State Machines
 Formal Methods
 Lecture 3

Farn Wang
Dept. of Electrical Engineering
National Taiwan University

Purpose

Understanding

- the formal semantics of programs
- the definition of state transition systems
- Problems of finite-state system analysis
- Algorithms for the problems

Organization

- Sequential Program - Operational Semantics
- Kripke Structures
- Concurrent Systems
- Verification problems of state-transition systems

State-space representations from programs

- States, transitions
- Program Variables
- Program Counter (pc), data variables, ...
- Program State
- Valuation of program variables
- Transition
- Moving one state to another by executing a program statement.

Kripke structure from programs

- operational Semantics
- Operational Semantics clarifies the execution of a program.
- Closes the gap between the text of a program and the behaviors represented by it.
- Let us look only at sequential programs for the moment.

IMP : a toy imperative language

- IMP is an imperative language in the style of PASCAL or C (even though some of the syntax may be different)
- The language contains arithmetic and boolean expressions as well as if-then-else, while statements.
- The syntax of the program will be described by BNF grammars.

IMP : a toy imperative language

- During execution of IMP program, the state of execution will be captured by the values of program variables.
- Operational semantics will be described by rules which specify how
- Expressions in IMP pgm. are evaluated
- Statements in IMP pgm. change the state

BNF, syntax definitions

Note!
Be sure how to read BNF!

- used for define syntax of context-free language
- important for the definition of
- automata predicates and
- temporal logics
- Used throughout the lectures!
- In exam: violate the syntax rules $\boldsymbol{\rightarrow}$ no credit.

$$
\begin{gathered}
A::=c|x|(M)\left|A_{1}+A_{2}\right| A_{1}-A_{2} \\
M:=c|x|(A)\left|M_{1}^{*} M_{2}\right| M_{1} / M_{2} \\
\quad c \text { is an integer } \\
x \text { is a variable name. }
\end{gathered}
$$

BNF, syntax definitions

- Examples of context-sentivity

Session I:

- A: Are you married ?
- B: No!
- A: Do you have children?
- B: ©

Rude contextual interpretation: Are you a single parent?

Session 2:
Session 4:

- A: Do you have children? - A: Do you have children?
- B: Yes!
- B: No!
- A: Are you married?
- A: Are you married?
- B: :

B: ©

Rude contextual interpretation: Are you a single parent?

BNF, syntax definitions
$A::=c|x|(M)\left|A_{1}+A_{2}\right| A_{1}-A_{2}$ $M::=c|x|(A)\left|M_{1}{ }^{*} M_{2}\right| M_{1} / M_{2}$ c is an integer x is a variable name.

BNF, syntax definitions

- derivation trees (from top down)
$A::=c|x|(M)\left|A_{1}+A_{2}\right| A_{1}-A_{2}$ $M::=c|x|(A)\left|M_{1}{ }^{*} M_{2}\right| M_{1} / M_{2}$
c is an integer x is a variable name.
used in string generation.

11

BNF, syntax definitions

- parsing trees (from bottom up)
$A::=c|x|(M)\left|A_{1}+A_{2}\right| A_{1}-A_{2}$ $M::=c|x|(A)\left|M_{1}{ }^{*} M_{2}\right| M_{1} / M_{2}$ c is an integer x is a variable name. used in compiler.

$\left(3^{*} x\right)+y-3$

Syntax of IMP

- Non-negative integers N
- Truth values $T=\{$ true, false $\}$
- Variables V
- Arithmetic expressions A
- Boolean expressions B
- Statements/commands C

Syntax of expression

Arithmetic expressions

$$
\begin{aligned}
& \bar{A}::=c|x| A_{1} \oplus A_{2}|(A)|(B) ? A_{1}: A_{2} \\
& c \in \aleph, x \text { is a variable. } \\
& \oplus \in\left\{+,-,{ }^{*}, /, \%\right\}
\end{aligned}
$$

Boolean expressions
$\bar{B}::=$ true $\left|\mathrm{A}_{1} \approx \mathrm{~A}_{2}\right| \sim \mathrm{B}_{1}\left|\mathrm{~B}_{1}\right|\left|\mathrm{B}_{2}\right|\left(\mathrm{B}_{1}\right)$
$\approx \in\{<=,<,==,!=,>,>=\}$
false $\equiv \sim$ true, $\mathrm{B}_{1}=>\mathrm{B}_{2} \equiv\left(\sim \mathrm{~B}_{1}\right) \| \mathrm{B}_{2}$,
$B_{1} \& \& B_{2} \equiv \sim\left(\left(\sim B_{1}\right) \| \sim B_{2}\right)$

Expressions

- examples
- $x+2^{*} y<3$
- $x^{*} y+y^{*} y^{*} 3==z$
- x
- $x+2 y<3 \| x^{*} y+y^{*} y^{*} 3=<z$
- ($\left.x+2^{*} y<3 \| \sim x^{*} y+y^{*} y^{*} 3==z\right) \& \& f l a g$

Please construct the parsing trees.

Syntax of Commands C

$$
\begin{aligned}
& \mathrm{C}::=; \\
& \quad \mid x=\mathrm{A} ; \\
& \quad \mid\left\{\mathrm{C}_{1}\right\} \\
& \mid \mathrm{C}_{1} \mathrm{C}_{2} \\
& \mid \text { if }(\mathrm{B}) \mathrm{C}_{1} \text { else } \mathrm{C}_{2} \\
& \\
& \mid \text { while }(\mathrm{B}) \mathrm{C}_{1}
\end{aligned}
$$

```
IMP
- statement example
w = 0;
x = 0;
y = z*z;
while (x < y) {
    w = w + X* z;
    x = x + 1;
}
if (w > ' ** z*z) w = = '* z*z;
```

Please construct the parsing tree.

Execution model

- Operational semantics of IMP describes how programs in that language are executed.
- To describe this, it needs to assume an underlying execution model.
- The execution model could be thought as a state machine although not necessarily a finite state machine.

Operational Semantics

Operational Semantics for the IMP language
will give rules to describe the following:
Give a state s

- How to evaluate arithmetic expressions
- How to evaluate Boolean expressions
- How the commands can alter s to a new state s^{\prime}

States

A state is a valuation of program variables i.e. each variable is mapped to a value in its type

- Thus, if $\{a, b\}$ are the only variables in an IMP program, then each of the following are states in the execution model
- $a=0, b=0$
- $a=0, b=1$
- $a=0, b=2$
- ...
- $a=1, b=0$
- ...

Meaning of Arith. Expressions (1)

〈A,s \rangle

- Numbers: $\langle\mathrm{c}, \mathrm{s}\rangle=\mathrm{c}$

Number c in any state s evaluates to c

$$
\text { E.g. }\langle 0, s\rangle=0,\langle 5, s\rangle=5
$$

- Variables: $\langle x, \mathbf{s}\rangle=\mathbf{s}(x) \quad\langle X, \mathbf{s}\rangle \equiv \mathbf{s}(X)$

Variable X in state s evaluates to value of x in s.
E.g. $\langle a,(a=5, b=20)\rangle=5,\langle b,(a=5, b=20)\rangle=20$

Meaning of Arith. Expressions (2)

$\langle A, s\rangle$

- Sums: $\langle a+b, \mathbf{s}\rangle=\langle a, \mathrm{~s}\rangle+\langle b, \mathrm{~s}\rangle$
e.g. $\langle a+b,(a=5, b=20)\rangle=25$
- Products: $\left\langle a^{*} b, \mathbf{s}\right\rangle=\langle a, \mathbf{s}\rangle^{*}\langle b, \mathbf{s}\rangle$
e.g. $\left\langle a{ }^{*} b,(a=5, b=20)\right\rangle=100$

Example arith. expr. evaluation

Evaluating meaning of a complicated arithmetic expression will require

- Several application of the above rules
- Operator precedence
$\mathrm{EX}:\left\langle a{ }^{*} b+b,(a=5, b=20)\right\rangle$

$$
\begin{aligned}
& =\left\langle a^{*} b,(a=5, b=20)\right\rangle+\langle b,(a=5, b=20)\rangle \\
& =\langle a,(a=5, b=20)\rangle^{*}\langle b,(a=5, b=20)\rangle+20 \\
& =5 * 20+20=120
\end{aligned}
$$

Meaning of Boolean Expression (1)
$\langle B, \mathrm{~s}\rangle$

- \langle true, s $\rangle=$ true
- \langle false, s $\rangle=$ false
- Inequality Check:

$$
\left\langle A_{1} \approx A_{2}, s\right\rangle=\left\langle A_{1}, s\right\rangle \approx\left\langle A_{2}, s\right\rangle
$$

- Negation:

$$
\langle\sim B, s\rangle=\sim\langle B, s\rangle
$$

- Disjunction:
$-\left\langle B_{1} \| B_{2}, s\right\rangle=\left\langle B_{1}, s\right\rangle \|\left\langle B_{2}, s\right\rangle$

Workout

State s:($a=5, b=6$)

- $\langle a=b, \mathbf{s}\rangle \equiv\langle a, \mathrm{~s}\rangle=\langle b, \mathrm{~s}\rangle \equiv 5=6 \equiv$ false
- $\langle\sim a=b, \mathrm{~s}\rangle=\sim\langle a=b, \mathrm{~s}\rangle=$ true
- $\langle a<=b, \mathbf{s}\rangle \equiv\langle a, \mathbf{s}\rangle<=\langle b, \mathbf{s}\rangle \equiv 5<=6 \equiv$ true
- $\langle a<=b \& \& a=b, \mathrm{~s}\rangle$
$=\langle a<=b, \mathrm{~s}\rangle \& \&\langle a=b, \mathrm{~s}\rangle$
$=$ true \&\& false
= false

Meaning of Expressions

－Expressions evaluate to values in a given state
－Therefore，the meaning of expressions are given by values．
－Boolean values for boolean expressions
－Number for arithmetic expressions
－Using the meaning of expressions，we can assign meaning to commands．

Workout

State s：（a＝3，b＝10，c＝5）
1．$\left\langle a+3^{*} b^{*} c, s\right\rangle=$
8．$\langle>$ ，s $\rangle=$ false
2．$\left\langle a+3^{*} b=c, s\right\rangle=$
9．$\langle\wedge \neg$ ， s$\rangle=$ true
3．〈 \neg
， s$\rangle=$ false
10．$\langle\neq \wedge\urcorner$ ，s〉＝true
4．〈 $=$
， s$\rangle=$ true
11．$\langle\quad \rightarrow \quad, \mathrm{S}\rangle=$ false
5．〈
$\wedge, \mathrm{s}\rangle=$ true
12．〈 $\vee \neg$
，s $\rangle=$ true
6．$\langle\vee$
，s $\rangle=$ false
13．〈 \rightarrow
$, \mathrm{s}\rangle=$ true
7．$\langle\leq$ ，s）＝false

Meaning of Commands

- Execution of commands leads to a change of program state.
- Therefore the meaning of a command C is: If C is executed in some state s , how does it change sto s'.

$$
\langle C, \mathrm{~s}\rangle=\mathrm{s}^{\prime}
$$

Rules for commands (1)

$\langle\mathrm{C}, \mathrm{s}\rangle$
$-\langle;, s\rangle=s$

- $\langle x=\mathrm{A} ;, \mathrm{s}\rangle=\mathbf{s}[x=\mathrm{A}]$
- $\mathrm{S}[x=A]$ is the same as state s except that the value of x is $\langle\mathrm{A}, \mathrm{s}\rangle$.
- Ex: $(a=5, b=20, c=2)[a=7]=(a=7, b=20, c=2)$
- Ex: $(a=5, b=20, c=2)[a=5]=(a=5, b=20, c=2)$
- Ex: $(a=5, b=20, c=2)[a=\mathrm{b}+\mathrm{c}]=(a=22, b=20, c=2)$
- $\left\langle\left\{\mathrm{C}_{1}\right\}, \mathrm{s}\right\rangle=\left\langle\mathrm{C}_{1}, \mathrm{~s}\right\rangle$

Rules for commands (1)

$\langle\mathrm{C}, \mathrm{s}\rangle$
$-\left\langle\mathrm{C}_{1} \mathrm{C}_{2}, \mathrm{~s}\right\rangle=\left\langle\mathrm{C}_{2},\left\langle\mathrm{C}_{1}, \mathrm{~s}\right\rangle\right\rangle$

- $\left\langle\right.$ if (B) C_{1} else $\left.C_{2}, s\right\rangle=\left\langle C_{1}, s\right\rangle$ if $\langle B, s\rangle=$ true
$\left\langle\right.$ if $(B) C_{1}$ else $\left.C_{2}, s\right\rangle=\left\langle C_{2}, s\right\rangle$ if $\langle B, s\rangle=$ false
- $\left\langle\right.$ while $\left.(B) C_{1}, s\right\rangle=s$ if $\langle B, s\rangle=$ false
$\left\langle\right.$ while $\left.(B) C_{1}, \mathrm{~s}\right\rangle=\left\langle\right.$ while $\left.(\mathrm{B}) \mathrm{C}_{1},\left\langle\mathrm{C}_{1}, \mathrm{~s}\right\rangle\right\rangle$ if $\langle\mathrm{B}, \mathrm{s}\rangle=$ true

Summary of rules

- The meaning of each commands specifies how an execution of the command changes state.
- Roughly speaking, this is done by simulating the execution of the commands.
- For example, the rule for while essentially unfolds the iterations of while loop.

Kripke Structure

- A state-transition system that captures
- What is true of a state
- What can be viewed as an atomic move
- The succession of states
- Static representation that can be unrolled to a tree of execution traces, on which temporal properties are verified

Kripke structure To extend to integer programs,

- syntax

L allows us to describe the truth/falsehood of a proposition in the various states of a system.

- The propositions refer to valuations of
- atransition relation
- L:S $\mapsto 2^{\mathrm{P}}$ the state variables.
- a function that associates each state with set of propositions true in that state

Kripke Model

- syntax
- Set of states $S=\left\{q_{1}, q_{2}, q_{3}\right\}$
- Set of initial states $S_{0}=\left\{q_{1}\right\}$
- $R=\left\{\left(q_{1}, q_{2}\right),\left(q_{2}, q_{2}\right)\right.$,
$\left(q_{1}, q_{3}\right),\left(q_{3}, q_{1}\right)$, $\left.\left(q_{3}, q_{2}\right)\right\}$

- Set of atomic propositions AP=\{a,b\}
- $\mathrm{L}\left(\mathrm{q}_{1}\right)=\{\mathrm{a}\}, \mathrm{L}\left(\mathrm{q}_{2}\right)=\{\mathrm{a}, \mathrm{b}\}, \mathrm{L}\left(\mathrm{q}_{3}\right)=\{\mathrm{b}\}$

Kripke structure

- semantics

Given a Kripke structure $A=\left(S, S_{0}, R, L\right)$, a run is a finite or infinite sequence

$$
\mathrm{s}_{0} \mathrm{~s}_{1} \mathrm{~s}_{2} \ldots \mathrm{~s}_{\mathrm{k}} \ldots
$$

such that

- $\mathrm{S}_{0} \in \mathrm{~S}_{0}$
- for each $k \in \mathbb{N}$, if s_{k+1} exists,
- $\mathrm{S}_{\mathrm{k}+1} \in \mathrm{~S}$ and
- $R\left(s_{k}, s_{k+1}\right)$ is true.

Control and data variables

- State = valuation of control and data vars.
- In our example
a pc0, pc1 are control variables.
- turn is a shared data variable.
- To generate a finite state transition system
- Data variables must have finite types, and
- Finitely many control locations

Program \rightarrow Kripke structure

- Data variables

Data variables often do not have finite types

- integer, ...
- Usually abstracted into a finite type.
- An integer variable can be abstracted to \{, $0,+\}$
- Just store the information about the sign of the variable. (coming up with these abstractions is a whole new problem).

Program \rightarrow Kripke structure

- Control Locations

Isn't the control locations of a program always finite?

- NO, because your program may be a concurrent program with unboundedly many processes or threads (parameterized system).
- Can employ control abstractions (such as symmetry reduction)

2009/10/28 stopped here.

Program \rightarrow Kripke structure

- States and Transitions
- Each component makes a move at every step.
- Digital circuits are most often synchronous.
- Common clock driving the system.
- Contents of flip-flops define the states.
- On every clock pulse, the content of every flip-flop (potentially) changes.
- This change is captured by the transition relation.

Program \rightarrow Kripke structure

- States and Transitions
- Define $\mathrm{V}=\left\{\mathrm{v}_{1}, \ldots, \mathrm{v}_{n}\right\}$, boolean variables representing state of flip-flops in the circuit.
- Set of states represented by boolean formula over $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}$.
- To define transitions, define a fresh set of variables $\mathrm{V}^{\prime}=\left\{\mathrm{v}^{\prime}{ }_{1}, \ldots, \mathrm{~V}_{n}^{\prime}\right\}$. These are the next state variables.
- The transitions are now represented by a relation $\mathrm{R}\left(\mathrm{V}, \mathrm{V}^{\prime}\right) \subseteq \mathrm{V} \times \mathrm{V}^{\prime}$

Kripke structure

- Transition Relation
- ($\left.\mathrm{s}, \mathrm{s}^{\prime}\right) \in \mathrm{R}\left(\mathrm{V}, \mathrm{V}^{\prime}\right)$ implies $\mathrm{s} \rightarrow \mathrm{s}$ '
- Now, $R\left(V, V^{\prime}\right)=\cup_{i \in\{1, \ldots, n\}} R_{i}\left(V, V^{\prime}\right)$, where captures the changes in state variable v_{i}
- Define $R_{i}\left(V, V^{\prime}\right)=\left(v_{i}^{\prime} \Leftrightarrow f_{i}(V)\right)$ where $f_{i}(V)$ is a boolean function defining the value of flip-flop i in next state.
- Given a synchronous circuit, we then need to define $f_{i}(V)$ for each i.

Transition relation

- A synchronous mod 8 counter
- $\mathrm{V}=\left\{\mathrm{v}_{2}, \mathrm{v}_{1}, \mathrm{v}_{0}\right\}$, where v_{0} is the least significant bit.
- The transitions can be enumerated as:

$$
000 \rightarrow 001 \rightarrow 010 \rightarrow
$$

- Alternatively define how each of the three bits are changed on every clock cycle
$\square \mathrm{v}^{\prime}=\neg \mathrm{v}_{0}$ (the least significant bit)
- $\mathrm{v}_{1}^{\prime}=\mathrm{v}_{0} \oplus \mathrm{v}_{1}$
- $\mathrm{v}_{2}^{\prime}=\left(\mathrm{v}_{0} \wedge \vee 1\right) \oplus \mathrm{v}_{2}$ (the most significant bit)

Kripke Structure
 - example

Suppose there is a program

```
initially x==1 && y==1;
while (true)
    x = (x+y) % 2;
```

where x and y range over $D=\{0,1\}$

Kripke Structure

- example

Suppose there is a program
initially $x==1 \& \& y==1$;
while (true)

$$
x=(x+y) \% 2 ;
$$

where x and y range over $D=\{0,1\}$

Kripke Structure
 - example

Suppose there is a program

$\begin{aligned} & \text { initially } x==1 \& \& y==1 \text {; } \\ & \text { while (true) } \\ & x=(x+y) \% 2 \text {; } \end{aligned}$	$S=D \times D=\{(0,0),(0,1),(1,0),(1,1)\}$
	$S_{0}=\{(1,1)\}$
	$\begin{array}{r} R=\{((1,1),(0,1)),((0,1),(1,1)), \\ \quad((1,0),(1,0)),((0,0),(0,0))\} \end{array}$
	$L((1,1))=\{x=1, y=1\}$,
	$L((0,1))=\{\mathrm{x}=0, \mathrm{y}=1\}$,
	$L((1,0))=\{x=1, y=0\}$,
	$L((0,0))=\{x=0, y=0\}$

where x and y range over $D=\{0,1\}$

Kripke Structure

- example

Suppose there is a program

initially $x==1 \& \& y==1$; while (true)$x=(x+y) \% 2 ;$	$S=D \times D=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$
	$S_{0}=\{\mathrm{a}\}$
	$R=\{(\mathrm{a}, \mathrm{b}),(\mathrm{b}, \mathrm{a})$,
	(c, c), (d, d) \}
	$L(a)=\{x=1, y=1\}$,
	$L(b)=\{x=0, y=1\}$,
	$L(c)=\{x=1, y=0\}$,
	$L(d)=\{x=0, y=0\}$

where x and y range over $D=\{0,1\}$

Workout

- Kripke Structure

Suppose there is a program

$$
\begin{aligned}
& \text { initially } x==1 \& \& y==1 ; \\
& \text { while (true) } \\
& \quad x=(x+y) \% 3 ;
\end{aligned}
$$

where x and y range over $D=[0,2]$

Kripke Structure

- an example

$$
\text { Initially } x=0
$$

While (true)

$$
x:=1-x ;
$$

Kripke Structure

- example

A 2-bit counter operates at bit-level.

Kripke Structure

- workout

Write a simple program for the Kripke structures in the last page.
\qquad

Automata \& Kripke structure

State-transition graphs

- an extension of automata for complex models

56

State-transition graphs

State transition graphs

- from a program

58

State-transition graphs

- from a procedure call example
(1) $f(n)\{$
(2) $x=1$;
(3) while $\mathrm{n}>0$, do \{
(4) $x=x^{*} 2 ; n=n-1$;
(5) $\}$
(6) return x;
(7) \}
(8) main (c,d) \{
(9) $\mathrm{c}=\mathrm{f}(\mathrm{c}+\mathrm{d})$;
(10) if $(c>10)$
(11) print "yes".
(12) else print "no".
(13) \}
(9)
(8)
$->$

Guarded commands with modes (GCM)

- A text language for state-transition graphs
- For multi-thread systems
- Extension with programming concepts

\qquad Process count declaration	
Variable declaration	
Inline expression declaration (optional)	
Mode declaration	
Specification (optional)	

Guarded commands with modes (GCM)
 - a language for state-transition graphs

V is a variable declaration.
E is an arithmetic expression.
B is a Boolean condition.
C is a program of IMP commands or "goto name" where name is a mode name.
Each rule R is executed atomically.

- for the modeling of complex behaviors in transitions.

A program can be a set of GCM.

- At any moment, at most one command is executed.

Guarded commands with modes (GCM)

- a language for state-transition graphs

Guarded commands with modes (GCM)

- a language for state-transition graphs

IL ::= inline TYPE name (FSL) \{EI \}
FSL $::=\mid$ FS
FS $::=f \mid f$, FS $/ / f:$ a formal argument
El $::=f|x| x[c] / / x:$ a declared discrete variable
| (EI)|El+EI|EI-EI|El*EI|El/El|EI\%EI
|(BI)?El:El|\#PS|P
| name (EISS)
EISS ::= | EIS
EIS ::= El|EI, EIS

Guarded commands with modes (GCM)

- a language for state-transition graphs
$\mathrm{BI}::=(\mathrm{BI})|\mathrm{El}<=\mathrm{El}| \mathrm{El}<\mathrm{El}|\mathrm{El}>=\mathrm{El}| \mathrm{El}>E \mathrm{El}$
| El==El| El!=El
| $\mathrm{BI} \& \& \mathrm{BI}|\mathrm{BI}||\mathrm{BI}| \sim \mathrm{BI} \mid \mathrm{BI}=>\mathrm{BI}$
| forall x : c.. $c, \mathrm{BI} \mid$ exists $x: c . . c, \mathrm{BI}$
| name (EISS)

Guarded commands with modes (GCM)

- a language for state-transition graphs

MS ::=| M MS
$\mathrm{M}::=$ [urgent] mode name (B) $\{\mathrm{RS}\}$
$\mathrm{B}::=(\mathrm{B})|\mathrm{E}<=\mathrm{E}| \mathrm{E}<\mathrm{E}|\mathrm{E}>=\mathrm{E}| \mathrm{E}>\mathrm{E}|\mathrm{E}==\mathrm{E}| \mathrm{E}!=\mathrm{E}$
$\mid \mathrm{B}$ \&\& $\mathrm{B}|\mathrm{B}||\mathrm{B}| \sim \mathrm{B}|\mathrm{B}=>\mathrm{B} \mathrm{E}|$ name (ESS)
\mid forall $x: c . . c, \mathrm{~B} \mid$ exists $x: c . . c, \mathrm{~B}$
$\mathrm{E}::=x \mid x[c] / / x:$ a declared discrete variable
| (E) |E+E|E-E|E*E|E/E|E\%E
| (B)?E:E |name (ESS)
ESS: := |ES
ES ::=E|E ES

```
Guarded commands with modes (GCM)
- a language for state-transition graphs
RS ::= | R RS
R ::= when SS (B) may C
SS ::= | S SS
S ::= ?x | ?(E)x | lx|!(E)x // x is a global synchronizer
    | ?x@q| ?x@(E)| lx@q| !x@(E)
C ::= ACT | {C}| C C | if (B) C else C | while (B) C
ACT ::= ; | goto name; | x = E ;
```


Guarded commands with modes (GCM)

INI ::= initially B;

Guarded commands with modes (GCM)
 - a language for state-transition graphs

GTASK ::= check branching simulation | check branching bisimulation

 GS $::=c \mid c, \mathrm{GS}$a sequence of thread indices
for a particular roles

A state-transition

- represented as a GCM

A state-transition

- represented as a GCM
pocess count $=1$;
global discrete $w, x, y, z: 0 . .5$;
mode a1 (true) $\{$ when (true) may $\mathrm{w}=0$; goto $\mathrm{a} 2 ;\}$
mode a2 (true) $\{$ when (true) may $x=0$; goto a3; \}
mode a3 (true) $\left\{\right.$ when (true) may $y=z^{*} z$; goto a4; \}
mode a4 (true) \{ when ($x>=y$) may goto a8;
when ($x<y$) may goto a5; \}
mode a5 (true) $\left\{\right.$ when (true) may $w=w+x^{*} z$; goto a6; \}
mode a6 (true) \{ when (true) may $x=x+1$; goto a4; \}
mode a8 (true) $\left\{\right.$ when (true) may if ($w>z^{*} z^{*} z$) $\left.w=z^{*} z^{*} z ;\right\}$
initially a $1[1] \& \&==1 \& \& x==1 \& \& y==1 \& \& z==1$;

A state-transition

- represented as a GCM
pocess count $=1$;
global discrete w, x,y,z:0..5;
mode a1.2 (true) $\{$ when (true) may $w=0 ; x=0$; goto a3; \}
mode a3 (true) $\left\{\right.$ when (true) may $y=z^{*} z$; goto $\left.a 4 ;\right\}$
mode a4 (true) \{ when ($x>=y$) may goto a8;
when ($x<y$) may goto a5; \}
mode a5 (true) $\left\{\right.$ when (true) may $w=w+x^{*} z$; goto $\left.a 6 ;\right\}$
mode a6 (true) $\{$ when (true) may $x=x+1$; goto a4; \}
mode a8 (true) $\left\{\right.$ when (true) may if ($w>z^{*} z^{*} z$) $\left.w=z^{*} z^{*} z ;\right\}$
initially a1[1]\&\&w==1\&\&x==1\&\&y==1\&\&z==1;

Guarded commands with modes (GCM)
 guarded commands

1: $w=0$; when ($p \mathrm{c}==1$) may $\mathrm{w}=0 ; \mathrm{pc}=2$;
2: $x=0 ;---------->^{w}$ when ($\mathrm{pc}==2$) may $\mathrm{x}=0$; $\mathrm{pc}=3$; when ($p c==3$) may $y=z^{*} z ; p c=4$;
3: $y=z^{*} z ;----=-=-->$ when ($p c==4 \& \& x>=y$) may $p c=8$;
4: while $(x<y)\{---\rightarrow$ when ($p c==4 \& \& x<y$) may $p c=5$;
5: $w=w+x^{*} z ; \cdots \quad$ when $(p c==5)$ may $w=w+x^{*} z ; p c=\epsilon$
6: $\quad x=x+1 ; \cdots$ when ($p c==6$)may $x=x+1 ; p c=4$;
7: \} when ($p \mathrm{p}==8$)may if $\left(\mathrm{w}>\mathrm{z}^{*} \mathrm{z}^{*} \mathrm{z}\right)$ $w=z^{*} z^{*} z ;$
8: if (w $\left.>Z^{*} z^{*} z\right) w=z^{*} z^{*} Z$;
program

Concurrent programs

- A set programs running independently, communicating from time to time, thereby performing a common task.

- Flavors of Concurrency

- Synchronous execution
- Asynchronous / interleaved execution
- Communication via shared variables
- Message passing communication

Kripke Structure

- for a concurrent system
- Programs (as opposed to circuits) are typically considered asynchronous.
- An asynchronous concurrent system is a collection of sequential programs $P_{1} \ldots P_{k}$ running in parallel with only one pgm. making a move at every time step.
- How do the sequential programs communicate ?
- What are the behaviors of the concurrent system ?

Kripke Structure

- for a concurrent system
- Behaviors of each sequential program P_{i} captured by its operational semantic.
- The programs P_{i} need not be terminating.
- Behaviors (Traces) of $P_{1} \ldots P_{k}$ formed by interleaving the transitions of the programs.
- Consider two non-communicating programs.

Guarded commands

- for a concurrent system Interleavings

Semantics as

Kripke structure

state-transition graphs

Guarded commands

Semantics as

- for a concurrent system Interleavings
process count $=2$;
global discrete $\mathrm{x}, \mathrm{y}: 0 . .1$;
mode a (true) \{
when (true) may $x=1 ;\}$
mode b (true) \{
when (true) may $y=1 ;\}$
initially $a[1] \& \& b[2] \& \& x==0 \& \& y==0$;

Kripke structure

2009/11/04 stopped here.

Kripke Structure

- for a concurrent system
- Obtaining Kripke Structure from a concurrent program directly is laborious.
- Typically, model checking tools allow you to input the program in its modeling language, and then it extracts the Kripke Structure (or some succinct version of it).
- Model the sequential pgms. separately and specify a model of concurrency
e.g. asynchronous with shared variable communication

```
Kripke Structure
- A Mutual Exclusion Example
// 2 processes that communicate with a shared variable.
process count = 2;
global discrete turn: 0..1;
// state-transition graph for process 1
mode a0 (true) { when (turn==0) may goto a1;}
mode a1 (true) { when (true) may turn = 1; goto a0; }
// state-transition graph for process 2
mode b0 (true) { when (turn==1) may goto b1;}
mode b1 (true) { when (true) may turn = 0; goto b0; }
```

initially a0[1] \&\& b0[2];

Kripke Structure

- for a concurrent system states
states can be recorded as (mode of 1, mode of 2 , value of turn)
- mode of $1 \in\{a 0, \mathrm{a} 1\}$
- mode of $2 \in\{b 0, \mathrm{~b} 1\}$
- The value of turn $\in\{0,1\}$
- There are 8 states.
- Not all of them are reachable from the initial state.

09/11/18 stopped here.

State-transition graphs

- Synchronization

The reader process
(1) $\mathrm{buf}=0$;
(2) while true, do \{
(3) if (buf $==0$), read;
(4) \quad buf $=0$;
(5) \}

The writer process
(6) $\mathrm{d}=1$;
(7) while true, do \{
(8) if (buf $==0$),
(9) write buf $=d ; d=0$;
(10) $d=1$;
(11) $\}$

State-transition graphs

- Synchronization

Kripke structure (part)

State-transition graphs - Semantics of concurrency (I)
 time.

85

State-transition graphs

CSMA/CD protocol, the Ethernet protocol

- 500m in expanse
- 2500 m in expanse with repeaters
- Round-trip $48 \mu \mathrm{~s}$.
- Messages length at least 64 bytes to detect round-trip corruption.

90

State-transition graph for automata

- an exercise

Please construct an automata with

- input alphabet $\{1,0, e\}$
- output alphabet $\{1,0\}$
- reads in eeb $b_{n-1} \ldots b_{1} b_{0}$
- output $3^{*}\left(b_{n} b_{n-1} \ldots b_{1} b_{0}\right)$ with b_{n} as the most significant bit.

Example:

when input is ee1011(11), output is 100001(33)
ee11(3), 1001(9)

State-transition graph for automata - an exercise

92

State-transition graph for automata

- an exercise run for ee11(3)

State-transition graph for automata - an exercise run for ee11(3)

94

State-transition graph for automata

- an exercise run for ee11(3)

State-transition graph for automata - an exercise run for ee11(3)

State-transition graph for automata

- an exercise run for ee11(3)

State-transition graph for automata - an exercise run for ee1011(11)

State-transition graph for automata

- an exercise run for ee1011(11)

State-transition graph for automata - an exercise run for ee1011(11)

State-transition graph for automata

- an exercise run for ee1011(11)

State-transition graph for automata - an exercise run for ee1011(11)

State-transition graph for automata

- an exercise run for ee1011(11)

State-transition graph for automata

- an exercise run for ee1011(11)

$$
\begin{aligned}
& a_{n+2} a_{n+1} \cdots a_{1} a_{0}=3 *\left(e^{2} b_{n} b_{n-1} \cdots b_{1} b_{0}\right) \\
& \Rightarrow a_{k+1}=b_{k+1}+b_{k}+c_{k}
\end{aligned}
$$

State-transition graph for automata

- How to construct an automata for $\mathrm{c} \in \mathrm{N}$,

$$
c^{*}\left(b_{n} b_{n-1} \ldots b_{1} b_{0}\right)
$$

Need $([\log 2(c)\rceil) * 2^{\lceil\log 2(c)\rceil}+1$ states!

- How to construct an automata for

$$
a_{n} a_{n-1} \ldots a_{1} a_{0}+b_{n} b_{n-1} \ldots b_{1} b_{0} ?
$$

Can you do this?

- How to construct an automata for

$$
\sum_{c_{k}}{ }^{*}\left(b_{n, k} b_{n-1, k} \ldots b_{1, k} b_{0, k}\right) ?
$$

Kripke Structures

- composition for a concurrent system

Given $A_{i}=\left\langle\mathrm{S}_{i}, \mathrm{~S}_{i, 0}, R_{i}, L_{i}\right\rangle, 1 \leq i \leq n$
Cartesian Product of $A_{1}, A_{2}, \ldots, A_{n}$, $A=\left\langle S, S_{0}, R, L\right\rangle$

$$
S: S_{1} \times S_{2} \times \ldots \times S_{n}
$$

$S_{0}: S_{1,0} \times S_{2,0} \times \ldots \times S_{n, 0}$
$R\left(\left[s_{1}, \ldots, s_{j-1}, s_{j}, s_{j+1}, \ldots, s_{n}\right],\left[s_{1}, \ldots, s_{j-1}, s_{j}^{\prime}, s_{j+1}, \ldots, s_{n}\right]\right)$

- $\left(s_{i} s_{i}^{\prime}\right) \in R_{i}$
- According to the interleaving semantics, one process transition at a moment
$\mathrm{L}\left(\left[s_{1}, s_{2}, \ldots, s_{n}\right]\right)=L_{1}\left(s_{1}\right) \cup L_{2}\left(s_{2}\right) \cup \ldots \cup L_{n}\left(s_{n}\right)$

Kripke Structures

- Cartesian product method

1. Construct all the vectors of component process states
2. Eliminate all those inconsistent vectors according to invariance condition
3. Draw arcs from vectors to vectors according to process transitons

- Very often creates many unreachable states

Kripke structure

- Practical algorithm for construction

Given $A=\left\langle\mathrm{S}, \mathrm{S}_{0}, R, L\right\rangle$

- Usually only S_{0}, R, L are given.
- We may want to construct S.
- Usually S is too big to construct.

Kripke Structures

- on-the-fly method

1. Starting from the initial states (or goal states in backward analysis)
2. Step by step, add states that is reachable from those already reached, until no more new reachable states are generated.

- Tedious but may result in much smaller reachable state-space reprsentation.

Kripke Structures

- forward reachability analysis
- Use strongest postcondition to compute statespaces forward reachable from initial states
- Can only be used for safety analysis
- Very often can lead to larger state-space represenation
- Very often can lead to unnecessary total ordering enumeration
- Need symmetry reduction and partial-order reduction

Kripke Structures

- backward reachability analysis
- Use weakest precondition to compute state-spaces backward reachable from goal states
- The mandatory method for model-checking
- More like refutation
- Very often can lead to smaller state-space represenation
- Very often can lead to less total ordering enumeration

Kripke Structure

- propositions

Given by the valuation of the variables defining the states. Possible propositions
$p c_{0}=l_{0}, \ldots, p c_{0}=l_{3}$
$p c_{1}=m_{0}, \ldots, p c_{1}=m_{3}$
turn $=0$, turn $=1$
Clearly the proposition $p c_{0}=l_{0}$ is true in any state of the form $\left\langle p c_{0}=l_{0}, p c_{1}=\right.$?, turn $=$??
This clarifies the labeling function L in Kripke Structure

Kripke Structure

- system properties
- Propositions can be combined to state interesting properties
It is never the case that $p c_{0}=l_{2}$ and $p c_{1}=m_{2}$ The above is the mutual exclusion property. We will study a logic for describing properties in next class.

Kripke Structure

- fairness in a concurrent system

In a concurrent system, there could be several independent modules with independent descriptions.

- How can we construct the Kripke structure for global behavior description?
- How can we run the modules fairly?
- Is there a module that never gets execution in interleaving semantics?
- Is an unfair execution meaningless ?

Fairness in concurrent systems Semantics as

state-transition graphs

Kripke Structure

- fairness in a concurrent system
- Proc0 manipulates X
- Proc1 manipulates Y
- In the global state $<X=0, Y=1>$
- Proc0 or Proc1 could make a move.
- We allow the behavior that Proc1 always makes a move (self-loop)
- System is stuck at $\langle X=0, Y=1>$
- Unfair execution!

Fair Kripke Structures

- $\mathrm{M}=\left(\mathrm{S}, \mathrm{S}_{0}, \mathrm{R}, \mathrm{L}, \mathrm{F}\right)$
$\square S, S_{0}, R, L$ as before.
- $\mathrm{F} \subseteq 2^{\mathrm{S}}$ is a set of fairness constraints.
- Each element of F is a set of states which must occur infinitely often in any execution path.
- In our example, $\mathrm{F}=\{\{<\mathrm{X}=1, \mathrm{Y}=1>\}\}$
- Avoid getting stuck at $\langle X=0, Y=1\rangle$ or $\langle X=1, Y=0\rangle$

Kripke structure

- verification
- safety analysis
- Can the system be always safe ?
- Can a risk state happen ?
- liveness analysis
- Can the job be done sometimes ?
- Can the job be prevented from been done?
- bisimulation checking
- Are two Kripke structures the same transition by transition ?
- simulation checking
- Can one Kripke structure match every transition by the another ?
- language inclusion
- Are all traces of one Kripke structure also ones of another ?

Model Fistetoflaimess assumptions.
\checkmark : known;

- frameworks in our lecture in the lecture

2009/11/25 stopped here.

Kripke structure

- safety analysis

Given

- a Kripke structure $A=\left(S, S_{0}, R, L\right)$
- a safety predicate η,
can η be false at some state along some runs ?

Example:

Can the engine stall?
Can the boiler be overheated ?

Kripke structure

- safety analysis
$\square \neg(\mathrm{PC} 0=\mathrm{CR} 0 \wedge \mathrm{PC} 1=\mathrm{CR} 1)$ is an invariant!

Kripke structure
 - safety analysis

Reachability algorithm in graph theory
Given

- a Kripke structure $\mathrm{A}=\left(\mathrm{S}, \mathrm{S}_{0}, \mathrm{R}, \mathrm{L}\right)$
- a safety predicate $\boldsymbol{\eta}$,
find a path from a state in S_{0} to a state in $[\neg \mathrm{n}]$.
Solutions in graph theory
- Shortest distance algorithms
- spanning tree algorithms

Kripke structure

- safety analysis
$/^{*}$ Given $\mathrm{A}=\left(\mathrm{S}, \mathrm{S}_{0}, \mathrm{R}, \mathrm{L}\right)^{*} /$
safety_analysis (η) /* using least fixpoint algorithm */ \{ for all s, if $\eta \notin L(s), L(s)=L(s) \cup\{\exists \diamond \neg \eta\}$; repeat \{
for all s, if $\exists\left(\mathrm{s}, \mathrm{s}^{\prime}\right)\left(\exists \diamond \neg \eta \in \mathrm{L}\left(\mathrm{s}^{\prime}\right)\right)$, $\mathrm{L}(\mathrm{s})=\mathrm{L}(\mathrm{s}) \cup\{\exists \diamond \neg \eta\} ;$
\qquad

A notation for the possibility of
\} until no more changes to $L(s)$ for any s.
if there is an $\mathrm{s}_{0} \in \mathrm{~S}_{0}$ with $\exists \diamond \neg \eta \in \mathrm{L}\left(\mathrm{s}_{0}\right)$, return 'unsafe,' else return 'safe.'
\}
The procedure terminates since S is finite in the Kripke structure.

Kripke structure

- safety analysis

Kripke structure

- Least fixpoint in modal logics

Dark-night murder, strategy I:
A suspect will be in the 2nd round iff

- He/she lied to the police in the 1st round; or
- He/she is loyal to someone in the 2nd round What is the minimal solution to $2 n d[]$?

Liar[i] $\exists \exists \nexists \neq(2 n d[j] \wedge$ Loyal-to[i, $j]) \rightarrow 2 n d[i]$

Kripke structure

- Least fixpoint in modal logics

In a dark night, there was a cruel murder.

- n suspects, numbered 0 through $\mathrm{n}-1$.
- Liar[i] iff suspect i has lied to the police in the 1st round investigation.
- Loyal-to[i,j] iff suspect i is loyal to suspect j in the same criminal gang.
- 2nd[i] iff suspect ito be in 2nd round investigation.
What is the minimal solution to $2 n d[]$?

Kripke structure

- Greatest fixpoint in modal logics

In a dark night, there was a cruel murder.

- n suspects, numbered 0 through $\mathrm{n}-1$.
- \rightarrow Liar [i] iff the police cannot prove suspect i has lied to the police in the 1st round investigation.
- Loyal-to[i,j] iff suspect i is loyal to j and j is not in the $2^{\text {nd }}$ round.
- 2nd[i] iff suspect i to be in 2nd round investigation.
What is the maximal solution to $\neg 2 n d[]$?

Kripke structure

- Greatest fixpoint in modal logics

Dark-night murder, strategy II
A suspect will not be in the 2nd round iff

- We cannot prove he/she has lied to the police; and
- He/she is loyal to someone not in the 2nd round.

What is the maximal solution to $\neg 2 n d[]$?
$\neg 2 n d[i] \rightarrow \neg L i a r[i] \wedge \exists j \neq i(\neg 2 n d[j] \wedge$ Loyal-to[i,j])
In comparison:
$\neg 2 n d[i] \equiv \neg L i a r[i] \wedge \quad \forall j \neq i(\neg 2 n d[j] \wedge$ Loyal-to[i,j])
$\rightarrow 2 n d[i] \equiv \rightarrow L i a r[i] \wedge \forall j \neq i(-2 n d[j] \rightarrow$ Loyal-to[i,j])
$\neg 2 n d[i] \equiv \neg L i a r[i] \wedge \forall j \neq i($ Loyal-to[i,j] $\rightarrow \neg 2 n d[j])$

CTL

- symbolic model-checking with BDD
- In a Kripke structure, states are described with binary variables.

\boldsymbol{n} binary variables $\rightarrow \mathbf{2}^{\boldsymbol{n}}$ states

$$
x_{1}, x_{2}, \ldots . . ., x_{n}
$$

- we can use a BDD to describe legal states.
a Boolean function with n binary variables

$$
\mathrm{S}\left(x_{1}, x_{2}, \ldots . . ., x_{n}\right)
$$

CTL - symbolic model-checking with Propositioal logics

Example:

$\begin{array}{lll}X_{1} & X_{2} & x_{3}\end{array}$

$$
\begin{aligned}
\mathrm{S}\left(x_{1}, x_{2}, x_{3}\right)= & \left(x_{1} \wedge \neg x_{2} \wedge x_{3}\right) \\
& \vee \\
& \vee\left(\neg x_{1} \wedge \neg x_{2} \wedge x_{3}\right) \\
& \left(\neg x_{1} \wedge x_{2} \wedge \neg x_{3}\right)
\end{aligned}
$$

CTL - symbolic model-checking with Propositioal logics

State transition relation as a logic funciton with $2 n$ parameters

$$
\mathrm{R}\left(x_{1}, x_{2}, \ldots \ldots, x_{n}, x_{1}^{\prime}, x_{2}^{\prime}, \ldots \ldots, x_{n}^{\prime}\right)
$$

CTL - symbolic model-checking with Propositioal logics

$\begin{array}{lllllllll}x_{1} & x_{2} & x_{3} & x_{1}^{\prime} & x_{2}^{\prime} & x_{3}^{\prime}\end{array}$

$$
\begin{aligned}
\mathrm{R}\left(x_{1}, x_{2},\right. & \left.x_{3}, x_{1}^{\prime}, x^{\prime}{ }_{2}, x^{\prime}{ }_{3}\right)= \\
& \left(x_{1} \wedge \neg x_{2} \wedge x_{3} \wedge \neg x^{\prime}{ }_{1} \wedge \neg x^{\prime}{ }_{2} \wedge x^{\prime}{ }_{3}\right) \\
\vee & \left(\neg x_{1} \wedge \neg x_{2} \wedge x_{3} \wedge \neg x^{\prime}{ }_{1} \wedge x^{\prime} \wedge \wedge \neg x^{\prime}{ }_{3}\right) \\
\vee & \left(\neg x_{1} \wedge x_{2} \wedge \neg \neg x_{3} \wedge \neg x^{\prime}{ }_{1} \wedge \neg x^{\prime} \wedge x^{\prime}{ }_{3}\right)
\end{aligned}
$$

CTL - symbolic model-checking with Propositioal logics

Path relation also as a logic funciton with $2 n$ parameters
$\operatorname{reach}\left(x_{1}, x_{2}, \ldots \ldots, x_{n}, x_{1}^{\prime}, x_{2}^{\prime}, \ldots \ldots, x_{n}^{\prime}\right)$

$x_{1}, x_{2}, \ldots \ldots, x_{n}$
 $x_{1}, x_{2}, \ldots \ldots, x_{n}$

CTL - symbolic model-checking with Propositioal logics
$x_{1} x_{2} x_{3} x_{1}^{\prime} x_{2}^{\prime} x_{3}^{\prime}$
101
$\operatorname{reach}\left(x_{1}, x_{2}, x_{3}, x_{1}^{\prime}, x^{\prime}{ }_{2}, n x_{3}^{\prime}\right)=$

$$
\left(x_{1} \wedge \neg x_{2} \wedge x_{3} \wedge \neg x_{1}^{\prime} \wedge \neg x_{2}^{\prime} \wedge x_{3}^{\prime}\right)
$$

$\vee \quad\left(x_{1} \wedge \neg x_{2} \wedge x_{3} \wedge \neg x^{\prime}{ }_{1} \boldsymbol{\wedge} x^{\prime}{ }_{2} \wedge \neg x^{\prime}{ }_{3}\right)$
$\vee \quad\left(\neg x_{1} \wedge \neg x_{2} \wedge x_{3} \wedge \neg x^{\prime} \wedge x^{\prime}{ }_{2} \wedge \neg x^{\prime}{ }_{3}\right)$
$\vee \quad\left(\neg x_{1} \wedge x_{2} \wedge \neg x_{3} \wedge \neg x^{\prime}{ }_{1} \wedge \neg x^{\prime}{ }_{2} \wedge x^{\prime}{ }_{3}\right)$
$\vee \quad\left(\neg x_{1} \boldsymbol{\wedge} \neg x_{2} \wedge x_{3} \wedge \neg x^{\prime}{ }_{1} \boldsymbol{\wedge} \boldsymbol{\wedge} x^{\prime}{ }_{2} \wedge x^{\prime}{ }_{3}\right)$
$\vee \quad\left(\neg x_{1} \wedge x_{2} \wedge \neg x_{3} \wedge \neg x^{\prime} \wedge x^{\prime}{ }_{2} \wedge \neg x^{\prime}{ }_{3}\right)$

Symbolic safety analysis

- I : initial condition with parameters

$$
x, x_{2}, \ldots \ldots, x_{n}
$$

- η : safe condition with parameters

$$
x_{1}, x_{2}, \ldots \ldots, x_{n}
$$

If $\|_{\wedge \neg(\eta \uparrow) \wedge \operatorname{reach}\left(x_{1}, x_{2}, \ldots \ldots, x_{n}, x_{1}^{\prime}, x_{2}^{\prime}, \ldots \ldots, x_{n}^{\prime}\right)}$
is not false,

- a risk state is reachable.
- the system is not safe.
change all
umprimed variables in η to primed.

Symbolic safety analysis

- construction of $\operatorname{reach}\left(x_{1}, \ldots \ldots, x_{n}, x^{\prime}, \ldots \ldots, x^{\prime}{ }_{n}\right)$
$\mathrm{R}\left(x_{1}, \ldots \ldots, x_{n}, x_{1}^{\prime}, \ldots \ldots, x_{n}^{\prime}\right)$
$\vee \exists y_{1}, \ldots \ldots, \exists y_{n}\left(\mathrm{R}\left(x_{1}, \ldots \ldots, x_{n}, y_{1}, \ldots \ldots, y_{n}\right)\right.$
$\wedge \operatorname{reach}\left(y_{1}, \ldots \ldots, y_{n}, x_{1}^{\prime}, \ldots \ldots, x_{n}^{\prime}\right)$
)
$\rightarrow \operatorname{reach}\left(x_{1}, \ldots \ldots, x_{n}, x_{1}^{\prime}, \ldots \ldots, x_{n}^{\prime}\right)$
This is a least fixpoint for backward analysis.

Symbolic safety analysis

- construction of reach $\left(x_{1}, \ldots \ldots, x_{n}, x^{\prime}, \ldots \ldots, x_{n}^{\prime}\right)$
$\mathrm{R}\left(x_{1}, \ldots \ldots, x_{n}, x_{1}^{\prime}, \ldots \ldots, x_{n}^{\prime}\right)$
$\vee \exists y_{1}, \ldots \ldots, \exists y_{n}\left(\operatorname{reach}\left(x_{1}, \ldots \ldots, x_{n}, y_{1}, \ldots \ldots, y_{n}\right)\right.$
$\wedge \operatorname{reach}\left(y_{1}, \ldots \ldots, y_{n}, x_{1}^{\prime}, \ldots \ldots, x_{n}^{\prime}\right)$
)
$\rightarrow \operatorname{reach}\left(x_{1}, \ldots \ldots, x_{n}, x_{1}^{\prime}, \ldots \ldots, x_{n}^{\prime}\right)$
This is another least fixpoint for speed-up.

Symbolic safety analysis

- construction of reach $\left(x_{1}, \ldots \ldots, x_{n}, x^{\prime}, \ldots \ldots, x^{\prime}{ }_{n}\right)$

```
\(\mathrm{R}\left(x_{1}, \ldots \ldots, x_{n}, x_{1}^{\prime}, \ldots . ., x_{n}^{\prime}\right)\)
\(\vee \exists y_{1}, \ldots \ldots, \exists y_{n}\left(\operatorname{reach}\left(x_{1}, \ldots \ldots, x_{n}, y_{1}, \ldots \ldots, y_{n}\right)\right.\)
    \(\wedge \mathrm{R}\left(y_{1}, \ldots \ldots, y_{n}, x_{1}^{\prime}, \ldots \ldots, x_{n}^{\prime}\right)\)
    )
```

$\rightarrow \operatorname{reach}\left(x_{1}, \ldots \ldots, x_{n}, x_{1}^{\prime}, \ldots . ., x_{n}^{\prime}\right)$

This is another least fixpoint for forward analysis.

Symbolic safety analysis (backward)

Encode the states with variables $\mathrm{x}_{0}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}$.

- the state set as a proposition formula: $\mathrm{S}\left(\mathrm{x}_{0}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{n}\right)$
- the risk state set as $\neg \eta\left(x_{0}, x_{1}, \ldots, x_{n}\right)$
- the initial state set as $\mathrm{I}\left(\mathrm{x}_{0}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$
change all
umprimed
- the transition set as $R\left(x_{0}, x_{1}, \ldots, x_{n}, x^{\prime}, x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)$ variable in b_{k} to primed.
$b_{0}=\neg \eta\left(x_{0}, x_{1}, \ldots, x_{n}\right) \wedge S\left(x_{0}, x_{1}, \ldots, x_{n}\right) ; k=1$;
repeat
$b_{k}=b_{k-1} v \exists x^{\prime}{ }_{0} \exists x^{\prime}{ }_{1} \ldots \exists x^{\prime}{ }_{n}\left(R\left(x_{0}, x_{1}, \ldots, x_{n}, x_{0}^{\prime}, x^{\prime}{ }_{1}, \ldots, x^{\prime}{ }_{n}\right) \wedge\left(b_{k-1} \uparrow\right)\right) ;$
$\mathrm{k}=\mathrm{k}+1$;
until $b_{k} \equiv b_{k-1}$;
if $\left(b_{k} \wedge\left(x_{0}, x_{1}, \ldots, x_{n}\right)\right) \equiv$ false, return 'safe'; else return 'risky';

Kripke structure

states: $\mathrm{S}(\mathrm{x}, \mathrm{y}, \mathrm{z}) \equiv(\neg \mathrm{x} \wedge \neg \mathrm{y} \wedge \neg \mathrm{z}) \vee(\neg \mathrm{x} \wedge \neg \mathrm{y} \wedge \mathrm{z}) \vee(\neg \mathrm{x} \wedge \mathrm{y} \wedge \neg \mathrm{z})$

$$
\begin{aligned}
& \vee(\neg \mathrm{x} \wedge \mathrm{y} \wedge \mathrm{z}) \vee(\mathrm{x} \wedge \neg \mathrm{y} \wedge \neg \mathrm{z}) \vee(\mathrm{x} \wedge \neg \mathrm{y} \wedge \mathrm{z}) \\
& \equiv(\neg \mathrm{x}) \vee(\mathrm{x} \wedge \neg \mathrm{y})
\end{aligned}
$$

initial state: $1(x, y, z) \equiv \neg x \wedge \neg y \wedge \neg z$
risk state: $\neg \eta(x, y, z) \equiv \mathrm{x} \wedge \neg \mathrm{y} \wedge \neg \mathrm{z}$

Kripke structure

- symbolic safety analysis

transitions: $\mathrm{R}\left(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{x}^{\prime}, \mathrm{y}^{\prime}, \mathrm{z}^{\prime}\right) \equiv$

$$
\begin{aligned}
& \left(\neg \mathrm{x} \wedge \neg \mathrm{y} \wedge \neg \mathrm{z} \wedge \neg \mathrm{x}^{\prime} \wedge \neg \mathrm{y}^{\prime} \wedge \mathrm{z}^{\prime}\right) \vee\left(\neg \mathrm{x} \wedge \neg \mathrm{y} \wedge \mathrm{z} \wedge \neg \mathrm{x}^{\prime} \wedge \neg \mathrm{y}^{\prime} \wedge \neg \mathrm{z}^{\prime}\right) \\
& \vee\left(\neg \mathrm{x} \wedge \neg \mathrm{y} \wedge \mathrm{z} \wedge \neg \mathrm{x}^{\prime} \wedge \mathrm{y}^{\prime} \wedge \neg \mathrm{z}^{\prime}\right) \vee\left(\neg \mathrm{x} \wedge \mathrm{y} \wedge \neg \mathrm{Z} \wedge \mathrm{x}^{\prime} \wedge \neg \mathrm{y}^{\prime} \wedge \neg \mathrm{z}^{\prime}\right) \\
& \mathrm{V}\left(\neg \mathrm{x} \wedge \mathrm{y} \wedge \neg \mathrm{Z} \wedge \mathrm{x}^{\prime} \wedge \neg \mathrm{y}^{\prime} \wedge \mathrm{z}^{\prime}\right) \vee\left(\neg \mathrm{x} \wedge \mathrm{y} \wedge \mathrm{z} \wedge \mathrm{x}^{\prime} \wedge \neg \mathrm{y}^{\prime} \wedge \neg \mathrm{z}^{\prime}\right)
\end{aligned}
$$

2009/12/02 stopped here.

Symbolic safety analysis (backward)

$$
\begin{aligned}
& \mathrm{b}_{0}=\neg \eta(\mathrm{x}, \mathrm{y}, \mathrm{z}) \equiv \mathrm{x} \wedge \neg \mathrm{y} \wedge \neg \mathrm{z} \\
& b_{1}=b_{0} \vee \exists x^{\prime} \exists y^{\prime} \exists z^{\prime}\left(R\left(x, y, z, x^{\prime}, y^{\prime}, z^{\prime}\right) \wedge b_{0} \uparrow\right) \\
& =(x \wedge \neg y \wedge \neg z) \vee \exists x^{\prime} \exists y^{\prime} \exists z^{\prime}\left(R\left(x, y, z, x^{\prime}, y^{\prime}, z^{\prime}\right) \wedge x^{\prime} \wedge \neg y^{\prime} \wedge \neg z^{\prime}\right) \\
& =(x \wedge \neg y \wedge \neg z) \vee \exists x^{\prime} \exists y^{\prime} \exists z^{\prime}\left(((\neg x \wedge y \wedge \neg z) \vee(\neg x \wedge y \wedge z)) \wedge x^{\prime} \wedge \neg y^{\prime} \wedge \neg z^{\prime}\right) \\
& =(x \wedge \neg y \wedge \neg z) \vee(\neg \mathrm{x} \wedge \mathrm{y} \wedge \neg \mathrm{z}) \vee(\neg \mathrm{x} \wedge \mathrm{y} \wedge \mathrm{z}) \\
& b_{2}=b_{1} \vee \exists x^{\prime} \exists y^{\prime} \exists z^{\prime}\left(R\left(x, y, z, x^{\prime}, y^{\prime}, z^{\prime}\right) \wedge b_{1} \uparrow\right) \\
& =(\neg \mathrm{x} \wedge \neg \mathrm{y} \wedge \mathrm{z}) \vee(\mathrm{x} \wedge \neg \mathrm{y} \wedge \neg \mathrm{z}) \vee(\neg \mathrm{x} \wedge \mathrm{y} \wedge \neg \mathrm{z}) \vee(\neg \mathrm{x} \wedge \mathrm{y} \wedge \mathrm{z}) \\
& \text { fixpoint } \\
& b_{3}=b_{2} \vee \exists x^{\prime} \exists y^{\prime} \exists z^{\prime}\left(R\left(x, y, z, x^{\prime}, y^{\prime}, z^{\prime}\right) \wedge b_{2} \uparrow\right) \\
& =(\neg \mathrm{x} \wedge \neg \mathrm{y} \wedge \neg \mathrm{z}) \vee(\neg \mathrm{x} \wedge \neg \mathrm{y} \wedge \mathrm{z}) \vee(\mathrm{x} \wedge \neg \mathrm{y} \wedge \neg \mathrm{z}) \vee(\neg \mathrm{x} \wedge \mathrm{y} \wedge \neg \mathrm{z}) \vee(-\wedge \wedge \mathrm{y} \wedge \mathrm{z}) \\
& b_{4}=b_{3} \vee \exists x^{\prime} \exists y^{\prime} \exists z^{\prime}\left(R\left(x, y, z, x^{\prime}, y^{\prime}, z^{\prime}\right) \wedge b_{3} \uparrow\right) \\
& =(\neg \mathrm{x} \wedge \neg \mathrm{y} \wedge \neg \mathrm{z}) \vee(\neg \mathrm{x} \wedge \neg \mathrm{y} \wedge \mathrm{z}) \vee(\mathrm{x} \wedge \neg \mathrm{y} \wedge \neg \mathrm{z}) \vee(\neg \mathrm{x} \wedge \mathrm{y} \wedge \neg \mathrm{z}) \vee(\neg \mathrm{x} \wedge \mathrm{y} \wedge \mathrm{z}) \\
& \mathrm{b}_{4} \pi \mathrm{I}(\mathrm{x}, \mathrm{y}, \mathrm{z})=(\neg \mathrm{x} \wedge \neg \mathrm{y} \wedge \neg \mathrm{z})
\end{aligned}
$$

老子道德經四十一章

大音希聲

 大象無形

 大象無形}

道隱無名

Symbolic safety analysis（backward）

One assumption for the correctness！
－Two states cannot be with the same proposition labeling．
－Otherwise，the collapsing of the states may cause problem．may need a few propositions

Symbolic safety analysis (forward)

Encode the states with variables $\mathrm{x}_{0}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}$.

- the state set as a proposition formula: $\mathrm{S}\left(\mathrm{x}_{0}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{n}\right)$
- the risk state set as $\neg \eta\left(x_{0}, x_{1}, \ldots, x_{n}\right)$
- the initial state set as $\mathrm{I}\left(\mathrm{x}_{0}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$
- the transition set as $\mathrm{R}\left(\mathrm{x}_{0}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{n}, \mathrm{x}_{0}^{\prime}, \mathrm{x}_{1}^{\prime}, \ldots, \mathrm{x}_{n}^{\prime}\right)$ change all primed $\mathrm{f}_{0}=\mathrm{I}\left(\mathrm{x}_{0}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{n}\right) \wedge \mathrm{S}\left(\mathrm{x}_{0}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{n}\right) ; \mathrm{k}=1$;
repeat
$f_{k}=f_{k-1} \vee\left(\exists x_{0} \exists x_{1} \ldots \exists x_{n}\left(R\left(x_{0}, x_{1}, \ldots, x_{n}, x^{\prime}{ }_{0}, x^{\prime}{ }_{1}, \ldots, x_{n}^{\prime}\right) \wedge f_{k-1}\right)\right) \downarrow ;$
$\mathrm{k}=\mathrm{k}+1$;
until $\mathrm{f}_{\mathrm{k}} \equiv \mathrm{f}_{\mathrm{k}-1}$;
if $\left(f_{k} \wedge \neg \eta\left(x_{0}, x_{1}, \ldots, x_{n}\right)\right) \equiv$ false, return ‘safe'; else return 'risky';

Symbolic safety analysis (forward)

$$
\begin{aligned}
& f_{0}=I(x, y, z) \equiv \neg x \wedge \neg y \wedge \neg z \\
& f_{1}=f_{0} \vee\left(\exists x \exists y \exists z\left(R\left(x, y, z, x^{\prime}, y^{\prime}, z^{\prime}\right) \wedge f_{0}\right)\right) \downarrow \\
& =(\neg \mathrm{x} \wedge \neg \mathrm{y} \wedge \neg \mathrm{z}) \vee\left(\exists \mathrm{x} \exists \mathrm{y} \exists \mathrm{z}\left(\mathrm{R}\left(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{x}^{\prime}, \mathrm{y}^{\prime}, \mathrm{z}^{\prime}\right) \wedge \neg \mathrm{x} \wedge \neg \mathrm{y} \wedge \neg \mathrm{z}\right)\right) \downarrow \\
& =(\neg \mathrm{X} \wedge \neg \mathrm{y} \wedge \neg \mathrm{Z}) \vee\left(\exists \mathrm{x} \exists \mathrm{y} \exists \mathrm{z}\left(\neg \mathrm{X}^{\prime} \wedge \neg \mathrm{y}^{\prime} \wedge \mathrm{Z}^{\prime} \wedge \neg \mathrm{X} \wedge \neg \mathrm{y} \wedge \neg \mathrm{Z}\right)\right) \downarrow \\
& =(\neg \mathrm{X} \wedge \neg \mathrm{y} \wedge \neg \mathrm{Z}) \vee\left(\neg \mathrm{X}^{\prime} \wedge \neg \mathrm{y}^{\prime} \wedge \mathrm{Z}^{\prime}\right) \downarrow \\
& =(\neg \mathrm{X} \wedge \neg \mathrm{y} \wedge \neg \mathrm{Z}) \vee(\neg \mathrm{X} \wedge \neg \mathrm{y} \wedge \mathrm{Z})=\neg \mathrm{X} \wedge \neg \mathrm{y} \\
& f_{2}=f_{1} \vee\left(\exists x \exists y \exists z\left(R\left(x, y, z, x^{\prime}, y^{\prime}, z^{\prime}\right) \wedge f_{1}\right) \downarrow=(\neg x \wedge \neg y) \vee(\neg x \wedge y \quad \neg z)\right. \\
& f_{3}=f_{2} \vee\left(\exists x \exists y \exists z\left(R\left(x, y, z, x^{\prime}, y^{\prime}, z^{\prime}\right) \wedge f_{2}\right) \downarrow=(\neg y) \vee(\neg x \wedge y \wedge \neg z)\right. \\
& f_{4}=f_{3} \vee\left(\exists x \exists y \exists z\left(R\left(x, y, z, x^{\prime}, y^{\prime}, z^{\prime}\right) \wedge f_{3}\right) \downarrow=(\neg y) \vee(\neg x \wedge y \wedge \neg z)\right. \\
& \mathrm{f}_{4} \wedge \neg \eta(\mathrm{x}, \mathrm{y}, \mathrm{z})=((\neg \mathrm{y}) \vee(\neg \mathrm{x} \wedge \mathrm{y} \wedge \neg \mathrm{z})) \wedge(\mathrm{x} \wedge \neg \mathrm{y} \wedge \neg \mathrm{z})=(\mathrm{x} \wedge \neg \mathrm{y} \wedge \neg \mathrm{z})
\end{aligned}
$$

Bounded model-checking

The value
of x_{n} at
state k .

Encode the states with variables $\mathrm{x}_{0, k}, \mathrm{x}_{1, \mathrm{k}}, \ldots, \mathrm{x}_{\mathrm{n}, \mathrm{k}} \cdot$

- the state set as a proposition formula: $\mathrm{S}\left(\mathrm{x}_{0, k}, \mathrm{x}_{1, k}, \ldots, \mathrm{x}_{\mathrm{n}, \mathrm{k}}\right)$
- the risk state set as $\neg \eta\left(x_{0, k}, x_{1, k}, \ldots, x_{n, k}\right)$
- the initial state set as $\mathrm{I}\left(\mathrm{x}_{0,0}, \mathrm{x}_{1,0}, \ldots, \mathrm{x}_{\mathrm{n}, 0}\right)$
- the transition set as $R\left(\mathrm{x}_{0, k-1}, \mathrm{x}_{1, \mathrm{k}-1}, \ldots, \mathrm{x}_{\mathrm{n}, \mathrm{k}-1}, \mathrm{x}_{0, k}, \mathrm{x}_{1, k}, \ldots, \mathrm{x}_{\mathrm{n}, \mathrm{k}}\right)$
$\mathrm{f}_{0}=\mathrm{I}\left(\mathrm{x}_{0,0}, \mathrm{x}_{1,0}, \ldots, \mathrm{x}_{\mathrm{n}, 0}\right) \wedge \mathrm{S}\left(\mathrm{x}_{0,0}, \mathrm{x}_{1,0}, \ldots, \mathrm{x}_{\mathrm{n}, 0}\right) ; \mathrm{k}=1$;
repeat

$$
\begin{aligned}
& f_{k}=R\left(x_{0, k-1}, x_{1, k-1}, \ldots, x_{n, k-1}, x_{0, k}, x_{1, k}, \ldots, x_{n, k}\right) \wedge f_{k-1} ; \\
& \mathrm{k}=\mathrm{k}+1 \text {; } \\
& \text { until } f_{k} \wedge \neg \eta\left(x_{0, k}, x_{1, k}, \cdots, x_{n, k}\right) \neq \text { falso } \quad \text { When to stop ? } \text { ? diameter of the state graph }
\end{aligned}
$$

Bounded model-checking

$$
\begin{aligned}
& \mathrm{f}_{0}=\mathrm{I}(\mathrm{x}, \mathrm{y}, \mathrm{z}) \equiv \neg \mathrm{x}_{0} \wedge \neg \mathrm{y}_{0} \wedge \neg \mathrm{z}_{0} \\
& \mathrm{f}_{1}=\mathrm{R}\left(\mathrm{x}_{0}, \mathrm{y}_{0}, \mathrm{z}_{0}, \mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right) \wedge \mathrm{f}_{0}=\neg \mathrm{x}_{0} \wedge \neg \mathrm{y}_{0} \wedge \neg \mathrm{z}_{0} \wedge \neg \mathrm{x}_{1} \wedge \neg \mathrm{y}_{1} \wedge \mathrm{z}_{1} \\
& f_{2}=R\left(x_{1}, y_{1}, z_{1}, x_{2}, y_{2}, z_{2}\right) \wedge f_{1} \\
& =\neg \mathrm{x}_{0} \wedge \neg \mathrm{y}_{0} \wedge \neg \mathrm{z}_{0} \wedge \neg \mathrm{x}_{1} \wedge \neg \mathrm{y}_{1} \wedge \mathrm{z}_{1} \wedge\left(\left(\neg \mathrm{x}_{2} \wedge \neg \mathrm{y}_{2} \wedge \neg \mathrm{z}_{2}\right) \vee\left(\neg \mathrm{x}_{2} \wedge \mathrm{y}_{2} \wedge \neg \mathrm{z}_{2}\right)\right) \\
& f_{3}=R\left(x_{2}, y_{2}, z_{2}, x_{3}, y_{3}, z_{3}\right) \wedge f_{2} \\
& =\neg \mathrm{x}_{0} \wedge \neg \mathrm{y}_{0} \wedge \neg \mathrm{z}_{0} \wedge \neg \mathrm{x}_{1} \wedge \neg \mathrm{y}_{1} \wedge \mathrm{z}_{1} \\
& \wedge\left(\left(\neg x_{2} \wedge \neg y_{2} \wedge \neg z_{2} \wedge \neg x_{3} \wedge \neg y_{3} \wedge z_{3}\right)\right. \\
& \vee\left(\neg x_{2} \wedge y_{2} \wedge \neg z_{2} \wedge\left(\left(x_{3} \wedge \neg y_{3} \wedge \neg z_{3}\right) \vee\left(x_{3} \wedge \neg y_{3} \wedge z_{3}\right)\right)\right) \\
& \text {) } \\
& =\neg \mathrm{x}_{0} \wedge \neg \mathrm{y}_{0} \wedge \neg \mathrm{z}_{0} \wedge \neg \mathrm{x}_{1} \wedge \neg \mathrm{y}_{1} \wedge \mathrm{z}_{1} \\
& \wedge\left(\left(\neg x_{2} \wedge \neg y_{2} \wedge \neg z_{2} \wedge \neg x_{3} \wedge \neg y_{3} \wedge z_{3}\right) \vee\left(\neg x_{2} \wedge y_{2} \wedge \neg z_{2} \wedge x_{3} \wedge \neg y_{3}\right)\right) \\
& f_{3} \wedge \neg \eta\left(x_{3}, y_{3}, z_{3}\right)=\left(x_{3} \wedge \neg y_{3} \wedge \neg z_{3}\right)
\end{aligned}
$$

Transition relation

- from state-transition graphs

Given a set of rules $r_{1}, r_{2}, \ldots, r_{m}$ of the form r_{k} : when (τ_{k}) may $\mathrm{y}_{\mathrm{k}, 0}=\mathrm{d}_{0} ; \mathrm{y}_{\mathrm{k}, 1}=\mathrm{d}_{1} ; \ldots ; \mathrm{y}_{\mathrm{k}, \mathrm{nk}}=\mathrm{d}_{\mathrm{nk}}$;

$$
\begin{aligned}
& R\left(x_{0}, x_{1}, \ldots, x_{n}, x_{0}^{\prime}, x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right) \\
& \equiv V_{k \in[1, m]}\left(\begin{array}{c}
\tau_{k} \wedge y_{k, 0}^{\prime}==d_{0} \wedge y_{k, 1}^{\prime}==d_{1} \wedge \ldots \wedge y_{k, n k}^{\prime}==d_{n k}
\end{array}\right.
\end{aligned}
$$

$$
\wedge \bigwedge_{h \in[1, n]}\left(x_{h} \notin\left\{y_{k, 0}, y_{k, 1}, \ldots, y_{k, n k}\right\}=>x_{h}==x_{h}^{\prime}\right)
$$

)

Transition relation from GCM rules.

Given a set of rules for $X=\{x, y, z\}$
r_{1} : when ($x<y \& \& y>2$) may $y=x+y ; x=3$;
r_{2} : when ($z>=2$) may $y=x+1 ; z=0$;
r_{3} : when ($x<2$) may $x=0$;
$R\left(x_{0}, x_{1}, \ldots, x_{n}, x^{\prime}{ }_{0}, x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)$
$\equiv\left(x<y \wedge y>2 \wedge y^{\prime}==x+y \wedge x^{\prime}==3 \wedge z^{\prime}==z\right)$
$\vee\left(z>=2 \wedge y^{\prime}==x+1 \wedge z^{\prime}==0 \wedge x^{\prime}==x\right)$
$\vee\left(x<2 \wedge x^{\prime}==0 \wedge y^{\prime}==y \wedge z^{\prime}==z\right)$

Transition relation

- from state-transition graphs

In general, transition relation is expensive to construct.
Can we do the following state-space construction

$$
\exists x_{0}{ }_{0}^{\prime} \exists x_{1}^{\prime} \ldots . . \exists x_{n}^{\prime}\left(R\left(x_{0}, x_{1}, \ldots, x_{n}, x_{0}{ }_{0}, x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right) \wedge\left(b_{k-1} \uparrow\right)\right)
$$

directly with the GCM rules ?

Yes, on-the-fly state space construction.

On-the-fly precondition calculation with GCM rules.

```
\exists\mp@subsup{x}{0}{\prime}}\mp@subsup{}{0}{\prime}\mp@subsup{x}{}{\prime}\mp@subsup{}{1}{}\ldots\exists\exists\mp@subsup{x}{n}{\prime}(R(\mp@subsup{x}{0}{},\mp@subsup{x}{1}{},\ldots,\mp@subsup{x}{n}{},\mp@subsup{x}{0}{\prime}\mp@subsup{}{0}{\prime},\mp@subsup{x}{}{\prime}\mp@subsup{}{1}{},\ldots,\mp@subsup{x}{\prime}{\prime}\mp@subsup{}{n}{})\wedge(b\uparrow)
```



```
pre(b) {
    r = false;
    for k=1 to m, {
        let f = b;
        for h=nk to 0,f= = y y,h}(f\wedge \mp@subsup{y}{k,h}{}===\mp@subsup{d}{h}{})\mathrm{ ;
        r=r\vee ( \tau k}\wedge f)
    }
    return (r);
```

\}

On-the-fly precondition calculation with GCM rules.

Given a set of rules $r_{1}, r_{2}, \ldots, r_{m}$ of the form r_{k} : when $\left(\tau_{\mathrm{k}}\right)$ may $\mathrm{y}_{\mathrm{k}, 0}=\mathrm{d}_{0} ; \mathrm{y}_{\mathrm{k}, 1}=\mathrm{d}_{1} ; \ldots ; \mathrm{y}_{\mathrm{k}, \mathrm{nk}}=\mathrm{d}_{\mathrm{nk}} ;$

$$
\begin{aligned}
& \exists x_{0}^{\prime} \exists x_{1}^{\prime} \ldots \exists x_{n}^{\prime}\left(R\left(x_{0}, x_{1}, \ldots, x_{n}, x_{0}^{\prime}, x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right) \wedge(b \uparrow)\right) \\
& \equiv V_{k \in[1, m]}\left(\tau_{k} \wedge\right. \\
& \quad \exists y_{k, 0} \exists y_{k, 1} \ldots \exists y_{k, n k}\left(b \wedge \wedge_{h \in[0, n k]} y_{k, h}==d_{h}\right)
\end{aligned}
$$

However, GCM rules are more complex than that.

On-the-fly precondition calculation with GCM rules.

Given a set of rules for $X=\{x, y, z\}$
r_{1} : when ($x<y \& \& y>2$) may $y=z ; x=3$;
r_{2} : when ($z>=2$) may $y=x+1 ; z=7$;
r_{3} : when ($x<2$) may $z=0$;
B
$\exists x^{\prime}{ }_{0} \exists x_{1}^{\prime} \ldots \exists x^{\prime}{ }_{n}\left(R\left(x_{0}, x_{1}, \ldots, x_{n}, x_{0}^{\prime}, x^{\prime}{ }_{1}, \ldots, x^{\prime}{ }_{n}\right) \wedge(x<4 \wedge z>5) \uparrow\right)$
$\equiv(x<y \wedge y>2 \wedge \exists y \exists x(x<4 \wedge z>5 \wedge y==z \wedge x==3))$
$\vee(z>=2 \wedge \exists y \exists z(x<4 \wedge z>5 \wedge y==x+1 \wedge z==7))$
$\vee(x<2 \wedge \exists z(x<4 \wedge z>5 \wedge z==0))$
$\equiv(x<y \wedge y>2 \wedge z>5) \vee(z>=2 \wedge x<4) \vee(x<2 \wedge \exists z(f a l s e))$
$\equiv(x<y \wedge y>2 \wedge z>5) \vee(z>=2 \wedge x<4)$

On-the-fly precondition calculation with GCM rules.

Given a set of rules $r_{1}, r_{2}, \ldots, r_{m}$ of the form
r_{k} : when $\left(\tau_{\mathrm{k}}\right)$ may s_{k};

On-the-fly precondition calculation with GCM rules.
Given a set of rules $r_{1}, r_{2}, \ldots, r_{m}$ of the form
r_{k} : when $\left(\tau_{k}\right)$ may s_{k};
What is pre (s, b) ?
new expression obtained from b by replacing every occurrence of x with E.

- $\operatorname{pre}(x=E ;, \mathrm{b}) \equiv \mathrm{b}[\mathrm{x} / \mathrm{E}]$

```
Ex 1. the precondition to }x=x+z
(x==y+2\wedgex<4^z>5)[x/x+z]\equivx+z==y+2\wedgex+z<4\wedge \>5
```

Ex 2. the precondition to $x=5$;
$(x==y+2 \wedge x<4 \wedge z>5)[x / 5] \equiv 5==y+2 \wedge 5<4 \wedge z>5$
Ex 3. the precondition to $x=2^{*} x+1$;
$(x==y+2 \wedge x<4 \wedge z>5)\left[x / 2^{*} x+1\right] \equiv 2^{*} x+1==y+2 \wedge 2^{*} x+1<4 \wedge z>5$

On-the-fly precondition calculation with GCM rules.

Given a set of rules $r_{1}, r_{2}, \ldots, r_{m}$ of the form r_{k} : when $\left(\tau_{k}\right)$ may s_{k};

What is pre (s, b) ?

- $\operatorname{pre}(x=E ;, \mathrm{b}) \equiv \mathrm{b}[\mathrm{x} / \mathrm{E}]$

- $\operatorname{pre}\left(s_{1} s_{2}, b\right) \equiv \operatorname{pre}\left(s_{1}, \operatorname{pre}\left(s_{2}, b\right)\right)$

$$
(x==y+2 \wedge x<4 \wedge z>5)[x / x+z]
$$ $=x+z=-y+2 \wedge x+z<4 \wedge z>5$

- pre(if $(B) s_{1}$ else $\left.s_{2}\right) \equiv\left(B \wedge \operatorname{pre}\left(s_{1}, b\right)\right) \vee\left(\neg B \wedge \operatorname{pre}\left(s_{2}, b\right)\right)$
- pre(while (B) s, b) $\equiv \ldots$

On-the-fly precondition calculation with GCM rules.

Given a set of rules $r_{1}, r_{2}, \ldots, r_{m}$ of the form r_{k} : when $\left(\tau_{k}\right)$ may s_{k};

What is pre (s, b) ?
pre(while $(K) s, b) \equiv$ formula $L_{1} \vee L_{2}$ for
L_{1} : those states that reach $\neg K \wedge b$ with finite steps of s
through states in K; and
L_{2} : those states that never leave K with steps of s .

On-the-fly precondition calculation with GCM rules.

L_{1} : those states that reach $\neg \mathrm{K} \wedge \mathrm{b}$ with finite steps of s through states in K $w_{0}=\neg K \wedge b ; k=1$; repeat

also a least fixpoint procedure

$$
w_{k}=w_{k-1} \vee\left(\mathrm{~K} \wedge \text { pre }\left(s, w_{k-1}\right)\right) ;
$$

$$
k=k+1 ;
$$

until $\mathrm{w}_{\mathrm{k}} \equiv \mathrm{w}_{\mathrm{k}-1}$;
return w_{k};

Precondition to b

 through while (K) s; Example: $b \equiv x==2 \wedge y==3$$w_{0}=\neg K \wedge b ; k=1 ;$
repeat
$\mathrm{w}_{\mathrm{k}}=\mathrm{w}_{\mathrm{k}-1} \vee\left(\mathrm{~K} \wedge \operatorname{pre}\left(\mathrm{~s}, \mathrm{w}_{\mathrm{k}-1}\right)\right)$; $\mathrm{k}=\mathrm{k}+1$;
until $\mathrm{w}_{\mathrm{k}} \equiv \mathrm{w}_{\mathrm{k}-1}$;
return w_{k};
while $(x<y) x=x+1$;

L1 computation.

$$
\begin{aligned}
& w_{0} \equiv x>=y \wedge x==2 \wedge y==3 \equiv \text { false } ; k=1 ; \\
& w_{1} \equiv \text { false } \vee(x<y \wedge p r e(x=x+1, \text { false })) ; \\
& \equiv \text { false } \vee(x<y \wedge \text { false }) ; \\
& \equiv \text { false; }
\end{aligned}
$$

On-the-fly precondition calculation with GCM rules.

Given a set of rules $r_{1}, r_{2}, \ldots, r_{m}$ of the form pre(while (K) s, b)
L_{2} : those states that never leave K with steps of s.
$\mathrm{w}_{0}=\mathrm{K} ; \mathrm{k}=1$;
repeat
a greatest fixpoint procedure
$\mathrm{w}_{\mathrm{k}}=\mathrm{K} \wedge \mathrm{pre}\left(\mathrm{s}, \mathrm{w}_{\mathrm{k}-1}\right)$;
$k=k+1$;
until $\mathrm{w}_{\mathrm{k}} \equiv \mathrm{w}_{\mathrm{k}-1}$;
return w_{k};

Precondition to b

 through while (K) s;
Example:

$w_{0}=K ; k=1 ;$
repeat
$\mathrm{w}_{\mathrm{k}}=\mathrm{w}_{\mathrm{k}-1} \wedge \operatorname{pre}\left(\mathrm{~s}, \mathrm{w}_{\mathrm{k}-1}\right) ;$
$\mathrm{k}=\mathrm{k}+1$;
until $\mathrm{w}_{\mathrm{k}} \equiv \mathrm{w}_{\mathrm{k}-1}$;
return w_{k};
while ($x<y \& \& x>0$) $x=x+1$;
L2 computation.

$$
\begin{aligned}
\mathrm{w}_{0} & \equiv \mathrm{x}<\mathrm{y} \wedge \mathrm{x}>0 ; \mathrm{k}=1 \\
\mathrm{w}_{1} & \equiv \mathrm{x}<\mathrm{y} \wedge \mathrm{x}>0 \wedge \operatorname{pre}(\mathrm{x}=\mathrm{x}+1, \mathrm{x}<\mathrm{y} \wedge \mathrm{x}>0) \\
& \equiv \mathrm{x}<\mathrm{y} \wedge \mathrm{x}>0 \wedge \mathrm{x}+1<\mathrm{y} \wedge \mathrm{x}+1>0 \equiv \mathrm{x}>0 \wedge \mathrm{x}+1<\mathrm{y} \\
\mathrm{w}_{2} & \equiv \mathrm{x}+1<\mathrm{y} \wedge \mathrm{x}>0 \wedge \operatorname{pre}(\mathrm{x}=\mathrm{x}+1, \mathrm{x}+1<\mathrm{y} \wedge x>0) \\
& \equiv \mathrm{x}+1<\mathrm{y} \wedge \mathrm{x}>0 \wedge \mathrm{x}+2<\mathrm{y} \wedge \mathrm{x}+1>0 \equiv \mathrm{x}>0 \wedge \mathrm{x}+2<\mathrm{y}
\end{aligned}
$$

non-terminating for algorithms and protocols!

Precondition to b

 through while (K) s;
Example:

while ($x>y \& \& x>0$) $x=x+1$;

L2 computation.

$$
\begin{aligned}
w_{0} & \equiv x>y \wedge x>0 ; k=1 ; \\
w_{1} & \equiv x>y \wedge x>0 \wedge \operatorname{pre}(x=x+1, x>y \wedge x>0) \\
& \equiv x>y \wedge x>0 \wedge x+1>y \wedge x+1>0 \equiv x>y \wedge x>0
\end{aligned}
$$

terminating for algorithms and protocols!

Precondition to b

 through while (K) s;$w_{0}=\neg K \wedge b ; k=1 ;$
repeat
$\mathrm{w}_{\mathrm{k}}=\mathrm{w}_{\mathrm{k}-1} \vee\left(\mathrm{~K} \wedge \operatorname{pre}\left(\mathrm{~s}, \mathrm{w}_{\mathrm{k}-1}\right)\right)$; $\mathrm{k}=\mathrm{k}+1$;
until $\mathrm{w}_{\mathrm{k}} \equiv \mathrm{W}_{\mathrm{k}-1}$;
return w_{k};
while ($x>y$ \& \& $x>0$) $x=x+1$;
L_{1} computation.

$$
\begin{aligned}
w_{0} & \equiv(x<=y \vee x<=0) \wedge x==2 \wedge y==3 \equiv x==2 \wedge y==3 ; \\
w_{1} & \equiv(x==2 \wedge y==3) \vee(x>y \wedge x>0 \wedge p r e(x=x+1, x==2 \wedge y==3)) ; \\
& \equiv(x==2 \wedge y==3) \vee(x>y \wedge x>0 \wedge x==1 \wedge y==3) ; \\
& \equiv(x==2 \wedge y==3) \vee \text { false } \\
& \equiv x==2 \wedge y==3
\end{aligned}
$$

Kripke structure

- liveness analysis

Given

- a Kripke structure $A=\left(S, S_{0}, R, L\right)$
- a liveness predicate η,
can η be true eventually ?

Example:

Can the computer be started successfully?
Will the alarm sound in case of fire ?

Kripke structure

- liveness analysis

Strongly connected component algorithm in graph theory
Given

- a Kripke structure $A=\left(S, S_{0}, R, L\right)$
- a liveness predicate $\boldsymbol{\eta}$,
find a cycle such that
- all states in the cycle are $\neg \boldsymbol{\eta}$
- there is a $\neg \boldsymbol{\eta}$ path from a state in S_{0} to the cycle.

Solutions in graph theory

- strongly connected components (SCC)

Kripke structure - liveness analysis

Kripke structure

- liveness analysis
liveness $(\mathbf{\eta}) / *$ using greatest fixpoint algorithm */ \{
for all s, if $\neg \boldsymbol{\eta} \in \mathrm{L}(\mathrm{s}), \mathrm{L}(\mathrm{s})=\mathrm{L}(\mathrm{s}) \cup\{\exists \square \neg \boldsymbol{\eta}\}$;
repeat \{
for all s, if $\exists \square \neg \boldsymbol{\eta} \in L(\mathbf{s})$ and $\forall\left(\mathbf{s}, \mathbf{s}^{\prime}\right)(\exists \square \neg \boldsymbol{\eta} \notin \mathrm{L}(\mathbf{s}))$,
$L(s)=L(s)-\{\exists \square \neg \mathbf{\eta}\}$;
\} until no more changes to $\mathrm{L}(\mathrm{s})$ for any s .
if there is an $\mathrm{s}_{0} \in \mathrm{~S}_{0}$ with $\exists \square \neg \eta \in L\left(\mathrm{~s}_{0}\right)$,
return 'liveness not true,'
else return 'liveness true.'
\}
The procedure terminates since S is finite in the Kripke structure.

Symbolic liveness analysis

Encode the states with variables $\mathrm{x} 0, \mathrm{x} 1, \ldots, \mathrm{xn}$.

- the state set as a proposition formula: $S\left(x_{0}, x_{1}, \ldots, x_{n}\right)$
- the non-liveness state set as $\neg \boldsymbol{\eta}\left(\mathrm{x}_{0}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$
- the initial state set as $\mathrm{I}\left(\mathrm{x}_{0}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$
- the transition set as $R\left(x_{0}, x_{1}, \ldots, x_{n}, x_{0}^{\prime}, x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)$
$\mathrm{b}_{0}=\neg \boldsymbol{\eta}\left(\mathrm{x}_{0}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \wedge \mathrm{S}\left(\mathrm{x}_{0}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right) ; \mathrm{k}=1$;
repeat
$\mathrm{b}_{\mathrm{k}}=\mathrm{b}_{\mathrm{k}-1} \wedge \exists \mathrm{x}^{\prime}{ }_{0} \exists \mathrm{x}_{1}^{\prime} \ldots \exists \mathrm{x}_{\mathrm{n}}\left(\mathrm{R}\left(\mathrm{x}_{0}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{x}^{\prime}{ }_{0}, \mathrm{x}^{\prime}{ }_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \wedge \mathrm{b}_{\mathrm{k}-1}\right) ;$
$\mathrm{k}=\mathrm{k}+1$;
until $b_{k} \equiv b_{k-1}$;
if $\left(b_{k} \wedge l\left(x_{0}, x_{1}, \ldots, x_{n}\right)\right) \equiv$ false, return 'live'; else return 'not live';

Kripke structure

- symbolic liveness analysis

states: $\mathrm{S}(\mathrm{x}, \mathrm{y}, \mathrm{z}) \equiv(\neg \mathrm{x} \wedge \neg \mathrm{y} \wedge \neg \mathrm{z}) \vee(\neg \mathrm{x} \wedge \neg \mathrm{y} \wedge \mathrm{z}) \vee(\neg \mathrm{x} \wedge \mathrm{y} \wedge \neg \mathrm{z})$

$$
\vee(\neg \mathrm{x} \wedge \mathrm{y} \wedge \mathrm{z}) \vee(\mathrm{x} \wedge \neg \mathrm{y} \wedge \neg \mathrm{z}) \vee(\mathrm{x} \wedge \neg \mathrm{y} \wedge \mathrm{z})
$$

$$
\equiv(\neg x) \vee(x \wedge \neg y)
$$

initial state: $1(x, y, z) \equiv \neg x \wedge \neg y \wedge \neg z$
non-liveness state: $\neg \boldsymbol{\eta}(x, y, z) \equiv(\neg x) \vee(x \wedge \neg y \wedge z)$

Kripke structure

transitions: $\mathrm{R}\left(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{x}^{\prime}, \mathrm{y}^{\prime}, \mathrm{z}^{\prime}\right) \equiv$

$$
\begin{aligned}
& \left(\neg \mathrm{x} \wedge \neg \mathrm{y} \wedge \neg \mathrm{z} \wedge \neg \mathrm{x}^{\prime} \wedge \neg \mathrm{y}^{\prime} \wedge \mathrm{z}^{\prime}\right) \vee\left(\neg \mathrm{x} \wedge \neg \mathrm{y} \wedge \mathrm{z} \wedge \neg \mathrm{x}^{\prime} \wedge \neg \mathrm{y}^{\prime} \wedge \neg \mathrm{z}^{\prime}\right) \\
& \vee\left(\neg \mathrm{x} \wedge \neg \mathrm{y} \wedge \mathrm{z} \wedge \neg \mathrm{x}^{\prime} \wedge \mathrm{y}^{\prime} \wedge \neg \mathrm{z}^{\prime}\right) \vee\left(\neg \mathrm{x} \wedge \mathrm{y} \wedge \neg \mathrm{Z} \wedge \mathrm{x}^{\prime} \wedge \neg \mathrm{y}^{\prime} \wedge \neg \mathrm{z}^{\prime}\right) \\
& \mathrm{V}\left(\neg \mathrm{x} \wedge \mathrm{y} \wedge \neg \mathrm{Z} \wedge \mathrm{x}^{\prime} \wedge \neg \mathrm{y}^{\prime} \wedge \mathrm{z}^{\prime}\right) \vee\left(\neg \mathrm{x} \wedge \mathrm{y} \wedge \mathrm{z} \wedge \mathrm{x}^{\prime} \wedge \neg \mathrm{y}^{\prime} \wedge \neg \mathrm{z}^{\prime}\right)
\end{aligned}
$$

Symbolic liveness analysis

$$
\begin{aligned}
& \mathrm{b} 0=\neg \boldsymbol{\eta}(\mathrm{x}, \mathrm{y}, \mathrm{z}) \equiv(\neg \mathrm{x}) \vee(\mathrm{x} \wedge \neg \mathrm{y} \wedge \mathrm{z}) \\
& b 1=b 0 \wedge \exists x^{\prime} \exists y^{\prime} \exists z^{\prime}\left(R\left(x, y, z, x^{\prime}, y^{\prime}, z^{\prime}\right) \wedge b 0^{\prime}\right) \\
& =((\neg \mathrm{x}) \vee(\mathrm{x} \wedge \neg \mathrm{y} \wedge \mathrm{z})) \\
& \wedge \exists x^{\prime} \exists y^{\prime} \exists z^{\prime}\left(R\left(x, y, z, x^{\prime}, y^{\prime}, z^{\prime}\right) \wedge\left(\left(\neg x^{\prime}\right) \vee\left(x^{\prime} \wedge \neg y^{\prime} \wedge z^{\prime}\right)\right)\right) \\
& =((\neg x) \vee(x \wedge \neg y \wedge z)) \wedge \\
& \exists x^{\prime} \exists y^{\prime} \exists z^{\prime}(((\neg \mathrm{x} \wedge \neg \mathrm{y} \wedge \neg \mathrm{z}) \vee(\neg \mathrm{x} \wedge \mathrm{y} \wedge \neg \mathrm{z}) \vee(\neg \mathrm{x} \wedge \neg \mathrm{y} \wedge \mathrm{z})) \\
& \left.\wedge\left(\left(\neg x^{\prime}\right) \vee\left(x^{\prime} \wedge \neg y^{\prime} \wedge z^{\prime}\right)\right)\right) \\
& \text { fixpoint } \\
& =(\neg \mathrm{X} \wedge \neg \mathrm{y} \wedge \neg \mathrm{z}) \vee(\neg \mathrm{X} \wedge \mathrm{y} \wedge \neg \mathrm{z}) \vee(\neg \mathrm{x} \wedge \neg \mathrm{y} \wedge \mathrm{z})=\neg \mathrm{x}, \neg \mathrm{y} \vee \neg \mathrm{Z}) \\
& \text { b2 = b1 } \wedge \exists x^{\prime} \exists y^{\prime} \exists z^{\prime}\left(R\left(x, y, z, x^{\prime}, y^{\prime}, z^{\prime}\right) \wedge b 1^{\prime}\right) \\
& =(\neg \mathrm{X} \wedge \neg \mathrm{y} \wedge \neg \mathrm{z}) \vee(\neg \mathrm{X} \wedge \neg \mathrm{y} \wedge \mathrm{z})=\neg \mathrm{x} \neg \mathrm{y} \\
& \text { b3 = b2 } \wedge \exists x^{\prime} \exists y^{\prime} \exists z^{\prime}\left(R\left(x, y, z, x^{\prime}, y^{\prime}, z^{\prime}\right) \wedge b 2^{\prime}\right) \\
& =(\neg x \wedge \neg y \wedge \neg z) \vee(\neg x \wedge \neg y \wedge z) \rightarrow \rightarrow \text { non-liveness } \\
& =\neg \mathrm{X} \wedge \neg \mathrm{y}
\end{aligned}
$$

2009/12/16 stopped here.

Bisimulation Framework

Bisimulation-checking

- $\mathrm{K}=\left(\mathrm{S}, \mathrm{S}_{0}, \mathrm{R}, \mathrm{L}\right)$
$K^{\prime}=\left(S^{\prime}, S_{0}^{\prime}, R^{\prime}, L^{\prime}\right)$
- Note K and K' use the same set of atomic propositions P.
- $B \in S \times S^{\prime}$ is a bisimulation relation between K and K^{\prime} iff for every $\mathrm{B}\left(\mathrm{s}, \mathrm{s}^{\prime}\right)$:
- $\mathrm{L}(\mathrm{s})=\mathrm{L}^{\prime}\left(\mathrm{s}^{\prime}\right)$ (BSIM 1)
- If $R\left(s, s_{1}\right)$, then there exists s_{1} ' such that $R^{\prime}\left(s^{\prime}, s_{1}{ }^{\prime}\right)$ and $B\left(s_{1}, s_{1}{ }^{\prime}\right)$. (BISIM 2)
- If $R\left(s^{\prime}, s_{2}{ }^{\prime}\right)$, then there exists s_{2} such that $R\left(s, s_{2}\right)$ and B $\left.\left(s_{2}, s_{2}\right)^{\prime}\right)$. (BISIM 3)

Bisimulations

Examples

Examples

Unwinding preserves bisimulation

Examples

Examples

Examples

Examples

Examples

Examples

Examples

Bisimulations

- $K=\left(S, S_{0}, R, L\right)$
- $K^{\prime}=\left(S^{\prime}, S_{0}{ }^{\prime}, R^{\prime}, L^{\prime}\right)$
- K and K^{\prime} are bisimilar (bisimulation equivalent) iff there exists a bisimulation relation $\mathrm{B} \subseteq \mathrm{S} \times \mathrm{S}$ ' between K and K' such that:
- For each s_{0} in S_{0} there exists s_{0} ' in S_{0} ' such that $\mathrm{B}\left(\mathrm{s}_{0}, \mathrm{~s}_{0}{ }^{\prime}\right)$.
- For each s_{0} ' in S_{0} ' there exists s_{0} in S_{0} such that $B\left(\mathrm{~s}_{0}, \mathrm{~s}_{0}{ }^{\prime}\right)$.

The Preservation Property.

- $\mathrm{K}=\left(\mathrm{S}, \mathrm{S}_{0}, \mathrm{R}, \mathrm{AP}, \mathrm{L}\right)$
$K^{\prime}=\left(S^{\prime}, S_{0}{ }^{\prime}, R^{\prime}, A P, L^{\prime}\right)$
- $\mathrm{B} \subseteq \mathrm{S}^{\prime} \times \mathrm{S}^{\prime}$, a bisimulation.
- Suppose B(s, s’).

FACT: For any CTL* formula ψ (over AP),

$$
\mathrm{K}, \mathrm{~s} \vDash \psi \text { iff } \mathrm{K}^{\prime}, \mathrm{s}^{\prime} \vDash \psi .
$$

If K^{\prime} is smaller than K this is worth something.
\rightarrow abstraction for space reduction

Simulation Framework

Simulation-checking

- $\mathrm{K}=\left(\mathrm{S}, \mathrm{S}_{0}, \mathrm{R}, \mathrm{L}\right)$
$K^{\prime}=\left(S^{\prime}, S_{0}^{\prime}, R^{\prime}, L^{\prime}\right)$
- Note K and K' use the same set of atomic propositions AP.
- $\mathrm{B} \subseteq \mathrm{S} \times \mathrm{S}^{\prime}$ is a simulation relation between K and K^{\prime} ' iff for every $\mathrm{B}\left(\mathrm{s}, \mathrm{s}^{\prime}\right)$:
$\square \mathrm{L}(\mathrm{s})=\mathrm{L}^{\prime}\left(\mathrm{s}^{\prime}\right)$ (BSIM 1)
- If $R\left(s, s_{1}\right)$, then there exists s_{1} ' such that $R^{\prime}\left(s^{\prime}\right.$, $\mathrm{s}_{1}{ }^{\prime}$) and $\mathrm{B}\left(\mathrm{s}_{1}, \mathrm{~s}_{1}{ }^{\prime}\right)$. (BISIM 2)

Simulations

- $K=\left(S, S_{0}, R, L\right)$
- $K^{\prime}=\left(S^{\prime}, S_{0}{ }^{\prime}, R^{\prime}, L^{\prime}\right)$
- K is simulated by (implements or refines) K^{\prime} iff there exists a simulation relation $\mathrm{B} \subseteq \mathrm{S} \times \mathrm{S}^{\prime}$ between K and K^{\prime} such that for each s_{0} in S_{0} there exists $\mathrm{s}_{0}{ }^{\prime}$ in $\mathrm{S}_{0}{ }^{\prime}$ such that $\mathrm{B}\left(\mathrm{s}_{0}, \mathrm{~s}_{0}{ }^{\prime}\right)$.

Bisimulation Quotients

- $\mathrm{K}=\left(\mathrm{S}, \mathrm{S}_{0}, \mathrm{R}, \mathrm{L}\right)$
- There is a maximal simulation $\mathrm{B} \subseteq \mathrm{S} \times \mathrm{S}^{\prime}$.
- Let B be this bisimulation.
$\square[s]=\left\{s^{\prime} \mid\right.$ s B s' $\}$.
- B can be computed "easily".
$-K^{\prime}=\mathrm{K} / \mathrm{B}$ is the bisimulation quotient of K .

Bisimulation Quotient

- $\mathrm{K}=\left(\mathrm{S}, \mathrm{S}_{0}, \mathrm{R}, \mathrm{L}\right)$
- [s] = \{s' |s B s' $\}$.
- $K^{\prime}=K / B=\left(S^{\prime}, S^{\prime}{ }_{0}, R^{\prime}, L^{\prime}\right)$.
$\square S^{\prime}=\{[\mathrm{s}] \mid \mathrm{s} \in \mathrm{S}\}$
- $S_{0}^{\prime}=\left\{\left[s_{0}\right] \mid s_{0} \in S_{0}\right\}$
$\square \mathrm{R}^{\prime}=\left\{\left([\mathrm{s}],\left[\mathrm{s}^{\prime}\right]\right) \mid \mathrm{R}\left(\mathrm{s}_{1}, \mathrm{~s}_{1}{ }^{\prime}\right), \mathrm{s}_{1} \in[\mathrm{~s}], \mathrm{s}_{1}{ }^{\prime} \in\left[\mathrm{s}^{\prime}\right]\right\}$
$\square \mathrm{L}^{\prime}([\mathrm{s}])=\mathrm{L}(\mathrm{s})$.

Examples

Examples

Examples

Abstractions

- Bisimulations don't produce often large reduction.
- Try notions such as simulations, data abstractions, symmetry reductions, partial order reductions etc.
- Not all properties may be preserved.
- They may not be preserved in a strong sense.

Graph Simulation

Definition Two edge-labeled graphs $\mathrm{G}_{1}, \mathrm{G}_{2}$
A simulation is a relation R between nodes:

- if $\left(x_{1}, x_{2}\right) \in R$, and $\left(x_{1}, a, y_{1}\right) \in G_{1}$, then exists $\left(x_{2}, a, y_{2}\right) \in G_{2}$ (same label) s.t. $\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right) \in \mathrm{R}$

Note: if we insist that R be a function \rightarrow graph homeomorphism 201

Graph Bisimulation

Definition Two edge-labeled graphs G1, G2
A bisimulation is a relation R between nodes s.t. both R and R^{-1} are simulations

Set Semantics for

Semistructured Data

Definition Two rooted graphs $\mathrm{G}_{1}, \mathrm{G}_{2}$ are equal if there exists a bisimulation R from G_{1} to G_{2} such that $\left(\operatorname{root}\left(\mathrm{G}_{1}\right), \operatorname{root}\left(\mathrm{G}_{2}\right)\right) \in \mathrm{R}$

- Notation: $G_{1} \approx G_{2}$
- For trees, this is precisely our earlier definition

Examples of Bisimilar Graphs

Examples of non-Bisimilar Graphs

- This is a simulation but not a bisimulation
- Why ?
- Notice: G_{1}, G_{2} have the same sets of paths

Examples of Simulation

- Simulation acts like "subset"
$\{a, b\} \subseteq\{a, b, c\}$
$\{\mathrm{a}, \mathrm{b}:\{\mathrm{c}\}\} \subseteq\{\mathrm{d}, \mathrm{a}:\{\mathrm{e}, \mathrm{f}\}, \mathrm{b}:\{\mathrm{c}, \mathrm{g}\}\}$

- Question:
- if $\mathrm{DB}_{1} \subseteq \mathrm{DB}_{2}$ and $\mathrm{DB}_{2} \subseteq \mathrm{DB}_{1}$ then $\mathrm{DB}_{1} \approx \mathrm{DB}_{2}$?

Answer

if $\mathrm{DB}_{1} \subseteq \mathrm{DB}_{2}$ and $\mathrm{DB}_{2} \subseteq \mathrm{DB}_{1}$ then $\mathrm{DB}_{1} \approx \mathrm{DB}_{2}$?

No. Here is a counter example:

$\mathrm{DB}_{1} \subseteq \mathrm{DB}_{2}$ and $\mathrm{DB}_{2} \subseteq \mathrm{DB}_{1}$ but $\mathrm{NOT} \mathrm{DB}_{1} \approx \mathrm{DB}_{2}$

Facts About a (Bi)Simulation

- The empty set is always a (bi)simulation
- If R, R' are (bi)simulations, so is $R U R$ '
- Hence, there always exists a maximal (bi)simulation:
- Checking if $\mathrm{DB}_{1}=\mathrm{DB}_{2}$: compute the maximal bisimulation R , then test $\left(\operatorname{root}\left(\mathrm{DB}_{1}\right)\right.$, $\left.\operatorname{root}\left(\mathrm{DB}_{2}\right)\right)$ in R

Computing a (Bi)Simulation

- Computing the maximal (bi)simulation:
- $R=\{(\mathrm{s} 1, \mathrm{~s} 2) \mid \mathrm{s} 1 \in \mathrm{~S} 1, \mathrm{~s} 2 \in \mathrm{~S} 2, \mathrm{~L} 1(\mathrm{~s} 1)=\mathrm{L} 2(\mathrm{~s} 2)\}$
- While exists $\left(x_{1}, x_{2}\right) \in R$ that violates the definition, remove ($\mathrm{x}_{1}, \mathrm{x}_{2}$) from R
- This runs in polynomial time ! Better:
- $\mathrm{O}((\mathrm{m}+\mathrm{n}) \log (\mathrm{m}+\mathrm{n}))$ for bisimulation
$\square O(m \mathrm{n})$ for simulation
- Compare to finding a graph homomorphism !
- Compare to findi a graph isomorphism !

Kripke structure

- bisimulation analysis

A symbolic version is also possible. (skipped due to time-limit)
bisimulation $\left(\mathrm{K}, \mathrm{K}^{\prime}\right)$ /* * using greatest fixpoint algorithm */ \{
$B=\left\{\left(s, s^{\prime}\right) \mid s \in S, s^{\prime} \in S^{\prime}, L(s)=L\left(s^{\prime}\right)\right\} ;$
repeat \{
for all $\left(s, s^{\prime}\right) \in B,\{$
if $\exists(s, t) \in R, \forall\left(s^{\prime}, t^{\prime}\right) \in R^{\prime}\left(\left(t, t^{\prime}\right) \notin B\right), B=B-\left\{\left(s, s^{\prime}\right)\right\} ;$
if $\exists\left(s^{\prime}, t^{\prime}\right) \in R^{\prime}, \forall(s, t) \in R\left(\left(t, t^{\prime}\right) \notin B\right), B=B-\left\{\left(s, s^{\prime}\right)\right\}$;
\} \} until no more changes to B for any ($\mathrm{s}, \mathrm{s}^{\prime}$).
if $\exists \mathrm{s}_{0} \in \mathrm{~S}_{0} \forall \mathrm{~s}_{0}{ }^{\prime} \in \mathrm{S}_{0}{ }^{\prime}\left(\left(\mathrm{s}_{0}, \mathrm{~s}_{0}{ }^{\prime}\right) \notin \mathrm{B}\right)$, return "no bisimulation;"
if $\exists \mathrm{s}_{0}{ }^{\prime} \in \mathrm{S}_{0}{ }^{\prime} \forall \mathrm{s}_{0} \in \mathrm{~S}_{0}\left(\left(\mathrm{~s}_{0}, \mathrm{~s}_{0}{ }^{\prime}\right) \notin \mathrm{B}\right)$, return "no bisimulation;" return "bisimulation exists."
\}
The procedure terminates since $B \subseteq S \times S^{\prime}$ is finite.

Language inclusion

Since both can be modeled as automata, we can check the relation between their languages.

- Language of a model: L(Model).
- Language of a specification: $\mathrm{L}(\mathrm{Spec})$.

Language inclusion

- Correctness with runs

Language inclusion

- How to do it ?
- Show that $\mathrm{L}($ Model $) \subseteq \mathrm{L}($ Spec $)$.
- Equivalently:

Show that $\mathrm{L}($ Model $) \cap \mathrm{L}(\neg$ Spec $)=\varnothing$.

- How? Check that $A_{\text {model }} \cap A_{- \text {Spec }}$ is empty.

Language inclusion

- What do we need to know?

$$
\mathrm{L}(\text { Model }) \cap \mathrm{L}(\neg \text { Spec })=\varnothing .
$$

1. How to intersect two automata?
2. How to complement an automaton?
3. How to check for emptiness of an automaton?
4. How to translate from LTL to an automaton? (next week ...)

Language inclusion

- Automata for infinite sequences

State Sequences as Words

- Let AP be the finite set of atomic propositions of the formula f.
- Let $\Sigma=2^{\text {AP }}$ be the alphabet over AP.
- Every sequence of states is an ω word in Σ^{ω}
- $\alpha=P_{0}, P_{1}, P_{2}, \ldots$ where $P_{i}=L\left(s_{i}\right)$.
- A word a is a model of formula f iff $\alpha \mid=f$
- Example: for $f=p \wedge(\neg q \cup q)\{p\},\{ \},\{q\},\{p, q\}^{\omega}$
- Let $\operatorname{Mod}(f)$ denote the set of models of f.

Language inclusion

- Büchi automata

Büchi automaton $A=(Q, \Sigma, \delta, I, F)$

- Q - finite set of states
- Σ - finite alphabet
- δ - transition relation
- I - set of initial states
- F - set of acceptance states

A run ρ of A on ω word α $\rho=q_{0}, q_{1}, q_{2}, \ldots$, s.t. $q_{0} \in I$ and $\left(q_{i}, a_{i}, q_{i+1}\right) \in \delta$

ρ is accepting if $\operatorname{lnf}(\rho) \cap F \neq \varnothing$

Buchi Automaton

- Given an infinite word $\mathrm{w} \in \Sigma^{\omega}$ where $\mathrm{w}=\mathrm{a}_{0}$, a_{1}, a_{2}, \ldots
a run r of the automaton A over w is an infinite sequence of automaton states $r=q_{0}, q_{1}, q_{2}, \ldots$ where $q_{0} \in I$ and for all $i \geq 0,\left(q_{i}, a_{i}, q_{i+1}\right) \in \Delta$
- Given a run r, let $\inf (r) \subseteq Q$ be the set of automata states that appear in r infinitely many times
- A run r is an accepting run if and only if inf(r) $\cap F \neq \varnothing$
i.e., a run is an accepting run if some accepting states appear in r infinitely many times

Transition System to Buchi Automaton Translation

Given a transition system $T=(S, I, R)$
a set of atomic propositions AP and
a labeling function $L: S \times A P \rightarrow$ true, false $\}$
the corresponding Buchi automaton $A_{T}=\left(\Sigma_{T}, Q_{T}, \delta_{T}, I_{T}, F_{T}\right)$
$\Sigma_{T}=2^{A P} \quad$ an alphabet symbol corresponds to a set of atomic propositions
$Q_{T}=S \cup\{i\} \quad i$ is a new state which is not in S
$\mathrm{I}_{\mathrm{T}}=\{i\} \quad \mathrm{i}$ is the only initial state
$F_{T}=S \cup\{i\} \quad$ all states of A_{T} are accepting states
δ_{T} is defined as follows:

$$
\begin{array}{ll}
\left(s, a, s^{\prime}\right) \in \delta_{\mathrm{T}} \text { iff } & \text { either }\left(\mathrm{s}, \mathrm{~s}^{\prime}\right) \in \mathrm{R} \text { and } \mathrm{L}\left(\mathrm{~s}^{\prime}, \mathrm{a}\right)=\text { true } \\
& \text { or } \mathrm{s}=\mathrm{i} \text { and } s^{\prime} \in \mathrm{I} \text { and } \mathrm{L}\left(\mathrm{~s}^{\prime}, a\right)=\text { true }
\end{array}
$$

Transition System to Buchi

Automaton Translation Example transition system Corresponding Buchi automaton

Each state is labeled with the propositions that hold in that state

Generalized Buchi Automaton

A generalized Buchi automaton is a tuple $\mathrm{A}=$ ($\Sigma, \mathrm{Q}, \delta, \mathrm{I}, \mathrm{F}$) where
Σ is a finite alphabet
Q is a finite set of states
$\delta \subseteq \mathrm{Q} \times \Sigma \times \mathrm{Q}$ is the transition relationhis is different than
$\mathrm{I} \subseteq \mathrm{Q}$ is the set of initial states the standard definition
$F \subseteq 2^{Q}$ is sets of accepting states
i.e., $F=\left\{F_{1}, F_{2}, \ldots, F_{k}\right\}$ where $F_{i} \subseteq Q$ for $1 \leq i \leq k$

- Given a generalized Buchi automaton A, a $r u n r$ is an accepting run if and only if
\square for all $1 \leq i \leq k, \inf (r) \cap F_{i} \neq \varnothing$

Buchi Automata Product

Given $A_{1}=\left(\Sigma, Q_{1}, \delta_{1}, l_{1}, F_{1}\right)$ and $A_{2}=\left(\Sigma, Q_{2}, \delta_{2}, l_{2}, F_{2}\right)$ the product automaton $A_{1} \times A_{2}=(\Sigma, Q, \delta, I, F)$ is defined as:

- $Q=Q_{1} \times Q_{2}$
- $I=I_{1} \times I_{2}$
- $F=\left\{F_{1} \times Q_{2}, Q_{1} \times F_{2}\right\}$ (a generalized Buchi automaton)
- δ is defined as follows:
- $\left(\left(\mathrm{q}_{1}, \mathrm{q}_{2}\right), \mathrm{a},\left(\mathrm{q}_{1}{ }^{\prime}, \mathrm{q}_{2}{ }^{\prime}\right)\right) \in \delta$ iff $\left(\mathrm{q}_{1}, \mathrm{a}^{\prime}, \mathrm{q}_{1}{ }^{\prime}\right) \in \delta_{1}$ and $\left(\mathrm{q}_{2}, \mathrm{a}^{2} \mathrm{q}_{2}{ }^{\prime}\right) \in \delta_{2}$ Based on the above construction, we get

$$
L\left(A_{1} \times A_{2}\right)=L\left(A_{1}\right) \cap L\left(A_{2}\right)
$$

Example, a Special Case
 Buchi automaton 1

Buchi Automata Product Example Automaton R
 Automaton Q

Language inclusion

- intersecting two finite-state automata
 $\mathrm{L}\left(\mathrm{A}_{1}\right)=(\mathrm{a}+\mathrm{b})^{*} \mathrm{a}+\varepsilon$
(words ending with 'a'
+ empty word)

$$
\mathrm{L}\left(\mathrm{~A}_{2}\right)=(\mathrm{ba})^{*}+(\mathrm{ba})^{*} \mathrm{~b}+\varepsilon
$$

(words that alternate between b and $\mathrm{a}+$ empty word)

[^0]
Language inclusion

- intersecting two finite-state automata

1. States: $\left(\mathrm{s}_{0}, \mathrm{t}_{0}\right),\left(\mathrm{s}_{0}, \mathrm{t}_{1}\right),\left(\mathrm{s}_{1}, \mathrm{t}_{0}\right),\left(\mathrm{s}_{1}, \mathrm{t}_{1}\right)$.
$A_{1} \cap A_{2}:$
2. Initial state(s): $\left(\mathrm{s}_{0}, \mathrm{t}_{0}\right)$.
3. Accepting states: $\left(\mathrm{s}_{0}, \mathrm{t}_{0}\right),\left(\mathrm{s}_{0}, \mathrm{t}_{1}\right)$.

$$
\mathrm{L}\left(\mathrm{~A}_{1} \cap \mathrm{~A}_{2}\right)=(\mathrm{ba})^{*}+\varepsilon
$$

Language inclusion

- intersecting two Büchi automata

Previous method doesn't work:

Language inclusion

- intersecting two Büchi automata

Strategy:

- "Multiply" the product automaton by 3

$$
(S=S 1 \times S 2 \times\{0,1,2\})
$$

- Start from the '0' copy.
- Transition to the ' 1 ' copy when visiting a state from F1
- Transition to the ' 2 ' copy if in a ' 1 ' state and visiting a state from F2, and in the next state back to a ' 0 ' state.
- Make the ' 2 ' copy an accepting set.

Language inclusion
 - intersecting two Büchi automata

There are total of 12 states in the product automaton.
The reachable part of $A_{1} \cap A_{2}$ is:

Language inclusion

- How to complement?
- Complementation is hard!
- We know how to translate an LTL formula to a Buchi automaton. So we can:
- Build an automaton A for φ, and complement A, or
- Negate the property, obtaining $\neg \varphi$ (the sequences that should never occur). Build an automaton for $\neg \varphi$.

Language inclusion

- How to check for emptiness?
-Need to check if there exists an accepting run (passes through an accepting state infinitely often).
-This is called checking for emptiness, because if no such run exists, then $L(A)=$;

Language inclusion

- emptiness and accepting runs
- If there is an accepting run, then it contains at least one accepting state an infinite \# of times.
- This state must appear in a cycle.
- So, find a reachable accepting state on a cycle.

■ What graph algorithm ?

Language inclusion

- Finding accepting runs
- Rather than looking for cycles, look for SCCs:
- A Strongly Connected Component (SCC): a set of nodes where each node is reachable from all others.
- Finding SCC's is linear in the size of the graph.
- Find a reachable SCC with an accepting node.

Language inclusion

- Verification under Fairness

Express the fairness as a property φ. To prove a property ψ under fairness, model check $\varphi \rightarrow \psi$.

[^0]: What should be the language of $A_{1} \neg A_{2}$?

