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History of Temporal Logic

 Designed by philosophers to study the way that time 
is used in natural language arguments

 Reviewed by Prior [PR57, PR67]

 Brought to Computer Science by Pnueli [PN77] 

 Has proved to be useful for specification of 
concurrent systems
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Amir Pnueli

1941

 Professor, Weizmann 

Institute 

 Professor, NYU

 Turing Award, 1996

Presentation of a gift at 
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Taipei
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Kripke structure

A = (S, S0, R, L)

 S 

 a set of all states of the system

 S0S

 a set of initial states

 R  SS

 a transition relation between states

 L : R  2P

 a function that associates each state with set of 

propositions true in that state
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Kripke Model

 Set of states S

 {q1,q2,q3}

 Set of initial states S0

 {q1}

 Set of atomic 

propositions AP

 {a,b}

a

a,b b

q1

q3q2

2010/9/29
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Example of Kripke Structure

Suppose there is a program

initially x=1 and y=1;

while true do

x:=(x+y) mod 2;

endwhile

where x and y range over D={0,1}
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Example of Kripke Structure

 S=DxD

 S0={(1,1)}

 R={((1,1),(0,1)),((0,1),(1,1)),((1,0),(1,0)),((0,0),(0,0))}

 L((1,1))={x=1,y=1},L((0,1))={x=0,y=1},

L((1,0))={x=1,y=0},L((0,0))={x=0,y=0}

1,1 0,1

0,0

1,0

2010/9/29
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Fairness

 Interested in the correctness along fair 

computation paths

 Weak (Büchi) fairness:

 “an action can not be enabled forever without 

being taken”

 necessary for modeling asynchronous models

 Strong (Streett) fairnness:

 “an action can not be enabled infinitely often 

without being taken”

 necessary for modeling synchronous 

interaction
2010/9/29
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Framework

 Temporal Logic is a class of Modal Logic

 Allows qualitatively describing and reasoning about 

changes of the truth values over time

 Usually implicit time representation

 Provides variety of temporal operators (sometimes, 

always)

 Different views of time (branching vs. linear, discrete 

vs. continuous, past vs. future, etc.)

2010/9/29
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Outline

 Linear

 LPTL (Linear time Propositional Temporal 

Logics), 

 also called PTL, LTL

 Branching

 CTL (Computation Tree Logics)

 CTL* (the full branching temporal logics)
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Temporal Logics：Catalog

propositional  first-order

global    compositional 

branching  linear-time

points  intervals

discrete    continuous

past  future

2010/9/29
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Temporal Logics

 Linear
 LPTL (Linear time Propositional Temporal 

Logics)

 Branching
 CTL (Computation Tree Logics)

 CTL* (the full branching temporal logics)
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LPTL (PTL, LTL)

Linear-Time Propositional Temporal 

Logic
Conventional notation：

 propositions : p, q, r, …

 sets : A, B, C, D, …

 states : s

 state sequences : S

 formulas : φ,ψ

 Set of natural number：N = {0, 1, 2, 3, …}

 Set of real number：R

2010/9/29
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LPTL

Given P : a set of propositions, 

a Linear-time structure : state sequence

S= s0 s1 s2 s3 s4... sk…...

sk  is a function of P where sk :P {true,false}

or sk  ∈2P

example: P={a,b}

{a}{a,b}{a}{a}{b}…
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LPTL

- syntax

ψ ::= true | p | ψ |ψ1ψ2 | ψ |ψ1Uψ2

abbreviation

false   true

ψ1 ψ2   ((ψ1) (ψ2))

ψ1ψ2  (ψ1)ψ2

ψ  true Uψ 

ψ  ψ 

2010/9/29
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LPTL

- syntax

Exam. Symbol

in CMU

p Xp p is true on next state

pU q pU q From now on, p is always 
true until q is true

p Fp From now on, there will be a 
state where p is eventually 
(sometimes) true

p Gp From now on, p is always true

2010/9/29
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LPTL

- syntax

p Xp p is true on next state

? ???p

? : don’t care

2010/9/29
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LPTL

- syntax

pU q pU q From now on, p is always 
true until q is true

p  p,qpp

p p,qpp

?

?

p true

p don’t 
care

q ??

2010/9/29
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LPTL

- syntax

p Fp From now on, there will be a 
state where p is eventually 
(sometimes) true

? p???

p Gp From now on, p is always true

p pppp

2010/9/29
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LPTL

- syntax

Two operator for Fairness

 
p   p ；p will happen infinitely 

many times
infinitely often

 
p   p ；p will be always true

after some time in the 
future
almost everywhere

2010/9/29
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LPTL

- semantics

suffix path :
S= s0 s1 s2 s3 s4 s5 …...... 

S(0)= s0 s1 s2 s3 s4 s5 …...... 

S(1)= s1 s2 s3 s4 s5 s6 …...... 

S(2)= s2 s3 s4 s5 s6 …...... 

S(3)= s3 s4 s5 s6 …...... 

S(k)= sk sk+1 sk+2 sk+3 …...... 

2010/9/29
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LPTL

- semantics

Given a state sequence

S= s0 s1 s2 s3 s4... sk…...

We define S ψ (S satisfies ψ）inductively as：

 S  true

 S  p   s0(p)=true, or equivalently p  s0

 S ψ  S  ψ is false

 S  ψ1ψ2  S  ψ1 or S  ψ2 

 S  ψ  S(1)  ψ

 S  ψ1Uψ2  k0(S(k) ψ2 0j<k(S(j) ψ1))

2010/9/29



12

23

LPTL

- semantics, remarks (1/2)

Basic assumption :

 Isomorphism: (N，<)

 discrete ；suitable for digital computer

 Initial point（0） ；computer needs reboot

 Infinite future ；finite and infinite

 Every element in N is a state

 Every state only have one successor

2010/9/29
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LPTL

- semantics, remarks (2/2)

Example: When memory-fault, generate interrupt

Basic propositions: memf, intr

i0(memf(i)  j, intr(j))

i0(memf(i)  j(j<i  intr(j))

i0(memf(i)  j(j>i  intr(j))

j could be in 
the past ? 

j is in the past! 

2010/9/29



13

27

LPTL

- examples (I)(1/6)

P0:(p0:=0 | p0 := p0 p1 p2)

P1:(p1:=0 | p1 := p0 p1)

P2:(p2:=0 | p2 := p1 p2)

Program P2

variable：P2

Program P0

variable： P0

Program P1

variable： P1

2010/9/29
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LPTL

- examples (I)(2/6)

P0: when (true) may p0=0;

when (true) may p0 = p0  p1  p2;

P1: when (true) may p1=0;

when (true) may p1 = p0  p1; 

P2: when (true) may p2=0; 

when (true) may p2 = p1  p2; 

Program P2

variable：P2

Program P0

variable： P0

Program P1

variable： P1

2010/9/29
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LPTL

- examples(I)(3/6)

(   (true ○p0 /*P0*/

((p0p1p2)  ○p0) /*P0*/

 true ○p1 /*P1*/

 ((p0p1)  ○p1) /*P1*/

 true ○p2 /*P2*/

 ((p1p2)  ○p2) /*P2*/

)

P0: when (true) may p0=0;

when (true) may p0 = p0  p1  p2;

P1: when (true) may p1=0;

when (true) may p1 = p0  p1; 

P2: when (true) may p2=0; 

when (true) may p2 = p1  p2; 

2010/9/29
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LPTL

- examples (I)(4/6)

(   (○p0 /*P0*/

((p0p1p2)  ○p0) /*P0*/

 ○p1 /*P1*/

 ((p0p1)  ○p1) /*P1*/

 ○p2 /*P2*/

 ((p1p2)  ○p2) /*P2*/

)

Program P2

variable：P2

Program P0

variable： P0

Program P1

variable： P1

2010/9/29
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LPTL

- examples (I)(5/6)

(   (○p0 (p1  ○p1) (p2  ○p2))

 (((p0p1p2)  ○p0) (p1  ○p1) (p2  ○p2))

 (○p1 (p2  ○p2) (p0  ○p0))

 (((p0p1)  ○p1) (p2  ○p2) (p0  ○p0))

 (○p2(p1  ○p1) (p0 ○p0))

 (((p1p2)  ○p2) (p1  ○p1) (p0○p0))

)

Asynchronous system!
Interleaving semantics.

Program P2

variable：P2

Program P0

variable： P0

Program P1

variable： P1

P0: when (true) may p0=0;

when (true) may p0 = p0  p1  p2;

P1: when (true) may p1=0;

when (true) may p1 = p0  p1; 

P2: when (true) may p2=0; 

when (true) may p2 = p1  p2; 

2010/9/29
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LPTL

- examples (I)(6/6)

(   ((p0  ○p0) ○p0  ((p0p1p2)  ○p0) )

 ((p1  ○p1) ○p1  ((p0p1)  ○p1) )

 ((p2  ○p2)  ○p2 ((p1p2)  ○p2) )

)

Synchronous

Program P2

variable：P2

Program P0

variable： P0

Program P1

variable： P1

P0: when (true) may p0=0;

when (true) may p0 = p0  p1  p2;

P1: when (true) may p1=0;

when (true) may p1 = p0  p1; 

P2: when (true) may p2=0; 

when (true) may p2 = p1  p2; 

2010/9/29
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LPTL

- examples (II)

waiti

runi
readyi

Processi, 1 i  m

CPUAvailable

Also describe the 

mutual exclusion 

condition

2010/9/29
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LPTL

- examples (II)

1im waiti
1im(runi i<jm runj)
1im(

(waiti (○waiti ○readyi))

 (readyi ○ readyi)
 ((readyi1jm¬ runj) ○runi)

 (runi ○ waiti)

)

waiti

runi
readyi

CPUAvailable

2010/9/29
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LPTL

- examples (III)

A 2-bit counter operates at bit-level.

00 11

1001

b1, b0

2010/9/29
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LPTL

- examples (IV)

A

P’

P

C

B’

B
Gate-controller

A: train far-Away

B: Before train-crossing

C: train at Crossing

P: train just Passed

Train-approaching 

detected

Train approaching 

detected

Train-passed 

detected

2010/9/29
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LPTL

- examples (V)

two processes：

P0: high priority; P1: low priority

idle

preempt

run

P0

idle
run

P1

2010/9/29
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LPTL

- examples (VI)

a digital watch：

AP={time,chr,freeze,set,run,dummy,a,b} 

 exactly one 

of time, chr, 

freeze, set, 

run, and 

dummy can be

true at any 

moment. 

time

set run dummy

freezechr
a

a

a

b

b

b
b

not b

2010/9/29
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LPTL

- workout

Please construct the LPTL formulas for the 

examples in example III-VI. 

2010/9/29
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LPTL

- extensions (1/3)

 until vs. unless

 strict future

 weak vs. strong

 future vs. past


+p …………………
-p


+p ………………… 

-p


+p …………………
-p 

pU +q ………………… pU -q (pS q)
since

2010/9/29
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LPTL

- extensions (2/3)

decidable extension

i0(memf(i)   j(j>i  j<i+4  intr(j))

undecidable extensions: 

 polynomial operations on variables.

i0(memf(i)   j(j>i+i  intr(j))

 2nd order logics: 

i0(memf(i)   f(f(i)>i*i  intr(f(i)))
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LPTL

- extensions (3/3)

 First-Order LTL

 new elements

 variables, universe, quantifications
 functions, predicates,

 interpreted vs. uninterpreted

 multi-sorted

 Ostroff’s RTTL

x((p x=T) → y(q y=T  y-x<5))

2010/9/29
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Branching Temporal Logics

Basic assumption of tree-like structure

s0

s5

s4

s3
s2

s1

•Every node is a function 

of P→{true,false}

•Every state may have many  
successors

2010/9/29
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Branching Temporal Logics

Basic assumption of tree-like structure

s0

s5

s4

s3
s2

s1

•Every path is isomorphic as N

•Correspond to a state sequence

Path : s0  s1  s3 ……

s0  s1  s2 ……

s1  s3 ……

s4  s5 ……
2010/9/29
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Branching Temporal Logic

It can accommodate infinite and dense state 

successors

 In CTL and CTL*, it can’t tell

 Finite and infinite

 Is there infinite transitions？

 Dense and discrete

 Is there countable（）transitions？

2010/9/29
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Branching Temporal Logic

Get by flattening a finite state machine

s0

s1

s2

s0

s1 s2

s0

s1 s2

s1

s0

2010/9/29
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CTL(Computation Tree Logic)

Edmund M. Clarke

Professor, CS & ECE

Carnegie Mellon University

E. Allen Emerson

Professor, CS

The University of Texas at Austin

Chin-Laung Lei

Professor, EE

National Taiwan University
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24

49

CTL(Computation Tree Logic)

- syntax

φ::= true | p | φ | φ1φ2 | φ | φ

| φ1Uφ2 | φ1Uφ2

abbreviation：
false   true
φ1 φ2   ((φ1) (φ2))
φ1φ2  (φ1)φ2

φ  true Uφ
φ  φ
φ  true Uφ
φ  φ

2010/9/29
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CTL 

- semantics 

example symbol

in CMU

p EXp there exists a path where p is 

true on next state
pU q pEUq from now on, there is a 

path where p is always 
true until q is true

p AXp for all path where p is true on 
next state

pU q pAUq from now on, for all path where

p is always true until q is true

2010/9/29
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CTL 

- semantics

p EXp there exists a path where p
is true on next state

?

p ?

?

? ?

?

?

2010/9/29
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CTL 

- semantics 

pU q pEUq from now on, there is a path where p 
is always true until q is true

p

p ?

p

? q

?

?

2010/9/29
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CTL 

- semantics

p AXp for all path where p is true on 
next state

?

p p

?

? ?

?

?

2010/9/29
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CTL 

- semantics

pU q pAUq from now on, for all path 
where p is always true until q 
is true

p

p q

p

q q

?

?

2010/9/29
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CTL 

- semantic 

Assume there are 

 a tree stucture M, 

 one state s in M, and 

 a CTL fomula φ

M,sφ means s in M satisfy φ

2010/9/29
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CTL 

- semantics 

s-path：a path in M

that starts from s

s0

s12

s11

s6

s14

s1

s10s8

s7 s9 s13

s5s4

s3

s2

s15

s0 -path:
s0 s1 s2 s3 s5 …...... 
s0 s1 s6 s7 s8 …...... 

s1 -path:
s1 s2 s3 s5 ……...…

s2 -path:
s2 s3 s5 ……...…

s13 -path:
s13 s15 ……...…2010/9/29
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CTL 

- semantics

 M,s  true

 M,s  p   p s

 M,s  φ  it is false that M,s  φ 

 M,s  φ1φ2  M,s  φ1 or M,s  φ2 

 M,s  φ   s-path = s0 s1 ……(M,s1  φ)

 M,s  φ   s-path = s0 s1 ……(M,s1  φ)

 M,s  φ1Uφ2   s-path = s0 s1 ……, k0
(M,sk  φ2 0j<k(M,sj  φ1))

 M,s  φ1Uφ2  s-path = s0 s1 ……, k0
(M,sk  φ2 0j<k(M,sj  φ1))

2010/9/29
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LPTL

- examples (I)(2/6)

P0: when (true) may p0=0;

when (true) may p0 = p0  p1  p2;

P1: when (true) may p1=0;

when (true) may p1 = p0  p1; 

P2: when (true) may p2=0; 

when (true) may p2 = p1  p2; 

Program P2

variable：P2

Program P0

variable： P0

Program P1

variable： P1

2010/9/29
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CTL 

- examples (I)

P0:(p0:=0 | p0 := p0  p1  p2)

P1:(p1:=0 | p1 := p0 p1)

P2:(p2:=0 | p2 := p1 p2)

If P0 is true, it is possible

that P2 can be true 

after the next two cycles.

(p0  ○ ○ p2)

P2

var: p2

P0

var: p0

P1

var: p1

2010/9/29

60

CTL 

- examples (II)

1. If there are dark clouds, it will rain.  

(dark-cloudsrain)

2. if a buttefly flaps its wings, the New York stock could 
plunder.

(buttefly-flap-wingsNY-stock-plunder)

3. if I win the lottery, I will be happy forever. 

(win-lottery  happy)

4. In an execution state, if an interrupt occurs in the next 
cycle, the interrupt handler will execute at the 2nd next 
cycle.   

(exec○(intrpt○(intrpt-handler)))

2010/9/29
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CTL 

- examples (III)

In an execution state, if an interrupt occurs in the next 

cycle, the interrupt handler will execute at the 2nd 

next cycle.   

(exec○(intrpt○(intrpt-handler)))

Some possible mistakes: 

(exec((○ intrpt)○intrpt-handler))

(exec  ((○ intrpt) ○○ intrpt-handler))

2010/9/29
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CTL*

- syntax

 CTL* fomula  ( state-fomula )

φ::= true | p | φ1 | φ1φ2 | ψ | ψ

 path-fomula

ψ ::= φ | ψ1 |ψ1ψ2 | ψ1 | ψ1Uψ2

CTL* is set of all state-fomula!

2010/9/29
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CTL*

- examples (1/4) 

In a fair concurrent environment, jobs will 

eventually finish.

(((execute1) (execute2)) finish)

or

(((execute1) (execute2)) finish)

2010/9/29

64

CTL*

- examples (2/4)

No matter what, infinitely many comet will hit 
earth.

comet-hit-earth

Or

 comet-hit-earth

Why not CTL?

   comet-hit-earth

   comet-hit-earth

What is the 

difference ? 

2010/9/29
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CTL*

- Workout

 (1) comet-hit-earth 

 (2)   comet-hit-earth

 (3)   comet-hit-earth

Please draw trees that tell 

 (1) from (2) and (3) 

 (2) from (1) and (3) 

 (3) from (1) and (2) 

2010/9/29
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CTL*

- examples (3/4) 

If you never have a lover, I will marry you. 

((you-have-no-lover) marry-you)

Why not CTL ?

 ( you-have-no-lover)  你嫁給我

 ( you-have-no-lover)  你嫁給我

 ( you-have-no-lover)  你嫁給我

2010/9/29
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CTL*

- Workout 

 (1)((you-have-no-lover) marry-you)

 (2) ( you-have-no-lover)   marry-you

 (3) ( you-have-no-lover)   marry-you

 (4) ( you-have-no-lover)   marry-you

Please draw trees that tell 

 (1) from (2), (3), (4)

 (2) from (1), (3), (4)

 (3) from (1), (2), (4)

 (3) from (1), (2), (3)
2010/9/29
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CTL*

- examples (4/4) 

If I buy lottory tickets infinitely many times, 

eventually I will win the lottery. 

((buy-lottery) win-lottery)

or 

 (( buy-lottery)  win-lottery)

2010/9/29
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CTL*

- semantics 

suffix path :

s0

s12

s11

s6

s14

s1

s10s8

s7 s9 s13

s5s4

s3

s2

s15

S= s0 s1 s2 s3 s5 …...... 

S(0)= s0 s1 s2 s3 s5 …...... 
S(1)= s1 s2 s3 s5 …...... 
S(2)= s2 s3 s5 …...... 
S(3)= s3 s5 …...... 
S(4)= s5 …...... 

S= s0 s1 s6 s7 s8 …...... 

S(2) = s6 s7s8 ………

S= s0 s11 s12 s13 s15 …...... 
S(3) = s13 s15 ……...…

2010/9/29

70

CTL*

- semantics

state-fomula

φ::= true | p | φ1 | φ1φ2 | ψ | ψ

 M,s  true

 M,s  p   p s

 M,s  φ  M,s  φ 是false

 M,s  φ1φ2  M,s  φ1 or M,s  φ2 

 M,s  ψ   s-path = S (S  ψ)

 M,s  ψ   s-path = S (S  ψ)

2010/9/29
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CTL*

- semantics

path-fomula

ψ ::= φ | ψ1 |ψ1ψ2 | ψ | ψ1Uψ2

 If S= s0 s1 s2 s3 s4 …...…,S  φ  M,s0  φ

 S ψ1  S  ψ1 是false

 S ψ1 ψ2  S ψ1 or S ψ1

 S  ψ  S(1)  ψ

 S  ψ1Uψ2 k0 (S(k)  ψ20j<k(S(j)  ψ1))

2010/9/29
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Expressiveness

Given a language L, 

 what model sets L can express ? 

 what model sets L cannot ? 

model set: a set of behaviors

A formula = a set of models (behaviors) 

 for anyφ L, [φ] ≝ {M |Mφ}

A language = a set of formulas. 

Expressiveness: Given a model set F, 

F is expressible in L iff φL([φ]=F)

2010/9/29
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Expressiveness

Comparison in expressiveness: 
Given two languages L1 and L2

Definition: L1 is more expressive than L2 (L2<L1)

iff φL2 ([φ] is expressible in L1)

Definition: L1 and L2 are expressively equivalent 

(L1≡L2 ) iff (L2<L1)(L1<L2)

Definition: L1 、 L2  are expressively incomparable iff 

((L2<L1)(L1<L2))

2010/9/29
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Expressiveness

 expressiveness of PLTL

 PLTL & PLTLB

 PLTL & QPLTL

 FOLLO & SOLLO

 regular languages

 expressiveness of branching-time logics

2010/9/29
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Expressiveness

- LPTL

 PLTL with only future modal operators

 PLTLB with both past and future modal operators


+p ………………… 
-p


+p ………………… 

-p


+p ………………… 
-p 

pU +q ………………… pU -q (pS q)

Theorem：PLTL & PLTLB have the same expressiveness. 

2010/9/29
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Expressiveness

- LPTL


+(eat + (shit -full )) in PLTLB


+(eat + (shit  full ))    in PLTL

+(eat + (full + shit))

 
+(full + (eat +shit ))

partial-order  total-order

PLTL is less succinct than PLTLB. 

2010/9/29
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Expressiveness

- LPTL

Theorem: 

Given P={p}, PLTL cannot express the following 
model.  

p p?p? ?

p is true at only even states.  [P.Wolper 1993]

2010/9/29
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Expressiveness

- QPTL

QPLTL (Quantified PLTL) can express the 

following model.  

x(x ((xx))(((x) x)) ((xp)))

p p?p? ?

p is true at only even states.  [P.Wolper 1993]

With an auxiliary proposition x, 

x initially true. 

x alternates from a state to the next. 

x p
2010/9/29



39

79

Expressiveness

- QPTL

QPLTL, syntax

ψ ::= true | p | ψ |ψ1ψ2 | ψ |ψ1Uψ2 | xψ

abbreviation: 

xψ  x ψ

QPLTL, intuitive semantics

 xψ: there is an x-extended state sequence ψ

 xψ: all x-extended state sequence ψ

2010/9/29
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Expressiveness

- QPTL

QPLTL, semantics

Given state sequence S= s0 s1 s2 s3 s4... sk…...

S  xψ if and only if 

 T= t0 t1 t2 t3 t4... tk…… such that 

  k0, tk is identical to sk except on tk(x)

 T ψ
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Expressiveness

- FOLLO

FOLLO (First-Order Language of Linear Order)

 used to define PLTL.  

 syntax elements: , <, p(i), , , , 

 , : quantification over 
 p(i): monadic predicates of 

0    1   2   3    4    5    6   7   8    9  10  11  12 ……

p    p p   p p p p   p   p p  p    p    p ……
q q q   q q q   q q   q q  q   q    q ……
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Expressiveness

- SOLLO

SOLLO(Second-Order Language of Linear Order)

 syntax elements: , <, p(i), , , , 

 , : quantification over 
 i  and 

 x  {true,false}

Theorem:  

PLTL≡PLTLB≡FOLLO<SOLLO≡QPLTL≡QPLTLB

2010/9/29
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Expressiveness

- regular languages

Regular Languages

 recognizable with finite-state automata

a

c

b

abc

abcbc

abcbcbc

abcbcbc......bc

Note: each a, b, 

c is encoded 

with an array of 

bits. 
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Expressiveness

- regular languages

Regular Languages

 recognizable with finite-state automata

Grammar rules : concatenate, +, *, 

a(bc)*

a

abc

abcbcbc

abcbc......bc

a(b+c)*

a

ab

accc

abbccc......b
2010/9/29
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Expressiveness

- regular languages

Regular Languages

 recognizable with finite-state automata

Grammar rules : concatenate, +, *, 

a((b+c)*) assumeΣ={a,b,c}

aa

aabbba

abcbaaccc

a…bacc......
2010/9/29

86

Expressiveness

- regular languages

How to use PLTL to specify regular languages ?

With P={p,q}

01

00

10

11

Encode input symbols 

with state propositions. 

`a` → 01 →  p  q

`b` → 10 → p   q

`c` → 11 → p  q

`  ` → 00 →  p   q

Padding an 

infinite sequence 

of spaces to each 

finite words. 

2010/9/29



43

87

Expressiveness

- regular languages

The following four are equivalent in 

expressiveness. 

 PLTL

 FOLLO

 regular languages without *

 languages recognizable with counter-free 

automata.

counter 

automata: there 

exists 

s0, s1, s2,…, sk-1

and w such that 

si+1mod kδ(si, w)
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Expressiveness

- regular languages

The following four are equivalent in 

expressiveness. 

 QPLTL

 SOLLO

 regular language

 languages recognizable with finite-state 

automata. 

2010/9/29
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Expressiveness

- regular languages for infinite 

behaviors

automata accepting infinite strings

 Büchi accepting: accepting states must appear 
infinitely many times.

a

c

b

start with ab, 

unbounded 

repetition of b and 

c, infinitely many c. 

accepting state

2010/9/29
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Expressiveness

- regular languages for infinite 

behaviors

2 regular languages for infinite strings

 α(β)ω specifies

w0 w1 w2 w3 w4... wk ……

w0α and wkβ, for each k> 0

 αlimβ specifies 

a0 a1 a2 a3 a4... ak ……

with infinitely many k>0 

such that a0 a1 a2 a3 a4... ak αβ

2010/9/29
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Expressiveness

- regular languages for infinite 

behaviorsThe following four are equivalent in 

expressiveness. 

 PLTL

 FOLLO

 ∪i=1
m αi limβi

 ∪i=1
m ( lim αi∩ lim βi)

αi and βi are regular 

expressions without *-

expressions.
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92

Expressiveness

- regular languages for infinite behaviors

The following four are equivalent in 

expressiveness. 

 QPLTL

 SOLLO

 ∪i=1
m αi (βi

ω )

 ∪i=1
m αi limβi

 ∪i=1
m ( lim αi∩ lim βi)

αi and βi are regular 

expressions without *-

expressions.

2010/9/29
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091230 stopped here.

2010/9/29
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Expressiveness

- branching-time logics

What to compare with ? 

 finite-state automata on infinite trees. 

 2nd-order logics with monadic prdicate and many 

successors (SnS) 

 2nd-order logics with monadic and partial-order

Very little known at the moment, 

the fine difference in semantics of branching-structures

2010/9/29
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Expressiveness

- CTL*, example (I)

A tree the distinguishes the following two 

formulas. 

 ((eat) full) 

 Negation: ((eat)  full)

 (eat)  (full) eat

2010/9/29
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Expressiveness

- CTL*, example (II)

A tree that distinguishes the following two 

formulas. 

 ((eat) full)

  (eat  full)

 Negation: (eat full)
eat

2010/9/29



48

97

Expressiveness

- CTL*

With the abundant semantics in CTL*, we can 

compare the subclasses of CTL*.  

With restrictions on the modal operations after 

, , we have many  CTL＊ subclasses.

Example: 

B(,,,U) : only ,,,U after , 

B(,,,): only ,,, after , 

B(,) :        only ,after , 

2010/9/29
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Expressiveness

- CTL*

CTL＊ subclass expressiveness heirarchy

CTL＊ > B(,,,,U,)

> B(,,U,)

> B(,,,,U)

= B(,,U)

> B(,,,)

> B(,)

> B()

2010/9/29
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Expressiveness

- CTL*

Theorem : B(,,,,U) ≡ B(,,U)

Proof: reduction of formulas from B(,,,,U)  to B(,,U).

Suppose we have a modality ψ with ψ in DNF and ‘’ only before 

U .  (feasible since ψ3 ≡ ψ3)

 reduce (ψ1Uψ2 ) to ((ψ2)U (ψ2 ψ1)) ψ2

 reduce (ψ1Uψ2 )  (ψ3Uψ4) to 

((ψ1ψ3)U (ψ2  (ψ3Uψ4)))  ((ψ3ψ1)U (ψ4  (ψ1Uψ2))) 

 reduce (ψ1Uψ2 )  ψ3  to (ψ1 ψ3 )U (ψ2 ψ3 )

 reduce (ψ1  ψ2  ... ψn) to (ψ1 )  (ψ2 )  ... (ψn)

 reduce  ((ψ1Uψ2 ) ψ3 ) to 

(ψ2  ψ3) (ψ1  (ψ3  (ψ1 U ψ2)))
2010/9/29
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Expressiveness

- CTL*

Theorem : p is inexpressible in B(,,U) .  

Proof: induction on i : for anyφB(,,U) , 

when i>|φ|, φ cannot distinguish Mi from Ni .

p

p

M0

p

p

Mi

Ni

p

p

Ni

Ni

p

p

N0

2010/9/29
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Workout

Please complete the proof in details in the 

previous page. 
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Expressiveness

- CTL*

Comparing PLTL with CTL*

assumption, all φPLTL are interpreted as φ

Intuition: PLTL is used to specify all runs of a 

system.  

CTL＊

B(,,,,U,)

PLTL

PLTL(F)

>

>

>

>

2010/9/29
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Verification

 LPTL, validity checking   
 instead, check the satisfiability of  

 construct a tabelau for  

 model-checking M
 LPTL: M: a Büchi automata, : an LPTL formula 

 CTL: M: a finite-state automata, : a CTL 

formula 

 simulation & bisimulation checking M  M’

2010/9/29
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Satisfiability-checking framework

Model

Checker

Answer

Yes if the model 

guarantees 

the specification

No if not. 

model in logics
, , ,,,U

specification in logics
, , ,,,U
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Tableau for φ

• a finite Kripke structure that fully describes the 

behaviors of φ

• exponential number of states

• An algorithm can explore a fulfilling path in the 

tableau to answer the satisfiability.  

nondeterministic

without construction of the tableau

PSPACE.  

LPTL

- tableau for satisfiability checking

2010/9/29
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LPTL

- tableau for satisfiability checking

Tableau construction

a preprocessing step: push all negations to the literals. 

  (1  2)  ( 1) ( 2 )

  (1  2)  ( 1) ( 2 )

       

     

 (1U2)  (□ 2) (( 2)U (( 1) ( 2 )))

  □   ◇ 

2010/9/29
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LPTL

- tableau for satisfiability checking

Tableau construction

CL() (closure) is the smallest set of formulas containing 
with the following consistency requirement. 

  p  CL() iff p CL()

 If 1  2 , 1  2 CL(), then 1, 2 CL()

 If   CL(), then  CL()

 If 1U2 CL(), then 1 , 2 ,  (1 U 2 ) CL()

 If □  CL(), then ,  □  CL()

 If ◇ CL(), then , ◇ CL()

2010/9/29
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LPTL

- tableau for satisfiability checking

Tableau (V, E), node consistency condition:   

A tableau node v  V is a set v  CL(f) such that  

 p  v iff p  v

 If 1  2 v, then 1v or 2 v

 If 1  2 v, then 1v and  2 v

 if □  v, then   v and  □   v

 if ◇  v, then   v or  ◇   v

 if 1U2v, then 2 v or (1v and  (1U2)v)

2010/9/29
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LPTL

- tableau for satisfiability checking

Tableau (V, E), arc consisitency condition:   

Given an arc (v,v’) E, if    v, then   v’

 A node v in (V,E) is initial for  if  v. 

2010/9/29
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LPTL

- tableau for satisfiability checking

CL(pUq) = {pUq, pUq, p,   p,  q,   q } 

Example: (p U q)

tableau (V,E)

V: {p, q,  pUq , pUq} {p, q, pUq}     {p, q}

{p, q,  pUq}

{p, q, pUq, pUq} {p, q, pUq}   {p, q}

{p,  q, pUq, pUq} {p, q, pUq}      {p,q} 

{p,  q, pUq} 

{p, q, pUq} {p, q}

E: ?

Workout: 

Please draw the tableau 

with arc connections!

2010/9/29
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LPTL

- tableau for satisfiability checking

 is satisfiable iff in (V,E), 

 there is an infinite path from an initial node for 

such that all until formulas are eventually satisfied; 

or 

 there is a strong connected component (SCC) 

reachable from an initial node for  such that for all 

until formula 1U2 in a node in the SCC, there is 

also a node in the SCC containing 2 ; or 

 there is a cycle reachable from an initial node for 

such that the for all until formulas 1U2 in the first 

cycle node, there is also a node in the cycle  

containing 2 .
2010/9/29
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LPTL

- tableau for satisfiability checking

1U2

2

initial

1st 

cycle 

node

2010/9/29
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LPTL

- tableau for satisfiability checking

Please use tableau method to show that 
pUq   □q is false. 

1) Convert to negation: (pUq)◇q 

2) CL((pUq)◇q) 

= {(pUq)◇q, pUq, pUq, p, q, ◇q, ◇q } 

113

(pUq)◇q

pUq

q

◇q 
◇q 

◇q 

q 

(pUq)◇q

pUq

p
pUq

◇q 

q 

pUq

q 

LPTL

- tableau for satisfiability checking

Please use tableau method to show that 
pUq   ◇q is true. 

1) Convert to negation: (pUq)□q 

2) CL((pUq)□q) 

= {(pUq)□q, pUq, pUq, p, q, □q, □q }

Pf: In each path that is a model of (pUq)□q, q

must always be satisfied.  Thus, pUq is never 
fulfilled in the model.  

QED
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LPTL

- tableau for satisfiability checking

 is satisfiable iff in (V,E), 

there exists …
 path+cycle (|CL()|+2)|V|
 |CL()| flags to 

check the 
until-formulas from 
the first cycle node. 

 nondeterministic 
PSPACE can solve it.

 PSPACE-complete. 

1U2

2

initial

1st 

cycle 

node
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Model Checking Framework

Model

Checker

Specification

(system properties)

Answer

Yes if model satisfies

specification

Counter-example if model

does not satisfy specification

Design

Model construction

(FW)

Temporal logic formula

model

2010/9/29
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LPTL

- automata-theoretical model-checking 

State Sequences as Words
 Let AP be the finite set of atomic propositions 

of the formula f.

 Let Σ = 2AP be the alphabet over AP.

 Every sequence of states is an ω word in Σω

 α = P0, P1, P2, … where Pi = L(si).

 A word a is a model of formula f iff α|= f

 Example: for f = p (¬ q U q)  {p},{},{q},{p,q}ω

 Let Mod(f) denote the set of models of f.

2010/9/29
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LPTL

- automata-theoretical model-checking

Büchi automaton A = (Q,Σ,δ,I,F)

 Q – set of states

 Σ – finite alphabet

 δ – transition relation

 I – set of initial states

 F – set of acceptance states

A run ρ of A on ω word α

ρ = q0,q1,q2,…, s.t. q0 I and 

(qi,αi,qi+1)  δ

ρ is accepting if Inf(ρ)F ≠ 

a

b

q1

q2

a

b

2010/9/29
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φ: an LTL formula with propositions AP.

Construction of Buchi automaton B(φ) accepting 

exactly the infinite words satisfying φ.

Naïve construction: 

1. push negation to literals

2. simple induction on the structure of φ
B(p) = ? 

B(p U q) = ? 

B(□p) = ? 

B(p  q) = ? 

B(p) = ? 

LPTL

- automata-theoretical model-checking

Pushing negation 

through pUq leads to 

exponential blowup!

work out: 

what is (p U q) after 

pushing the negation ?

2010/9/29
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Inductive construction on φ : 

B(X p) is 

B(p U q) is 

B(□ p) is

B(p  q) is

B(p) is

p
q

p

LPTL

- automata-theoretical model-checking

p

p

q

p

accepting

2010/9/29
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LPTL

- automata-theoretical model-checking

“always eventually p”: □ ◇p

“always p until q”: □(pUq)

p

p
p p

p

q

p
accepting

q

2010/9/29
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Workout

Please draw the Buchi automata for the 

following LTL formulas.

 (pUq)Ur

 □((pUq)Ur)

 (□p)((pUq)Ur)

 (◇p)((qUr)Us)

2010/9/29
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LPTL

- automata-theoretical model-checking

: an LTL formula, 

M: a Büchi automata

Model Checking Algorithm M  

 construct B(¬ ) for the formula 

 M   iff  L(M  B(¬ )) =

Complexity O(|M|  2||)
model set of 
M  B(¬) 

2010/9/29
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CTL 

- model-checking 

Given a finite Kripke structure M and a CTL 

formula φ, is M a model of φ ?

 usually, M is a finite-state automata. 

 PTIME algorithm. 

 When M is generated from a program with 

variables, its size is easily exponential. 

2010/9/29
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CTL 

- model-checking algorithm

techniques

 state-space exploration

 state-spaces represented as finite Kripke structure

 directed graph

 nodes: states or possible worlds

 arcs: state transitions

 regular behaviors

 Usually the state count is astronomical. 

execute

wait

finish

2010/9/29
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CTL 

- model-checking algorithm (1/6) 

Given M  and φ, 

1. list the subformulas in φ according to their sizes

φ0 φ1 φ2 … φn

for all 0 i<j  n，φj is not a subformula of φi

2. for i=0 to n, label (φi )

3. for all initial states s0 of M, if φL(s0), return `No!’

4. return `Yes!’ 

See next page!

2010/9/29
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CTL 

- model-checking algorithm (2/6) 

label(φ ) {

case p, return; 

case  , for all s, if   L(s), L(s) = L(s) { }

case 1  2 , for all s, if 1 L(s) or 2 L(s), 
L(s)=L(s){1  2 }

case  , for all s, if (s,s’) with  L(s’), 
L(s)=L(s){ }

case  1 U2 , lfp(1 , 2 ); 

case  , gfp(); 

}

2010/9/29
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CTL 

- model-checking algorithm (3/6) 

lfp(1 , 2 ) /* least fixpoint algorithm */ { 

for all s, if 2 L(s), L(s)=L(s){1U2 }; 

repeat {  

for all s, if 1L(s) and (s,s’)(1U2 L(s’)), 

L(s)=L(s){1U2 }; 

} until no more changes to L(s) for any s. 

}

The procedure terminates since S is finite in the 

Kripke structure. 

2010/9/29
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CTL 

- model-checking algorithm (4/6)

Least fixpoint in modal 

logics

iterative expansion

2

1

1

1

1

1

2010/9/29

130

CTL 

- model-checking algorithm (5/6) 

gfp() /* greatest fixpoint algorithm */ { 

for all s, if L(s), L(s)=L(s){ }; 

repeat {  

for all s, if L(s) and (s,s’)(L(s’)), 

L(s)=L(s) - { }; 

} until no more changes to L(s) for any s. 

}

The procedure terminates since S is finite in the 
Kripke structure. 

2010/9/29
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CTL 

- model-checking algorithm (6/6)

Greatest fixpoint in modal logics

iterative elimination
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q
p,q

p

p

(pUq)  p

Labeling funciton: 

label the subforumulae true in each 

state.

2010/9/29
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(pUq)  p

Evaluating pUq using least fixpoint

q

pUq

p,q

pUq

p

p

Iteration 0

Iteration 0
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(pUq)  p

Evaluating pUq using least fixpoint

q

pUq

p,q

pUq

p

pUq
p

Iteration 1

Iteration 0

Iteration 1

2010/9/29



67

135

(pUq)  p

Evaluating pUq using least fixpoint

q

pUq

p,q

pUq

p

pUq p

pUq

Iteration 2

Iteration 0

Iteration 1

Iteration 2
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(pUq)  p

Evaluating pUq

pUq

q

pUq

pUq

p,q

pUq

pUq

p

pUq

pUq
p

pUq

pUq
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(pUq)  p

Evaluating p using greatest fixpoint

pUq

p

q

pUq

pUq

p

p,q

pUq

pUq

p

p

pUq

pUq

p

p

pUq

pUq

p

Iteration 0

Iteration 0
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(pUq)  p

Evaluating p using greatest fixpoint

pUq

p

q

pUq

pUq

p

p,q

pUq

pUq

p

p

pUq

pUq

p

p

pUq

pUq

p

Iteration 1

Iteration 0

Iteration 1
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(pUq)  p

Evaluating p using greatest fixpoint

pUq

q

pUq

pUq

p,q

pUq

pUq

p

pUq

pUq

p

p

pUq

pUq

p

Result:

2010/9/29
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(pUq)  p

Finally, evaluating (pUq)  p

pUq

q

pUq

pUq

p,q

pUq

pUq

p, pUq

pUq, p

(pUq)p
p, pUq

pUq, p

(pUq)p

2010/9/29
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Workout: labelling (p q)

p

p

q

p, q

q

2010/9/29
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CTL 

- model-checking problem complexities 

 The PLTL model-checking problem is PSPACE-

complete.

 definition: Is there a run that satisfies the formula ? 

 The PLTL without （modal operator “next”）

model-checking problem is NP-complete.

 The model-checking problem of CTL is PTIME-

complete.

 The model-checking problem of CTL* is PSPACE-

complete.

2010/9/29
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Symbolic until analysis (backward)

1U2 

Encode the states with variables x0,x1,…,xn.   

 the state set as a proposition formula: S(x0,x1,…,xn)

 1(x0,x1,…,xn), 2(x0,x1,…,xn)

 the transition set as R(x0,x1,…,xn,x’0,x’1,…,x’n)

b0 = 2(x0,x1,…,xn) S(x0,x1,…,xn); k = 1; 

repeat 

bk = bk-1x’0x’1…x’n(   1(x0,x1,…,xn)

 R(x0,x1,…,xn,x’0,x’1,…,x’n)

(bk-1)); 

k = k +1; 

until bk  bk-1; 

change all 

umprimed

variable in bk-1

to primed.

a least fixpoint

procedure

144

CTL 

- model-checking algorithm (2/6) 

slabel(φ ) {

case p, return pS(x0,x1,…,xn); 

case , return S(x0,x1,…,xn)slabel(); 

case 1 2 , return slabel(1) slabel(2)

case  , return

x’0x’1…x’n(R(x0,x1,…,xn,x’0,x’1,…,x’n)(slabel())); 

case 1U2, return the symbolic until analysis of

slabel(1)U slabel(2); 

case  , return the symbolic liveness analysis of 

slabel(); 

}

2010/9/29
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Safety analysis

Given M and p (safety predicate), do all states 
reachable from initial states in M satisfy p ?

 In model-checking: 

Is M a model of p ?

 Or in risk analysis: Is there a state reachable from 
initial states in M satisfy p ?

p  p  true Up

2010/9/29
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Reachability analysis 

Is there a state s reachable from another state 

s’?

 Encode risk analysis

 Encode the complement of safety analysis

 Most used in real applications

2010/9/29
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2007/06/05 stopped here.

2010/9/29
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Symbolic weakest precondition

Assume program with rules 

 x=3y=6  x:=2; z:=7;

 x, y, z are discrete variables with range 

declarations

What is the weakest precondition of η for those 

states before the transitions ?  

η?
x=3y=6

x:=2; z:=7;

2010/9/29
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Symbolic weakest precondition

Assume program with rules 

 r: x=3y=6  x:=2; z:=7;

What is the weakest precondition of η for those 

states before the transitions ? 

pre(r, η) ≝ x=3y=6xz(x=2  z=7η)

η?
x=3y=6

x:=2; z:=7;

2010/9/29
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Symbolic safety analysis

Assume program with rules r1, r2, …, rn

What charcterizes all states that can reach η? 

lfp (φ) { 

φ’ := false;  

while (φ  φ’) { 

φ’ := φ ; 

φ := φ  i=npred(ri, φ); 

} 

return (φ); 

}

I  lfp(η)  

Initial 

condition

risk 

predicate

2010/9/29
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Symbolic liveness analysis

Assume program with rules r1, r2, …, rn

What is the charcterization of all states that may not 
reach η? 

gfp (φ) { 

φ’ := false;

while (φ  φ’) { 

φ’ := φ ; 

φ := φ i=n pred(ri, φ); 

} 

return (φ); 

}

I  gfp(η)  

Initial 

condition

negative 

liveness 

predicate
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CTL  

- symbolic model-checking with BDD

 System states are described with binary 

variables. 

n binary variables 2n states

x1, x2, ......, xn

 we can use a BDD to describe legal states.

a Boolean function with n binary variables

state(x1, x2, ......, xn)

2010/9/29
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CTL  

- symbolic model-checking with BDD

Example: 

x1 x2 x3

1 0 1

0 1 0

0 0 1

state(x1, x2, x3) = (x1x2x3)

 (x1x2x3)
 (x1x2 x3)

2010/9/29
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CTL  

- symbolic model-checking with BDD

 Transition is a relation between 2 states.  

 Thus a relation between 2n binary variables. 

a Boolean function with 2n binary variables

transition(x1, x2, ......, xn, y1, y2, ......, yn)

x1, x2, ......, xn y1, y2, ......, yn

2010/9/29
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CTL  

- symbolic model-checking with BDD

Example: 

x1 x2 x3   y1 y2 y3

1 0 1

0 1 0

0 0 1

transition(x1, x2, x3 , y1, y2, y3 ) = 

(x1x2x3y1y2y3)
 (x1x2x3y1y2 y3)
 (x1x2 x3y1y2y3 )
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CTL  

- symbolic model-checking with BDD

 the reachability relation is also among 2n binary 
variables. 

 We can use a BDD of 2n binary variables to 
describe the reachability relation

a Boolean funciton of 2n bianry variables

reach(x1, x2, ......, xn, y1, y2, ......, yn)

x1, x2, ......, xn

y1, y2, ......, yn
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CTL  

- symbolic model-checking with BDD

Example: x1 x2 x3   y1 y2 y3

1 0 1

0 1 0

0 0 1

reach(x1, x2, x3 , y1, y2, y3 ) = 

(x1x2x3y1y2y3)

 (x1x2x3y1y2y3)
 (x1x2x3y1y2 y3)
 (x1x2 x3y1y2y3 ) 
 (x1x2x3y1y2y3)
 (x1x2 x3y1y2 y3)
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CTL  

- symbolic model-checking with BDD

Safety analysis 
with the BDD for reach(x1, x2, ......, xn, y1, y2, ......, yn): 

Given initial condition I(x1, x2, ......, xn) as a BDD and

safety conditionη(y1, y2, ......, yn) as another BDD,   

the system is risky if and only if 

Iη reach(x1, x2, ......, xn, y1, y2, ......, yn) is not 
false. 

 Note true and false both have canonical 
representations in BDD. 
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CTL  

- symbolic model-checking with 

BDD

Reachability analysis 
with the BDD for reach(x1, x2, ......, xn, y1, y2, ......, yn): 

Given initial condition I(x1, x2, ......, xn) as a BDD and

goal conditionη(y1, y2, ......, yn) as another BDD,   

the goal is reachable if and only if 

Iη reach(x1, x2, ......, xn, y1, y2, ......, yn) is not 
false. 

 Note true and false both have canonical 
representations in BDD. 
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CTL  

- symbolic model-checking with BDD

Given the BDD of transition T (x1 , x2 ,....., xn,y1,y2 ,..... ,yn), 

construct the BDD of reach(x1, x2, ......, xn, y1, y2, ......, yn)

 B0:= state(x1,x2 , ...... , xn)T(x1,x2 ,....., xn,y1,y2 ,.....,yn)

 For k:= 1 to …. 

Bk (x1,x2 ,....., xn,y1,y2 ,.....,yn)

:= Bk-1(x1,x2 ,....., xn,y1,y2 ,.....,yn)

 z1..... zn (Bk-1(x1,x2 ,....., xn,z1,z2 ,.....,zn)

Bk-1(z1,z2 ,....., zn,y1,y2 ,.....,yn))

until Bk=Bk-1

Bk (x1 ,....., xn,y1,.....,yn)

iff the path between the two states is shorter than 2k

2010/9/29
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CTL  

- symbolic model-checking with BDD

For the presentation of the algorithm, we define 

pathψ(x1, x2, ......, xn, y1, y2, ......, yn) 

instead of reach(x1, x2, ......, xn, y1, y2, ......, yn) 

ψ ?ψψψ

there exists a path from state (x1, x2, ......, xn) to 

state (y1, y2, ......, yn) along which all states, 

except the destination,  satisfy ψ.

(x1, x2, ......, xn) (y1, y2, ......, yn)

2010/9/29

162

CTL  

- symbolic model-checking with BDD

 Given a model M and a CTL formulaφ

 the subformulas ofφ:φ1φ2 ...φn in ascending order of sizes

For i := 1 to n, do 

if φi= xk, B(φi):=B(xk) state(x1, x2, ......, xn)

if φi = ψ1  ψ2 , B(φ ) :=B(φ1 ) B (φ2 )

if φi = ψ, B (φi ) :=B (ψ)

if φi =  θ U ψ ,

B(φi) := B(z1.....zn pathθ(x1,......,xn,z1,.....,zn)ψ(z1 ,.....,zn))

if φi = ψ ,

B (φi ) := B(z1..... zn pathψ(x1,......, xn, z1 ,.....,zn)
pathψ(z1 ,....., zn, z1 ,.....,zn)) 

:= B(z1..... zn  w1..... wn
pathψ(x1,......, xn, z1 ,.....,zn)

pathψ (z1 ,....., zn, w1 ,.....,wn)
1i  n (zi =0wi=0 zi =1wi=1)) 2010/9/29
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CTL  

- symbolic model-checking with BDD

Construct the BDD of   z1..... zn B(z1 ,.....,zn)?

 zn B(z1 ,.....,zn) = B(z1 ,.....,zn-1,0)  B(z1 ,.....,zn-1,1)

= (zn=0B(z1 ,.....,zn-1, zn))(zn=1B(z1 ,.....,zn-1, zn))

 For i := n-1 to 1, do 

 zi..... zn B(z1 ,.....,zn) 

= ( zi+1..... zn B(z1 ,.....,zi-1, 0, z i+1 ,.....,zn)) 

( zi+1..... zn B(z1 ,.....,zi-1, 1, z i+1 ,.....,zn))
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CTL  

- symbolic model-checking with BDD

Transition BDD: T (x1,......, xn, y1 ,.....,yn) and CTL formulaφ

the subformula ofφ:φ1φ2 ...φn in ascending order of sizes

For i := 1 to n, do 

if φi = xk, B(φi ) := B(xk) state(x1, x2, ......, xn)

if φi = ψ1  ψ2 , B(φi ) := B(ψ1 ) B (ψ2 )

if φi = ψ1, B (φi ) := B (ψ1 ) state(x1, x2, ......, xn)

if φi = ψ1, B (φi ) := y1..... yn(T (x1,......, xn, y1 ,.....,yn)

rename(B(ψ1) , x1y1,..., xnyn))

if φi = ψ1U ψ2 ,

B (φi ) := lfp Z.(B(ψ2 )y1..... yn(T (x1,......, xn, y1 ,.....,yn)  

B(ψ1) 

rename(Z, x1y1,..., xnyn) 

)                            )
if φi = ψ1 ,

B (φi ) := gfp Z.(B(ψ1)y1..... yn(T (x1,......, xn, y1 ,.....,yn)  

rename(Z, x1y1,......, xnyn) 

)                           )
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Implementation of z
i
B(z

1
,.....,z

n
)

 zi =       ;    zi = ;

 zi = 

 zi =                   

zj

0 1

10

0 1

B0 B1

zj
10

ziB0 ziB1

zi
10

B0 B1

B0 B1
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Bisimulation Framework

Model

Checker

Answer

Yes if the model 

is equivalent to

the specification

No if not. 

Design

Model construction

model

specification

implementation
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Bisimulation-checking

 K = (S, S0, R, AP, L) 

K’= (S’, S0’, R’, AP, L’)

 Note K and K’ use the same set of atomic 
propositions AP.

 BSS’ is a bisimulation relation between K and 
K’ iff for every B(s, s’):
 L(s) = L’(s’)  (BSIM 1)

 If R(s, s1), then there exists s1’ such that R’(s’, s1’) and 
B(s1, s1’). (BISIM 2)

 If R(s’, s2’), then there exists s2 such that R(s, s2) and 
B(s2, s2’). (BISIM 3)

2010/9/29
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Bisimulations

K K’

s s’

s1

2010/9/29
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Bisimulations

K K’

s s’

s1 s1’
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Bisimulations

K K’

s s’

s2’
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Bisimulations

K K’

s s’

s2 s1’
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Examples

p q

p q p q p q …..
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Examples

p q

p q p q p q …..

Unwinding preserves bisimulation

2010/9/29
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Examples

p

q q

s sr

p

q q

r rs
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Examples

p

q q

s sr

p

q q

r rs
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Examples

p

q q

s sr

p

q q

r rs
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Examples

p

q q

s sr

p

q q

r rs
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Examples

p

q q

s sr

p

q q

r rs
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Examples

p

q q

s sr

p

q q

r rs
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Examples

p

q q

s sr

p

q q

r rs
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Bisimulations

 K = (S, S0, R, AP, L) 

 K’= (S’, S0’, R’, AP, L’)

 K and K’ are bisimilar (bisimulation equivalent) iff 
there exists a bisimulation relation B µ S £ S’
between K and K’ such that:
 For each s0 in S0 there exists s0’ in S0’ such that 

B(s0 , s0’).

 For each s0’ in S0’ there exists s0 in S0 such that 

B(s0 , s0’).

2010/9/29
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The Preservation Property.

 K = (S, S0, R, AP, L) 

K’= (S’, S0’, R’, AP, L’)

 B µ S £ S’, a bisimulation.

 Suppose B(s, s’).

 FACT: For any CTL formula  (over AP), K, s 
²  iff  K’, s’ ² .

 If K’ is smaller than K this is worth something.

2010/9/29
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Simulation Framework

Model

Checker

Answer

Yes if the model 

satisfies the 

specification

No if not. 

Design

Model construction

model

specification

implementation
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Simulation-checking

 K = (S, S0, R, AP, L) 

K’= (S’, S0’, R’, AP, L’)

 Note K and K’ use the same set of atomic 
propositions AP.

 B µ S £ S’ is a simulation relation between 
K and K’ iff for every B(s, s’):

 L(s) = L’(s’)  (BSIM 1)

 If R(s, s1), then there exists s1’ such that  R’(s’, 
s1’) and B(s1, s1’). (BISIM 2)
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Simulations

 K = (S, S0, R, AP, L) 

 K’= (S’, S0’, R’, AP, L’)

 K is simulated by (implements or refines) K’ iff there 
exists a simulation relation B µ S £ S’ between K and 
K’ such that for each s0 in S0 there exists s0’ in S0’
such that B(s0 , s0’).
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Simulation Quotients

 K = (S, S0, R, AP, L)

 There is a maximal simulation B µ S £ S.

 Let R be this bisimulation.

 [s] = {s’ j s R s’}.

 R can be computed “easily”.

 K’ = K / R is the bisimulation quotient of K.
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Bisimulation Quotient

 K = (S, S0, R, AP, L)

 [s] = {s’ j s R s’}.

 K’ = K / R = (S’, S’0, R’, AP,L’).

 S’ = {[s] j s 2 S}

 S’0 = {[s0] j s0 2 S0}

 R’ = {([s], [s’]) j R(s1, s1’) for some s1 2 [s] 

and s1’ 2 [s’]}

 L’([s]) = L(s).
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Examples

p

q q

r rs
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Examples

p

q q

r rs
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Examples

p

q

r s
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Abstractions

 Bisimulations don’t produce often large 
reduction.

 Try notions such as simulations, data 
abstractions, symmetry reductions, partial 
order reductions etc.

 Not all properties may be preserved.

 They may not be preserved in a strong sense.
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Graph Simulation

Definition Two edge-labeled graphs G1, G2

A simulation is a relation R between nodes:

 if (x1, x2)  R, and (x1,a,y1)  G1,

then exists (x2,a,y2)  G2 (same label)

s.t. (y1,y2)  R

x1 x2

a

R

G1 G2

y1

a

R
y2

Note: if we insist that R be a function  graph homeomorphism2010/9/29
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Graph Bisimulation

Definition Two edge-labeled graphs G1, G2

A bisimulation is a relation R between nodes s.t. 

both R and R-1 are simulations

2010/9/29
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Set Semantics for 

Semistructured Data

Definition Two rooted graphs G1, G2 are equal 

if there exists a bisimulation R from G1 to G2

such that (root(G1), root(G2))  R

 Notation: G1  G2

 For trees, this is precisely our earlier definition

2010/9/29
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Examples of Bisimilar Graphs

a b

c

a b

c c

a

a

a

a
a
a

...

=

=
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Examples of non-Bisimilar Graphs

 This is a simulation but not a bisimulation

 Why ?

 Notice: G1, G2 have the same sets of paths

a a a

b c
cb

G1= G2=

2010/9/29
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 Simulation acts like “subset”

{a, b}  {a, b, c}

{a, b:{c}}  {d, a:{e,f}, b:{c,g}}

 Question: 

 if DB1  DB2 and DB2  DB1 then DB1  DB2 ?

Examples of Simulation

a b

c

a b

c

d

e f g

a b a b
c
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Answer

if DB1  DB2 and DB2  DB1 then DB1  DB2 ?

No.  Here is a counter example:

aa

b b

a

DB1  DB2 and DB2  DB1 but NOT DB1  DB2

DB1 DB2

2010/9/29
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Path Simulation

Intuition: every path in concrete system is simulated by a path in 

abstract system 

simulates

simulates

simulates

simulates

A concrete path s
1
, s

2
, … is simulated by an abstract path a

1
, a

2
, … 

if Sim(s
i
,a

i
) for all i.

Concrete Abstract
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Computation Simulation

Intuition: every path in concrete system is simulated by a path in 

abstract system 

Concrete Abstract

There may be extra paths (termed “infeasible” paths) that are not present in the concrete 

system.  These are due to the approximate nature of our computation with abstract tokens.  

Specifically, they arise from the over-approximations in test branching discussed previously.

Infeasible path due to 

over-approximation.
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Reflection of LTL Properties

Concrete Abstract

Infeasible path due to 

over-approximation.

If there is a violating path in the abstract system, then there is not necessarily a violating 

path in the concrete system, since the violating abstract trace may be an infeasible path 

due to over-approximation.   Technically, this means that properties are not preserved by 

abstraction.

If there is a violating path in the concrete system, then there is a violating path in the 

abstract system, since the simulation property guarantees that each concrete trace has a 

corresponding trace in the abstract system.  Technically, this means that properties are 

reflected by abstraction.

2010/9/29

202

Facts About a (Bi)Simulation

 The empty set is always a (bi)simulation

 If R, R’ are (bi)simulations, so is R U R’

 Hence, there always exists a maximal (bi)simulation:

 Checking if DB1=DB2: compute the maximal bisimulation R, 

then test (root(DB1),root(DB2)) in R
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Computing a (Bi)Simulation

 Computing the maximal (bi)simulation:
 Start with R = nodes(G1) x nodes(G2)

 While exists (x1, x2)  R that violates the definition, 
remove (x1, x2) from R

 This runs in polynomial time ! Better:
 O((m+n)log(m+n)) for bisimulation

 O(m n) for simulation

 Compare to finding a graph homeomorphism !

NP Complete
2010/9/29


