## Project 1

# Using REDLIB to solve the cannibals \& missioneries game. 

Farn Wang

Fall 2008

## Project 1: <br> Cannibals \& Missioneries (1/6)

3 cannibals and 3 missioneries at a bank.
They want to cross the river.

- Only 1 boat.
- At most 2 persons in the boat at at time.
- At a bank, if there are more cannibals than missioneries, the cannibals will eat the missioneries.
- Please help the cannibals and the missioneries cross the riyer safely.



## Project 1: <br> Cannibals \& Missioneries (2/6)

LEMMA: If there is a solution sequence, then the sequence is no longer than $4 \times 4=16$.
Proof: At any step, there can be $0,1,2,3$ missioneries and $0,1,2,3$ cannibals at the starting bank.

## Project 1:

## Cannibals \& Missioneries (3/6)

Representing a solution sequence with logics. atomic propositions of the form $\mathrm{s}(\mathrm{i}, \mathrm{j}, \mathrm{k})$

- $i \in\{0,1,2,3\}$
- $\mathrm{j} \in\{0,1,2,3\}$
- $k \in\{1,2, \ldots, 16\}$
$\mathrm{s}(\mathrm{i}, \mathrm{j}, \mathrm{k})$ : at step k , there are i missioneries and $j$ cannibals at the starting bank.




## Project 1: <br> Cannibals \& Missioneries (5/6)

What is the relation between two steps ?

$$
s(i, j, k) \rightarrow\left(\begin{array}{c}
s(i-1, j, k+1) \vee s(i, j-1, k+1) \\
\vee s(i-1, j-1, k+1) \vee s(i+1, j+1, k+1) \\
\vee s(i-2, j, k+1) \vee s(i, j-2, k+1) \\
\vee s(i+2, j, k+1) \vee s(i, j+2, k+1)
\end{array}\right)
$$




## Project 1: <br> Cannibals \& Missioneries (6/6)

- What is the initial step ? $s(3,3,1)$
- What is the mutual exclusion of different steps ? $\forall \mathrm{i}, \forall \mathrm{j}, \forall \mathrm{k},\left(\mathrm{s}(\mathrm{i}, \mathrm{j}, \mathrm{k}) \rightarrow \forall \mathrm{i}^{\prime}, \forall \mathrm{j}^{\prime},\left(\mathrm{s}\left(\mathrm{i}^{\prime}, \mathrm{j}^{\prime}, \mathrm{k}\right) \rightarrow\left(\mathrm{i}=\mathrm{i}^{\prime} \wedge \mathrm{j}=\mathrm{j}^{\prime}\right)\right)\right)$
- What is a solution?
$\exists \mathrm{k}, \mathrm{s}(0,0, k)$, or we can write $s(0,0,1) \vee \ldots \vee s(0,0,16)$



## Project 1 assignment

Please use REDLIB at

## http://sourceforge.net/projects/redlib

to construct a program that does the following.

- The program accepts an input natural number $n$.
- The program answer if there is a step sequence to move $n$ missioneries and $n$ cannibals crossing the river safely.
- If there is, the program also out the step sequence.

