Formal Methods \& Verification
 Final Exam

Instructor: Farn Wang
Class hours: 9:10-12:00 Tuesday
Course Nr. 921 U7600
Room: BL 103
Spring 2008
Student name:
Student ID:

1. Please construct a tree that can tell an LTL formula $\square(p \Rightarrow \diamond q)$ from another $(\square p) \Rightarrow \diamond q$. If you think there is no such a tree (or a Kripke structure that rolls out to a tree), please prove that there is no such a tree. (10/10)

2. Please construct a tree that can tell a CTL formula $\forall \square(p \Rightarrow \exists \diamond q)$ from another $\forall \square(p \Rightarrow \forall \diamond q)$. If you think there is no such a tree (or a Kripke structure that rolls out to a tree), please prove that there is no such a tree. (10/20)

3. Please construct a tree (or a Kripke structure that rolls out to a tree) that can tell $\forall \square(p \Rightarrow \forall \diamond q)$ from $\forall \square(p \Rightarrow \diamond q)$. If you think there is no such a tree, please prove that there is no such a tree. (10/30)

Proof:

We want to prove that no such a tree exists.
We first assume that there is a tree that does not satisfy $\forall \square(p \Rightarrow \diamond q)$. This implies that in the tree, there is a path ρ in the tree such that the head of ρ satisfies p while no states in ρ satisfy q. It is easy to see that that the head of ρ does not satisfy $\forall \diamond$ q. This implies that the tree does not satisfy $\forall \square(p \Rightarrow \forall \diamond q)$.

We then assume that there is a tree that does not satisfy $\forall \square(p \Rightarrow \forall \diamond q)$. This implies that there is a state v in the tree such that v satisfies p but does not satisfy $\forall \diamond$ q. This again implies that there is a path ρ from v such that all states in ρ do not satisfy q. Then we also know that ρ does not satisfy $p \Rightarrow \diamond q$ either. This again implies the path of the concatenation of the following two segments - the finite path from the root of the tree to v and

- ρ
does not satisfy $\square(p \Rightarrow \diamond q)$. This implies that the tree does not satisfy $\forall \square(p \Rightarrow \diamond q)$.

Thus there is no such a tree that can tell $\forall \square(p \Rightarrow \forall \diamond$) from $\forall \square(p \Rightarrow \diamond q)$. Q.E.D.
4. Consider the tableau for an LTL formula $\mathrm{p} U \square \mathrm{q}$. Please identify a structure in the tableau that proves the satisfiability of the formula. (10/40)

$$
\text { closure }(\mathrm{pU} \square \mathrm{q})=\{\mathrm{pU} \square \mathrm{q}, \mathrm{p}, \square \mathrm{q}, \mathrm{OpU} \square \mathrm{q}, \mathrm{O} \square \mathrm{q}, \mathrm{q}\}
$$

Some structures that can be used as the answer.

5. Please do labeling algorithm of CTL formula $\forall \square(p \Rightarrow \forall \diamond q)$ on the following automata. (The formula is already the negation of the specification.) (10/50)

Conversion to normal form: $\neg \exists \diamond$ ($\mathrm{p} \wedge \exists \square \neg q)$
Closure $(\neg \exists \diamond(p \wedge \exists \square \neg q))=\{\neg \exists \diamond(p \wedge \exists \square \neg q), \exists \diamond(p \wedge \exists \square \neg q)$, $\exists \mathrm{O} ß>(\mathrm{p} \wedge \exists \square \neg \mathrm{q}), \mathrm{p} \wedge \exists \square \neg \mathrm{q}, \mathrm{p}, \exists \square \neg \mathrm{q}, \exists \mathrm{O} \square \square \mathrm{q}, \neg \mathrm{q}, ~ \neg \mathrm{p}, \mathrm{q}\}$

6. Please draw a communicating timed automata (CTA) with the following properties. (10/60)
(a) There are two timed automatas, a reader and a writer, in this CTA that communicate with an event $\mathbf{m s g}$.
(b) The writer sends out an event $\mathbf{~ m s g}$ in every 30 to 50 time units.
(c) The reader receives an event $\mathbf{m s g}$ in every 20 to 40 time units.
(d) If at a moment, the reader wants to receive an event $\mathbf{m s g}$ but the writer is not ready to correspond, then the reader must enter a failure mode and stop the whole CTA.

The reader:

The writer:

7．Please write down TCTL formulas for the following specifications．
（You cannot use atomic propositions that can only be checked with computation path exploration．）（10／70）
（a）If you are swimming and see two piranhas（食人魚），then either you or one of the piranhas will be in heaven in 30 seconds．
$\forall \square(($ Swimming \wedge Piranha1 \wedge Piranhal） $\Rightarrow \forall \diamond \leq 30$（in＿heaven
\checkmark Piranha1＿in＿heaven
v Piranha2＿in＿heaven））
（b）When you are in heaven，if you are bored inevitably，you cannot move to the hell sometimes．
$\forall \square(($ in＿heaven $\wedge \forall \diamond$ bored $) \Rightarrow \neg \exists \diamond$ to＿hell）
8. We have the following timed automata with one transition (p,q).

Now we have a state space in location q characterized with the following condition.

$$
\eta \equiv q \wedge 6<x<14 \wedge x-y \leq 8
$$

Please write down the precondition of η through (p, q). Note that the precondition that you construct can only use variable names $\mathbf{x}, \mathbf{y}, \mathbf{p}, \mathbf{q}$, inequalities, integer constants, and Boolean operators (\wedge, \vee, \neg). $(15 / 85)$
$p \wedge 3<x<10 \wedge 4 \leq y \leq 9 \wedge y \leq 5 \wedge \exists y \exists q(y=0 \wedge q \wedge 6<x<14 \wedge x-y \leq 8)$
$\equiv p \wedge 3<x<10 \wedge 4 \leq y \leq 9 \wedge y \leq 5 \wedge \exists y(y=0 \wedge 6<x<14 \wedge x-y \leq 8)$
$\equiv p \wedge 3<x<10 \wedge 4 \leq y \leq 5 \wedge \exists y(y=0 \wedge 6<x<14 \wedge x-y \leq 8 \wedge x \leq 8)$
$\equiv p \wedge 3<x<10 \wedge 4 \leq y \leq 5 \wedge \exists y(y=0 \wedge 6<x<14 \wedge x-y \leq 8 \wedge x \leq 8)$
$\equiv p \wedge 3<x<10 \wedge 4 \leq y \leq 5 \wedge \exists y(y=0 \wedge 6<x \leq 8 \wedge x-y \leq 8)$
$\equiv p \wedge 3<x<10 \wedge 4 \leq y \leq 5 \wedge 6<x \leq 8$
$\equiv p \wedge 6<x \leq 8 \wedge 4 \leq y \leq 5$
9. We have the following timed automata with only one control location (or mode):

Now we have a state space in this mode p characterized with the following condition.

$$
\eta \equiv 3<x \leq 20 \wedge 4 \leq y \leq 19
$$

Please construct of the precondition of time progress of η in this mode p. Note that the precondition that you construct can only use variable names \mathbf{x}, \mathbf{y}, p, q, inequalities, integer constants, and Boolean operators $(\wedge, \vee, \neg) .(14 / 99)$

$$
\begin{aligned}
& p \wedge 3<x \leq 20 \wedge y>2 \wedge \exists t((t \geq 0 \wedge p \wedge 3<x+t \leq 20 \wedge 4 \leq y+t \leq 19) \\
& \equiv p \wedge 3<x \leq 20 \wedge y>2 \\
& \quad \wedge \exists t(t \geq 0 \wedge p \wedge 3<x+t \leq 20 \wedge 4 \leq y+t \leq 19 \\
& \quad \wedge x \leq 20 \wedge y \leq 19 \wedge x-y \leq 16 \wedge y-x<16) \\
& \equiv p \wedge 3<x \leq 20 \wedge y>2 \wedge x \leq 20 \wedge y \leq 19 \wedge x-y \leq 16 \wedge y-x<16 \\
& \equiv p \wedge 3<x \leq 20 \wedge 2<y \leq 19 \wedge x-y \leq 16 \wedge y-x<16
\end{aligned}
$$

10. Please tell me what you think of the course. What is your opinion of the course ? What is your suggestions to the teacher ? $(1 / 100)$
