s\right\rangle=$
b. $\left\langle a+3^{*} b==c, s\right\rangle=$
c. $\left.\left\langle a+b^{*} b\right\rangle c, s\right\rangle=$
d. $\left\langle\left(a+b^{*} b>c\right) ? a+b: b+c, s\right\rangle=$
e. $\left\langle\left(a+b^{*} b>c\right) ?((a<=c+b) ? a+b: 9): b+c, s\right\rangle=$
4. Please construct expressions that match the meaning in s in the following interpretation.
a. $\langle\neg \quad, s\rangle=$ false
b. $\langle\quad \neq \quad$, $\rangle=$ true
c. $\langle\quad \wedge \quad, \mathrm{s}\rangle=$ true
d. $\langle\quad \vee \quad, s\rangle=$ false
e. $\langle\quad \leq \quad, s\rangle=$ false
f. $\langle\quad>\quad, s\rangle=$ false
g. $\langle\quad \wedge \neg \quad, \mathrm{s}\rangle=$ true
h. $\langle\quad \neq \wedge \neg \quad, s\rangle=$ true
i. $\langle\quad \rightarrow \quad, \mathrm{s}\rangle=$ false
j. $\langle\quad \vee \neg \quad, s\rangle=$ true
k. $\langle\quad \rightarrow \neg \quad, \mathrm{s}\rangle=$ true
5. Please answer the meaning of the following commands in the state of $s:(a=3, b=10, c=5)$
a. $\langle\mathrm{a}=\mathrm{a}+\mathrm{b} ;, \mathrm{s}\rangle=$
b. $\left\langle b=a+3^{*} b ; a=c ; c=3^{*} c, s\right\rangle=$
c. $\left\langle i f\left(a+b^{*} b>c\right) a=(a<3) ? b: c\right.$; else $\left.b=b+c ;, s\right\rangle=$
d. $\left\langle\right.$ while $\left.\left(a+b^{*} b>c\right) a=a-c, s\right\rangle=$
e. \langle while $(a+b * b=>c)\{a=a-b ; b=b-c ;\}, s\rangle=$
