Temporal Logics \& Model Checking
 Formal Methods

Lecture 4

Farn Wang
Dept. of Electrical Engineering
National Taiwan University

History of Temporal Logic

- Designed by philosophers to study the way that time is used in natural language arguments
- Reviewed by Prior [PR57, PR67]
- Brought to Computer Science by Pnueli [PN77]
- Has proved to be useful for specification of concurrent systems

Amir Pnueli

1941

- Professor, Weizmann Institute
- Professor, NYU
- Turing Award, 1996

Presentation of a gift at ATVA/FORTE 2005, Taipei

Kripke structure

$\mathrm{A}=\left(\mathrm{S}, \mathrm{S}_{0}, \mathrm{R}, \mathrm{L}\right)$

- S
- a set of all states of the system
- $\mathrm{S}_{0} \subseteq \mathrm{~S}$
- a set of initial states
- $R \subseteq S \times S$
- a transition relation between states
- $\mathrm{L}: \mathrm{R} \mapsto 2^{P}$
- a function that associates each state with set of propositions true in that state

Kripke Model

- Set of states S
- $\left\{q_{1}, q_{2}, q_{3}\right\}$
- Set of initial states S_{0}
- $\left\{q_{1}\right\}$
- Set of atomic propositions AP - $\{a, b\}$

Example of Kripke Structure

Suppose there is a program

```
initially }x=1\mathrm{ and }y=1\mathrm{ ;
while true do
x:=(x+y) mod 2;
endwhile
where \(x\) and y range over \(D=\{0,1\}\)
```


Example of Kripke Structure

- $S=D \times D$
- $S_{0}=\{(1,1)\}$
- $R=\{((1,1),(0,1)),((0,1),(1,1)),((1,0),(1,0)),((0,0),(0,0))\}$
- $L((1,1))=\{x=1, y=1\}, L((0,1))=\{x=0, y=1\}$,
$L((1,0))=\{x=1, y=0\}, L((0,0))=\{x=0, y=0\}$

Fairness

- Interested in the correctness along fair computation paths
- Weak (Büchi) fairness:
- "an action can not be enabled forever without being taken"
- necessary for modeling asynchronous models
- Strong (Streett) fairnness:
- "an action can not be enabled infinitely often without being taken"
- necessary for modeling synchronous

Framework

- Temporal Logic is a class of Modal Logic
- Allows qualitatively describing and reasoning about changes of the truth values over time
- Usually implicit time representation
- Provides variety of temporal operators (sometimes, always)
- Different views of time (branching vs. linear, discrete vs. continuous, past vs. future, etc.)

Outline

- Linear
- LPTL (Linear time Propositional Temporal Logics),
- also called PTL, LTL
- Branching
- CTL (Computation Tree Logics)
- CTL* (the full branching temporal logics)

Temporal Logics: Catalog

Temporal Logics

- Linear
- LPTL (Linear time Propositional Temporal Logics)
- Branching
- CTL (Computation Tree Logics)
- CTL* (the full branching temporal logics)

```
LPTL (PTL, LTL)
Linear-Time Propositional Temporal
Lggic
    COnventional notation:
    - propositions : p,q,r, ...
    - sets : A,B,C,D, ...
    | states:s
    | state sequences:S
    - formulas: }\boldsymbol{\varphi},\boldsymbol{\Psi
    - Set of natural number : N={0, 1, 2, 3, ..}
    | Set of real number : R
```


LPTL

Given \boldsymbol{P} : a set of propositions,
a Linear-time structure : state sequence
$S=s_{0} s_{1} s_{2} s_{3} s_{4} \ldots s_{k} \cdots \cdots$
s_{k} is a function of P where $s_{k}: P \rightarrow\{$ true,false $\}$ or $s_{k} \in 2^{P}$
example: $P=\{a, b\}$
\{a\}a,b\}\{a\}\{a\}\{b\}...

LPTL

- syntax

$$
\boldsymbol{\Psi}::=\text { true }|\mathbf{p}| \neg \boldsymbol{\Psi}\left|\boldsymbol{\Psi}_{1} \vee \boldsymbol{\Psi}_{2}\right| O \boldsymbol{O} \mid \boldsymbol{\Psi}_{1} \cup \boldsymbol{\Psi}_{2}
$$

abbreviation

$$
\begin{array}{rll}
\text { false } & \equiv & \neg \text { true } \\
\Psi_{1} \wedge \Psi_{2} & \equiv & \neg\left(\left(\neg \Psi_{1}\right) \vee\left(\neg \Psi_{2}\right)\right) \\
\boldsymbol{\Psi}_{1} \rightarrow \Psi_{2} & \equiv & \left(\neg \Psi_{1}\right) \vee \Psi_{2} \\
\diamond \boldsymbol{\Psi} & \equiv & \text { true U } \\
\square \boldsymbol{\Psi} & \equiv & \neg \diamond \neg \boldsymbol{\Psi}
\end{array}
$$

LPTL

- syntax

Exam. Symbol

Op $\quad X p \quad p$ is true on next state
$p \cup q \quad p \cup q \quad$ From now on, p is always true until q is true
$\diamond p \quad$ Fp \quad From now on, there will be a state where p is eventually (sometimes) true
$\square p \quad G p$
From now on, p is always true

LPTL

- syntax

Op $\quad \mathrm{Xp} \quad p$ is true on next state

? : don't care

LPTL

- syntax

LPTL

- syntax

$$
\begin{array}{ll}
\diamond p \quad \text { Fp } \quad \begin{array}{l}
\text { From now on, there will be a } \\
\text { state where } p \text { is eventually } \\
\text { (sometimes) true }
\end{array}
\end{array}
$$

LPTL

- syntax

Two operator for Fairness
$-\diamond^{\infty} p \equiv \square \diamond p \quad ; p$ will happen infinitely many times infinitely often
$-\square^{\infty} p \equiv \diamond \square p \quad ; p$ will be always true after some time in the future almost everywhere

LPTL

- semantics

suffix path :

$$
\begin{aligned}
& S=s_{0} s_{1} s_{2} s_{3} s_{4} s_{5} \ldots \cdots \cdots \\
& S^{(0)}=s_{0} s_{1} s_{2} s_{3} s_{4} s_{5} \cdots \cdots \cdots \\
& S^{(1)}=s_{1} s_{2} s_{3} s_{4} s_{5} s_{6} \cdots \cdots \cdots \\
& S^{(2)}=s_{2} s_{3} s_{4} s_{5} s_{6} \cdots \cdots \cdots \\
& S^{(3)}=s_{3} s_{4} s_{5} s_{6} \ldots \cdots \cdots \\
& S^{(\mathrm{k})}=s_{k} s_{k+1} s_{k+2} s_{k+3} \cdots \cdots \cdots
\end{aligned}
$$

LPTL

- semantics

Given a state sequence

$$
S=s_{0} s_{1} s_{2} s_{3} s_{4} \ldots s_{k} \ldots \ldots
$$

We define $S \vDash \Psi$ (S satisfies ψ) inductively as:

- $\mathrm{S} \vDash$ true
- $S \vDash p \Leftrightarrow S_{0}(p)=$ true, or equivalently $p \in S_{0}$
- $S \vDash \neg \psi \Leftrightarrow S \vDash \psi$ is false
- $S \vDash \Psi_{1} \vee \Psi_{2} \Leftrightarrow S \vDash \psi_{1}$ or $S \vDash \Psi_{2}$
- $S \vDash O \psi \Leftrightarrow S^{(1)} \vDash \psi$
- $S \vDash \Psi_{1} U \Psi_{2} \Leftrightarrow \exists k \geq 0\left(S^{(k)} \vDash \Psi_{2} \wedge \forall 0 \leq j<k\left(S^{(j)} \vDash \Psi_{1}\right)\right)$

LPTL

- semantics, remarks (1/2)

Basic assumption :

- Isomorphism: (N, <)
a discrete ; suitable for digital computer
- Initial point (0) ; computer needs reboot
- Infinite future ; finite and infinite
- Every element in N is a state
- Every state only have one successor

LPTL

- semantics, remarks (2/2)

Example: When memory-fault, generate interrupt j could be in
Basic propositions: memf, intr the past?
$\forall \mathrm{i} \geq 0(\operatorname{memf}(\mathrm{i}) \rightarrow \exists \mathrm{j}, \operatorname{intr}(\mathrm{j}) \quad \mathrm{j}$ is in the past!
$\forall \mathrm{i} \geq 0(\operatorname{memf}(\mathrm{i}) \rightarrow \exists \mathrm{j}(\mathrm{j}<\mathrm{i} \wedge \mathrm{intr}(\mathrm{j}))$
$\forall i \geq 0(\operatorname{memf}(i) \rightarrow \exists j(j>i \wedge i n t r(j))$

LPTL

- examples (I)(1/6)

$$
\begin{aligned}
& \mathrm{P}_{0}:\left(p_{0}:=0 \mid p_{0}:=p_{0} \vee p_{1} \vee p_{2}\right) \\
& \mathrm{P}_{1}:\left(p_{1}:=0 \mid p_{1}:=p_{0} \vee p_{1}\right) \\
& \mathrm{P}_{2}:\left(p_{2}:=0 \mid p_{2}:=p_{1} \vee p_{2}\right)
\end{aligned}
$$

LPTL

- examples (I)(2/6)
P_{0} : when (true) may $p_{0}=0$;
when (true) may $p_{0}=p_{0} \vee p_{1} \vee p_{2}$;
P_{1} : when (true) may $p_{1}=0$; when (true) may $p_{1}=p_{0} \vee p_{1}$
P_{2} : when (true) may $p_{2}=0$;
when (true) may $p_{2}=p_{1} \vee p_{2}$;

LPTL

- examples (I)(5/6)
P_{0} : when (true) may $p_{0}=0$;
when (true) may $p_{0}=p_{0} \vee p_{1} \vee p_{2}$;
P_{1} : when (true) may $p_{1}=0$;
when (true) may $p_{1}=p_{0} \vee p_{1}$
P_{2} : when (true) may $p_{2}=0$
when (true) may $p_{2}=p_{1} \vee p_{2}$;
$\vee\left(\left(\left(p_{0} \vee p_{1} \vee p_{2}\right) \leftrightarrow \bigcirc p_{0}\right) \wedge\left(p_{1} \leftrightarrow \bigcirc p_{1}\right) \wedge\left(p_{2} \leftrightarrow \bigcirc p_{2}\right)\right)$
$\vee\left(\bigcirc \neg \boldsymbol{p}_{1} \wedge\left(p_{2} \leftrightarrow \bigcirc p_{2}\right) \wedge\left(p_{0} \leftrightarrow \bigcirc p_{0}\right)\right)$
$\vee\left(\left(\left(p_{0} \vee p_{1}\right) \leftrightarrow \bigcirc p_{1}\right) \wedge\left(p_{2} \leftrightarrow \bigcirc p_{2}\right) \wedge\left(p_{0} \leftrightarrow \bigcirc p_{0}\right)\right)$
$\vee\left(\bigcirc \neg p_{2} \wedge\left(p_{1} \leftrightarrow \bigcirc p_{1}\right) \wedge\left(p_{0} \leftrightarrow \bigcirc p_{0}\right)\right)$
$\vee\left(\left(\left(p_{1} \vee p_{2}\right) \leftrightarrow \bigcirc p_{2}\right) \wedge\left(p_{1} \leftrightarrow \bigcirc p_{1}\right) \wedge\left(p_{0} \leftrightarrow \bigcirc p_{0}\right)\right)$)

Asynchronous system!

 Interleaving semantics
P_{0} : when (true) may $p_{0}=0$ when (true) may $p_{0}=p_{0} \vee p_{1} \vee p_{2}$;
P_{1} : when (true) may $p_{1}=0$; when (true) may $p_{1}=p_{0} \vee p_{1}$;
P_{2} : when (true) may $p_{2}=0$;
when (true) may $p_{2}=p_{1} \vee p_{2}$;

2009/12/23 stopped here.

LPTL

- examples (II)

Process $_{i}, 1 \leq i \leq m$

Also describe the mutual exclusion condition

LPTL

- examples (II)

LPTL

- examples (III)

A 2-bit counter operates at bit-level.

LPTL

- examples (IV)

Gate-controller
A: train far-Away
B: Before train-crossing
C: train at Crossing
P: train just Passed

2010/9/29
37

LPTL

- examples (V)
two processes :

$\boldsymbol{P}_{\mathbf{0}}$: high priority; $\boldsymbol{P}_{\mathbf{1}}$: low priority

LPTL

- examples (VI)
a digital watch :

LPTL

- workout

Please construct the LPTL formulas for the examples in example III-VI.

LPTL

- extensions (1/3)
- until vs. unless
- strict future
- weak○ vs. strong〇
- future vs. past

$$
\begin{aligned}
& \diamond^{+} p \ldots \diamond^{-} p \\
& \square^{+} p \ldots \ldots \ldots \ldots \ldots \ldots . . \square^{-} p \\
& \mathrm{O}^{+} p \\
& \mathrm{O}^{-p} \\
& p U{ }^{+} \boldsymbol{q} \\
& p U^{-} q(p S q)
\end{aligned}
$$

LPTL

- extensions $(2 / 3)$
decidable extension
$\forall \mathrm{i} \geq 0(\operatorname{memf}(\mathrm{i}) \rightarrow \exists \mathrm{j}(\mathrm{j}>\mathrm{i} \wedge \mathrm{j}<\mathrm{i}+4 \wedge \operatorname{intr}(\mathrm{j}))$
undecidable extensions:
- polynomial operations on variables.
$\forall i \geq 0(\operatorname{memf}(\mathrm{i}) \rightarrow \exists \mathrm{j}(\mathrm{j}>\mathrm{i}+\mathrm{i} \wedge \operatorname{intr}(\mathrm{j}))$
- $2^{\text {nd }}$ order logics:

$$
\forall i \geq 0\left(\operatorname{memf}(i) \rightarrow \exists f\left(f(i)>i^{*} i \wedge \operatorname{intr}(f(i))\right)\right.
$$

LPTL

- extensions (3/3)

First-Order LTL

- new elements
- variables, universe, quantifications
- functions, predicates,
- interpreted vs. uninterpreted
- multi-sorted
- Ostroff's RTTL

$$
\forall x \square((p \wedge x=T) \rightarrow \exists y \diamond(q \wedge y=T \wedge y-x<5))
$$

Branching Temporal Logics

Basic assumption of tree-like structure
-Every node is a function of $\mathrm{P} \rightarrow$ \{true,false \}
-Every state may have many successors

Branching Temporal Logics

Basic assumption of tree-like structure

-Every path is isomorphic as N
-Correspond to a state sequence

Path : $s_{0} s_{1} s_{3} \ldots \ldots$

Branching Temporal Logic

It can accommodate infinite and dense state successors

- In CTL and CTL*, it can't tell
- Finite and infinite
- Is there infinite transitions ?
- Dense and discrete
- Is there countable (ω) transitions ?

Branching Temporal Logic

Get by flattening a finite state machine

CTL(Computation Tree Logic)

CTL(Computation Tree Logic)

- syntax

```
\(\varphi::=\operatorname{true}|\mathrm{p}| \neg \varphi\left|\varphi_{1} \vee \varphi_{2}\right| \exists \bigcirc \varphi \mid \forall \bigcirc \varphi\)
    \(\left|\exists \varphi_{1} \mathrm{U} \varphi_{2}\right| \forall \varphi_{1} \mathrm{U} \varphi_{2}\)
abbreviation :
\begin{tabular}{lll} 
false & \(\equiv\) & \(\neg \operatorname{true}\) \\
\(\varphi_{1} \wedge \varphi_{2}\) & \(\equiv\) & \(\neg\left(\left(\neg \varphi_{1}\right) \vee\left(\neg \varphi_{2}\right)\right)\) \\
\(\varphi_{1} \rightarrow \varphi_{2}\) & \(\equiv\) & \(\left(\neg \varphi_{1}\right) \vee \varphi_{2}\) \\
\(\exists \diamond \varphi\) & \(\equiv\) & \(\exists \operatorname{true} \cup \varphi\) \\
\(\forall \square \varphi\) & \(\equiv\) & \(\neg \exists \diamond \neg \varphi\) \\
& \(\forall \diamond \varphi\) & \(\equiv\) \\
\(\forall\) true \(\cup \varphi\) \\
& \(\exists \square \varphi\) & \(\equiv\) \\
\hline\(\neg \forall \diamond \neg \varphi\)
\end{tabular}
```


CTL

- semantics
example symbol
in CMU

$\exists \mathrm{Op}$	EXp	there exists a path where p is true on next state from now on, there is a path where, p ts always
$\exists p U q$	$p \mathrm{FUq}$	
$\forall \mathrm{Op}$	AXp	for until q is true for all path where p is true on next state from now on, for all path where p is always true until q is true

CTL

- semantics

CTL

- semantics

CTL

- semantics

CTL

- semantics

CTL

- semantic

Assume there are

- a tree stucture \boldsymbol{M},
- one state \boldsymbol{s} in \boldsymbol{M}, and
- a CTL fomula φ
$\boldsymbol{M}, \boldsymbol{s} \vDash \boldsymbol{\varphi}$ means \boldsymbol{s} in \boldsymbol{M} satisfy $\boldsymbol{\varphi}$

CTL

- semantics
s-path : a path in M that starts from s
s_{0}-path:
$s_{0} s_{1} s_{2} s_{3} s_{5} \ldots \ldots \ldots$
$s_{0} s_{1} s_{6} s_{7} s_{8} \ldots \ldots \ldots$
s_{1}-path:
$s_{1} s_{2} s_{3} s_{5} \ldots \ldots \ldots \ldots$
s_{2}-path:
s_{13}-path:

CTL

- semantics
- M,s \vDash true
- $\mathrm{M}, \mathrm{s} \vDash \mathrm{p} \Leftrightarrow \mathrm{p} \in \mathrm{s}$
- $\mathrm{M}, \mathrm{s} \vDash \neg \varphi \Leftrightarrow$ it is false that $\mathrm{M}, \mathrm{s} \vDash \varphi$
- $\mathrm{M}, \mathrm{s} \vDash \varphi_{1} \vee \varphi_{2} \Leftrightarrow \mathrm{M}, \mathrm{s} \vDash \varphi_{1}$ or $\mathrm{M}, \mathrm{s} \vDash \varphi_{2}$
- $\mathrm{M}, \mathrm{s} \vDash \exists \mathrm{O} \varphi \Leftrightarrow \exists \mathrm{s}$-path $=\mathrm{s}_{0} \mathrm{~s}_{1} \ldots \ldots\left(\mathrm{M}, \mathrm{s}_{1} \vDash \varphi\right)$
- $\mathrm{M}, \mathrm{s} \vDash \forall \mathrm{O} \varphi \Leftrightarrow \forall \mathrm{s}$-path $=\mathrm{s}_{0} \mathrm{~s}_{1} \ldots \ldots .\left(\mathrm{M}, \mathrm{s}_{1} \vDash \varphi\right)$
- $\mathrm{M}, \mathrm{s} \vDash \exists \varphi_{1} \cup \varphi_{2} \Leftrightarrow \exists \mathrm{~s}$-path $=\mathrm{s}_{0} \mathrm{~s}_{1} \ldots \ldots, \exists \mathrm{k} \geq 0$
$\left(\mathrm{M}, \mathrm{s}_{\mathrm{k}} \vDash \varphi_{2} \wedge \forall 0 \leq \mathrm{j}<\mathrm{k}\left(\mathrm{M}, \mathrm{s}_{\mathrm{j}} \vDash \varphi_{1}\right)\right)$
- $\mathrm{M}, \mathrm{s} \vDash \forall \varphi_{1} \cup \varphi_{2} \Leftrightarrow \forall \mathrm{~s}$-path $=\mathrm{s}_{0} \mathrm{~s}_{1} \ldots \ldots, \exists \mathrm{k} \geq 0$
$\left(\mathrm{M}, \mathrm{s}_{\mathrm{k}} \vDash \varphi_{2} \wedge \forall 0 \leq \mathrm{j}<\mathrm{k}\left(\mathrm{M}, \mathrm{s}_{\mathrm{j}} \vDash \varphi_{1}\right)\right)$

LPTL

- examples (I)(2/6)
P_{0} : when (true) may $p_{0}=0$;
when (true) may $p_{0}=p_{0} \vee p_{1} \vee p_{2}$;
P_{1} : when (true) may $p_{1}=0$;
when (true) may $p_{1}=p_{0} \vee p_{1}$
P_{2} : when (true) may $p_{2}=0$;
when (true) may $p_{2}=p_{1} \vee p_{2}$;

CTL

- examples (I)

$$
\begin{aligned}
& P_{0}:\left(p_{0}:=0 \mid p_{0}:=p_{0} \vee p_{1} \vee p_{2}\right) \\
& P_{1}:\left(p_{1}:=0 \mid p_{1}:=p_{0} \vee p_{1}\right) \\
& P_{2}:\left(p_{2}:=0 \mid p_{2}:=p_{1} \vee p_{2}\right)
\end{aligned}
$$

If P_{0} is true, it is possible that P_{2} can be true after the next two cycles.

$\forall \square\left(p_{0} \rightarrow \exists \bigcirc \exists \bigcirc p_{2}\right)$

CTL

- examples (II)

1. If there are dark clouds, it will rain.
$\forall \square$ (dark-clouds $\rightarrow \forall \diamond$ rain)
2. if a buttefly flaps its wings, the New York stock could plunder.
$\forall \square$ (buttefly-flap-wings $\rightarrow \exists \diamond N Y$-stock-plunder)
3. if I win the lottery, I will be happy forever.
$\forall \square$ (win-lottery $\rightarrow \forall \square$ happy)
4. In an execution state, if an interrupt occurs in the next cycle, the interrupt handler will execute at the 2nd next cycle.

$$
\forall \square(\text { exec } \rightarrow \forall \bigcirc(\text { intrpt } \rightarrow \forall \bigcirc(\text { intrpt-handler })))
$$

CTL

- examples (III)

In an execution state, if an interrupt occurs in the next cycle, the interrupt handler will execute at the 2nd next cycle.

$$
\forall \square(\text { exec } \rightarrow \forall \bigcirc \text { (intrpt } \rightarrow \forall \bigcirc \text { (intrpt-handler)) })
$$

Some possible mistakes:
$\forall \square($ exec $\rightarrow((\forall \bigcirc$ intrpt $) \rightarrow \forall \bigcirc$ intrpt-handler $))$
$\forall \square$ (exec \rightarrow (($\forall \bigcirc$ intrpt) $\rightarrow \forall \bigcirc \forall \bigcirc$ intrpt-handler) $)$

CTL*

- syntax
- CTL* fomula (state-fomula)

$$
\varphi::=\operatorname{true}|\mathrm{p}| \neg \varphi_{1}\left|\varphi_{1} \vee \varphi_{2}\right| \exists \psi \mid \forall \psi
$$

- path-fomula

$$
\psi::=\varphi\left|\neg \psi_{1}\right| \psi_{1} \vee \psi_{2}\left|O \psi_{1}\right| \psi_{1} U \psi_{2}
$$

CTL* is set of all state-fomula!

CTL*

- examples (1/4)

In a fair concurrent environment, jobs will eventually finish.
$\forall\left(\left(\square \diamond\right.\right.$ execute $\left._{1}\right) \wedge\left(\square \diamond\right.$ execute $\left.\left._{2}\right)\right) \rightarrow \diamond$ finish $)$
or
$\forall\left(\left(\left(\diamond^{\infty}\right.\right.\right.$ execute $\left._{1}\right) \wedge\left(\diamond^{\infty}\right.$ execute $\left.\left._{2}\right)\right) \rightarrow \diamond$ finish $)$

CTL*

- examples (2/4)

No matter what, infinitely many comet will hit earth.

$$
\forall \square \diamond c o m e t-h i t-e a r t h
$$

Or
Why not CTL?
$\forall \diamond^{\infty}$ comet-hit-earth
What is the difference?

- $\forall \square \forall \diamond$ comet-hit-earth
- $\forall \square \exists \diamond$ comet-hit-earth

CTL＊

－Workout
－（1）$\forall \square \diamond$ comet－hit－earth
－（2）$\forall \square \forall \diamond$ comet－hit－earth
－（3）$\forall \square \exists \diamond$ comet－hit－earth
Please draw trees that tell
－（1）from（2）and（3）
－（2）from（1）and（3）
－（3）from（1）and（2）

CTL＊

－examples（3／4）
If you never have a lover，I will marry you．
$\forall((\square y o u-h a v e-n o-l o v e r) \rightarrow \diamond$ marry－you）
Why not CTL？
$-(\forall \square$ you－have－no－lover）$\rightarrow \forall \diamond$ 你嫁給我

- （ $\forall \square$ you－have－no－lover）$\rightarrow \exists \diamond$ 你嫁給我
- （ $\exists \square$ you－have－no－lover）$\rightarrow \forall \diamond$ 你嫁給我

CTL*

- Workout
- (1) \forall ((\square you-have-no-lover) $\rightarrow \diamond$ marry-you)
- (2) ($\forall \square$ you-have-no-lover) $\rightarrow \forall \diamond$ marry-you
- (3) ($\forall \square$ you-have-no-lover) $\rightarrow \exists \diamond$ marry-you
- (4) ($\exists \square$ you-have-no-lover) $\rightarrow \forall \diamond$ marry-you

Please draw trees that tell

- (1) from (2), (3), (4)
- (2) from (1), (3), (4)
- (3) from (1), (2), (4)
- (3) from (1), (2), (3)

CTL*

- examples (4/4)

If I buy lottory tickets infinitely many times, eventually I will win the lottery.

$$
\forall((\square \diamond \text { buy-lottery }) \rightarrow \diamond \text { win-lottery })
$$

or

$$
\forall\left(\left(\diamond^{\infty} \text { buy-lottery }\right) \rightarrow \diamond \text { win-lottery }\right)
$$

CTL*

- semantics

suffix path :

$$
S=s_{0} s_{1} s_{2} s_{3} s_{5}
$$

$$
S^{(0)}=s_{0} s_{1} s_{2} s_{3} s_{5}
$$

$$
\underset{C^{(1)}}{S^{(1)}}=
$$

$$
S^{(2)}=
$$

$$
S^{(3)}=s_{3} s_{5}
$$

$$
S^{(4)}=s_{5}
$$

$$
S=s_{0} s_{1} s_{6} s_{7} s_{8}
$$

$$
S^{(2)}=s_{6} s_{7} s_{8}
$$

$$
s=s_{0} s_{11} s_{12} s_{13} s_{15} .
$$

 ${ }_{206}(3) 9 / 29=S_{13} S_{15}$

CTL*

- semantics
state-fomula
$\varphi::=\operatorname{true}|\mathrm{p}| \neg \varphi_{1}\left|\varphi_{1} \vee \varphi_{2}\right| \exists \psi \mid \forall \psi$
- M,s \vDash true
- $M, s \vDash p \Leftrightarrow p \in s$
- $\mathrm{M}, \mathrm{s} \vDash \neg \varphi \Leftrightarrow \mathrm{M}, \mathrm{s} \vDash \varphi$ 是false
- $\mathrm{M}, \mathrm{s} \vDash \varphi_{1} \vee \varphi_{2} \Leftrightarrow \mathrm{M}, \mathrm{s} \vDash \varphi_{1}$ or $\mathrm{M}, \mathrm{s} \vDash \varphi_{2}$
- $\mathrm{M}, \mathrm{s} \vDash \exists \psi \Leftrightarrow \exists \mathrm{s}$-path $=\mathrm{S}(\mathrm{S} \vDash \psi)$
- $\mathrm{M}, \mathrm{s} \vDash \forall \psi \Leftrightarrow \forall$ s-path $=\mathbf{S}(\mathrm{S} \vDash \psi)$

CTL*

- semantics
path-fomula
$\psi::=\varphi\left|\neg \psi_{1}\right| \psi_{1} \vee \psi_{2}|\mathrm{O} \psi| \psi_{1} \mathrm{U} \psi_{2}$
- If $S=s_{0} s_{1} s_{2} s_{3} s_{4} \ldots \ldots \ldots, S \vDash \varphi \Leftrightarrow M, s_{0} \vDash \varphi$
- $\mathbf{S} \vDash \neg \psi_{1} \Leftrightarrow \mathbf{S} \vDash \psi_{1}$ 是false
- $\mathbf{S} \vDash \psi_{1} \vee \psi_{2} \Leftrightarrow \mathbf{S} \vDash \psi_{1}$ or $\mathbf{S} \vDash \psi_{1}$
- $\mathbf{S} \vDash \mathrm{O} \psi \Leftrightarrow \mathrm{S}^{(1)} \vDash \psi$
- $\underline{S} \vDash \psi_{1} \mathrm{U} \psi_{2} \Leftrightarrow \exists \mathrm{k} \geq 0\left(S^{(k)} \vDash \psi_{2} \wedge \forall 0 \leq j<k\left(S^{(0)} \vDash \psi_{1}\right)\right)$

Expressiveness

Given a language L,

- what model sets L can express ?
- what model sets L cannot?
model set: a set of behaviors
A formula $=$ a set of models (behaviors)
- for any $\varphi \in L,[\varphi] \stackrel{\text { def }}{=}\{M \mid M \vDash \varphi\}$

A language $=$ a set of formulas.
Expressiveness: Given a model set F,
F is expressible in L iff $\exists \varphi \in L([\varphi]=F)$

Expressiveness

Comparison in expressiveness:
Given two languages L_{1} and L_{2}
Definition: L_{1} is more expressive than $L_{2}\left(L_{2}<L_{1}\right)$
iff $\forall \varphi \in L_{2}$ ($[\varphi]$ is expressible in L_{1})
Definition: L_{1} and L_{2} are expressively equivalent $\left(L_{1} \equiv \mathrm{~L}_{2}\right)$ iff $\left(\mathrm{L}_{2}<\mathrm{L}_{1}\right) \wedge\left(\mathrm{L}_{1}<\mathrm{L}_{2}\right)$

Definition: $L_{1}, ~ L_{2}$ are expressively incomparable iff $\neg\left(\left(L_{2}<L_{1}\right) \vee\left(L_{1}<L_{2}\right)\right)$

Expressiveness

- expressiveness of PLTL
- PLTL \& PLTLB
- PLTL \& QPLTL
- FOLLO \& SOLLO
- regular languages
- expressiveness of branching-time logics

Expressiveness
 - LPTL

- PLTL with only future modal operators
- PLTLB with both past and future modal operators

Theorem : PLTL \& PLTLB have the same expressiveness.

Expressiveness
 - LPTL
 $\diamond^{+}\left(\right.$eat $\wedge \diamond^{+}($shit $\wedge \diamond-$ full $\left.)\right)$ in PLTLB

$$
\begin{aligned}
& \diamond^{+}\left(\text {eat } \wedge \diamond^{+}(\text {shit } \wedge \text { full })\right) \quad \text { in PLTL } \\
\vee & \diamond^{+}\left(\text {eat } \wedge \diamond^{+}\left(\text {full } \wedge \diamond^{+} \text {shit }\right)\right) \\
\vee & \diamond+\left(\text { full } \wedge \diamond^{+}\left(\text {eat } \wedge \diamond \diamond^{+} \text {shit }\right)\right)
\end{aligned}
$$

partial-order \rightarrow total-order PLTL is less succinct than PLTLB.

Expressiveness

- LPTL

Theorem:

Given $P=\{p\}$, PLTL cannot express the following model.

p is true at only even states. [P.Wolper 1993]

Expressiveness
 - QPTL

QPLTL (Quantified PLTL) can express the following model.
$\exists x(x \wedge(\square(x \rightarrow \bigcirc \neg x)) \wedge(\square((\neg x) \rightarrow O x)) \wedge(\square(x \rightarrow p)))$

p is true at only even states. [P.Wolper 1993]
With an auxiliary proposition x,
x initially true.
x alternates from a state to the next.

[^0]Expressiveness

- QPTL

QPLTL, syntax
$\psi::=\operatorname{true}|\mathrm{p}| \neg \psi\left|\psi_{1} \vee \Psi_{2}\right| O \psi\left|\psi_{1} \mathrm{U} \psi_{2}\right| \exists \mathrm{x} \psi$ abbreviation:

$$
\forall \mathbf{x} \boldsymbol{\Psi} \equiv \neg \exists \mathbf{x} \neg \boldsymbol{\Psi}
$$

QPLTL, intuitive semantics
$\square \exists x \psi$: there is an x-extended state sequence $\vDash \psi$

- $\forall x \psi$: all x-extended state sequence $\vDash \psi$

Expressiveness
 - QPTL

QPLTL, semantics
Given state sequence $S=s_{0} s_{1} s_{2} s_{3} s_{4} \ldots s_{k} \ldots .$.
$S \vDash \exists x \psi$ if and only if
$\exists T=t_{0} t_{1} t_{2} t_{3} t_{4} \ldots t_{k} \ldots \ldots$. such that

- $\forall \mathrm{k} \geq 0, \mathrm{t}_{\mathrm{k}}$ is identical to sk except on $\mathrm{t}_{\mathrm{k}}(\mathrm{x})$
- $\mathrm{T} \vDash \psi$

Expressiveness
 - FOLLO

FOLLO (First-Order Language of Linear Order)

- used to define PLTL.
- syntax elements: $\mathbb{N},<, p(i), \neg, \vee, \exists, \forall$
- \exists, \forall : quantification over \mathbb{N}
- $\boldsymbol{p}(\boldsymbol{i})$: monadic predicates of \mathbb{N}

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\ldots \ldots$

$\boldsymbol{p} \quad p \neg p \quad p \neg p \neg p \neg p \quad p \quad p \neg p \quad p \quad p \quad p \ldots \ldots$ $q \neg q \quad q \quad q \quad q \neg q \quad q \neg q \quad q \neg q \quad q \quad q \quad q \ldots \ldots$

Expressiveness
 - SOLLO

SOLLO(Second-Order Language of Linear Order)

- syntax elements: $\mathbb{N},<, p(i), \neg, \vee, \exists, \forall$
- \exists, $\forall:$ quantification over
$\square i \in \mathbb{N}$ and
- $x \in \mathbb{N} \diamond\{$ true,false $\}$

Theorem:

Expressiveness

- regular languages

Regular Languages

- recognizable with finite-state automata

Expressiveness

- regular languages

Regular Languages

- recognizable with finite-state automata

Grammar rules : concatenate, + , ${ }^{*}, \neg$

$a(b c)^{*}$	$a(b+c)^{*}$
a	a
$a b c$	$a b$
$a b c b c b c$	accc
$a b c b c b c$	$a b b c c c b$

Expressiveness

- regular languages

Regular Languages

- recognizable with finite-state automata

Grammar rules : concatenate, + , ${ }^{*}$, ᄀ

$$
\begin{aligned}
& a \neg\left((b+c)^{*}\right) \quad \text { assume } \Sigma=\{\mathrm{a}, \mathrm{~b}, \mathrm{c}\} \\
& \text { aa } \\
& \text { aabbba } \\
& \text { abcbaaccc }
\end{aligned}
$$

a...bacc......

2010/9/29
85

Expressiveness

- regular languages

How to use PLTL to specify regular languages?

Expressiveness

- regular languages

The following four are equivalent in expressiveness.

- PLTL
- FOLLO
counter automata: there exists $s_{0}, s_{1}, s_{2}, \ldots, s_{k-1}$ and w such that
- regular languages without * $s_{i+1} \bmod \mathrm{k} \in \delta\left(s_{i}, w\right)$
- languages recognizable with counter-free automata.

Expressiveness

- regular languages

The following four are equivalent in expressiveness.

- QPLTL
- SOLLO
- regular language
- languages recognizable with finite-state automata.

Expressiveness

- regular languages for infinite behaviors automata accepting infinite strings
- Büchi accepting: accepting states must appear infinitely many times.

Expressiveness

- regular languages for infinite behaviors
2 regular languages for infinite strings
$-\alpha(\beta)^{\omega}$ specifies

$$
w_{0} w_{1} w_{2} w_{3} w_{4} \ldots w_{\mathrm{k}} \ldots \ldots
$$

$w_{0} \in \alpha$ and $w_{\mathrm{k}} \in \beta$, for each $\mathrm{k}>0$
$-\alpha \lim \beta$ specifies

$$
a_{0} a_{1} a_{2} a_{3} a_{4} \ldots a_{k} \ldots \ldots
$$

with infinitely many $k>0$
such that $a_{0} a_{1} a_{2} a_{3} a_{4} \ldots a_{k} \in \alpha \beta$

Expressiveness

- regular languages for infinite tpre foriowing four are equivalent in expressiveness.
- PLTL
- FOLLO
- $\cup_{i=1}{ }^{m} \alpha_{i} \lim \beta_{i}$ α_{i} and β_{i} are regular expressions without *expressions.
- $\cup_{i=1}^{m}\left(\lim \alpha_{i} \cap \neg \lim \beta_{i}\right)$

Expressiveness

- regular languages for infinite behaviors

The following four are equivalent in expressiveness.

- QPLTL
- SOLLO
- $\cup_{i=1}{ }^{m} \alpha_{i}\left(\beta_{i}{ }^{\omega}\right)$

- $U_{i=1}^{m} \alpha_{i} \lim \beta_{i}$
- $\cup_{i=1}^{m}\left(\lim \alpha_{i} \cap \neg \lim \beta_{i}\right)$

091230 stopped here.

Expressiveness - branching-time logics

What to compare with?

- finite-state automata on infinite trees.
- 2nd-order logics with monadic prdicate and many successors (SnS)
- 2nd-order logics with monadic and partial-order

Very little known at the moment,
the fine difference in semantics of branching-structures

Expressiveness

- CTL*, example (I)

A tree the distinguishes the following two formulas.

- $\forall((\diamond$ eat $) \rightarrow \diamond$ full $)$
- Negation: $\exists((\diamond$ eat $) \wedge \square \neg$ ful)
- ($\forall \diamond$ eat $) \rightarrow(\forall \diamond$ full $)$

Expressiveness
 - CTL*, example (II)

A tree that distinguishes the following two formulas.

- $\forall((\square$ eat $) \rightarrow \diamond$ ful)
- $\forall \square$ (eat $\rightarrow \forall \diamond$ ful)
\square Negation: $\exists \diamond($ eat $\wedge \exists \diamond$ _ful)

Expressiveness

- CTL*

With the abundant semantics in CTL*, we can compare the subclasses of CTL*.
With restrictions on the modal operations after \exists, \forall, we have many CTL* subclasses.

Example:

$\mathrm{B}(\neg, \vee, \mathrm{O}, \boldsymbol{U})$: only $\neg, \mathrm{}, \mathrm{O},, \boldsymbol{U}$ after \exists, \forall $\mathrm{B}\left(\neg, \vee, \mathrm{O}, \diamond^{\infty}\right)$: only $\neg, \vee, \mathrm{O}, \diamond^{\infty}$ after \exists, \forall $\mathrm{B}(\mathrm{O}, \diamond)$: only O, \diamond after \exists, \forall

Expressiveness

- CTL*

CTL* subclass expressiveness heirarchy CTL* $>\mathrm{B}\left(\neg, \mathrm{v}, \mathrm{O}, \diamond, U, \diamond^{\infty}\right)$
$>\mathrm{B}\left(\mathrm{O}, \diamond, U, \diamond^{\infty}\right)$
$>B(\neg, \vee, O, \diamond$, U
$=B(O, \diamond$, U
$>\quad \mathrm{B}(\neg, \vee, \mathrm{O}, \diamond)$
$>B(0, \diamond)$
$>B(\diamond)$

Expressiveness

- CTL*

Theorem : $\mathrm{B}(\neg, \vee, \mathrm{O}, \diamond, \boldsymbol{U}) \equiv \mathrm{B}(\mathrm{O}, \diamond, \boldsymbol{U})$
Proof: reduction of formulas from $\mathrm{B}(\neg, \vee, \mathrm{O}, \diamond, \zeta)$ to $\mathrm{B}(\mathrm{O}, \diamond, U)$.
Suppose we have a modality $\exists \psi$ with ψ in DNF and ' \rightarrow ' only before
U. (feasible since $\neg \mathrm{O} \psi_{3} \equiv \mathrm{O} \neg \psi_{3}$)

- reduce $\neg\left(\Psi_{1} \mathrm{U} \Psi_{2}\right)$ to $\left(\left(\neg \Psi_{2}\right) \mathrm{U} \neg\left(\Psi_{2} \wedge \Psi_{1}\right)\right) \vee \square \neg \Psi_{2}$
- reduce $\left(\psi_{1} U \Psi_{2}\right) \wedge\left(\Psi_{3} U \Psi_{4}\right)$ to
$\left(\left(\Psi_{1} \wedge \psi_{3}\right) U\left(\Psi_{2} \wedge \exists\left(\Psi_{3} U \Psi_{4}\right)\right)\right) \vee\left(\left(\Psi_{3} \wedge \Psi_{1}\right) U\left(\Psi_{4} \wedge \exists\left(\Psi_{1} U \Psi_{2}\right)\right)\right)$
- reduce $\left(\Psi_{1} U \Psi_{2}\right) \wedge \square \Psi_{3}$ to $\left(\Psi_{1} \wedge \Psi_{3}\right) U\left(\Psi_{2} \wedge \exists \square \Psi_{3}\right)$
- reduce $\exists\left(\Psi_{1} \vee \Psi_{2} \vee \ldots \vee \psi_{n}\right)$ to $\left(\exists \Psi_{1}\right) \vee\left(\exists \Psi_{2}\right) \vee \ldots \vee\left(\exists \psi_{n}\right)$
- reduce $\exists\left(\left(\Psi_{1} \mathrm{U} \psi_{2}\right) \wedge O \psi_{3}\right)$ to
$\left(\Psi_{2} \wedge \exists O \psi_{3}\right) \vee\left(\Psi_{1} \wedge \exists O\left(\Psi_{3} \wedge\left(\Psi_{1} \cup \Psi_{2}\right)\right)\right)$

Expressiveness

- CTL*

Theorem : $\exists \diamond^{\infty} p$ is inexpressible in $B(O, \diamond, ৬)$.
Proof: induction on i : for $\operatorname{any} \varphi \in \mathrm{B}(\mathrm{O}, \diamond, \iota)$, when $i>|\varphi|, \varphi$ cannot distinguish $\boldsymbol{M}_{\boldsymbol{i}}$ from $\boldsymbol{N}_{\boldsymbol{i}}$.

Workout

Please complete the proof in details in the previous page.

Expressiveness

- CTL*

Comparing PLTL with CTL*

 assumption, all $\varphi \in$ PLTL are interpreted as $\forall \varphi$ Intuition: PLTL is used to specify all runs of a system.

Verification

- LPTL, validity checking $\varphi \vDash \phi$
- instead, check the satisfiability of $\varphi \wedge \neg \phi$
- construct a tabelau for $\varphi \wedge \neg \phi$
- model-checking $\mathrm{M}=\phi$
- LPTL: M: a Büchi automata, ϕ : an LPTL formula
- CTL: M: a finite-state automata, ϕ : a CTL formula
- simulation \& bisimulation checking $\mathrm{M} \vDash \mathrm{M}^{\prime}$

Satisfiability-checking framework

specification in logics
$\square, \neg, \vee, \bigcirc, \diamond, \mathbf{U}$

LPTL

- tableau for satisfiability checking

Tableau for φ

- a finite Kripke structure that fully describes the behaviors of φ
- exponential number of states
- An algorithm can explore a fulfilling path in the tableau to answer the satisfiability.
■nondeterministic
■without construction of the tableau
■PSPACE.

LPTL

- tableau for satisfiability checking

Tableau construction
a preprocessing step: push all negations to the literals.

- $\neg\left(\psi_{1} \wedge \psi_{2}\right) \equiv\left(\neg \psi_{1}\right) \vee\left(\neg \psi_{2}\right)$
- $\neg\left(\psi_{1} \vee \psi_{2}\right) \equiv\left(\neg \psi_{1}\right) \wedge\left(\neg \psi_{2}\right)$
- $\neg \bigcirc \psi \equiv \bigcirc \neg \psi$
- $\neg \neg \psi \equiv \psi$
- $\neg\left(\psi_{1} \mathbf{U} \psi_{2}\right) \equiv\left(\square \neg \psi_{2}\right) \vee\left(\left(\neg \psi_{2}\right) \mathbf{U}\left(\left(\neg \psi_{1}\right) \wedge\left(\neg \psi_{2}\right)\right)\right)$
- $\neg \square \psi \equiv \diamond \neg \psi$

LPTL

- tableau for satisfiability checking

Tableau construction

$\mathrm{CL}(\varphi)$ (closure) is the smallest set of formulas containing φ with the following consistency requirement.

- $\neg p \in \operatorname{CL}(\varphi)$ iff $p \in \operatorname{CL}(\varphi)$
- If $\psi_{1} \vee \psi_{2}, \psi_{1} \wedge \psi_{2} \in \operatorname{CL}(\varphi)$, then $\psi_{1}, \psi_{2} \in \operatorname{CL}(\varphi)$
- If $\bigcirc \psi \in \operatorname{CL}(\varphi)$, then $\psi \in \operatorname{CL}(\varphi)$
- If $\psi_{1} \mathbf{U} \psi_{2} \in \operatorname{CL}(\varphi)$, then $\psi_{1}, \psi_{2}, \circ\left(\psi_{1} \mathbf{U} \psi_{2}\right) \in \operatorname{CL}(\varphi)$
- If $\square \psi \in \operatorname{CL}(\varphi)$, then ψ, ○ $\square \psi \in \operatorname{CL}(\varphi)$
- If $\diamond \psi \in \operatorname{CL}(\varphi)$, then $\psi, o \diamond \psi \in \operatorname{CL}(\varphi)$

LPTL

- tableau for satisfiability checking

Tableau (V, E), node consistency condition:
A tableau node $\mathrm{v} \in \mathrm{V}$ is a set $\mathrm{v} \subseteq \mathrm{CL}(\mathrm{f})$ such that

- $\mathrm{p} \in \mathrm{v}$ iff $\neg \mathrm{p} \notin \mathrm{v}$
- If $\psi_{1} \vee \psi_{2} \in \mathbf{V}$, then $\psi_{1} \in \mathbf{V}$ or $\psi_{2} \in \mathbf{V}$
- If $\psi_{1} \wedge \psi_{2} \in \mathbf{V}$, then $\psi_{1} \in \mathbf{V}$ and $\psi_{2} \in \mathbf{V}$
- if $\square \psi \in \mathrm{v}$, then $\psi \in \mathrm{v}$ and $\bigcirc \square \psi \in$
- if $\langle\psi \in \mathrm{v}$, then $\psi \in \mathrm{v}$ or $\bigcirc \diamond \psi \in \mathrm{v}$
- if $\psi_{1} \mathbf{U} \psi_{2} \in \mathbf{V}$, then $\psi_{2} \in \mathbf{v}$ or $\left(\psi_{1} \in \mathbf{V}\right.$ and $\left.\circ\left(\psi_{1} \mathbf{U} \psi_{2}\right) \in \mathbf{V}\right)$

LPTL

- tableau for satisfiability checking

Tableau (V, E), arc consisitency condition:
Given an arc $\left(\mathrm{v}, \mathrm{v}^{\prime}\right) \in \mathrm{E}$, if $\bigcirc \psi \in \mathrm{v}$, then $\psi \in \mathrm{v}^{\prime}$

- A node v in (V, E) is initial for φ if $\varphi \in V$.

LPTL

- tableau for satisfiability checking
$\mathrm{CL}(\mathrm{pUq})=\{\mathrm{n} \| \mathrm{lq}, \mathrm{opUq}, \mathrm{p}, \neg \mathrm{p}, \mathrm{q}, \neg \mathrm{q}\}$
Exam
tablea Workout:
V: Please draw the tableau $q\}\{p, q\}$ with arc connections!
qq, puq, $\quad \mathrm{Jq}\}\{\mathrm{p},-\mathrm{q}\}$
$\{\neg p, q, p U q, o p U q\} \quad, p \cup q\}\{\neg p, q\}$
$\{\neg p, q, \circ p U q\}$
$\{\neg p, \neg q, \circ p U q\} \quad\{\neg p, \neg q\}$
2.? ?

LPTL

- tableau for satisfiability checking φ is satisfiable iff in (V,E),
- there is an infinite path from an initial node for φ such that all until formulas are eventually satisfied; or
- there is a strong connected component (SCC) reachable from an initial node for φ such that for all until formula $\psi_{1} \mathrm{U}_{\psi_{2}}$ in a node in the SCC, there is also a node in the SCC containing ψ_{2}; or
- there is a cycle reachable from an initial node for φ such that the for all until formulas $\psi_{1} \mathbf{U} \psi_{2}$ in the first cycle node, there is also a node in the cycle containina w_{n}.

LPTL

- tableau for satisfiability checking

LPTL

- tableau for satisfiability checking

Please use tableau method to show that $\mathrm{pUq} \vDash \square \mathrm{q}$ is false.

1) Convert to negation: $(p U q) \wedge \diamond \neg q$
2) $C L((p U q) \wedge \diamond \neg q)$
$=\{(p U q) \wedge \diamond \neg q, p U q, \circ p U q, p, q, \diamond \neg q, \circ \diamond \neg q\}$

LPTL

- tableau for satisfiability checking

Please use tableau method to show that $\mathrm{pUq} \vDash \diamond \mathrm{q}$ is true.

1) Convert to negation: $(p U q) \wedge \square \neg q$
2) $\mathrm{CL}((\mathrm{pUq}) \wedge \square \neg \mathrm{q})$

$$
=\{(p U q) \wedge \square \neg q, p U q, \circ p U q, p, q, \square \neg q, \circ \square \neg q\}
$$

Pf: In each path that is a model of (pUq) $\square \neg q, q$ must always be satisfied. Thus, pUq is never fulfilled in the model.
QED

LPTL

- tableau for satisfiability checking φ is satisfiable iff in (V,E), there exists ...
- path+cycle $\leq(|\mathrm{CL}(\varphi)|+2)|\mathrm{V}|$
- |CL(φ)| flags to check the until-formulas from the first cycle node.
- nondeterministic PSPACE can solve it.
- PSPACE-complete.

Model Checking Framework

Temporal logic formula

LPTL

- automata-theoretical model-checking

State Sequences as Words

- Let AP be the finite set of atomic propositions of the formula f.
- Let $\Sigma=2^{\text {AP }}$ be the alphabet over AP.
- Every sequence of states is an ω word in Σ^{ω} a $\alpha=P_{0}, P_{1}, P_{2}, \ldots$ where $P_{i}=L\left(s_{i}\right)$.
- A word a is a model of formula f iff $\alpha \mid=f$
- Example: for $\mathrm{f}=\mathrm{p} \wedge(\neg \mathrm{q} \cup \mathrm{q})\{\mathrm{p}\},\{ \},\{\mathrm{q}\},\{\mathrm{p}, \mathrm{q}\}^{\omega}$
- Let Mod(f) denote the set of models of f.

LPTL

- automata-theoretical model-checking

Büchi automaton $A=(Q, \Sigma, \delta, I, F)$

- Q - set of states
- Σ - finite alphabet
- δ - transition relation
- I - set of initial states
- F - set of acceptance states

A run ρ of A on ω word α

$$
\begin{aligned}
& \rho=q_{0}, q_{1}, q_{2}, \ldots, \text { s.t. } q_{0} \in I \text { and } \\
& \left(q_{i}, a_{i}, q_{i+1}\right) \in \delta
\end{aligned}
$$

ρ is accepting if $\operatorname{lnf}(\rho) \cap F \neq \varnothing$

LPTL

- automata-theoretical model-checking
φ : an LTL fon ith propositions AP.
Construci
exactly th

1. push n

Naïve cor pushing the negation?
work out: $B(\varphi)$ cepting
what is $\neg(p \mathbf{U})$ after egation
pushing the negation? Uq leads to
al blowup!
2. simple induction on tro

$$
B(o p)=?
$$

$$
B(p \mathbf{Q})=\text { ? }
$$

$$
\mathrm{B}(\square \mathrm{p})=\text { ? }
$$

$$
B(p \vee q)=?
$$

$$
\mathrm{B}(\mathrm{p})=\text { ? }
$$

LPTL

- automata-theoretical model-checking Inductive construction on φ :
$B(X p)$ is

$B(p \mathbf{U})$ is

$\mathbf{B}(\square \mathrm{p})$ is

$B(p)$ is

LPTL

- automata-theoretical model-checking
"always p until q": $\square(p \cup q)$

"always eventually p ":
$: \square \diamond p$
accepting

Workout

Please draw the Buchi automata for the following LTL formulas.

- (pUq)Ur
- $\square((p \cup q) \cup r)$
- ($\square \mathrm{p}) \wedge((\mathrm{pUq}) \mathrm{Ur})$
- ($\diamond p) \vee((q U r) U s)$

```
LPTL
    - automata-theoretical model-checking
\phi: an LTL formula,
M: a Büchi automata
Model Checking Algorithm M F &
- construct B(\neg\phi) for the formula }
- M\vDash\phi iff L(M }\times\textrm{B}(\neg\phi))=
Complexity O(|M| × 2 }\mp@subsup{}{}{|\phi|}

CTL
- model-checking

Given a finite Kripke structure M and a CTL formula \(\varphi\), is M a model of \(\varphi\) ?
- usually, M is a finite-state automata.
- PTIME algorithm.
- When M is generated from a program with variables, its size is easily exponential.

\section*{CTL}
- model-checking algorithm
techniques
- state-space exploration
- state-spaces represented as finite Kripke structure
- directed graph
- nodes: states or possible worlds
- arcs: state transitions
- regular behaviors

- Usually the state count is astronomical.

\section*{CTL}
- model-checking algorithm (1/6)

Given M and \(\varphi\),
1. list the subformulas in \(\varphi\) according to their sizes
\[
\varphi_{0} \varphi_{1} \varphi_{2} \ldots \varphi_{n}
\]
for all \(0 \leq i<j \leq n, \varphi_{j}\) is not a subformula of \(\varphi_{i}\)
2. for \(\mathrm{i}=0\) to n , label \(\left(\varphi_{\mathrm{i}}\right) \longrightarrow\) See next page!
3. for all initial states \(\mathrm{s}_{0}\) of M , if \(\varphi \notin \mathrm{L}\left(\mathrm{s}_{0}\right)\), return `No!'
4. return `Yes!'
```

CTL
- model-checking algorithm (2/6)
label(\varphi) {
case p, return;
case }\neg\psi\mathrm{ , for all s, if }\psi\not\in\textrm{L}(\textrm{s}),\textrm{L}(\textrm{s})=\textrm{L}(\textrm{s})\cup{\neg\psi
case }\mp@subsup{\psi}{1}{}\vee\mp@subsup{\psi}{2}{\prime}\mathrm{ , for all s, if }\mp@subsup{\psi}{1}{}\in\textrm{L}(\mathbf{s})\mathrm{ or }\mp@subsup{\psi}{2}{}\in\textrm{L}(\mathbf{s})\mathrm{ ,
L(s)=L(s)}\cup{\mp@subsup{\psi}{1}{}\vee\mp@subsup{\psi}{2}{}
case \existsO \psi, for all s, if }\exists(\textrm{s},\mp@subsup{\textrm{s}}{}{\prime})\mathrm{ with }\psi\in\textrm{L}(\mp@subsup{\textrm{s}}{}{\prime})\mathrm{ ,
L(s)=L(s)\cup{\existsО \psi}
case }\exists\mp@subsup{\psi}{1}{}|\mp@subsup{\Psi}{2}{2},\operatorname{lfp}(\mp@subsup{\psi}{1}{},\mp@subsup{\psi}{2}{})
case }\exists\square\psi\psi,gfp(\psi)
}

```

\section*{CTL}
- model-checking algorithm (3/6)

Ifp \(\left.\left(\psi_{1}, \psi_{2}\right)\right)^{*}\) least fixpoint algorithm */\{
for all s , if \(\psi_{2} \in \mathrm{~L}(\mathrm{~s}), \mathrm{L}(\mathrm{s})=\mathrm{L}(\mathrm{s}) \cup\left\{\exists \psi_{1} \mathrm{U}_{\psi_{2}}\right\} ;\)
repeat \{
for all s, if \(\psi_{1} \in \mathrm{~L}(\mathbf{s})\) and \(\exists\left(\mathrm{s}, \mathbf{s}^{\prime}\right)\left(\exists \psi_{1} \mathrm{U} \psi_{2} \in \mathrm{~L}\left(\mathbf{s}^{\prime}\right)\right)\),
\(\mathrm{L}(\mathrm{s})=\mathrm{L}(\mathrm{s}) \cup\left\{\exists \psi_{1} \mathrm{U} \psi_{2}\right\}\);
\} until no more changes to \(\mathrm{L}(\mathrm{s})\) for any s .
\}
The procedure terminates since \(S\) is finite in the Kripke structure.

\section*{CTL}
- model-checking algorithm (4/6)


\section*{CTL}
- model-checking algorithm (5/6)
gfp \((\psi)\) /* greatest fixpoint algorithm */ \{ for all s, if \(\psi \in L(s), L(s)=L(s) \cup\{\exists \square \psi\}\); repeat \{
\[
\text { for all s, if } \exists \square \psi \in \mathrm{L}(\mathrm{~s}) \text { and } \forall\left(\mathrm{s}, \mathrm{~s}^{\prime}\right)\left(\exists \square \psi \notin \mathrm{L}\left(\mathrm{~s}^{\prime}\right)\right) \text {, }
\]
\[
\mathrm{L}(\mathrm{~s})=\mathrm{L}(\mathrm{~s})-\{\exists \square \psi\} ;
\]
\} until no more changes to \(L(s)\) for any \(s\).
\}
The procedure terminates since \(S\) is finite in the Kripke structure.

\section*{CTL}
- model-checking algorithm (6/6)

Greatest fixpoint in modal logics


\section*{( \(\exists\) O \(\mathrm{p} U q\) ) \(\wedge \exists \square \mathrm{p}\) \\ Labeling funciton:}
label the subforumulae true in each state.


\section*{\((\exists \bigcirc \exists \mathrm{p} U \mathrm{q}) \wedge \exists \square \mathrm{p}\)}

Evaluating \(\exists \mathrm{p} U q\) using least fixpoint


\section*{\((\exists \bigcirc \exists \mathrm{p} U \mathrm{q}) \wedge \exists \square \mathrm{p}\)}

Evaluating \(\exists \mathrm{Z} U q\) using least fixpoint


\section*{\((\exists О \exists \mathrm{p}\) Uq) \() ~ \exists \square \mathrm{p}\)}

Evaluating \(\exists p U q\) using least fixpoint


\section*{\((\exists\) O \(\mathrm{p} \| \mathrm{q}) \wedge \exists \square \mathrm{p}\)}

Evaluating \(\exists \bigcirc \nexists p U q\)


\section*{( \(\exists\) Oヨp \(U q\) ) \() ~ ヨ \square\) p}

Evaluating \(\exists \square\) p using greatest fixpoint
Iteration 0


137

\section*{\((\exists \mathrm{O} \exists \mathrm{p} U \mathrm{q}) \wedge \exists \square \mathrm{p}\)}

Evaluating \(\exists \square\) p using greatest fixpoint


\section*{\((\exists \bigcirc \exists \mathrm{p} U \mathrm{q}) \wedge \exists \square \mathrm{p}\)}

Evaluating \(\exists \square\) pusing greatest fixpoint


\section*{\((\exists \bigcirc \exists \mathrm{p} U \mathrm{q}) \wedge \exists \square \mathrm{p}\)}

Finally, evaluating ( \(\exists \bigcirc \nexists \mathrm{p}\) Uq) \() ~ \exists \exists \square p\)


\section*{Workout: labelling \(\exists \diamond(\mathrm{p} \wedge \exists \square \mathrm{q})\)}


\section*{CTL}
- model-checking problem complexities
- The PLTL model-checking problem is PSPACEcomplete.
- definition: Is there a run that satisfies the formula?
- The PLTL without O (modal operator "next") model-checking problem is NP-complete.
- The model-checking problem of CTL is PTIMEcomplete.
- The model-checking problem of CTL* is PSPACEcomplete.

\section*{Symbolic until analysis (backward)}

\section*{\(\exists \psi_{1} U \psi_{2}\)}

Encode the states with variables \(\mathrm{x}_{0}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\).
- the state set as a proposition formula: \(\mathrm{S}\left(\mathrm{x}_{0}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{n}\right)\)
- \(\psi_{1}\left(\mathrm{x}_{0}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right), \psi_{2}\left(\mathrm{x}_{0}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)\)
- the transition set as \(\mathrm{R}\left(\mathrm{x}_{0}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{n}, \mathrm{x}_{0}^{\prime}, \mathrm{x}_{1}^{\prime}, \ldots, \mathrm{x}_{\mathrm{n}}^{\prime}\right)\)
\(b_{0}=\psi_{2}\left(x_{0}, x_{1}, \ldots, x_{n}\right) \wedge S\left(x_{0}, x_{1}, \ldots, x_{n}\right) ; k=1\); a least fixpoint
repeat
procedure
\(b_{k}=b_{k-1} \vee \exists x^{\prime}{ }_{0} \exists x^{\prime}{ }_{1} \ldots \exists x_{n}^{\prime}\left(\psi_{1}\left(x_{0}, x_{1}, \ldots, x_{n}\right)\right.\)
\(\wedge R\left(x_{0}, x_{1}, \ldots, x_{n}, x^{\prime}{ }_{0}, x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)\)
\(\wedge\left(b_{k-1} \uparrow \frac{11}{1 /}\right.\) change all
\(\mathrm{k}=\mathrm{k}+1\);
umprimed
until \(b_{k} \equiv b_{k-1}\);

\section*{CTL}
- model-checking algorithm (2/6)
slabel( \(\varphi\) ) \{
case p , return \(\mathrm{p} \wedge \mathrm{S}\left(\mathrm{x}_{0}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)\);
case \(\neg \psi\), return \(\mathrm{S}\left(\mathrm{x}_{0}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \wedge \neg\) slabel \((\psi)\);
case \(\psi_{1} \vee \psi_{2}\), return slabel \(\left(\psi_{1}\right) \vee\) slabel \(\left(\psi_{2}\right)\)
case \(\exists \mathrm{O} \psi\), return
\[
\exists x_{0}^{\prime} \exists x^{\prime}{ }_{1} \ldots \exists x_{n}^{\prime}\left(\mathrm{R}\left(\mathrm{x}_{0}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{x}_{0}^{\prime}, \mathrm{x}_{1}^{\prime}, \ldots, \mathrm{x}_{\mathrm{n}}^{\prime}\right) \wedge(\text { slabel }(\psi) \uparrow)\right) ;
\]
case \(\exists \psi_{1} \mathrm{U}_{\psi_{2}}\), return the symbolic until analysis of \(\exists \operatorname{slabel}\left(\psi_{1}\right)\) U slabel \(\left(\psi_{2}\right)\);
case \(\exists \square \psi\), return the symbolic liveness analysis of \(\exists \square\) slabel( \(\psi\) );
\}

\section*{Safety analysis}

Given M and p (safety predicate), do all states reachable from initial states in \(M\) satisfy \(p\) ?
- In model-checking: Is M a model of \(\forall \square \mathrm{p}\) ?
- Or in risk analysis: Is there a state reachable from initial states in M satisfy p ?
\[
\forall \square p \equiv \neg \exists \diamond \neg p \equiv \neg \exists \text { true } U \neg p
\]

\section*{Reachability analysis}

Is there a state s reachable from another state s'?
- Encode risk analysis
- Encode the complement of safety analysis
- Most used in real applications

\section*{2007/06/05 stopped here.}

\section*{Symbolic weakest precondition}

Assume program with rules
- \(\mathrm{x}=3 \wedge \mathrm{y}=6 \rightarrow \mathrm{x}:=2 ; \mathrm{z}:=7\);

- \(x, y, z\) are discrete variables with range declarations
What is the weakest precondition of \(\eta\) for those states before the transitions?

\section*{Symbolic weakest precondition}

Assume program with rules
- r: \(x=3 \wedge y=6 \rightarrow x:=2 ; z:=7\);


What is the weakest precondition of \(\eta\) for those states before the transitions ?
\[
\operatorname{pre}(r, \eta) \stackrel{\text { def }}{=} x=3 \wedge y=6 \wedge \exists x \exists z(x=2 \wedge z=7 \wedge \eta)
\]

\section*{Symbolic safety analysis}

Assume program with rules \(r_{1}, r_{2}, \ldots, r_{n}\)
What charcterizes all states that can reach \(\neg \boldsymbol{\eta}\) ?


\section*{Symbolic liveness analysis}

Assume program with rules \(r_{1}, r_{2}, \ldots, r_{n}\)
What is the charcterization of all states that may not reach \(\eta\) ?
gfp ( \(\varphi\) ) \{
\(\varphi^{\prime}\) := false;
while \(\left(\varphi \neq \varphi^{\prime}\right)\) \{
\(\varphi^{\prime}:=\varphi\); \(\varphi:=\varphi \wedge \neg \vee_{i=n} \operatorname{pred}\left(\mathrm{r}_{\mathrm{i}}, \varphi\right) ;\)
\}
return \((\varphi)\);
\}

CTL
- symbolic model-checking with BDD
- System states are described with binary variables.
\(\underline{n}\) binary variables \(\rightarrow \underline{\mathbf{2}^{n}}\) states
\[
x_{1}, x_{2}, \ldots . . ., x_{n}
\]
- we can use a BDD to describe legal states.
a Boolean function with \(n\) binary variables
\[
\operatorname{state}\left(x_{1}, x_{2}, \ldots . . ., x_{n}\right)
\]

\section*{CTL}
- symbolic model-checking with BDD

\section*{Example:}
\(\begin{array}{lll}X_{1} & X_{2} & x_{3}\end{array}\)

\[
\begin{array}{rll}
\operatorname{state}\left(x_{1}, x_{2}, x_{3}\right)= & \left(x_{1} \wedge \neg x_{2} \wedge x_{3}\right) \\
& \vee & \left(\neg x_{1} \wedge \neg x_{2} \wedge x_{3}\right) \\
& \vee & \left(\neg x_{1} \wedge x_{2} \wedge \neg x_{3}\right)
\end{array}
\]

\section*{CTL}
- symbolic model-checking with BDD
- Transition is a relation between 2 states.
- Thus a relation between \(2 n\) binary variables. a Boolean function with \(2 n\) binary variables transition \(\left(x_{1}, x_{2}, \ldots . . ., x_{n}, y_{1}, y_{2}, \ldots \ldots ., y_{n}\right)\)

\section*{CTL}
- symbolic model-checking with BDD

\section*{Example:}
\(\begin{array}{llllll}x_{1} & x_{2} & x_{3} & y_{1} & y_{2} & y_{3}\end{array}\)

\(\operatorname{transition}\left(x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}\right)=\)
\[
\begin{array}{ll} 
& \left(x_{1} \wedge \neg x_{2} \wedge x_{3} \wedge \neg y_{1} \wedge \neg y_{2} \wedge y_{3}\right) \\
\vee & \left(\neg x_{1} \wedge \neg x_{2} \wedge x_{3} \wedge \neg y_{1} \wedge y_{2} \wedge \neg y_{3}\right) \\
\vee & \left(\neg x_{1} \wedge x_{2} \wedge \neg x_{3} \wedge \neg y_{1} \wedge \neg y_{2} \wedge y_{3}\right)
\end{array}
\]

\section*{CTL}
- symbolic model-checking with BDD
- the reachability relation is also among \(2 n\) binary variables.
- We can use a BDD of \(2 n\) binary variables to describe the reachability relation
a Boolean funciton of \(2 n\) bianry variables
\[
\operatorname{reach}\left(x_{1}, x_{2}, \ldots \ldots, x_{n}, y_{1}, y_{2}, \ldots \ldots, y_{n}\right)
\]

\section*{\(x_{1}, x_{2}, \ldots \ldots, x_{n}\)}

\section*{CTL}
- symbolic model-checking with BDD


\section*{CTL}
- symbolic model-checking with BDD

\section*{Safety analysis} with the BDD for reach ( \(x_{1}, x_{2}, \ldots \ldots, x_{n}, y_{1}, y_{2}, \ldots \ldots, y_{n}\) ):

Given initial condition \(\mathrm{I}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \ldots, \mathrm{x}_{\mathrm{n}}\right)\) as a BDD and safety conditionn \(\left(y_{1}, y_{2}, \ldots \ldots, y_{n}\right)\) as another BDD, the system is risky if and only if \(l_{\wedge} \eta_{\wedge}\) reach \(\left(x_{1}, x_{2}, \ldots \ldots, x_{n}, y_{1}, y_{2}, \ldots \ldots, y_{n}\right)\) is not false.
- Note true and false both have canonical representations in BDD.
- symbolic model-checking with

BDD
Reachability analysis with the BDD for reach \(\left(x_{1}, x_{2}, \ldots \ldots, x_{n}, y_{1}, y_{2}, \ldots . . ., y_{n}\right)\) :

Given initial condition \(\mathrm{I}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \ldots, \mathrm{x}_{\mathrm{n}}\right)\) as a BDD and goal conditionn \(\left(y_{1}, y_{2}, \ldots \ldots, y_{n}\right)\) as another BDD, the goal is reachable if and only if
\(l \wedge \eta \wedge\) reach \(\left(x_{1}, x_{2}, \ldots \ldots, x_{n}, y_{1}, y_{2}, \ldots \ldots, y_{n}\right)\) is not false.
- Note true and false both have canonical representations in BDD.

\section*{CTL}
- symbolic model-checking with BDD

Given the BDD of transition \(T\left(x_{1}, x_{2}, \ldots . ., x_{n}, y_{1}, y_{2}, \ldots . ., y_{n}\right)\), construct the BDD of reach \(\left(x_{1}, x_{2}, \ldots . . ., x_{n}, y_{1}, y_{2}, \ldots . . ., y_{n}\right)\)
- \(B_{0}:=\operatorname{state}\left(x_{1}, x_{2}, \ldots \ldots, x_{n}\right) \wedge T\left(x_{1}, x_{2}, \ldots \ldots, x_{n}, y_{1}, y_{2}, \ldots . ., y_{n}\right)\)
- For \(k:=1\) to ....
\[
\begin{aligned}
& B_{k}\left(x_{1}, x_{2}, \ldots ., x_{n}, y_{1}, y_{2}, \ldots \ldots, y_{n}\right) \\
& :=B_{k-1}\left(x_{1}, x_{2}, \ldots ., x_{n}, y_{1}, y_{2}, \ldots \ldots, y_{n}\right) \\
& \quad \vee \exists z_{1} \ldots . . \exists z_{n}\left(B_{k-1}\left(x_{1}, x_{2}, \ldots ., x_{n}, z_{1}, z_{2}, \ldots ., z_{n}\right)\right. \\
& \left.\quad \wedge B_{k-1}\left(z_{1}, z_{2}, \ldots ., z_{n}, y_{1}, y_{2}, \ldots ., y_{n}\right)\right)
\end{aligned}
\]
until \(B_{k}=B_{k-1}\)
\(B_{k}\left(x_{1}, \ldots . ., x_{n}, y_{1}, \ldots . ., y_{n}\right)\)
iff the path between the two states is shorter than 2

\section*{CTL}
- symbolic model-checking with BDD

For the presentation of the algorithm, we define \(\operatorname{path}_{\psi}\left(x_{1}, x_{2}, \ldots \ldots, x_{n}, y_{1}, y_{2}, \ldots \ldots, y_{n}\right)\) instead of reach \(\left(x_{1}, x_{2}, \ldots \ldots, x_{n}, y_{1}, y_{2}, \ldots . ., y_{n}\right)\)

there exists a path from state \(\left(x_{1}, x_{2}, \ldots \ldots, x_{n}\right)\) to state \(\left(y_{1}, y_{2}, \ldots \ldots, y_{n}\right)\) along which all states, except the destination, satisfy \(\psi\).

\section*{CTL}
- symbolic model-checking with BDD
- Given a model M and a CTL formula \(\varphi\)
- the subformulas of \(\varphi: \varphi_{1} \varphi_{2} \ldots \varphi_{n}\) in ascending order of sizes

For \(\boldsymbol{i}:=\mathbf{1}\) to \(\boldsymbol{n}\), do
if \(\varphi_{i}=x_{k}, B\left(\varphi_{i}\right):=B\left(x_{k}\right) \wedge \operatorname{state}\left(x_{1}, x_{2}, \ldots \ldots, x_{n}\right)\)
if \(\varphi_{i}=\psi_{1} \vee \psi_{2}, B(\varphi):=B\left(\varphi_{1}\right) \vee B\left(\varphi_{2}\right)\)
if \(\varphi_{i}=\neg \psi, B\left(\varphi_{i}\right):=\neg B(\psi)\)
if \(\varphi_{i}=\exists \theta U \psi\),
\(B\left(\varphi_{i}\right):=B\left(\exists z_{1} \ldots . . \exists z_{n}\right.\) path \(\left._{\theta}\left(x_{1}, \ldots \ldots, x_{n}, z_{1}, \ldots ., z_{n}\right) \wedge \psi\left(z_{1}, \ldots \ldots, z_{n}\right)\right)\)
if \(\varphi_{i}=\exists \square \psi\),
\(B\left(\varphi_{\mathrm{i}}\right):=B\left(\exists z_{1} \ldots . . \exists z_{n} \operatorname{path}_{\psi}\left(x_{1}, \ldots \ldots, x_{n}, z_{1}, \ldots \ldots, z_{n}\right)\right.\)
\[
:=B\left(\exists z_{1} \ldots \operatorname{path}_{\psi}\left(z_{1}, \ldots ., z_{n}, z_{1}, \ldots ., z_{n}\right)\right)
\]

Path \(_{\psi}\left(x_{1}, \ldots \ldots, x_{n}, z_{1}, \ldots ., z_{n}\right)\)
\(\wedge\) path \(_{\psi}\left(z_{1}, \ldots \ldots, z_{n}, W_{1}, \ldots ., W_{n}\right)\)
2010/9/29
\[
\begin{aligned}
& \wedge \operatorname{path}_{\psi}\left(z_{1}, \ldots ., Z_{n}, W_{1}, \ldots ., W_{n}\right) \\
& \left.\wedge \wedge \wedge_{1 \leq i \leq n}\left(Z_{i}=0 \wedge W_{i}=0 \vee Z_{i}=1 \wedge W_{i}=1\right)\right)
\end{aligned}
\]

\section*{CTL}
- symbolic model-checking with BDD

Construct the BDD of \(\exists z_{1} \ldots . . \exists z_{n} B\left(z_{1}, \ldots . ., z_{n}\right)\) ?
- \(\exists z_{n} B\left(z_{1}, \ldots . ., z_{n}\right)=B\left(z_{1}, \ldots . ., z_{n-1}, 0\right) \vee B\left(z_{1}, \ldots \ldots, z_{n-1}, 1\right)\)
\[
=\left(z_{n}=0 \wedge B\left(z_{1}, \ldots . ., z_{n-1}, z_{n}\right)\right) \vee\left(z_{n}=1 \wedge B\left(z_{1}, \ldots . ., z_{n-1}, z_{n}\right)\right)
\]
- For \(\boldsymbol{i}:=\boldsymbol{n - 1}\) to \(\mathbf{1}\), do
\[
\begin{aligned}
& \exists z_{i} \ldots . \exists z_{n} B\left(z_{1}, \ldots \ldots, z_{n}\right) \\
& \quad=\left(\exists z_{i+1} \ldots . . \exists z_{n} B\left(z_{1}, \ldots \ldots, z_{i-1}, 0, z_{i+1}, \ldots \ldots, z_{n}\right)\right) \\
& \quad \vee\left(\exists z_{i+1} \ldots . . \exists z_{n} B\left(z_{1}, \ldots \ldots, z_{i-1}, 1, z_{i+1}, \ldots \ldots, z_{n}\right)\right)
\end{aligned}
\]

\section*{CTL}
- symbolic model-checking with BDD
```

Transition BDD: T ($\mathrm{x}_{1}, \ldots \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{y}_{1}, \ldots . ., \mathrm{y}_{\mathrm{n}}$) and CTL formula φ
the subformula of $\varphi: \varphi_{1} \varphi_{2} \ldots \varphi_{n}$ in ascending order of sizes
For $i:=1$ to n, do
if $\varphi_{\mathrm{i}}=\mathrm{x}_{\mathrm{k}}, \mathrm{B}\left(\varphi_{\mathrm{i}}\right):=\mathrm{B}\left(\mathrm{x}_{\mathrm{k}}\right) \wedge \operatorname{state}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \ldots . . \mathrm{x}_{\mathrm{n}}\right)$
if $\varphi_{i}=\psi_{1} \vee \psi_{2}, \mathrm{~B}\left(\varphi_{i}\right):=\mathrm{B}\left(\psi_{1}\right) \vee \mathrm{B}\left(\psi_{2}\right)$
if $\varphi_{i}=\neg \psi_{1}, \mathrm{~B}\left(\varphi_{i}\right):=\neg \mathrm{B}\left(\psi_{1}\right) \wedge \operatorname{state}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \ldots, \mathrm{x}_{\mathrm{n}}\right)$
if $\varphi_{i}=\exists O \psi_{1}, B\left(\varphi_{i}\right):=\exists y_{1} \ldots . . \exists y_{n}\left(T\left(x_{1}, \ldots \ldots, x_{n}, y_{1}, \ldots . ., y_{n}\right)\right.$
^rename $\left.\left(B\left(\psi_{1}\right), x_{1} \rightarrow y_{1}, \ldots, x_{n} \rightarrow y_{n}\right)\right)$
if $\varphi_{\mathrm{i}}=\exists \mu_{1} \mathrm{U} \psi_{2}$,
$B\left(\varphi_{i}\right):=\operatorname{Ifp} Z .\left(B\left(\psi_{2}\right) \vee \exists y_{1} \ldots . . \exists y_{n}\left(T\left(x_{1}, \ldots \ldots, x_{n}, y_{1}, \ldots . ., y_{n}\right)\right.\right.$
\wedge B $\left(\psi_{1}\right)$
\wedge rename $\left(Z, x_{1} \rightarrow y_{1}, \ldots, x_{n} \rightarrow y_{n}\right)$
)
)
if $\varphi_{i}=\exists \square \psi_{1}$,
$B\left(\varphi_{i}\right):=\operatorname{gfp} Z .\left(B\left(\psi_{1}\right) \wedge \exists y_{1} \ldots . . \exists y_{n}\left(T\left(x_{1}, \ldots \ldots, x_{n}, y_{1}, \ldots . ., y_{n}\right)\right.\right.$
^rename $\left(Z, x_{1} \rightarrow y_{1}, \ldots \ldots, x_{n} \rightarrow y_{n}\right)$
)
)

```

Implementation of \(\exists z_{i} B\left(z_{1}, \ldots \ldots, z_{n}\right)\)


\section*{Bisimulation Framework}


\section*{Bisimulation-checking}
- \(K=\left(S, S_{0}, R, A P, L\right)\)
\[
\mathrm{K}^{\prime}=\left(\mathrm{S}^{\prime}, \mathrm{S}_{0}^{\prime}, \mathrm{R}^{\prime}, \mathrm{AP}, \mathrm{~L}^{\prime}\right)
\]
- Note K and K' use the same set of atomic propositions AP.
- \(B \in S \times S^{\prime}\) is a bisimulation relation between \(K\) and \(K^{\prime}\) iff for every \(B\left(s, s^{\prime}\right)\) :
- \(\mathrm{L}(\mathrm{s})=\mathrm{L}^{\prime}\left(\mathrm{s}^{\prime}\right)\) (BSIM 1)
- If \(R\left(s, s_{1}\right)\), then there exists \(s_{1}{ }^{\prime}\) such that \(R^{\prime}\left(s^{\prime}, s_{1}{ }^{\prime}\right)\) and \(B\left(s_{1}, s_{1}{ }^{\prime}\right)\). (BISIM 2)
- If \(R\left(s^{\prime}, s_{2}{ }^{\prime}\right)\), then there exists \(s_{2}\) such that \(R\left(s, s_{2}\right)\) and \(\mathrm{B}\left(\mathrm{s}_{2}, \mathrm{~s}_{2}{ }^{\prime}\right)\). (BISIM 3)

\section*{Bisimulations}


\section*{Bisimulations}


\section*{Bisimulations}


\section*{Bisimulations}


\section*{Examples}


\section*{Examples}


Unwinding preserves bisimulation

\section*{Examples}


\section*{Examples}


Examples


\section*{Examples}


2010/9/29

Examples


\section*{Examples}


2010/9/29
179

Examples


\section*{Bisimulations}
- \(\mathrm{K}=\left(\mathrm{S}, \mathrm{S}_{0}, \mathrm{R}, \mathrm{AP}, \mathrm{L}\right)\)
- \(K^{\prime}=\left(S^{\prime}, S_{0}{ }^{\prime}, R^{\prime}, A P, L^{\prime}\right)\)
- K and \(\mathrm{K}^{\prime}\) are bisimilar (bisimulation equivalent) iff there exists a bisimulation relation B \(\mu \mathrm{S}\) £ S' between K and K ' such that:
- For each \(\mathrm{s}_{0}\) in \(\mathrm{S}_{0}\) there exists \(\mathrm{s}_{0}\) ' in \(\mathrm{S}_{0}\) ' such that \(B\left(\mathrm{~s}_{0}, \mathrm{~s}_{0}{ }^{\prime}\right)\).
- For each \(\mathrm{s}_{0}\) ' in \(\mathrm{S}_{0}{ }^{\prime}\) there exists \(\mathrm{s}_{0}\) in \(\mathrm{S}_{0}\) such that \(B\left(s_{0}, s_{0}{ }^{\prime}\right)\).

\section*{The Preservation Property.}
- \(K=\left(S, S_{0}, R, A P, L\right)\)
\(K^{\prime}=\left(S^{\prime}, S_{0}{ }^{\prime}, R^{\prime}, A P, L^{\prime}\right)\)
- B \(\mu\) S £ S', a bisimulation.
- Suppose B(s, s').
- FACT: For any CTL formula \(\psi\) (over AP), K, s \({ }^{2} \psi\) iff K', S' \({ }^{2} \psi\).
- If \(\mathrm{K}^{\prime}\) is smaller than K this is worth something.

\section*{Simulation Framework}


\section*{Simulation-checking}
- \(\mathrm{K}=\left(\mathrm{S}, \mathrm{S}_{0}, \mathrm{R}, \mathrm{AP}, \mathrm{L}\right)\)
\(K^{\prime}=\left(S^{\prime}, S_{0}{ }^{\prime}, R^{\prime}, A P, L^{\prime}\right)\)
- Note K and \(\mathrm{K}^{\prime}\) use the same set of atomic propositions AP.
- \(\mathrm{B} \mu \mathrm{S} £ \mathrm{~S}^{\prime}\) is a simulation relation between K and \(\mathrm{K}^{\prime}\) iff for every \(\mathrm{B}\left(\mathrm{s}, \mathrm{s}^{\prime}\right)\) :
\(\square \mathrm{L}(\mathrm{s})=\mathrm{L}^{\prime}\left(\mathrm{s}^{\prime}\right)(\mathrm{BSIM} 1)\)
- If \(R\left(s, s_{1}\right)\), then there exists \(s_{1}\) ' such that \(R^{\prime}\left(s^{\prime}\right.\), \(\mathrm{s}_{1}{ }^{\prime}\) ) and \(\mathrm{B}\left(\mathrm{s}_{1}, \mathrm{~s}_{1}{ }^{\prime}\right)\). (BISIM 2)

\section*{Simulations}
- \(\mathrm{K}=\left(\mathrm{S}, \mathrm{S}_{0}, \mathrm{R}, \mathrm{AP}, \mathrm{L}\right)\)
- \(K^{\prime}=\left(S^{\prime}, S_{0}{ }^{\prime}, R^{\prime}, A P, L^{\prime}\right)\)
- K is simulated by (implements or refines) \(\mathrm{K}^{\prime}\) iff there exists a simulation relation B \(\mu \mathrm{S} £ \mathrm{~S}^{\prime}\) between K and \(\mathrm{K}^{\prime}\) such that for each \(\mathrm{s}_{0}\) in \(\mathrm{S}_{0}\) there exists \(\mathrm{s}_{0}{ }^{\prime}\) in \(\mathrm{S}_{0}{ }^{\prime}\) such that \(\mathrm{B}\left(\mathrm{s}_{0}, \mathrm{~s}_{0}{ }^{\prime}\right)\).

\section*{Simulation Quotients}
- \(\mathrm{K}=\left(\mathrm{S}, \mathrm{S}_{0}, \mathrm{R}, \mathrm{AP}, \mathrm{L}\right)\)
- There is a maximal simulation \(\mathrm{B} \mu \mathrm{S} £ \mathrm{~S}\).
- Let R be this bisimulation.
- \([s]=\left\{s^{\prime}\right.\) j s R s' \(\}\).
- R can be computed "easily".
- \(\mathrm{K}^{\prime}=\mathrm{K} / \mathrm{R}\) is the bisimulation quotient of K .

\section*{Bisimulation Quotient}
- \(\mathrm{K}=\left(\mathrm{S}, \mathrm{S}_{0}, \mathrm{R}, \mathrm{AP}, \mathrm{L}\right)\)
- \([\mathrm{s}]=\left\{\mathrm{s}^{\prime} \mathrm{j}\right.\) sR \(\left.\mathrm{s}^{\prime}\right\}\).
- \(K^{\prime}=K / R=\left(S^{\prime}, S^{\prime}{ }_{0}, R^{\prime}, A P, L^{\prime}\right)\).
- \(S^{\prime}=\{[s]\) j s \(2 S\}\)
\(\square S_{0}^{\prime}=\left\{\left[s_{0}\right] j s_{0} 2 S_{0}\right\}\)
- \(R^{\prime}=\left\{\left([s],\left[s^{\prime}\right]\right) j R\left(s_{1}, s_{1}{ }^{\prime}\right)\right.\) for some \(s_{1} 2[s]\) and \(\left.s_{1}{ }^{\prime} 2\left[s^{\prime}\right]\right\}\)
\(\square L^{\prime}([s])=L(s)\).

Examples


\section*{Examples}


2010/9/29

Examples


\section*{Abstractions}
- Bisimulations don't produce often large reduction.
- Try notions such as simulations, data abstractions, symmetry reductions, partial order reductions etc.
- Not all properties may be preserved.
- They may not be preserved in a strong sense.

\section*{Graph Simulation}

Definition Two edge-labeled graphs \(\mathrm{G}_{1}, \mathrm{G}_{2}\)
A simulation is a relation \(R\) between nodes:
- if \(\left(x_{1}, x_{2}\right) \in R\), and \(\left(x_{1}, a, y_{1}\right) \in G_{1}\), then exists \(\left(x_{2}, a, y_{2}\right) \in G_{2}\) (same label) s.t. \(\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right) \in \mathrm{R}\)


2010/9/Dote: if we insist that R be a function \(\rightarrow\) graph homeomorphism 192

\section*{Graph Bisimulation}

Definition Two edge-labeled graphs G1, G2
A bisimulation is a relation \(R\) between nodes s.t. both \(R\) and \(R^{-1}\) are simulations

\section*{Set Semantics for}

\section*{Semistructured Data}

Definition Two rooted graphs \(\mathrm{G}_{1}, \mathrm{G}_{2}\) are equal if there exists a bisimulation \(R\) from \(G_{1}\) to \(G_{2}\) such that \(\left(\operatorname{root}\left(\mathrm{G}_{1}\right), \operatorname{root}\left(\mathrm{G}_{2}\right)\right) \in \mathrm{R}\)
- Notation: \(G_{1} \approx G_{2}\)
- For trees, this is precisely our earlier definition

\section*{Examples of Bisimilar Graphs}


\section*{Examples of non-Bisimilar Graphs}

- This is a simulation but not a bisimulation
- Why?
- Notice: \(G_{1}, G_{2}\) have the same sets of paths

\section*{Examples of Simulation}
- Simulation acts like "subset"
\(\{a, b\} \subseteq\{a, b, c\}\)
\(\{\mathrm{a}, \mathrm{b}:\{\mathrm{c}\}\} \subseteq\{\mathrm{d}, \mathrm{a}:\{\mathrm{e}, \mathrm{f}\}, \mathrm{b}:\{\mathrm{c}, \mathrm{g}\}\}\)

- Question:
- if \(\mathrm{DB}_{1} \subseteq \mathrm{DB}_{2}\) and \(\mathrm{DB}_{2} \subseteq \mathrm{DB}_{1}\) then \(\mathrm{DB}_{1} \approx \mathrm{DB}_{2}\) ?

Answer
if \(\mathrm{DB}_{1} \subseteq \mathrm{DB}_{2}\) and \(\mathrm{DB}_{2} \subseteq \mathrm{DB}_{1}\) then \(\mathrm{DB}_{1} \approx \mathrm{DB}_{2}\) ?

No. Here is a counter example:

\(\mathrm{DB}_{1} \subseteq \mathrm{DB}_{2}\) and \(\mathrm{DB}_{2} \subseteq \mathrm{DB}_{1}\) but \(\mathrm{NOT} \mathrm{DB}_{1} \approx \mathrm{DB}_{2}\)

\section*{Path Simulation}

Intuition: every path in concrete system is simulated by a path in abstract system


A concrete path \(s_{1}, s_{2}, \ldots\) is simulated by an abstract path \(a_{1}, a_{2}, \ldots\) if \(\operatorname{Sim}\left(s_{i}, a_{i}\right)\) for all \(i\).

\section*{Computation Simulation}

Intuition: every path in concrete system is simulated by a path in abstract system


Infeasible path due to
over-approximation.

\footnotetext{
There may be extra paths (termed "infeasible" paths) that are not present in the concrete system. These are due to the approximate nature of our computation with abstract tokens. Spergificigelly, they arise from the over-approximations in test branching discussed previouslyo
}

\section*{Reflection of LTL Properties}

If there is a violating path in the concrete system, then there is a violating path in the abstract system, since the simulation property guarantees that each concrete trace has a corresponding trace in the abstract system. Technically, this means that properties are reflected by abstraction.


Infeasible path due to
over-approximation
If there is a violating path in the abstract system, then there is not necessarily a violating path in the concrete system, since the violating abstract trace may be an infeasible path dye to, over-approximation. Technically, this means that properties are not preserved by \({ }_{201}\) abstraction

\section*{Facts About a (Bi)Simulation}
- The empty set is always a (bi)simulation
- If \(R, R\) ' are (bi)simulations, so is \(R U R\) '
- Hence, there always exists a maximal (bi)simulation:
- Checking if \(\mathrm{DB}_{1}=\mathrm{DB}_{2}\) : compute the maximal bisimulation R , then test \(\left(\operatorname{root}\left(\mathrm{DB}_{1}\right)\right.\),root \(\left(\mathrm{DB}_{2}\right)\) ) in \(R\)

\section*{Computing a (Bi)Simulation}
- Computing the maximal (bi)simulation:
- Start with \(R=\operatorname{nodes}\left(G_{1}\right) \times \operatorname{nodes}\left(G_{2}\right)\)
- While exists \(\left(x_{1}, x_{2}\right) \in R\) that violates the definition, remove ( \(x_{1}, x_{2}\) ) from \(R\)
- This runs in polynomial time ! Better:
- \(O((m+n) \log (m+n))\) for bisimulation
- \(O(m \mathrm{n})\) for simulation
- Compare to finding a graph homeomorphism!
```


[^0]: $\underset{2010929}{x \rightarrow p}$

