
1

1

State Machines

Formal Methods

Lecture 3

Farn Wang

Dept. of Electrical Engineering

National Taiwan University

2

Purpose

Understanding

 the formal semantics of programs

 the definition of state transition systems

 Problems of finite-state system analysis

 Algorithms for the problems

2

3

Organization

 Sequential Program – Operational Semantics

 Kripke Structures

 Concurrent Systems

 Verification problems of state-transition

systems

4

State-space representations from programs

- States, transitions

 Program Variables

 Program Counter (pc), data variables, …

 Program State

 Valuation of program variables

 Transition

 Moving one state to another by executing a

program statement.

3

5

Kripke structure from programs

- operational Semantics

 Operational Semantics clarifies the execution

of a program.

 Closes the gap between the text of a program

and the behaviors represented by it.

 Let us look only at sequential programs for

the moment.

6

IMP : a toy imperative language

 IMP is an imperative language in the style of

PASCAL or C (even though some of the

syntax may be different)

 The language contains arithmetic and

boolean expressions as well as if-then-else,

while statements.

 The syntax of the program will be described

by BNF grammars.

4

7

IMP : a toy imperative language

 During execution of IMP program, the state of

execution will be captured by the values of

program variables.

 Operational semantics will be described by

rules which specify how

 Expressions in IMP pgm. are evaluated

 Statements in IMP pgm. change the state

8

BNF, syntax definitions

Note!

Be sure how to read BNF !

 used for define syntax of context-free language

 important for the definition of
 automata predicates and

 temporal logics

 Used throughout the lectures!

 In exam: violate the syntax rules  no credit.

A ::= c | x | (M) | A1+A2 | A1–A2

M ::= c | x | (A) | M1*M2 | M1/M2

c is an integer

x is a variable name.

5

9

BNF, syntax definitions

- Examples of context-sentivity

Session I:

 A: Are you married ?

 B: No!

 A: Do you have children ?

 B: 

Session 2:

 A: Do you have children ?

 B: Yes!

 A: Are you married ?

 B: 

Session 3:

 A: Are you married ?

 B: Yes!

 A: Do you have children ?

 B: 

Session 4:

 A: Do you have children ?

 B: No!

 A: Are you married ?

 B: 

Rude contextual interpretation: Are you a single parent ?

Rude contextual interpretation: Are you a single parent ?

10

BNF, syntax definitions

A ::= c | x | (M) | A1+A2 | A1–A2

M ::= c | x | (A) | M1*M2 | M1/M2

c is an integer

x is a variable name.
A

+

M

*

A

-

A

()

AA

MM

3 x

y 3

(3*x)+y-3

6

11

BNF, syntax definitions

- derivation trees (from top down)

A ::= c | x | (M) | A1+A2 | A1–A2

M ::= c | x | (A) | M1*M2 | M1/M2

c is an integer

x is a variable name.

used in string

generation.

A

+

M

*

A

-

A

()

AA

MM

3 x

y 3

(3*x)+y-3

12

BNF, syntax definitions

- parsing trees (from bottom up)

A ::= c | x | (M) | A1+A2 | A1–A2

M ::= c | x | (A) | M1*M2 | M1/M2

c is an integer

x is a variable name.

used in compiler.

A

+

M

*

A

-

A

()

AA

MM

3 x

y 3

(3*x)+y-3

7

13

BNF, another syntax definition

A ::= c | x | L M R | A1 P A2

M ::= c | x | L A R | M1 K M2

L ::= „(‟

R ::= „)‟

P ::= „+‟ | „-‟

K ::= „*‟ | „/‟

A

M

AA

AA

MM

3 x

y 3

(3*x)+y-3
*

)
(

c is an integer

x is a variable name.

+

-

14

Syntax of IMP

 Non-negative integers N

 Truth values T = {true, false}

 Variables V

 Arithmetic expressions A

 Boolean expressions B

 Statements/commands C

8

15

Syntax of expression

Arithmetic expressions

A ::= c | x | A1A2 | (A) | (B)?A1:A2

c , x is a variable.

  {+,-,*,/,%}

Boolean expressions

B::= true | A1  A2 | ~B1 | B1||B2 | (B1)

  {<=,<,==,!=,>,>=}

false  ~ true, B1=>B2  (~ B1)||B2,

B1&&B2  ~((~B1)||~B2)

16

Expressions

- examples

 x + 2*y < 3

 x*y + y*y*3 == z

 x

 x + 2y < 3 || x*y + y*y*3 =< z

 (x + 2*y < 3 || ~x*y + y*y*3 == z)&&flag

Please construct the parsing trees.

9

17

Syntax of Commands C

C ::= ;

| x=A;

| { C1 }

| C1C2

| if (B) C1 else C2

| while (B) C1

18

IMP

- statement example

w = 0;

x = 0;

y = z*z;

while (x < y) {

w = w + x*z;

x = x + 1;

}

if (w > z*z*z) w = z*z*z;

Please construct the parsing tree.

10

19

Execution model

 Operational semantics of IMP describes how

programs in that language are executed.

 To describe this, it needs to assume an

underlying execution model.

 The execution model could be thought as a

state machine although not necessarily a

finite state machine.

20

Operational Semantics

Operational Semantics for the IMP language

will give rules to describe the following:

Give a state s

 How to evaluate arithmetic expressions

 How to evaluate Boolean expressions

 How the commands can alter s to a new state

s’

11

21

States

A state is a valuation of program variables i.e.

each variable is mapped to a value in its type

 Thus, if {a,b} are the only variables in an IMP

program, then each of the following are

states in the execution model

 a=0, b=0

 a=0, b=1

 a=0, b=2

 …

 a=1, b=0

 …

22

Meaning of Arith. Expressions (1)

A,s

 Numbers:c,s= c

Number c in any state s evaluates to c

E.g. 0,s= 0, 5,s= 5

 Variables: x,s= s(x) X,ss(X)

Variable X in state s evaluates to value of x in

s.

E.g. a,(a =5,b=20)= 5, b,(a =5, b=20)= 20

12

23

Meaning of Arith. Expressions (2)

A,s

 Sums: a + b, s= a, s + b, s

e.g. a + b, (a =5,b=20) = 25

 Products: a * b, s= a, s * b, s

e.g. a * b, (a =5,b=20) = 100

24

Example arith. expr. evaluation

Evaluating meaning of a complicated arithmetic

expression will require

 Several application of the above rules

 Operator precedence

EX: a * b+b, (a =5,b=20) 

= a * b, (a =5,b=20)  + b, (a =5,b=20) 

= a, (a =5,b=20)  * b, (a =5,b=20)  + 20

= 5 * 20 + 20 = 120

13

25

Meaning of Boolean Expression (1)

B, s 

 true, s  = true

 false, s  = false

 Inequality Check:

 A1  A2, s  =  A1, s A2, s 

 Negation:

 ~B, s  = ~ B, s 

 Disjunction:

 B1 || B2, s  =  B1, s ||B2, s 

26

Workout

State s:(a=5, b=6)

 a=b, s  a, s=b, s  5=6  false

 ~a=b, s= ~a=b, s= true

 a<=b, s  a, s<=b, s  5<=6  true

 a<=b && a=b, s

= a<=b, s && a=b, s

= true && false

= false

14

27

Meaning of Expressions

 Expressions evaluate to values in a given

state

 Therefore, the meaning of expressions are

given by values.

 Boolean values for boolean expressions

 Number for arithmetic expressions

 Using the meaning of expressions, we can

assign meaning to commands.

28

Workout

State s:(a=3, b=10, c=5)

1. a+3*b*c,s=

2. a+3*b=c,s=

3.  ,s= false

4.   ,s= true

5.   ,s= true

6.   ,s= false

7.   ,s= false

8.  > ,s= false

9.   ,s= true

10.    ,s= true

11.   ,s = false

12.   ,s= true

13.   ,s= true

15

29

Meaning of Commands

 Execution of commands leads to a change of

program state.

 Therefore the meaning of a command C is : If

C is executed in some state s, how does it

change s to s‟.

C, s = s‟

30

Rules for commands (1)

C, s

 ;, s = s

 x=A;, s = s[x=A]

 s[x=A] is the same as state s except that the

value of x is A, s .

 Ex: (a=5,b=20,c=2)[a=7] = (a=7,b=20,c=2)

 Ex: (a=5,b=20,c=2)[a=5] = (a=5,b=20,c=2)

 Ex: (a=5,b=20,c=2)[a=b+c] = (a=22,b=20,c=2)

 { C1 } , s = C1, s

16

31

Rules for commands (1)

C, s

  C1C2, s =  C2,  C1, s 

  if (B) C1 else C2 , s =  C1, s if B, s = true

 if (B) C1 else C2 , s =  C2, s if B, s = false

 while(B)C1, s = s if B,s = false

while(B)C1, s = while(B)C1, C1,s if B,s = true

32

Summary of rules

 The meaning of each commands specifies

how an execution of the command changes

state.

 Roughly speaking, this is done by simulating

the execution of the commands.

 For example, the rule for while essentially

unfolds the iterations of while loop.

17

33

Kripke Structure

 A state-transition system that captures

 What is true of a state

 What can be viewed as an atomic move

 The succession of states

 Static representation that can be unrolled to a

tree of execution traces, on which temporal

properties are verified

34

Kripke structure

Saul Kripke

Born in 1940

Professor, Princeton University

Distinguished Professor, CUNY

 Kripke semantics

 Naming & Necessity in the philosophy of languages

 Interpretation fo the philosophy of Wittgenstein

 Theory of truth

• wrote his first essay on

Kripke structure at 16

• taught a graduate logic

course at MIT since

sophomore year at Harvard.

• invited to teach at Princeton

I’m honored by your

proposal, by my

mum says I have to

finish high-school

first.

18

35

Kripke structure

- syntax

A = (S, S0, R, L)

 S

 a set of all states of the system

 S0  S

 a set of initial states

 R  SS

 a transition relation between states

 L : S  2P

 a function that associates each state with set of

propositions true in that state

• L allows us to

describe the

truth/falsehood of a

proposition in the

various states of a

system.

• The propositions

refer to valuations of

the state variables.

To extend to integer

programs,
L:SP

36

Kripke Model

- syntax

 Set of states S={q1,q2,q3}

 Set of initial states S0={q1}

 R ={(q1,q2),(q2,q2),

(q1,q3),(q3, q1),

(q3,q2)}

 Set of atomic propositions AP={a,b}

 L(q1)={a}, L(q2)={a,b}, L(q3)={b}

q3

a

a,b b

q1

q2

19

37

Kripke structure

- semantics

Given a Kripke structure A = (S, S0, R, L),

a run is a finite or infinite sequence

s0s1s2 … sk …

such that

 s0 S0

 for each k, if sk+1exists,

 sk+1S and

 R(sk, sk+1) is true.

38

Control and data variables

 State = valuation of control and data vars.

 In our example

 pc0, pc1 are control variables.

 turn is a shared data variable.

 To generate a finite state transition system

 Data variables must have finite types, and

 Finitely many control locations

20

39

Program  Kripke structure

- Data variables

Data variables often do not have finite types

 integer, …

 Usually abstracted into a finite type.

 An integer variable can be abstracted to {-

,0,+}

 Just store the information about the sign of

the variable. (coming up with these

abstractions is a whole new problem).

40

Program  Kripke structure

- Control Locations

Isn’t the control locations of a program always

finite ?

 NO, because your program may be a

concurrent program with unboundedly many

processes or threads (parameterized system).

 Can employ control abstractions (such as

symmetry reduction)

21

2009/10/28 stopped here.

41

42

Program  Kripke structure

- States and Transitions

 Each component makes a move at every

step.

 Digital circuits are most often synchronous.

 Common clock driving the system.

 Contents of flip-flops define the states.

 On every clock pulse, the content of every flip-flop

(potentially) changes.

 This change is captured by the transition

relation.

22

43

Program  Kripke structure

- States and Transitions

 Define V={v1,…,vn}, boolean variables

representing state of flip-flops in the circuit.

 Set of states represented by boolean formula

over v1,…,vn.

 To define transitions, define a fresh set of

variables V‟={v‟1,…,v‟n} . These are the next

state variables.

 The transitions are now represented by a

relation R(V,V‟)VV‟

44

Kripke structure

- Transition Relation

 (s,s‟)∈R(V,V‟) implies s  s‟

 Now, R(V,V‟)=i∈{1,…,n} Ri(V,V‟), where

captures the changes in state variable vi

 Define Ri(V,V‟) =(v‟ifi(V)) where fi(V) is a

boolean function defining the value of flip-flop

i in next state.

 Given a synchronous circuit, we then need to

define fi(V) for each i.

23

45

Transition relation

- A synchronous mod 8 counter

 V={v2,v1,v0}, where v0 is the least significant
bit.

 The transitions can be enumerated as:

000001010……

 Alternatively define how each of the three bits
are changed on every clock cycle

 v‟0 = v0 (the least significant bit)

 v‟1=v0v1

 v‟2=(v0v1)v2 (the most significant bit)

46

Kripke Structure

- example

Suppose there is a program

initially x==1 && y==1;

while (true)

x = (x+y) % 2;

where x and y range over D={0,1}

24

47

Kripke Structure

- example

Suppose there is a program

initially x==1 && y==1;

while (true)

x = (x+y) % 2;

where x and y range over D={0,1}

1,1 0,1

0,0

1,0

48

Kripke Structure

- example

Suppose there is a program

initially x==1 && y==1;

while (true)

x = (x+y) % 2;

where x and y range over D={0,1}

S=DxD ={(0,0),(0,1),(1,0),(1,1)}

S0={(1,1)}

R={((1,1),(0,1)),((0,1),(1,1)),

((1,0),(1,0)),((0,0),(0,0))}

L((1,1))={x=1,y=1},

L((0,1))={x=0,y=1},

L((1,0))={x=1,y=0},

L((0,0))={x=0,y=0}

25

49

Kripke Structure

- example

Suppose there is a program

initially x==1 && y==1;

while (true)

x = (x+y) % 2;

where x and y range over D={0,1}

S=DxD ={a,b,c,d}

S0={a}

R={(a,b),(b,a),

(c,c),(d,d)}

L(a)={x=1,y=1},

L(b)={x=0,y=1},

L(c)={x=1,y=0},

L(d)={x=0,y=0}

50

Workout

- Kripke Structure

Suppose there is a program

initially x==1 && y==1;

while (true)

x = (x+y) % 3;

where x and y range over D=[0,2]

26

51

Kripke Structure

- an example

Initially x=0

While (true)

x:=1-x;

X=0 X=1

52

Kripke Structure

- example

A 2-bit counter operates at bit-level.

00 11

1001

b1, b0

27

53

Kripke Structure

- workout

Write a simple program for the Kripke

structures in the last page.

55

Automata & Kripke structure

time set

run dummy

freezechr

a

a

a

b

b

b
b

not b

a

b

ROLEKS

28

State-transition graphs

- an extension of automata

for complex models

56

a2

a3

a4

a8

a5 a6

a1 (true)w = 0;

(true)w = w+x*z;

(true)y = z*z;

(true)if(w>z*z*z)w = z*z*z;

(true)x = 0;

(true)x= x+1;

a0

(x<y);
(x>=y);

State-transition graphs

57

a2

a3

a4

a8

a5 a6

a1

w = 0;

w = w+x*z;

y = z*z;

if(w>z*z*z)w = z*z*z;

x = 0;

x= x+1;

a0

x<y
x>=y

True guards

are omitted

Null actions

are omitted

29

58

State transition graphs

- from a program

(1) f(n) {

(2) x =1;

(3) while (n > 0) {

(4) x = x*2; n=n-1;

(5) }

(6) return x;

(7) }

(1)

(2)

(3)

(4)

(6)

x=1;

x=2*x;n=n-1;

n<=0

n>0

Atomic

Atomic

59

State-transition graphs

- from a procedure call example

(1) f(n) {

(2) x =1;

(3) while n > 0, do {

(4) x = x*2; n=n-1;

(5) }

(6) return x;

(7) }

(8) main (c,d) {

(9) c = f(c+d);

(10) if (c > 10)

(11) print “yes”.

(12) else print “no”.

(13) }

(8)

(12)

(9)

(10)

(11)

n=c+d;

c=x;

c>10

c<=10

(13)

!yes

!no

x=1;

(1)

(2)

(3)

(4)

(6)

x=2*x;

n=n-1;

n<=0

n>0

Output

event

30

60

Guarded commands with modes (GCM)

Process count declaration

Variable declaration

Inline expression declaration (optional)

Mode declaration

Initial condition

Specification (optional)

 A text language for state-transition graphs

 For multi-thread systems

 Extension with programming concepts

61

Guarded commands with modes (GCM)

- a language for state-transition graphs

V is a variable declaration.

E is an arithmetic expression.

B is a Boolean condition.

C is a program of IMP commands or “goto name”

where name is a mode name.

Each rule R is executed atomically.

 for the modeling of complex behaviors in transitions.

A program can be a set of GCM.

 At any moment, at most one command is executed.

31

62

Guarded commands with modes (GCM)

- a language for state-transition graphs

G ::= P VS [ILS] MS INI [SP]

P ::= process count = E;

VS ::= | V VS

V ::= SCOPE TYPE x [: c .. c]; // c  N, x a variable

SCOPE ::= global | local

TYPE ::= discrete | pointer | clock | dense

| synchronizer

Threads are

indexed 1

through c.

63

Guarded commands with modes (GCM)

- a language for state-transition graphs

IL ::= inline TYPE name (FSL) { EI }

FSL ::= | FS

FS ::= f | f , FS // f : a formal argument

EI ::= f | x | x[c] // x : a declared discrete variable

| (EI) | EI+EI | EI-EI | EI*EI | EI/EI | EI%EI

| (BI) ? EI : EI | #PS | P

| name (EISS)

EISS ::= | EIS

EIS ::= EI | EI , EIS

32

64

Guarded commands with modes (GCM)

- a language for state-transition graphs

BI ::= (BI) | EI<=EI | EI<EI | EI>=EI | EI>EI

| EI==EI | EI!=EI

| BI && BI | BI || BI | ~BI | BI => BI

| forall x : c .. c, BI | exists x : c .. c, BI

| name (EISS)

65

Guarded commands with modes (GCM)

- a language for state-transition graphs

MS ::= | M MS

M ::= [urgent] mode name (B) { RS }

B ::= (B) | E<=E | E<E | E>=E | E>E | E==E | E!=E

| B && B | B || B | ~B | B=>B E | name (ESS)

| forall x : c .. c, B | exists x : c .. c, B

E ::= x | x[c] // x : a declared discrete variable

| (E) | E+E | E-E | E*E | E/E | E%E

| (B)?E : E | name (ESS)

ESS ::= | ES

ES ::= E | E , ES

33

66

Guarded commands with modes (GCM)

- a language for state-transition graphs

RS ::= | R RS

R ::= when SS (B) may C

SS ::= | S SS

S ::= ?x | ?(E)x | !x | !(E)x // x is a global synchronizer

| ?x@q | ?x@(E) | !x@q | !x@(E)

C ::= ACT | {C} | C C | if (B) C else C | while (B) C

ACT ::= ; | goto name; | x = E ;

67

Guarded commands with modes (GCM)

- a language for state-transition graphs

INI ::= initially B;

SP ::= RTASK B; | tctl T; | GTASK GS ; GS ;

RTASK ::= safety | goal | risk

T ::= B | (T) | forall always K T | exists always K T

| forall eventually K T | exists eventually K T

| forall T until K T | exists T until K T

| forall x : c .. c, T | exists x : c .. c, T

K ::= {[c , c]} | {(c , c]} | {[c , D)} | {(c , D)}

D ::= c | oo

model

threads

spec

threads

34

68

Guarded commands with modes (GCM)

- a language for state-transition graphs

GTASK ::= check branching simulation

| check branching bisimulation

GS ::= c | c , GS
a sequence of

thread indices

for a particular

roles

A state-transition

- represented as a GCM

69

a2

a3

a4

a8

a5 a6

a1 (true)w = 0;

(true)w = w+x*z;

(true)y = z*z;

(true)if(w>z*z*z)w = z*z*z;

(true)x = 0;

(true)x= x+1;

a0

(x<y);
(x>=y);

35

A state-transition

- represented as a GCM

70

pocess count = 1;

global discrete w,x,y,z:0..5;

mode a1 (true) { when (true) may w = 0; goto a2; }

mode a2 (true) { when (true) may x = 0; goto a3; }

mode a3 (true) { when (true) may y = z*z; goto a4; }

mode a4 (true) { when (x>=y) may goto a8;

when (x < y) may goto a5; }

mode a5 (true) { when (true) may w=w+x*z; goto a6; }

mode a6 (true) { when (true) may x=x+1; goto a4; }

mode a8 (true) { when (true) may if (w>z*z*z) w= z*z*z; }

initially a1[1]&&w==1&&x==1&&y==1&&z==1;

A state-transition

- represented as a GCM

71

pocess count = 1;

global discrete w,x,y,z:0..5;

mode a1.2 (true) { when (true) may w = 0; x = 0; goto a3; }

mode a3 (true) { when (true) may y = z*z; goto a4; }

mode a4 (true) { when (x>=y) may goto a8;

when (x < y) may goto a5; }

mode a5 (true) { when (true) may w=w+x*z; goto a6; }

mode a6 (true) { when (true) may x=x+1; goto a4; }

mode a8 (true) { when (true) may if (w>z*z*z) w= z*z*z; }

initially a1[1]&&w==1&&x==1&&y==1&&z==1;

36

1: w = 0;

2: x = 0;

3: y = z*z;

4: while (x < y) {

5: w = w + x*z;

6: x = x + 1;

7: }

8: if (w > z*z*z) w = z*z*z;

program

72

guarded commands

when (pc==1) may w = 0; pc=2;

when (pc==2) may x = 0; pc=3;

when (pc==3) may y = z*z; pc=4;

when (pc==4&&x>=y) may pc=8;

when (pc==4&&x < y) may pc=5;

when (pc==5)may w=w+x*z; pc=6;

when (pc==6)may x=x+1; pc=4;

when (pc==8)may if (w>z*z*z)

w= z*z*z;

Guarded commands with modes

(GCM)

73

Concurrent programs

 A set programs running independently,

communicating from time to time, thereby

performing a common task.

 Flavors of Concurrency

 Synchronous execution

 Asynchronous / interleaved execution

 Communication via shared variables

 Message passing communication

37

74

Kripke Structure

- for a concurrent system

 Programs (as opposed to circuits) are

typically considered asynchronous.

 An asynchronous concurrent system is a

collection of sequential programs

running in parallel with only one pgm. making

a move at every time step.

 How do the sequential programs communicate ?

 What are the behaviors of the concurrent system ?

1 kP P

75

Kripke Structure

- for a concurrent system

 Behaviors of each sequential program

captured by its operational semantic.

 The programs need not be terminating.

 Behaviors (Traces) of formed by

interleaving the transitions of the programs.

 Consider two non-communicating programs.

iP

iP

1 kP P

38

76

Guarded commands

- for a concurrent system

Interleavings

state-transition graphs

x=0;

ax=1;

y=0;

b

y=1;

a[1],b[2],x==0,y==0

a[1],b[2],x==1,y==0

a[1],b[2],x==0,y==1

a[1],b[2],x==1,y==1

Semantics as

Kripke structure

77

Guarded commands

- for a concurrent system

Interleavings

process count = 2;

global discrete x, y:0..1;

mode a (true) {

when (true) may x=1; }

mode b (true) {

when (true) may y=1; }

initially a[1]&&b[2]&&x==0&& y==0;

GCM

a[1],b[2],x==0,y==0

a[1],b[2],x==1,y==0

a[1],b[2],x==0,y==1

a[1],b[2],x==1,y==1

Semantics as

Kripke structure

39

2009/11/04 stopped here.

78

79

Kripke Structure

- for a concurrent system

 Obtaining Kripke Structure from a concurrent
program directly is laborious.

 Typically, model checking tools allow you to
input the program in its modeling language,
and then it extracts the Kripke Structure (or
some succinct version of it).

 Model the sequential pgms. separately and
specify a model of concurrency

e.g. asynchronous with shared variable
communication

40

80

Kripke Structure

- A Mutual Exclusion Example

// 2 processes that communicate with a shared variable.

process count = 2;

global discrete turn: 0..1;

// state-transition graph for process 1

mode a0 (true) { when (turn==0) may goto a1; }

mode a1 (true) { when (true) may turn = 1; goto a0; }

// state-transition graph for process 2

mode b0 (true) { when (turn==1) may goto b1; }

mode b1 (true) { when (true) may turn = 0; goto b0; }

initially a0[1] && b0[2];

81

Kripke Structure

- for a concurrent system states

states can be recorded as

(mode of 1, mode of 2, value of turn)

 mode of 1 {a0, a1}

 mode of 2 {b0, b1}

 The value of turn {0, 1}

 There are 8 states.

 Not all of them are reachable from the initial

state.

41

09/11/18 stopped here.

82

83

State-transition graphs

- Synchronization

The reader process

(1) buf = 0;

(2) while true, do {

(3) if (buf == 0), read;

(4) buf = 0;

(5) }

The writer process

(6) d = 1;

(7) while true, do {

(8) if (buf == 0),

(9) write buf = d;d=0;

(10) d = 1;

(11) }

(1)

(2)

(3)
(4)

buf=0;

true

?msg

buf==0

buf=0;

(6)

(7)

(8) (9)

d=1;

true

!msg

buf=d;

d=0;

d=1;

(10)

buf==0

buf!=0

Input

event

Output

event

42

84

State-transition graphs

- Synchronization

Kripke structure (part)

(1)

(2)

(3)
(4)

buf=0;

true

?msg

buf==0

buf=0;

(6)

(7)

(8) (9)

d=1;

true

!msg

buf=d;

d=0;

d=1;

(10)

buf==0

buf!=0

(1)(6)

(2)(6)

(3)(6)

(1)(7) (1)(8)

(2)(7) (1)(9)

(3)(7)

(3)(8)

(3)(9)

(2)(8)
(2)(9) (4)(10)

(4)(7)

(2)(10)

(1)

(2)

(3)
(4)

buf=0;

true

?msg

buf==0

buf=0;

(6)

(7)

(8) (9)

d=1;

true

d=1;

(10)

buf==0

buf!=0

85

State-transition graphs

- Semantics of concurrency (I)

!msg

buf=d;

d=0;

(1)(6)

(2)(6)

(3)(6)

(1)(7) (1)(8)

(2)(7) (1)(9)

(3)(7)

(3)(8)
(3)(9)

(2)(8) (2)(9) (4)(10)

(4)(7)

(2)(10)

Interleaving semantics
(the yellow arcs).

 At most one autonomous
party may execute at a
time.

43

(1)

(2)

(3)
(4)

buf=0;

true

?msg

buf==0

buf=0;

(6)

(7)

(8) (9)

d=1;

true

d=1;

(10)

buf==0

buf!=0

86

State-transition graphs

- Semantics of concurrency (I …)

!msg

buf=d;

d=0;

Interleaving semantics
(the yellow arcs).

 At most one autonomous
party may execute at a
time.

E.g., (1)(6) (2)(6)

(1)(6) (2)(7)

(1)(6) (1)(7)

These are OK!

This is not valid!

(1)

(2)

(3)
(4)

buf=0;

true

?msg

buf==0

buf=0;

(6)

(7)

(8) (9)

d=1;

true

d=1;

(10)

buf==0

buf!=0

87

State-transition graphs

- Semantics of concurrency (II)

!msg

buf=d;

d=0;

(1)(6)

(2)(6)

(3)(6)

(1)(7) (1)(8)

(2)(7) (1)(9)

(3)(7)

(3)(8)
(3)(9)

(2)(8) (2)(9) (4)(10)

(4)(7)

(2)(10)

Synchronizations (the red arc)

 All communicating parties in
a minimal & autonomous
synchronization must
execute at the same time.

44

(1)

(2)

(3)
(4)

buf=0;

true

?msg

buf==0

buf=0;

(6)

(7)

(8) (9)

d=1;

true

d=1;

(10)

buf==0

buf!=0

88

State-transition graphs

- Semantics of concurrency (II)

!msg

buf=d;

d=0;

Synchronizations (the red arc)

 All communicating parties in
a minimal & autonomous
synchronization must
execute at the same time.

E.g., (3)(9) (4)(10)

(3)(9) (4)(9)

(3)(9) (3)(10)

This is OK!

These are not valid!

(3)(7) (4)(7)
These are not valid!

These are not valid!

89

State-transition graphs

CSMA/CD protocol, the Ethernet protocol

 500m in expanse

 2500m in expanse with repeaters

 Round-trip 48 μs.

 Messages length at least 64 bytes to detect

round-trip corruption.

45

90

State-transition graphs

- CSMA/CD

wait

retry

x<=52

?cd

!end

x1==808
idle

busy collision

x<26
?begin

x3<26

x3=0;

?begin

x3=0;

?end

Sender 1 Sender 2

Bus

1
2 15

17
18

16

!begin

x1=0;

!(#PS-1)cd

Sender1,Sender2, and Bus are all PTAs.

?cd

send

x1<=808!begin

x1=0;

4

?cd

?cd

3

5

wait

retry

x<=52

?cd

!end

x2==808
13

8
9

14

!begin

x2=0;

?cd

send

x2<=808!begin

x2=0;

11

?cd

?cd

10

12

location

label

State-transition graph for automata

- an exercise

Please construct an automata with

 input alphabet {1,0,e}

 output alphabet {1,0}

 reads in eebnbn-1…b1b0

 output 3*(bnbn-1…b1b0) with bn as the most

significant bit.

Example:

when input is ee1011(11), output is 100001(33)

ee11(3), 1001(9)
91

46

State-transition graph for automata

- an exercise

92

?0!0

?1!1

?0!1

?1!0

?1!1?0!1

?0!0

?1!0

?e!0

?e!0

?e!0

?e!1

?e!0

?e!1
?e!1

?e!0

State-transition graph for automata

- an exercise run for ee11(3)

93

?0!0

?1!1

?0!1

?1!0

?1!1?0!1

?0!0

?1!0

?e!0

?e!0

?e!0

?e!1

?e!0

?e!1
?e!1

?e!0ee11(3)

(?)

47

State-transition graph for automata

- an exercise run for ee11(3)

94

?0!0

?1!1

?0!1

?1!0

?1!1?0!1

?0!0

?1!0

?e!0

?e!0

?e!0

?e!1

?e!0

?e!1
?e!1

?e!0ee11(3)

1(?)

State-transition graph for automata

- an exercise run for ee11(3)

95

?0!0

?1!1

?0!1

?1!0

?1!1?0!1

?0!0

?1!0

?e!0

?e!0

?e!0

?e!1

?e!0

?e!1
?e!1

?e!0ee11(3)

01(?)

48

State-transition graph for automata

- an exercise run for ee11(3)

96

?0!0

?1!1

?0!1

?1!0

?1!1?0!1

?0!0

?1!0

?e!0

?e!0

?e!0

?e!1

?e!0

?e!1
?e!1

?e!0ee11(3)

001(?)

State-transition graph for automata

- an exercise run for ee11(3)

97

?0!0

?1!1

?0!1

?1!0

?1!1?0!1

?0!0

?1!0

?e!0

?e!0

?e!0

?e!1

?e!0

?e!1
?e!1

?e!0ee11(3)

1001(9)

49

State-transition graph for automata

- an exercise run for ee1011(11)

98

?0!0

?1!1

?0!1

?1!0

?1!1?0!1

?0!0

?1!0

?e!0

?e!0

?e!0

?e!1

?e!0

?e!1
?e!1

?e!0ee1011(11)

(?)

State-transition graph for automata

- an exercise run for ee1011(11)

99

?0!0

?1!1

?0!1

?1!0

?1!1?0!1

?0!0

?1!0

?e!0

?e!0

?e!0

?e!1

?e!0

?e!1
?e!1

?e!0ee1011(11)

1(?)

50

State-transition graph for automata

- an exercise run for ee1011(11)

100

?0!0

?1!1

?0!1

?1!0

?1!1?0!1

?0!0

?1!0

?e!0

?e!0

?e!0

?e!1

?e!0

?e!1
?e!1

?e!0ee1011(11)

01(?)

State-transition graph for automata

- an exercise run for ee1011(11)

101

?0!0

?1!1

?0!1

?1!0

?1!1?0!1

?0!0

?1!0

?e!0

?e!0

?e!0

?e!1

?e!0

?e!1
?e!1

?e!0ee1011(11)

001(?)

51

State-transition graph for automata

- an exercise run for ee1011(11)

102

?0!0

?1!1

?0!1

?1!0

?1!1?0!1

?0!0

?1!0

?e!0

?e!0

?e!0

?e!1

?e!0

?e!1
?e!1

?e!0ee1011(11)

0001(?)

State-transition graph for automata

- an exercise run for ee1011(11)

103

?0!0

?1!1

?0!1

?1!0

?1!1?0!1

?0!0

?1!0

?e!0

?e!0

?e!0

?e!1

?e!0

?e!1
?e!1

?e!0ee1011(11)

00001(?)

52

State-transition graph for automata

- an exercise run for ee1011(11)

104

?0!0

?1!1

?0!1

?1!0

?1!1?0!1

?0!0

?1!0

?e!0

?e!0

?e!0

?e!1

?e!0

?e!1
?e!1

?e!0ee1011(11)

100001(33)

a
n+2

a
n+1

…a
1
a

0
=3*(eeb

n
b

n-1
…b

1
b

0
)

a
k+1

=b
k+1

+b
k
+c

k

105

~bk~ck

bk~ck

bkck

~bkck

?0!0

?1!1

?0!1

?1!0

?1!1?0!1

?0!0

?1!0

?e!0

?e!0

?e!0

?e!1

?e!0

?e!1
?e!1

?e!0

carry

53

State-transition graph for automata

 How to construct an automata for cN,

c*(bnbn-1…b1b0)

Need (log2(c)) *2log2(c)+1 states!

 How to construct an automata for

anan-1…a1a0 + bnbn-1…b1b0 ?

Can you do this ?

 How to construct an automata for

ck*(bn,kbn-1,k…b1,kb0,k) ?

106

107

Kripke Structures

- composition for a concurrent system

Given Ai=Si, Si,0, Ri, Li, 1 i  n

Cartesian Product of A1 , A2 , ... , An ,

A=S, S0, R, L

S : S1S2 ... Sn

S0 : S1,0 S2,0 ... Sn,0

R([s1,...,sj1, sj , sj+1,..., sn],[s1,...,sj1, s’j , sj+1,..., sn])

 (si,si’)∈Ri

 According to the interleaving semantics, one

process transition at a moment

L([s1, s2 , ... , sn])= L1(s1)  L2(s2)  ...  Ln(sn)

54

108

Kripke Structures

- Cartesian product method

1. Construct all the vectors of component process
states

2. Eliminate all those inconsistent vectors according
to invariance condition

3. Draw arcs from vectors to vectors according to
process transitons

 Very often creates many unreachable
states

Kripke structure

- Practical algorithm for construction

Given A=S, S0, R, L

 Usually only S0, R, L are given.

 We may want to construct S.

 Usually S is too big to construct.

109

55

110

Kripke Structures

- on-the-fly method

1. Starting from the initial states (or goal states
in backward analysis)

2. Step by step, add states that is reachable
from those already reached, until no more
new reachable states are generated.

 Tedious but may result in much smaller
reachable state-space reprsentation.

111

Kripke Structures

- forward reachability analysis

 Use strongest postcondition to compute state-
spaces forward reachable from initial states

 Can only be used for safety analysis

 Very often can lead to larger state-space
represenation

 Very often can lead to unnecessary total ordering
enumeration
 Need symmetry reduction and partial-order reduction

56

112

Kripke Structures

- backward reachability analysis

 Use weakest precondition to compute state-spaces
backward reachable from goal states

 The mandatory method for model-checking

 More like refutation

 Very often can lead to smaller state-space
represenation

 Very often can lead to less total ordering enumeration

113

Kripke Structure

- propositions

Given by the valuation of the variables defining

the states. Possible propositions

Clearly the proposition is true in any state

of the form

This clarifies the labeling function L in Kripke

Structure

0 0 0 3

1 0 1 3

, ,

, ,

0, 1

pc l pc l

pc m pc m

turn turn

 

 

 

0 0pc l

0 0 1, ?, ??pc l pc turn  

57

114

Kripke Structure

- system properties

 Propositions can be combined to state

interesting properties

It is never the case that and

The above is the mutual exclusion property.

We will study a logic for describing properties

in next class.

0 2pc l
1 2pc m

115

Kripke Structure

- fairness in a concurrent system

In a concurrent system, there could be several

independent modules with independent

descriptions.

 How can we construct the Kripke structure for

global behavior description ?

 How can we run the modules fairly ?

 Is there a module that never gets execution in

interleaving semantics ?

 Is an unfair execution meaningless ?

58

116

Fairness in concurrent systems

state-transition graphs

turn=0;

aturn=1; b
turn=0;

a,b,turn==0

a,b,turn==1

Semantics as

Kripke structure

117

Kripke Structure

- fairness in a concurrent system

 Proc0 manipulates X

 Proc1 manipulates Y

 In the global state <X=0, Y=1>

 Proc0 or Proc1 could make a move.

 We allow the behavior that Proc1 always makes a

move (self-loop)

 System is stuck at <X= 0, Y=1>

 Unfair execution !

59

118

Fair Kripke Structures

 M = (S, S0, R, L, F)

 S, S0, R, L as before.

 F  2S is a set of fairness constraints.

 Each element of F is a set of states which must

occur infinitely often in any execution path.

 In our example, F = {{<X=1,Y=1>}}
 Avoid getting stuck at <X=0,Y=1> or <X=1, Y = 0>

119

Kripke structure

- verification

 safety analysis

 Can the system be always safe ?

 Can a risk state happen ?

 liveness analysis

 Can the job be done sometimes ?

 Can the job be prevented from been done ?

 bisimulation checking

 Are two Kripke structures the same transition by transition ?

 simulation checking

 Can one Kripke structure match every transition by the another ?

 language inclusion

 Are all traces of one Kripke structure also ones of another ?

60

Model-checking

- frameworks in our lecture

Spec

Model

Logics

traces Trees Linear Branching

F= F F= F F= F F= F

traces F=    

F    

Trees F=    

F    

Logics

Linear F=  

F  

Branc

hing

F=  

F  

120

F: set of fairness

assumptions.

: known;

: discussed

in the lecture

2009/11/25 stopped here.

121

61

122

Kripke structure

- safety analysis

Given

 a Kripke structure A = (S, S0, R, L)

 a safety predicate η,

can η be false at some state along some runs ?

Example:

Can the engine stall ?

Can the boiler be overheated ?

123

Turn=0
CR0,NC1

Turn=0
NC0,NC1

Turn=0
CR0,L1

Turn=1
L0,CR1

Turn=1
NC0,CR1

Turn=1
NC0,NC1

Turn=0
L0,L1

Turn=0
L0,NC1

Turn=0
NC0,L1

Turn=1
L0,NC1

Turn=1
NC0,L1

Turn=1
L0,L1

Kripke structure

- safety analysis

 ¬(PC0=CR0PC1=CR1) is an invariant!

62

124

Kripke structure

- safety analysis

Reachability algorithm in graph theory

Given

 a Kripke structure A = (S, S0, R, L)

 a safety predicate η,

find a path from a state in S0 to a state in [η].

Solutions in graph theory

 Shortest distance algorithms

 spanning tree algorithms

125

Kripke structure

- safety analysis

/* Given A = (S, S0, R, L)*/

safety_analysis(η) /* using least fixpoint algorithm */ {

for all s, if ηL(s), L(s)=L(s){η};

repeat {

for all s, if (s,s‟)(ηL(s‟)),

L(s)=L(s){η};

} until no more changes to L(s) for any s.

if there is an s0S0 with ηL(s0), return „unsafe,‟

else return „safe.‟

}

A notation for the

possibility of η

The procedure terminates since S is finite in the Kripke structure.

63

126

Kripke structure

- safety analysis

Least fixpoint in modal

logics

iterative expansion

η

η

η

η

η

η

η

η
ηη

η

127

Kripke structure

- Least fixpoint in modal logics

Dark-night murder, strategy I:

A suspect will be in the 2nd round iff

 He/she lied to the police in the 1st round; or

 He/she is loyal to someone in the 2nd round

What is the minimal solution to 2nd[] ?

Liar[i] ji(2nd[j]Loyal-to[i,j]) 2nd[i]

64

128

Kripke structure

- Least fixpoint in modal logics

In a dark night, there was a cruel murder.

 n suspects, numbered 0 through n-1.

 Liar[i] iff suspect i has lied to the police in the

1st round investigation.

 Loyal-to[i,j] iff suspect i is loyal to suspect j in

the same criminal gang.

 2nd[i] iff suspect i to be in 2nd round

investigation.

What is the minimal solution to 2nd[] ?

129

Kripke structure

- Greatest fixpoint in modal logics

In a dark night, there was a cruel murder.

 n suspects, numbered 0 through n-1.

 Liar[i] iff the police cannot prove suspect i

has lied to the police in the 1st round

investigation.

 Loyal-to[i,j] iff suspect i is loyal to j and j is not

in the 2nd round.

 2nd[i] iff suspect i to be in 2nd round

investigation.

What is the maximal solution to  2nd[] ?

65

130

Kripke structure

- Greatest fixpoint in modal logics

Dark-night murder, strategy II

A suspect will not be in the 2nd round iff

 We cannot prove he/she has lied to the police; and

 He/she is loyal to someone not in the 2nd round.

What is the maximal solution to  2nd[] ?

 2nd[i]  Liar[i] ji(2nd[j] Loyal-to[i,j])

In comparison:

 2nd[i]  Liar[i] ji(2nd[j] Loyal-to[i,j])

 2nd[i]  Liar[i] ji(2nd[j]  Loyal-to[i,j])

 2nd[i]  Liar[i] ji(Loyal-to[i,j] 2nd[j])

131

CTL

- symbolic model-checking with BDD

 In a Kripke structure, states are described

with binary variables.

n binary variables 2n states

x1, x2,, xn

 we can use a BDD to describe legal states.

a Boolean function with n binary variables

S(x1, x2,, xn)

66

132

CTL - symbolic model-checking

with Propositioal logics

Example:

x1 x2 x3

1 0 1

0 1 0

0 0 1

S(x1, x2, x3) = (x1x2x3)

 (x1x2x3)
 (x1x2 x3)

133

CTL - symbolic model-checking

with Propositioal logics

State transition relation as a logic funciton

with 2n parameters

R(x1, x2,, xn, x’1, x’2,, x’n)

x1, x2,, xn x1, x2,, xn

67

134

CTL - symbolic model-checking

with Propositioal logics

x1 x2 x3 x’1 x’2 x’3

1 0 1

0 1 0

0 0 1

R(x1, x2, x3 , x’1, x’2, x’3) =

(x1x2x3x’1x’2x’3)
 (x1x2x3x’1x’2 x’3)
 (x1x2 x3x’1x’2x’3)

135

CTL - symbolic model-checking with

Propositioal logics

Path relation also as a logic funciton

with 2n parameters

reach(x1, x2,, xn, x’1, x’2,, x’n)

x1, x2,, xn

x1, x2,, xn

68

136

CTL - symbolic model-checking with

Propositioal logics

x1 x2 x3 x’1 x’2 x’3

1 0 1

0 1 0

0 0 1

reach(x1, x2, x3 , x’1, x’2, x’3) =

(x1x2x3x’1x’2x’3)

 (x1x2x3x’1x’2x’3)
 (x1x2x3x’1x’2 x’3)
 (x1x2 x3x’1x’2x’3)
 (x1x2x3x’1x’2x’3)
 (x1x2 x3x’1x’2 x’3)

η

137

Symbolic safety analysis

 I : initial condition with parameters

x, x2,, xn

 η : safe condition with parameters

x1, x2,, xn

If I(η) reach(x1, x2,, xn, x’1, x’2,, x’n)

is not false,

 a risk state is reachable.

 the system is not safe.

change all

umprimed

variables in η

to primed.

69

138

Symbolic safety analysis

- construction of reach(x
1
,......, x

n
, x’

1
,......, x’

n
)

R(x1,......, xn, x’1,......, x’n)

y1,......, yn (R(x1,......, xn, y1,......, yn)

 reach(y1,......, yn, x’1,......, x’n)

)

 reach(x1,......, xn, x’1,......, x’n)

This is a least fixpoint for backward analysis.

139

Symbolic safety analysis

- construction of reach(x
1
,......, x

n
, x’

1
,......, x’

n
)

R(x1,......, xn, x’1,......, x’n)

y1,......, yn (reach(x1,......, xn, y1,......, yn)

 reach(y1,......, yn, x’1,......, x’n)

)

 reach(x1,......, xn, x’1,......, x’n)

This is another least fixpoint for speed-up.

70

140

Symbolic safety analysis

- construction of reach(x
1
,......, x

n
, x’

1
,......, x’

n
)

R(x1,......, xn, x’1,......, x’n)

y1,......, yn (reach(x1,......, xn, y1,......, yn)

 R(y1,......, yn, x’1,......, x’n)

)

 reach(x1,......, xn, x’1,......, x’n)

This is another least fixpoint for forward analysis.

141

Symbolic safety analysis (backward)

Encode the states with variables x0,x1,…,xn.

 the state set as a proposition formula: S(x0,x1,…,xn)

 the risk state set as η(x0,x1,…,xn)

 the initial state set as I(x0,x1,…,xn)

 the transition set as R(x0,x1,…,xn,x‟0,x‟1,…,x‟n)

b0 = η(x0,x1,…,xn) S(x0,x1,…,xn); k = 1;

repeat

bk = bk-1x‟0x‟1…x‟n(R(x0,x1,…,xn,x‟0,x‟1,…,x‟n)(bk-1));

k = k +1;

until bk  bk-1;

if (bk I(x0,x1,…,xn))  false, return „safe‟; else return „risky‟;

change all

umprimed

variable in bk-1

to primed.

a least fixpoint procedure

71

142

Kripke structure

- symbolic safety analysis

states: S(x,y,z)  (xy z)(xy z)(xy z)

 (xy z)(xy z)(xy z)

 (x) (xy)

initial state: I(x,y,z)xy z

risk state: η(x,y,z) xy z

η

η

η

η

η

η

011

010
001000

100

101

143

Kripke structure

- symbolic safety analysis

transitions: R(x,y,z,x‟,y‟,z‟)

(xyzx‟y‟z‟)(xyzx‟y‟z‟)

(xyzx‟y‟z‟)(xyzx‟y‟z‟)

(xyzx‟y‟z‟)(xyzx‟y‟z‟)

η

η

η

η

η

η

011

010
001000

100

101

72

2009/12/02 stopped here.

144

145

Symbolic safety analysis (backward)

b0 = η(x,y,z)  xy z

b1 = b0  x‟y‟z‟(R(x,y,z,x‟,y‟,z‟) b0)

= (xy z) x‟y‟z‟(R(x,y,z,x‟,y‟,z‟)  x‟y‟ z‟)

= (xy z) x‟y‟z‟(((xyz)(xyz))x‟y‟ z‟)

= (xy z)(xyz)(xyz)

b2 = b1  x‟y‟z‟(R(x,y,z,x‟,y‟,z‟)  b1)

= (xyz)(xyz)(xyz)(xyz)

b3 = b2  x‟y‟z‟(R(x,y,z,x‟,y‟,z‟)  b2)

= (xyz) (xyz)(xyz)(xyz)(xyz)

b4 = b3  x‟y‟z‟(R(x,y,z,x‟,y‟,z‟)  b3)

= (xyz) (xyz)(xyz)(xyz)(xyz)

b4  I(x,y,z) = (xyz)

fixpoint

non-empty intersection

with the initial condition

 risk detected.

73

老子道德經四十一章

大音希聲

大象無形

道隱無名

146

One assumption for the correctness!

 Two states cannot be with the same

proposition labeling.

 Otherwise, the collapsing of the states may

cause problem.

Symbolic safety analysis (backward)

147

p, q

q

p

q

p, q

may need a few propositions

for the names of the states.

, r

74

148

Symbolic safety analysis (forward)

Encode the states with variables x0,x1,…,xn.

 the state set as a proposition formula: S(x0,x1,…,xn)

 the risk state set as η(x0,x1,…,xn)

 the initial state set as I(x0,x1,…,xn)

 the transition set as R(x0,x1,…,xn,x‟0,x‟1,…,x‟n)

f0 = I(x0,x1,…,xn) S(x0,x1,…,xn); k = 1;

repeat

fk = fk-1(x0x1…xn(R(x0,x1,…,xn,x‟0,x‟1,…,x‟n)fk-1));

k = k +1;

until fk  fk-1;

if (fk  η(x0,x1,…,xn))  false, return „safe‟; else return „risky‟;

change all

primed

variable to

umprimed.

149

Symbolic safety analysis (forward)

f0 = I(x,y,z)  xy z

f1 = f0  (xyz(R(x,y,z,x‟,y‟,z‟) f0))

= (xy z) (xyz(R(x,y,z,x‟,y‟,z‟)  xyz))

= (xy z)(xyz(x‟y‟z‟ xyz)) 

= (xy z)(x‟y‟z‟)

= (xy z)(xyz) = xy

f2 = f1  (xyz(R(x,y,z,x‟,y‟,z‟)  f1) = (xy)(xyz)

f3 = f2  (xyz(R(x,y,z,x‟,y‟,z‟)  f2) = (y)(xyz)

f4 = f3  (xyz(R(x,y,z,x‟,y‟,z‟)  f3) = (y)(xyz)

f4  η(x,y,z) = ((y)(xyz)) (xyz) = (xyz)

fixpoint

non-empty intersection

with the risk condition

 risk detected.

75

150

Bounded model-checking

Encode the states with variables x0,k,x1,k,…,xn,k.

 the state set as a proposition formula: S(x0,k,x1,k,…,xn,k)

 the risk state set as η(x0,k,x1,k,…,xn,k)

 the initial state set as I(x0,0,x1,0,…,xn,0)

 the transition set as R(x0,k-1,x1,k-1,…,xn,k-1,x0,k,x1,k,…,xn,k)

f0 = I(x0,0,x1,0,…,xn,0) S(x0,0,x1,0,…,xn,0); k = 1;

repeat

fk = R(x0,k-1,x1,k-1,…,xn,k-1,x0,k,x1,k,…,xn,k)fk-1;

k = k +1;

until fk η(x0,k,x1,k,…,xn,k)  false

The value

of xn at

state k.

When to stop ?

1. diameter of the state graph

2. explosion up to tens of steps.

151

Bounded model-checking

f0 = I(x,y,z)  x0y0 z0

f1 = R(x0,y0,z0,x1,y1,z1) f0 = x0y0z0x1y1z1

f2 = R(x1,y1,z1,x2,y2,z2)  f1

= x0y0z0x1y1z1((x2y2z2)(x2y2z2))

f3 = R(x2,y2,z2,x3,y3,z3)  f2

= x0y0z0x1y1z1

((x2y2z2x3y3z3)

(x2y2z2((x3y3z3)(x3y3z3)))

)

= x0y0z0x1y1z1

((x2y2z2x3y3z3)(x2y2z2x3y3))

f3  η(x3,y3,z3) = (x3y3z3)

76

Transition relation

- from state-transition graphs

Given a set of rules r1, r2, …, rm of the form

rk: when (k) may yk,0=d0; yk,1=d1; …; yk,nk=dnk;

R(x0,x1,…,xn,x‟0,x‟1,…,x‟n)

k[1,m] (k  y‟k,0==d0y‟k,1==d1… y‟k,nk==dnk

h[1,n] (x h{yk,0, yk,1, …, yk,nk}=>x h== x‟h)

)

152

Transition relation from GCM rules.

Given a set of rules for X={x,y,z}

r1: when (x<y&& y>2) may y=x+y; x=3;

r2: when (z>=2) may y=x+1; z=0;

r3: when (x<2) may x=0;

R(x0,x1,…,xn,x‟0,x‟1,…,x‟n)

 (x<y  y>2  y‟==x+y  x‟==3  z‟==z)

(z>=2  y‟==x+1  z‟==0  x‟==x)

(x<2  x‟==0  y‟==y  z‟==z)

153

77

Transition relation

- from state-transition graphs

In general, transition relation is expensive to

construct.

Can we do the following state-space

construction

x‟0x‟1…x‟n(R(x0,x1,…,xn,x‟0,x‟1,…,x‟n)(bk-1))

directly with the GCM rules ?

Yes, on-the-fly state space construction.

154

On-the-fly precondition calculation

with GCM rules.

x‟0x‟1…x‟n(R(x0,x1,…,xn,x‟0,x‟1,…,x‟n)(b))

 k[1,m] (k  yk,0yk,1…yk,nk (b   h[0,nk] yk,h==dh))

pre(b) {

r = false;

for k = 1 to m, {

let f = b;

for h=nk to 0, f = yk,h(f  yk,h==dh);

r = r  (k  f);

}

return (r);

}
155

78

On-the-fly precondition calculation

with GCM rules.

Given a set of rules r1, r2, …, rm of the form

rk: when (k) may yk,0=d0; yk,1=d1; …; yk,nk=dnk;

x‟0x‟1…x‟n(R(x0,x1,…,xn,x‟0,x‟1,…,x‟n)(b))

k[1,m] (k 

yk,0yk,1…yk,nk (b  h[0,nk] yk,h==dh)
)

However, GCM rules are more complex than that.

156

On-the-fly precondition calculation

with GCM rules.

Given a set of rules for X={x,y,z}

r1: when (x<y&& y>2) may y=z; x=3;

r2: when (z>=2) may y=x+1; z=7;

r3: when (x<2) may z=0;

x‟0x‟1…x‟n(R(x0,x1,…,xn,x‟0,x‟1,…,x‟n)(x<4z>5))
 (x<y  y>2  yx(x<4z>5  y==z  x==3))
(z>=2  yz(x<4z>5  y==x+1  z==7))
(x<2  z(x<4z>5  z==0))

 (x<y  y>2  z>5) (z>=2  x<4)(x<2  z(false))
 (x<y  y>2  z>5) (z>=2  x<4)

157

B

79

On-the-fly precondition calculation

with GCM rules.

Given a set of rules r1, r2, …, rm of the form

rk: when (k) may sk;

x‟0x‟1…x‟n(t(x0,x1,…,xn,x‟0,x‟1,…,x‟n)(b))

k[1,m] (k  pre(sk,b))

What is pre(s,b) ?

158

A general propositional formula

A GCM statement

precondition

procedure

On-the-fly precondition calculation

with GCM rules.

Given a set of rules r1, r2, …, rm of the form

rk: when (k) may sk;

What is pre(s,b) ?

 pre(x = E;, b)  b[x/E]

159

new expression obtained from b by

replacing every occurrence of x with E.

Ex 1. the precondition to x=x+z;

(x==y+2  x<4z>5) [x/x+z]  x+z==y+2  x+z<4z>5

Ex 2. the precondition to x=5;

(x==y+2  x<4z>5) [x/5]  5==y+2  5<4z>5

Ex 3. the precondition to x=2*x+1;

(x==y+2  x<4z>5) [x/2*x+1]  2*x+1==y+2  2*x+1<4z>5

80

On-the-fly precondition calculation

with GCM rules.

Given a set of rules r1, r2, …, rm of the form

rk: when (k) may sk;

What is pre(s,b) ?

 pre(x = E;, b)  b[x/E]

 pre(s1s2, b)  pre(s1, pre(s2, b))

 pre(if (B) s1else s2)  (Bpre(s1, b))(Bpre(s2,b))

 pre(while (B) s, b)  ….

160

new expression obtained from b by

replacing every occurrence of x with E.

Ex. the precondition to x=x+z;

(x==y+2  x<4z>5) [x/x+z]

 x+z==y+2  x+z<4z>5

On-the-fly precondition calculation

with GCM rules.

Given a set of rules r1, r2, …, rm of the form

rk: when (k) may sk;

What is pre(s,b) ?

pre(while (K) s, b)  formula L1L2 for

L1: those states that reach Kb with finite steps of s

through states in K; and

L2: those states that never leave K with steps of s.

161

81

On-the-fly precondition calculation

with GCM rules.

L1: those states that reach Kb with finite steps of

s through states in K

w0 = Kb; k = 1;

repeat

wk = wk-1(Kpre(s, wk-1));

k = k +1;

until wk  wk-1;

return wk;

162

also a least fixpoint procedure

Precondition to b

through while (K) s;

Example: b  x==2  y == 3

while (x < y) x = x+1;

L1 computation.

w0  x>=yx==2y==3  false ; k = 1;

w1  false(x<ypre(x=x+1, false));

 false(x<yfalse);

 false;

163

w0 = Kb; k = 1;

repeat

wk = wk-1(Kpre(s, wk-1));

k = k +1;

until wk  wk-1;

return wk;

82

On-the-fly precondition calculation

with GCM rules.

Given a set of rules r1, r2, …, rm of the form

pre(while (K) s, b)

L2: those states that never leave K with steps of s.

w0 = K; k = 1;

repeat

wk = Kpre(s, wk-1);

k = k +1;

until wk  wk-1;

return wk;

164

a greatest fixpoint procedure

Precondition to b

through while (K) s;

Example:

while (x<y && x>0) x = x+1;

L2 computation.

w0  x<yx>0 ; k = 1;

w1  x<yx>0  pre(x=x+1, x<yx>0)

 x<yx>0  x+1<yx+1>0  x>0  x+1<y

w2  x+1<yx>0  pre(x=x+1, x+1<yx>0)

 x+1<yx>0  x+2<yx+1>0  x>0  x+2<y

non-terminating for algorithms and protocols!
165

w0 = K; k = 1;

repeat

wk = wk-1pre(s, wk-1);

k = k +1;

until wk  wk-1;

return wk;

83

Precondition to b

through while (K) s;

Example:

while (x>y && x>0) x = x+1;

L2 computation.

w0  x>yx>0 ; k = 1;

w1  x>yx>0  pre(x=x+1, x>yx>0)

 x>yx>0  x+1>yx+1>0  x>y  x>0

terminating for algorithms and protocols!

166

w0 = K; k = 1;

repeat

wk = Kpre(s, wk-1);

k = k +1;

until wk  wk-1;

return wk;

Precondition to b

through while (K) s;

Example: b  x==2y==3

while (x>y && x>0) x = x+1;

L1 computation.

w0  (x<=yx<=0)x==2y==3  x==2y==3;

w1  (x==2y==3)(x>yx>0pre(x=x+1,x==2y==3));

 (x==2y==3)(x>yx>0x==1y==3);

 (x==2y==3)  false

 x==2y==3

167

w0 = Kb; k = 1;

repeat

wk = wk-1(Kpre(s, wk-1));

k = k +1;

until wk  wk-1;

return wk;

84

168

Kripke structure

- liveness analysis

Given

 a Kripke structure A = (S, S0, R, L)

 a liveness predicate η,

can η be true eventually ?

Example:

Can the computer be started successfully ?

Will the alarm sound in case of fire ?

169

Kripke structure

- liveness analysis

Strongly connected component algorithm in graph theory

Given

 a Kripke structure A = (S, S0, R, L)

 a liveness predicate η,

find a cycle such that

 all states in the cycle are η

 there is a η path from a state in S0 to the cycle.

Solutions in graph theory

 strongly connected components (SCC)

85

170

Kripke structure

- liveness analysis

Turn=0
CR0,NC1

Turn=0
NC0,NC1

Turn=0
CR0,L1

Turn=1
L0,CR1

Turn=1
NC0,CR1

Turn=1
NC0,NC1

Turn=0
L0,L1

Turn=0
L0,NC1

Turn=0
NC0,L1

Turn=1
L0,NC1

Turn=1
NC0,L1

Turn=1
L0,L1

 (Turn=0  Turn=1)

171

Kripke structure

- liveness analysis

liveness(η) /* using greatest fixpoint algorithm */ {

for all s, if ηL(s), L(s)=L(s){η };

repeat {

for all s, if ηL(s) and (s,s‟)(ηL(s)),

L(s)=L(s) - {η };

} until no more changes to L(s) for any s.

if there is an s0S0 with ηL(s0),

return „liveness not true,‟

else return „liveness true.‟

}

The procedure terminates since S is finite in the Kripke
structure.

86

172

Kripke structure

- liveness analysis

Greatest fixpoint in modal logics

iterative elimination

η

ηη

η

η
η η

η

η

η

η

173

Symbolic liveness analysis

Encode the states with variables x0,x1,…,xn.

 the state set as a proposition formula: S(x0,x1,…,xn)

 the non-liveness state set as η(x0,x1,…,xn)

 the initial state set as I(x0,x1,…,xn)

 the transition set as R(x0,x1,…,xn,x‟0,x‟1,…,x‟n)

b0 = η(x0,x1,…,xn) S(x0,x1,…,xn); k = 1;

repeat

bk = bk-1x‟0x‟1…x‟n(R(x0,x1,…,xn,x‟0,x‟1,…,x‟n)b‟k-1);

k = k +1;

until bk  bk-1;

if (bk I(x0,x1,…,xn))  false, return „live‟; else return „not live‟;

87

174

Kripke structure

- symbolic liveness analysis

states: S(x,y,z)  (xy z)(xy z)(xy z)

 (xy z)(xy z)(xy z)

 (x) (xy)

initial state: I(x,y,z)xy z

non-liveness state: η(x,y,z) (x)(xy z)

η

η

η

η

η

η

011

010
001000

100

101

175

Kripke structure

- symbolic liveness analysis

transitions: R(x,y,z,x‟,y‟,z‟)

(xyzx‟y‟z‟)(xyzx‟y‟z‟)

(xyzx‟y‟z‟)(xyzx‟y‟z‟)

(xyzx‟y‟z‟)(xyzx‟y‟z‟)

η

η

η

η

η

η

011

010
001000

100

101

88

176

Symbolic liveness analysis

b0 = η(x,y,z)  (x)(xy z)

b1 = b0  x‟y‟z‟(R(x,y,z,x‟,y‟,z‟) b0‟)

= ((x)(xy z))

 x‟y‟z‟(R(x,y,z,x‟,y‟,z‟)  ((x‟)(x‟y‟z‟)))

= ((x)(xy z))

x‟y‟z‟(((xyz)(xyz)(xyz))

((x‟)(x‟y‟z‟)))

= (xyz)(xyz)(xyz) = x(yz)

b2 = b1  x‟y‟z‟(R(x,y,z,x‟,y‟,z‟) b1‟)

= (xyz)(xyz) = xy

b3 = b2  x‟y‟z‟(R(x,y,z,x‟,y‟,z‟) b2‟)

= (xyz)(xyz)

= xy

fixpoint

non-empty

intersection with

the initial condition

 non-liveness

detected.

2009/12/16 stopped here.

177

89

178

Bisimulation Framework

Model

Checker

Answer

Yes if the model

is equivalent to

the specification

No if not.

Design

Model construction

model

specification

implementation

179

Bisimulation-checking

 K = (S, S0, R, L)

K‟= (S‟, S0‟, R‟, L‟)

 Note K and K‟ use the same set of atomic
propositions P.

 BSS‟ is a bisimulation relation between K and
K‟ iff for every B(s, s‟):
 L(s) = L‟(s‟) (BSIM 1)

 If R(s, s1), then there exists s1‟ such that R‟(s‟, s1‟) and
B(s1, s1‟). (BISIM 2)

 If R(s‟, s2‟), then there exists s2 such that R(s, s2) and
B(s2, s2‟). (BISIM 3)

90

180

Bisimulations

K K’

s s’

s1 s1’

s2

181

Examples

p q

p q p q p q …..

91

182

Examples

p q

p q p q p q …..

Unwinding preserves bisimulation

183

Examples

p

q q

s sr

p

q q

r rs

92

184

Examples

p

q q

s sr

p

q q

r rs

185

Examples

p

q q

s sr

p

q q

r rs

93

186

Examples

p

q q

s sr

p

q q

r rs

187

Examples

p

q q

s sr

p

q q

r rs

94

188

Examples

p

q q

s sr

p

q q

r rs

189

Examples

p

q q

s sr

p

q q

r rs

95

190

Bisimulations

 K = (S, S0, R, L)

 K’= (S’, S0’, R’, L’)

 K and K’ are bisimilar (bisimulation equivalent) iff
there exists a bisimulation relation BSS’ between
K and K’ such that:
 For each s0 in S0 there exists s0’ in S0’ such that

B(s0 , s0’).

 For each s0’ in S0’ there exists s0 in S0 such that

B(s0 , s0’).

191

The Preservation Property.

 K = (S, S0, R, AP, L)

K’= (S’, S0’, R’, AP, L’)

 BSS’, a bisimulation.

 Suppose B(s, s’).

FACT: For any CTL* formula y (over AP),

K, sy iff K’, s’  y.

If K’ is smaller than K this is worth something.

 abstraction for space reduction

96

192

Simulation Framework

Model

Checker

Answer

Yes if the model

satisfies the

specification

No if not.

Design

Model construction

model

specification

implementation

193

Simulation-checking

 K = (S, S0, R, L)

K‟= (S‟, S0‟, R‟, L‟)

 Note K and K‟ use the same set of atomic
propositions AP.

 BSS’ is a simulation relation between K
and K‟ iff for every B(s, s‟):

 L(s) = L‟(s‟) (BSIM 1)

 If R(s, s1), then there exists s1‟ such that R‟(s‟,
s1‟) and B(s1, s1‟). (BISIM 2)

97

194

Simulations

 K = (S, S0, R, L)

 K’= (S’, S0’, R’, L’)

 K is simulated by (implements or refines) K’ iff there
exists a simulation relation BSS’ between K and
K’ such that for each s0 in S0 there exists s0’ in S0’
such that B(s0 , s0’).

195

Bisimulation Quotients

 K = (S, S0, R, L)

 There is a maximal simulation BSS’.

 Let B be this bisimulation.

 [s] = {s’ | s B s’}.

 B can be computed “easily”.

 K’ = K / B is the bisimulation quotient of K.

98

196

Bisimulation Quotient

 K = (S, S0, R, L)

 [s] = {s’ |s B s’}.

 K’ = K / B = (S’, S’0, R’,L’).

 S’ = {[s] | s  S}

 S’0 = {[s0] | s0  S0}

 R’ = {([s], [s’]) |R(s1, s1’) , s1  [s] , s1’  [s’]}

 L’([s]) = L(s).

197

Examples

p

q q

r rs

99

198

Examples

p

q q

r rs

199

Examples

p

q

r s

100

200

Abstractions

 Bisimulations don’t produce often large
reduction.

 Try notions such as simulations, data
abstractions, symmetry reductions, partial
order reductions etc.

 Not all properties may be preserved.

 They may not be preserved in a strong sense.

201

Graph Simulation

Definition Two edge-labeled graphs G1, G2

A simulation is a relation R between nodes:

 if (x1, x2)  R, and (x1,a,y1)  G1,

then exists (x2,a,y2)  G2 (same label)

s.t. (y1,y2)  R

x1 x2

a

R

G1 G2

y1

a

R
y2

Note: if we insist that R be a function  graph homeomorphism

101

202

Graph Bisimulation

Definition Two edge-labeled graphs G1, G2

A bisimulation is a relation R between nodes s.t.

both R and R-1 are simulations

203

Set Semantics for

Semistructured Data

Definition Two rooted graphs G1, G2 are equal

if there exists a bisimulation R from G1 to G2

such that (root(G1), root(G2))  R

 Notation: G1  G2

 For trees, this is precisely our earlier definition

102

204

Examples of Bisimilar Graphs

a b

c

a b

c c

a

a

a

a
a
a

...

=

=

205

Examples of non-Bisimilar Graphs

 This is a simulation but not a bisimulation

 Why ?

 Notice: G1, G2 have the same sets of paths

a a a

b c
cb

G1= G2=

103

206

 Simulation acts like “subset”

{a, b}  {a, b, c}

{a, b:{c}}  {d, a:{e,f}, b:{c,g}}

 Question:

 if DB1  DB2 and DB2  DB1 then DB1  DB2 ?

Examples of Simulation

a b

c

a b

c

d

e f g

a b a b
c

207

Answer

if DB1  DB2 and DB2  DB1 then DB1  DB2 ?

No. Here is a counter example:

aa

b b

a

DB1  DB2 and DB2  DB1 but NOT DB1  DB2

DB1 DB2

104

208

Facts About a (Bi)Simulation

 The empty set is always a (bi)simulation

 If R, R’ are (bi)simulations, so is R U R’

 Hence, there always exists a maximal (bi)simulation:

 Checking if DB1=DB2: compute the maximal bisimulation R,

then test (root(DB1),root(DB2)) in R

209

Computing a (Bi)Simulation

 Computing the maximal (bi)simulation:

 R = {(s1,s2)| s1S1,s2S2,L1(s1)=L2(s2)}

 While exists (x1, x2)  R that violates the definition,
remove (x1, x2) from R

 This runs in polynomial time ! Better:
 O((m+n)log(m+n)) for bisimulation

 O(m n) for simulation

 Compare to finding a graph homomorphism !

 Compare to finding a graph isomorphism !

h((q,q‟)E  (h(q),h(q‟))E‟)

NP-Complete

h((q,q‟)E  (h(q),h(q‟))E‟)

NP-Hard ?

105

210

Kripke structure

- bisimulation analysis

bisimulation(K,K‟) /* using greatest fixpoint algorithm */ {

B={(s,s‟)| sS, s‟S‟, L(s)=L(s‟) };

repeat {

for all (s,s‟) B, {

if (s,t) R, (s‟,t‟) R‟((t,t‟)  B), B = B - {(s,s‟)};

if (s‟,t‟) R‟, (s,t) R((t,t‟)  B), B = B - {(s,s‟)};

} } until no more changes to B for any (s,s‟).

if s0S0 s0‟S0‟ ((s0,s0‟)  B), return “no bisimulation;”

if s0‟S0‟ s0S0 ((s0,s0‟)  B), return “no bisimulation;”

return “bisimulation exists.”

}

The procedure terminates since BSS‟ is finite.

A symbolic version

is also possible.
(skipped due to time-limit)

211

Language inclusion

Since both can be modeled as automata, we can

check the relation between their languages.

 Language of a model: L(Model).

 Language of a specification: L(Spec).

We need: L(Model)  L(Spec).

106

212

Language inclusion

- Correctness with runs

All sequences

Sequences satisfying Spec

Program executions

213

Language inclusion

- How to do it ?

 Show that L(Model)  L(Spec).

 Equivalently:

Show that L(Model)  L(Spec) = Ø .

 How? Check that Amodel ASpec is empty.

M S M S

M S M S  

107

214

Language inclusion

- What do we need to know?

1. How to intersect two automata?

2. How to complement an automaton?

3. How to check for emptiness of an

automaton ?

4. How to translate from LTL to an

automaton ? (next week …)

L(Model)  L(Spec) = Ø .

215

Language inclusion

- Automata for infinite sequences

State Sequences as Words
 Let AP be the finite set of atomic propositions

of the formula f.

 Let Σ = 2AP be the alphabet over AP.

 Every sequence of states is an ω word in Σω

 α = P0, P1, P2, … where Pi = L(si).

 A word a is a model of formula f iff α|= f

 Example: for f = p (¬ q U q) {p},{},{q},{p,q}ω

 Let Mod(f) denote the set of models of f.

108

216

Language inclusion

- Büchi automata

Büchi automaton A = (Q,Σ,δ,I,F)

 Q – finite set of states

 Σ – finite alphabet

 δ – transition relation

 I – set of initial states

 F – set of acceptance states

A run ρ of A on ω word α

ρ = q0,q1,q2,…, s.t. q0  I and

(qi,αi,qi+1)  δ

ρ is accepting if Inf(ρ)F ≠ 

a

b

q1

q2

a

b

217

Buchi Automaton

 Given an infinite word w   where w = a0,

a1, a2, …

a run r of the automaton A over w is an infinite

sequence of automaton states r = q0, q1, q2, …

where q0  I and for all i  0, (qi,ai,qi+1)  

 Given a run r, let inf(r)  Q be the set of

automata states that appear in r infinitely

many times

 A run r is an accepting run if and only if inf(r)

 F  

i.e., a run is an accepting run if some accepting

states appear in r infinitely many times

109

218

Transition System to Buchi

Automaton Translation

Given a transition system T = (S, I, R)

a set of atomic propositions AP and

a labeling function L : S  AP  {true, false}

the corresponding Buchi automaton AT=(T,QT, δT, IT, FT)

T = 2AP an alphabet symbol corresponds to a set

of atomic propositions

QT = S  {i} i is a new state which is not in S

IT = {i} i is the only initial state

FT = S  {i} all states of AT are accepting states

δT is defined as follows:

(s,a,s‟)  δT iff either (s,s‟)  R and L(s‟,a) = true

or s=i and s‟  I and L(s‟,a) = true

219

Transition System to Buchi

Automaton Translation

Each state is labeled with

the propositions that hold

in that state

Example transition system Corresponding Buchi automaton

{p,q}

{p}

{q}

{p,q}

{q}

i

1

2 3

2

1

3

p,q

q p

110

220

Generalized Buchi Automaton

A generalized Buchi automaton is a tuple A =

(, Q, δ, I, F) where

 is a finite alphabet

Q is a finite set of states

δ  Q    Q is the transition relation

I Q is the set of initial states

F  2Q is sets of accepting states

i.e., F = {F1, F2, …, Fk} where Fi  Q for 1  i  k

 Given a generalized Buchi automaton A, a

run r is an accepting run if and only if

 for all 1  i  k, inf(r)  Fi  

This is different than

the standard definition

221

Buchi Automata Product

Given A1=(,Q1,δ1,I1,F1) and A2=(,Q2,δ2,I2,F2)

the product automaton A1  A2 = (, Q, δ,I, F) is

defined as:

 Q = Q1  Q2

 I = I1  I2

 F = {F1Q2,Q1F2} (a generalized Buchi automaton)

 δ is defined as follows:

 ((q1,q2),a,(q1‟,q2‟))  δ iff (q1,a,q1‟)  δ1 and (q2,a,q2‟)  δ2

Based on the above construction, we get

L(A1  A2) = L(A1)  L(A2)

111

222

Buchi automaton 1

{p,q}

{p}

{q}

{p,q}

{q}

{q},{p,q}

, {p}

,{p},{q},

{p,q}

Buchi automaton 2

1

2

3 4

1 2

Product automaton

{p,q}

{p}

{q}

{p,q}

1,1

2,1

3,1

4,2

{q}

3,2

{p}

Example, a Special Case

Since all the states in the

automaton 1 is accepting, only

the accepting states of

automaton 2 decide the

accepting states of the

product automaton

223

Buchi Automata Product Example

a b

r1 r2

b

a

b a

q1 q2

a

b
L(R) = (b*a)

Automaton R Automaton Q

L(Q) = (a*b)

r1,q1

Automaton R  Q

L(R  Q) = L(R)  L(Q)

r2,q1

r1,q2 r2,q2

F = {

{(r1,q1), (r1,q2)},

{(r1,q1), (r2,q1)}

}

b

b
b

b

a

a

a
a

112

224

Language inclusion

- intersecting two finite-state automata

b

a

a

b
s0 s1A1:

A2:

L(A1) = (a+b)*a + 
(words ending with „a‟
+ empty word)

What should be the language of A1A2 ?

L(A2) = (ba)* + (ba)*b + 
(words that alternate
between b and a + empty

word)

a

b
t0 t1

225

Language inclusion

- intersecting two finite-state automata

1. States: (s0,t0), (s0,t1), (s1,t0), (s1,t1).

2. Initial state(s): (s0,t0).

3. Accepting states: (s0,t0), (s0,t1).

A1:

A2:

A1A2:

b

a

a

b
s0 s1

a

b
t0 t1

113

226

s0,t0

s0,t1

s1,t1

s1,t0b

b

a

aA1  A2:

L(A1A2) = (ba)* + 

Language inclusion

- intersecting two finite-state automata

A1:

A2:

b

a

a

b
s0 s1

a

b
t0 t1

227

Language inclusion

- intersecting two Büchi automata

Previous method doesn‟t work:

a

b
s0 s1a

b Infinite a‟s

b

a
t0 t1b

a
Infinite b‟s

s0, t0

s0, t1 s1, t0

a b

s1, t1

a

b

a b

Empty language !

114

228

Language inclusion

- intersecting two Büchi automata

Strategy:

 “Multiply” the product automaton by 3

(S = S1S2 {0,1,2})

 Start from the „0‟ copy.

 Transition to the „1‟ copy when visiting a state from

F1

 Transition to the „2‟ copy if in a „1‟ state and visiting

a state from F2, and in the next state back to a „0‟
state.

 Make the „2‟ copy an accepting set.

229

Language inclusion

- intersecting two Büchi automata

a

b
s0 s1a

b

b

a
t0 t1b

a

a

a
b

b

a
a

a

a b

(s1,t0,2)

(s0,t1,1)

b b

(s0,t0,0)

(s1,t0,0)

(s0,t1,0)

There are total of 12 states in the
product automaton.

The reachable part of A1A2 is:

115

230

Language inclusion

- How to complement?

 Complementation is hard!

 We know how to translate an LTL formula to

a Buchi automaton. So we can:

 Build an automaton A for , and complement A, or

 Negate the property, obtaining ¬  (the sequences

that should never occur). Build an automaton for

¬  .

231

Language inclusion

- How to check for emptiness?

Need to check if there exists an accepting run (passes

through an accepting state infinitely often).

This is called checking for emptiness, because if no

such run exists, then L(A) = ;

116

232

Language inclusion

- emptiness and accepting runs

 If there is an accepting run, then it contains at least

one accepting state an infinite # of times.

 This state must appear in a cycle.

 So, find a reachable accepting state on a cycle.

What graph algorithm ?

233

Language inclusion

- Finding accepting runs

 Rather than looking for cycles, look for SCCs:

 A Strongly Connected Component (SCC): a set

of nodes where each node is reachable from all

others.

 Finding SCC‟s is linear in the size of the graph.

 Find a reachable SCC with an accepting node.

117

234

Language inclusion

- Verification under Fairness

Express the fairness as a property φ.

To prove a property ψ under fairness,

model check φψ.

Fair (φ)

Bad (¬ ψ) Program

Counter

example

