Temporal Logics

& Model Checking
Formal Methods

Lecture 4
Farn Wang
Dept. of Electrical Engineering
National Taiwan University

2010/9/29

| History of Temporal Logic

= Designed by philosophers to study the way that time
Is used in natural language arguments

= Reviewed by Prior [PR57, PR67]

= Brought to Computer Science by Pnueli [PN77]

= Has proved to be useful for specification of
concurrent systems

2010/9/29

‘ Amir Pnueli
1941

= Professor, Weizmann
Institute

= Professor, NYU
= Turing Award, 1996

2010/9/29 3

‘ Kripke structure

A=(S, Sy R, L)
= S
o a set of all states of the system
= S5,cS
o aset of initial states
= Rc SxS
o a transition relation between states
= L:R— 2P

o a function that associates each state with set of
propositions true in that state

2010/9/29 4

Kripke Model

Set of states S
0 {0:,9,,03}

Set of initial states S, qi
o {q.} °
Set of atomic

propositions AP
2 {a,b}
q2

2010/9/29

Example of Kripke Structure

Suppose there is a program

initially x=1 and y=1,
while true do
X:=(x+y) mod 2;
endwhile

where x and y range over D={0,1}

2010/9/29

93

Example of Kripke Structure
S=DxD
Se={(1,1)}
R={((1,1),(0,1)).((0,1),(1,1)),((1,0),(1,0)).((0,0),(0,0))}
L((1,1))={x=1,y=1},L((0,1))={x=0,y=1},
L((1,0))={x=1,y=0},L((0,0))={x=0,y=0}

2010/9/29 7

Fairness

Interested in the correctness along fair
computation paths

Weak (Buchi) fairness:

o “‘an action can not be enabled forever without
being taken”

o necessary for modeling asynchronous models
Strong (Streett) fairnness:

o “an action can not be enabled infinitely often
without being taken”

o necessary for modeling synchronous
interaction

2010/9/29 8

Framework

Temporal Logic is a class of Modal Logic

Allows gqualitatively describing and reasoning about
changes of the truth values over time

Usually implicit time representation

Provides variety of temporal operators (sometimes,
always)

Different views of time (branching vs. linear, discrete
VS. continuous, past vs. future, etc.)

2010/9/29 9

Outline

Linear

o LPTL (Linear time Propositional Temporal
Logics),

o also called PTL, LTL

Branching

o CTL (Computation Tree Logics)

a CTL* (the full branching temporal logics)

2010/9/29 10

Temporal Logics : Catalog

2010/9/29 1

Temporal Logics

Linear

o LPTL (Linear time Propositional Temporal
Logics)

Branching

o CTL (Computation Tree Logics)
o CTL* (the full branching temporal logics)

2010/9/29 12

LPTL (PTL, LTL)

Linear-Time Propositional Temporal

L8§r11\clentional notation :
propositions: p, q, r, ...
sets: A, B, C,D, ...
states : s
state sequences : S
formulas : @,y
Set of natural number : N={0, 1, 2, 3, ...}
Set of real number : R

2010/9/29 13

LPTL

Given P : a set of propositions,

a Linear-time structure : state sequence
S=5751S55S3S,... Sirer---

S, is a function of P where s, :P— {true,false}

ors, €2°P

example: P={a,b}

{aHa,bHaHaKb}...

2010/9/29 14

LPTL

- syntax

g =true|p |-y |p,vy, | Oy |y, Uy,

abbreviation
false = —true
Y, AP, = = (W) (=)
Yoy, = (Y)vy,
Oy = true Uy
Dlp = ﬂ<>ﬂlp
2010/9/29 15
LPTL
- syntax
Exam. Symbol
in CMU
Op Xp p is true on next state
pU q pU g From now on, p is always
true until q is true
op Fp From now on, there will be a

state where p is eventually
(sometimes) true

Clp Gp From now on, p is always true

2010/9/29 16

LPTL
- syntax
Op Xp p IS true on next state

Q :o :Q :Q Peocccans +

? . don’t care

2010/9/29 17

Uq plq From now on, p is always
true until q is true

.......

\ 4
S
\ 4
S
A\ 4
A\ 4
.;

.

R
:

v
v
.
.
.
v
.
.
.

...

\ 4
\ 4
A\ 4

2010/9/29 18

<op Fp From now on, there will be a
state where p is eventually
(sometimes) true

2010/9/29 19

LPTL

- syntax

Two operator for Fairness
O*p = OCp ; p will happen infinitely
many times
infinitely often

O°p = <OOp 5 pwill be always true
after some time in the
future
almost everywhere

2010/9/29 20

10

LPTL

- semantics
suffix path : S=57515,5354S5 «veeve..
SO=15,5,5,535,45¢
SM=15,5,555,5cSg +........
S@)=15,5;5455Sg +........
S®)=15,5,5:5g
SM="8, S, 1 S0 Skrg cveeenne
—— .
LPTL
- semantics

Given a state sequence
S=S35S15,S3S,... Syueree-
We define S Fy (S satisfies g) inductively as :
= SFtrue
SEp < sy(p)=true, or equivalently p € s,
SF-p < SEyis false
SFy,vy, & SEFuy,or SFy,
SEQyY < SOEy
S E y,Uy, < 3k>0(SW EFy, AVO<j<k(SO Fy,))

2010/9/29

22

11

'LPTL

- semantics, remarks (1/2)

Basic assumption :
= Isomorphism: (N > <)

o discrete ; suitable for digital computer
o Initial point (0) ; computer needs reboot
o Infinite future ; finite and infinite

= Every elementin N is a state
o Every state only have one successor

2010/9/29 23

'LPTL
- semantics, remarks (2/2)

Example: When memory-fault, generate interrupt
Basic propositions: memf, intr

Vi20(memf(i) — 3j, intr(j))

Vi20(memf(i) — 3j(j<i A intr(j)

Vi>0(memf(i) — 3Jj(j>i A intr(j))

2010/9/29 24

12

LPTL

- examples ()(1/6)
Po:(Po:=0 | Po:=PoVP1VP,)
P:(p1:=0|py:=poVvPy)
Po:(p2:=0 [p2:=p1VvPy)

Program P,
variable : P,

Program P, Prpgram Py
variable : Py variable : P
L 7

2010/9/29 27

LPTL
- examples (I)(2/6)

Po: when (true) may p,=0;
when (true) may py,=pyV P;1 Vv Py;
P,: when (true) may p,=0;
when (true) may p; =pyV py;

Program P,
variable : P,

Program P, Prpgram 2
variable : Py variable : P

P,: when (true) may p,=0;
when-(true) may p, =p; VP

2010/9/29 28

13

LPTL P ———

when (true) may p,= Po VPV P2

- eXampleSa) (3 /6) P,: when (true) may p,=0

whengfue) may p, = ponl
D((true > O_lpo [*PO*/ on&-\ (truz))?;:);/zzz P1V P2
V((PovP1VP,) > Opg) X
v true eQﬁpll*l%D*\
v (Povpy) 3 By P14
v true 9‘@—402/ P2*/ h@
V @m\/pz) 2> Opz) /*eZ*ils
g\) W

2010/9/29 2

LPTL

N\
- examples (I)(4/6) ®°&
O((O=pg I*P0O*/ (\()

V((PovP1vP2) A OPo) gmc/
v O=p PP

% ((povpl) AQY,) FP1*/

vV Q—. .
X é@i‘vpz) A op) /*Pg*r th¢
%\) W Program P, Program P,

Program P,
variable : P,
7 I

variable : Py variable : P
J

2010/9/29 30

14

'LPTL

- examples ()(5/6)

U (O=poA(p1 > Opy) AP, > Opy))
vV (((PevP1VP,) € Opg) AP €> Opy) AP, €¢> Op,))

Po: when (true) may p,=0;

when (true) may pg=po Vv p; Vv P2
P,: when (true) may p,=0;

when (true) may p;=pyV ps;

vV (O=p1 AP, €> Opy) A(pe€> Opy))

v (((PevPy1) € Opy) AP, > Op,) AP €> Opy))

vV (O=poA(p € Opg) A(pee> Opy))

vV (((Prvp2) € Op,) APy €> Opy) A(Pee> Opy)),

)

Asynchronous system!
Interleaving semantics

P,: when (true) may p,=0;
when (true) may p,=p; v pa;

Program P,
variable : P,

Program P,

variable : P

Program P,
variable : P

p <

2010/9/29

31

'LPTL

- examples (I)(6/6)

L(((Po«> OPo)v O=pg Vv ((PovP1VP2) <> Opy))
A ((pr e Opy) vO=P1A ((PovP1) © OPpy))
A (P2 Opy) v O=p,v ((p1vp2) « Opy))

)

Synchronous

Po: when (true) may p,=0;

when (true) may po=py Vv P1V Py
P,: when (true) may p,=0;

when (true) may p,;=p,V ps;
P,: when (true) may p,=0;

when (true) may p,=p; v p,;

Program P,
variable : P,

Program P,

variable : Py

Program P,
variable : P

p <

2010/9/29

32

15

12009/12/23 stopped here.

2010/9/29

33

'LPTL
- examples (II)

Process;, 1<i <m

Also describe the

mutual exclusion
condition CPUAvailable

2010/9/29

34

16

'LPTL
- examples (II)

A wait,
/\/\Ezﬂn I:I(rllmi<—> Aicjm —TUN;)
AN1<<m

(wait«> (Owait; vOready;))
v (ready;<> O ready,)
v ((readyian; ggn= run)<> Orun))
v (run,«> O wait;)

)

CPUAVvailable

2010/9/29 35

'LPTL
- examples (II)

A 2-bit counter operates at bit-level.

by, by

2010/9/29 36

17

'LPTL
- examples (IV)

Train-approaching
detected

Gate-controller

A: train far-Away
Train approaching

detected

B: Before train-crossing

C: train at Crossing

P: train just Passed

Train-passed
detected

2010/9/29 37

LPTL
- examples (V)
two processes :
P,: high priority; P,: low priority

Py

o

2010/9/29

38

18

'LPTL
- examples (VI)

a digital watch :

AP={time,chr,freeze,set,run,dummy,a,b}

= exactly one a °
of time, chr,
freeze, set, ,
run, and
dummy can be
true at any
moment.

2010/9/29 39

'LPTL

- workout

Please construct the LPTL formulas for the
examples in example I1I-VI.

2010/9/29 40

19

LPTL
- extensions (1/3)

until vs. unless
strict future

weakQ vs. strongO
future vs. past

O o N Op
I o CIp
(@ L o S O—p
PU *q e pU-q (pS q)
LPTL

- extensions (2/3)

decidable extension
Vi0(memf(i) — 3 j(j>i A j<i+4 A intr(j))

undecidable extensions:
polynomial operations on variables.
Vi>0(memf(i) — 3 j(j>i+i A intr(j))

2"d order logics:
vi>0(memf(i) — Ff(f(i)>i*i A intr(f(i)))

2010/9/29 42

20

LPTL
- extensions (3/3)

First-Order LTL

o new elements

variables, universe, quantifications
functions, predicates,

o interpreted vs. uninterpreted
o multi-sorted

Ostroff's RTTL
VxO((p AX=T) — Iy (g AY=T A y—x<5))

2010/9/29

Branching Temporal Logics

Basic assumption of tree-like structure

*Every node is a function
of P—{true,false}

«Every state may have many
successors

2010/9/29

43

44

21

Branching Temporal Logics

Basic assumption of tree-like structure

*Every path is isomorphic as N
«Correspond to a state sequence

2010/9/29

Branching Temporal Logic

It can accommodate infinite and dense state
successors

In CTL and CTLY, it can’t tell

o Finite and infinite
Is there infinite transitions ¢

o Dense and discrete
Is there countable () transitions ?

2010/9/29

45

46

22

Branching Temporal Logic

Get by flattening a finite state machine

. . .
2010/9/29 . : : 47
.

CTL(Computation Tree Logic)

Edmund M. Clarke
Professor, CS & ECE
Carnegie Mellon University

E. Allen Emerson
Professor, CS
The University of Texas at Austin

Chin-Laung Lei
Professor, EE
" National Taiwan University

2010/9/29 48

23

CTL(Computation Tree Logic)

- syntax

g:=true | p|—¢ | v, | 300¢ | VOO
| 3o, U, | VO, U,

abbreviation :
false = —true
P17, = ((=P)V (—92))
¢, = (=P, Ve,
EROJ0) = Jtrue Ug
AJ0) = Vtrue Ug
o E”:‘(p = —|V<>ﬁ(p
CTL
- semantics
example symbol
in CMU
A0p EXp there exists a path where p is
true on next state
3
PUG PEUG foppuon here o
rue until g iS true
vOp AXp for all path where p is true on
next state
vpl q pAU(Q from now on, for all path where

2010/9/29

p is always true until q is true

50

24

'CTL

- semantics
A0p EXp there exists a path where p
IS true on next state
20:10/9/29 : : 51
CTL
- semantics
dpU q pEUQ from now on, there is a path where p

is always true until q is true

: . .
201@/9/29 * * 52

25

'CTL

- semantics
vOp AXp for all path where p is true on
next state
2&10/9/29 : : 53
CTL
- semantics
VpU ¢ pAUQ from now on, for all path
where p is always true until g
is true

: . .
201@/9/29 * * 54

26

CTL

- semantic

Assume there are
a tree stucture M,
one state s in M, and

a CTL fomula ¢
M,sF¢@ means s in M satisfy ¢

2010/9/29

CTL

- semantics

s-path : apathin M
that starts from s

Sy -path:

s, -path:

s, -path: ﬁ

S;5-path:

2010/9/29

55

56

27

CTL

- semantics
M,s F true
MsEp < pes
M,s E - < itis false that M,s E @

M,s E @;vp, < M,skE @, or M;s E @,
M,s F 30¢p < 3 s-path=s;s; M,;s; F o)

M,;sEVO@ & V s-path=s;s;

M,s F Jdp,Up, < I s-path=s;s;

(M,sy F @, AVO<|<k(M,s; F @,))

M,s F Vo,Up, < Vs-path=s;s;

(M,sy F @, AVO<|<k(M,s; F @,))

2010/9/29

LPTL
- examples (I)(2/6)

P,: when (true) may p,=0;

when (true) may py,=pyV P;1 Vv Py;

P,: when (true) may p,=0;
when (true) may p; =pyV py;

Program P,
variable : P,

57

Program P,

variable : P

Program P,
variable : P

P,: when (true) may p,=0;
when-(true) may p, =p; VP

2010/9/29

58

28

CTL
- examples (I)

Po:(Po:=0 | Po:=PoVP1VP,)
P1:(p1:=0 [py:=poVvPy)
P,:(p,:=0 | p,:=p;VvPp,)

If Py is true, it is possible
that P, can be true Py
after the next two cycles. |var: pgs

VU (pg = 3O 3O py)

2010/9/29 59

CTL
- examples (II)

1. If there are dark clouds, it will rain.
v(dark-clouds— v <rain)

2. if a buttefly flaps its wings, the New York stock could
plunder.

vO(buttefly-flap-wings —-3<NY-stock-plunder)
3. if I win the lottery, | will be happy forever.
v LI(win-lottery — VL1 happy)

4. In an execution state, if an interrupt occurs in the next
cycle, the interrupt handler will execute at the 2nd next
cycle.

VL (exec— VO (intrpt— VO (intrpt-handler)))

2010/9/29 60

29

CTL
- examples (II)

In an execution state, if an interrupt occurs in the next
cycle, the interrupt handler will execute at the 2nd
next cycle.

VL (exec—VO(intrpt—VO(intrpt-handler)))

Some possible mistakes:
V(exec—((VO intrpt)—VOintrpt-handler))
v(exec — (VO intrpt) »>vOVQ intrpt-handler))

2010/9/29 61

CTL>
- syntax
CTL* fomula (state-fomula)
gu=true | p| =@, | @ve, |V |V
path-fomula
=@ =Wy [wovw, | Owy | w U

CTL* is set of all state-fomula!

2010/9/29 62

' CTL*
- examples (1/4)

In a fair concurrent environment, jobs will
eventually finish.

V(((OOexecute,) A(dOexecute,)) —» Ofinish)
or
V(((O=execute;) A(O®execute,)) —» <Ofinish)

2010/9/29 63

CTL*
- examples (2/4)

No matter what, infinitely many comet will hit
earth.

YOO comet-hit-earth
Or

v & comet-hit-earth
Why not CTL?

= YOV & comet-hit-earth
= YO 3 & comet-hit-earth

2010/9/29 64

31

CTL*
- Workout

= (1) YOO comet-hit-earth

= (2) vO V & comet-hit-earth
= (3) vOO 3 & comet-hit-earth
Please draw trees that tell

= (1) from (2) and (3)

= (2) from (1) and (3)

= (3) from (1) and (2)

2010/9/29 65

' CTL*
- examples (3/4)

If you never have a lover, | will marry you.
V((Oyou-have-no-lover) - <$marry-you)

Why not CTL ?

= (VO you-have-no-lover) - V & ;?%?F[«

= (VO you-have-no-lover) —» 3 & ™ ﬁ%n“ﬁf

/ST

= (30 you-have-no-lover) —» V & el

2010/9/29 66

32

CTL*
- Workout

(1)V((Oyou-have-no-lover) - &marry-you)
(2) (v you-have-no-lover) — vV < marry-you
(3) (VO you-have-no-lover) - 3 < marry-you
(4) (30 you-have-no-lover) - ¥V < marry-you
Please draw trees that tell

(1) from (2), (3), (4)

(2) from (1), (3), (4)

(3) from (1), (2), (4)

(3) from~(1),(2), (3)

2010/9/29 67

CTL*
- examples (4/4)

If | buy lottory tickets infinitely many times,
eventually | will win the lottery.

V(O buy-lottery) - Owin-lottery)
or
Vv ((©* buy-lottery) = < win-lottery)

2010/9/29 68

33

CTL*
- semantics

suffix path :
S=

S0)=

S)=

S@)=

SB)=

S@)=

SEL=

69

CTL*
- semantics
state-fomula

Q:=true | p | —@; | @ve, | FW |V
M,s E true

MSEpPp < pes

M,s E —-@ < M,s E ¢ fLfalse

M,s = @,vp, < M,sE @, 0orM,s F o,
M,sE Ju < 3ds-path=S (S E)
M,sE VYW < Vs-path=S (SF w)

2010/9/29 70

34

CTL*

- semantics
path-fomula
=@ | =y Jwovw, | Ow | w,U
If S=57515,53S) -cvvv-. 0, S FQ SM;So F @

SE -y, < SEy, hlfalse

SEwW, v, & SE W, or SE

SEOy < SOE

S E w,Uw.< 3k>0 (SW E w,AVO<j<k(SV E w,))

2010/9/29 71

Expressiveness

Given a language Z,
what model sets L can express ?
what model sets L cannot ?

model set: a set of behaviors

A formula = a set of models (behaviors)

foranye €., [¢] def M |MEg}
A language = a set of formulas.

Expressiveness: Given a model set F,
F is expressible in L iff 3@ /([@]=F)

2010/9/29 72

35

Expressiveness

Comparison in expressiveness:
Given two languages L, and L,
Definition: L, is more expressive than L, (L,<L;)

iff VoeL, ([¢] is expressible in L))

Definition: L, and L, are expressively equivalent
(LiEL,) iff (Lo<LA(L,<L,)

Definition: L, ~ L, are expressively incomparable iff
—((L<L)V(L,<Ly))

2010/9/29 73

Expressiveness

expressiveness of PLTL
o PLTL & PLTLB

o PLTL & QPLTL

o FOLLO & SOLLO

o regular languages

expressiveness of branching-time logics

2010/9/29 74

36

| Expressiveness

-LPTL

= PLTL with only future modal operators
= PLTLB with both past and future modal operators

OM v, Op
I o S LI p
(@ 1 o J Op
S/ EP PP, P/ g (pS q)

Theorem : PLTL & PLTLB have the same expressiveness.

2010/9/29 75

‘ Expressiveness

-LPTL
O+(eat A (shit AOfull) in PLTLB

Otf(eat AOT (shit A full)) in PLTL
v Of(eat AOT (full AO* shit))
o O*(full AO* (eat A<O*shit))

partial-order = total-order
PLTL is less succinct than PLTLB.

2010/9/29 76

37

Expressiveness

-LPTL

Theorem:

Given P={p}, PLTL cannot express the following
model.

p is true at only even states. [P.Wolper 1993]

2010/9/29 77

Expressiveness
-QPTL

QPLTL (Quantified PLTL) can express the
following model.

AX(X AL (X—>O—=X))A(L((—X) > OX)) A(LI(x—p)))

p is true at only even states. [P.Wolper 1993]
With an auxiliary proposition x,

X alternates from a state to the next.
X=2p

2010/9/29 78

38

Expressiveness

- QPTL

QPLTL, syntax
Y u=true | p |-y [wvy, | Oy g, Uy, | Ixy
abbreviation:
VXY = =3dX
QPLTL, intuitive semantics
dxy: there is an x-extended state sequence Fy
vxy: all x-extended state sequence Fy

2010/9/29 79

Expressiveness

- QPTL

QPLTL, semantics
Given state sequence S=S;S;S,S3S,... S------

S E Ixy if and only if

AT=tt, Lty by tennnn. such that

Vv k>0, t, is identical to sk except on t,(x)
TFY

2010/9/29 80

39

Expressiveness

- FOLLO

FOLLO (First-Order Language of Linear Order)

used to define PLTL.

syntax elements: N, <, p(i), =, v, 3, V
o 3, V: quantification over N

o p(i): monadic predicates of N

0 123 4 5 6 78 91011 12....

P PP P—P—P—P P P—PP P P......
q—-4 9 9 99 99 d—-9q9g g (q......

2010/9/29 81

Expressiveness

-SOLLO

SOLLO(Second-Order Language of Linear Order)
syntax elements: N, <, p(i), =, v, 3, V

1, V: quantification over
o ieNand
o X € N ¢ftrue,false}

Theorem:
PLTL=EPLTLB=FOLLO<SOLLO=QPLTL=QPLTLB

2010/9/29 82

40

Expressiveness
- regular languages

Regular Languages
recognizable with finite-state automata

e abc Npte: each a, b,
c is encoded

@ abchc with an array of
abcbchc | bits.

abcbcbe......bc

2010/9/29 83

Expressiveness
- regular languages

Regular Languages
recognizable with finite-state automata

Grammar rules : concatenate, +, *, —

a(bc)* a(b+c)*

a a

abc ab

abcbcbc accc
abcbc......bc abbeee.——-b

2010/9/29 84

41

Expressiveness
- regular languages

Regular Languages
recognizable with finite-state automata

Grammar rules : concatenate, +, *, —

a—((b+c)*) assumeX={a,b,c}
aa

aabbba

abcbaaccc

a...bacc......

2010/9/29 85

Expressiveness
- regular languages

How to use PLTL to specify regular languages ?

With P={p,q} Encode input symt_)ols
with state propositions.

a—>01->=pagq

b ->10—>pA—q
¢ —>11->pag

) ‘—>00—>—|p/\—|q

Padding an
infinite sequence
of spaces to each
finite words.

2010/9/29 86

Expressiveness
- regular languages

The following four are equivalent in

expressiveness.

PLTL
FOLLO

counter
automata: there
exists

Sgs S1s S25-++» Sk1
and w such that

regular languages without * Si+2(NOE KeO(S;, W
languages recognizable with counter-free

automata.

2010/9/29

Expressiveness
- regular languages
The following four are equivalent in
expressiveness.
QPLTL
SOLLO
regular language

87

languages recognizable with finite-state

automata.

2010/9/29

88

43

Expressiveness
- regular languages for infinite

behaviors
automata accepting infinite strings

Buchi accepting: accepting states must appear
infinitely many times.

start with ab,
unbounded
repetition of b and
c, infinitely many c.

% accepting state

2010/9/29 39

Expressiveness
- regular languages for infinite

behaviors
2 regular languages for infinite strings

a(B)® specifies
Wo W; Wy Wy Wy W ...
wye a and w, e B, for each k>0
alimf specifies
ap8;8,838,... 8
with infinitely many k>0
such that a,a,a,a;a,...a, € ap

2010/9/29 90

44

‘ Expressiveness
- regular languages for infinite

{Pﬁb%ﬁ&ﬁﬁwg four are equivalent in

expressiveness.
. PLTL a; and Bj are rggular
expressions without *-
= FOLLO expressions.
| Ui:]_m GI ||mB|

Uiz;™ (limao;N —lim B)

2010/9/29 91

‘ Expressiveness
- regular languages for infinite behaviors

The following four are equivalent in
expressiveness.

. OPLTL a; and B! are rgtghula:*
expressions without *-

= SOLLO expressions.

= U i=1m ai (Biw)

= U i=1m Q; ||mB|

Uiz™ (limao,N =lim B)

2010/9/29 92

45

1091230 stopped here.

2010/9/29 93

| Expressiveness
- branching-time logics

What to compare with ?
= finite-state automata on infinite trees.

= 2nd-order logics with monadic prdicate and many
successors (SnS)

= 2nd-order logics with monadic and partial-order
Very little known at the moment,

the fine difference in semantics of branching-structures

2010/9/29 94

46

Expressiveness
- CTL*, example ()

A tree the distinguishes the following two
formulas.

V((Ceat) - Ofull)
o Negation: 3((Ceat) A O—full)
(VOeat) —» (VOTfull)

2010/9/29 x

Expressiveness
- CTL*, example (1)

A tree that distinguishes the following two
formulas.

V((Oeat) —» Ofull)
v (eat —» V< Ofull)
o Negation: 3O (eat AOfull)

2010/9/29

47

Expressiveness

- CTL*

With the abundant semantics in CTL*, we can
compare the subclasses of CTL*.

With restrictions on the modal operations after
4, ¥V, we have many CTL* subclasses.

Example:

B(—,v,0O,U) : only —,v,O,U after 3, V

B(—,v,0,0%): only —,v,0,O after 3,

B(O,Q) : only O, Oafter 3, V

2010/9/29 97

Expressiveness

- CTL*

CTL* subclass expressiveness heirarchy
CTL* > B(—,v,0,0,0,0%)
> B(O,0,00%)
> B(—,v,0,$,0)
B(O,<,0)
B(—,v,0,0)
B(O,<)
B(<)

vV V V

2010/9/29 98

48

Expressiveness

- CTL*

Theorem : B(—,v,0,<,U) = B(O,<0,U)
Proof: reduction of formulas from B(—,v,0,<$,0) to B(O,<,U).

Suppose we have a modality 3y with @ in DNF and " only before

U . (feasible since -Ow;= O—ws)
reduce —(y,Uy,) to (W)U —(W, Ay)) v -y,
reduce (g, Uy,) A (y3Uy,) to

(WAw3)U (Yo A3(WsUW,))) v (Werw U (Wa A 3(W,UY,))
reduce (y,Uy,) A Uys to (W; Aws)U (W, A30Y;)
reduce 3(Y, vy, v ..vy,) to Qy,)v Qw,) v ..v(3y,)
reduce 3 ((y,Uy,) A Ou;) to

(W, AFOWP)V (W A TOWz A (W T W)

2010/9/29 99

Expressiveness

-CTL*
Theorem : 3O>®p is inexpressible in B(O,<¢,U) .

Proof: induction on i : for any@e B(O,0,U),
when i>|@|, ¢ cannot distinguish M, from N, .

Q:) D E):D

2010/9/29

49

Workout

Please complete the proof in details in the
previous page.

2010/9/29 101

Expressiveness

- CTL*

Comparing PLTL with CTL*
assumption, all ePLTL are interpreted as V¢

Intuition: PLTL is used to specify all runs of a

system.
B(ﬁ,V,0,0,[f,Ow)

/ \PLTL(F)
\> /

PLTL

CTL*

2010/9/29 102

50

‘ Verification

= LPTL, validity checking ¢ F ¢
o instead, check the satisfiability of oA —d
o construct a tabelau for oA —o
= model-checking M
o LPTL: M: a Blchi automata, ¢: an LPTL formula

o CTL: M: a finite-state automata, ¢: a CTL
formula

= simulation & bisimulation checking M F M’

2010/9/29 103

| Satistiability-checking framework

Answer
Yes if the model
model in logics __, — guarantees
0, = v,0,0U the specification
t No if not.

specification in logics
|:|, —, V,0,0,U

104

51

LPTL
- tableau for satisfiability checking

Tableau for ¢
+ a finite Kripke structure that fully describes the
behaviors of ¢
« exponential number of states
» An algorithm can explore a fulfilling path in the
tableau to answer the satisfiability.
Enondeterministic
Ewithout construction of the tableau
EMPSPACE.

2010/9/29 105

LPTL

- tableau for satisfiability checking
Tableau construction
a preprocessing step: push all negations to the literals.
(Wi Ay =(=y)v (=)
(Vv) =(=y)a (= y,)
—OyYy=0-vy
oY=y
—(y1Uy,) = (L= wo)v (5 w)U (5 y)A (= v,)
—[HJy=0=y

2010/9/29 106

52

'LPTL

- tableau for satisfiability checking

Tableau construction

CL(p) (closure) is the smallest set of formulas containing ¢
with the following consistency requirement.

« —p e CL(o)iff p eCL(0)

= Iy, vy, v Ay, eCL(9), then vy, v, eCL(0)

= If Oy eCL(p), then y eCL(0)

= Ify, Uy, eCL(9), then vy, v, , O (v Uy,) eCL(9)
= If[]y eCL(9), then v, O [|y eCL(0)

= If ©y eCL(o), then y, Oy eCL(0)

2010/9/29 107

'LPTL

- tableau for satisfiability checking

Tableau (V, E), node consistency condition:

A tableau node v € V is a set v ¢ CL(f) such that
mpeviff—pgv

If v, v, ev, then y,evor vy, ev

If v, A v, ev, theny,evand vy, ev

wif lyev,thenyevand O |y ev

= if Oy ev,thenyevoro O wyev

if yv,Uwy,ev, then y,e vor (y,evand O (y,Uy,)ev)

2010/9/29 108

53

LPTL

- tableau for satisfiability checking

Tableau (V, E), arc consisitency condition:
Given an arc (v,V)) €E, if Oy e v, theny e V'

= Anode vin (V,E) is initial for ¢ if ¢ ev.

2010/9/29 109

LPTL

- tableau for satisfiability checking

CL(pUq) = opug,p, =p, 0, = q}
Exa
tabled \Workout:
\ Please draw the tableau B} {p. a}
with arc connections!

, Ja} {p, —q}
~— {=p,=gq,0pUqt {=p,—q}
2E/:)/2’? 110

54

LPTL

- tableau for satisfiability checking
¢ is satisfiable iff in (V,E),
= there is an infinite path from an initial node for ¢

such that all until formulas are eventually satisfied;
or

= there is a strong connected component (SCC)
reachable from an initial node for ¢ such that for all
until formula v, Uy, in a node in the SCC, there is
also a node in the SCC containing v/, ; or

= there is a cycle reachable from an initial node for ¢
such that the for all until formulas y,Uvy, in the first
c;g/cle node, there Is also a node in the cycle

2010/9/.

containina ws- .

111

LPTL

- tableau for satisfiability checking

initial

2010/9/29 112

55

LPTL

- tableau for satistiability checking

Please use tableau method to show that
pUg F []q is false.

1) Convert to negation: (pUq)A<—q

2) CL((pUg)A<>—0)
={(pUg)A>—q, pUg, OpUq, p, g, O—a, OO—q }

LPTL

- tableau for satistiability checking
Please use tableau method to show that
pUg E <qis true.
1) Convert to negation: (pUQ)AL_]—-q
2) CL((pUa)ALI-0)
={(pUa)ALI-a, pUq, OpUq, p, q, L]-a, OL-q }

Pf: In each path that is a model of (pUQ)A[-4, g

must always be satisfied. Thus, pUq is never
fulfilled in the model.

QED

56

1PTL

- tableau for satisfiability checking
¢ is satisfiable iff in (V,E),

there exists ...

= path+cycle< (|CL(o)|+2)|V|
= |CL(o)| flags to
check the
until-formulas from
the first cycle node.
= nondeterministic
PSPACE can solve it.
= PSPACE-complete.

initial

115

'Model Checking Framework

model

M&&ﬁam

0@ —-<> Q)

Temporal logic formula

2010/9/29 116

57

LPTL

- automata-theoretical model-checking

State Sequences as Words

Let AP be the finite set of atomic propositions
of the formula f.

Let 2 = 2AP be the alphabet over AP.

Every sequence of states is an w word in 2%
o a=P, P, P, ... whereP;=L(s).

A word a is a model of formula f iff a|=f

Example: for f =p A(nq U q) {p}.{}.{a}{p.q}*
Let Mod(f) denote the set of models of f.

2010/9/29 117

LPTL

- automata-theoretical model-checking

Buchi automaton A = (Q,2,5,1,F)
Q — set of states
2 — finite alphabet
® — transition relation
| — set of initial states
F — set of acceptance states
A run p of A on w word a

P = dy,d1,d5---, S.t. g € | and
(9,0;,05:1) € 0
p is accepting if Inf(p)NF # &

2010/9/29 118

58

LPTL

- automata-theoretical model-checking
@: an LTL th_propositions AP.

cepting

what is —(p U q) after jegation

pushing the negation ? U4 €ads to
al blowup!

2. simplemduction on
B(Op) =7
B(pUQq) =7
B(p) =7
B(pvq) =7
B(p) =7

2010/9/29 119

LPTL

- automata-theoretical model-checking
Inductive construction on @:

B(Xp)is —O O-F o
B(p U q)is ﬂgﬁp q .O accepting

BOIpis —@ -
p

B(pva)is

q
Bp)is O @

2010/9/29 120

59

LPTL
- automata-theoretical model-checking

“always p until 9": [J(pUq)

q
& accepting

q
“always eventually p”: [<p

Reene 3.

2010/9/29 121

‘ Workout

Please draw the Buchi automata for the
following LTL formulas.

= (pUqQ)Ur

= [1((pUq)Ur)

= (CIp)A((pUq)Ur)
= (Op)v((qUr)Us)

2010/9/29 122

60

'LPTL
- automata-theoretical model-checking

¢: an LTL formula,
M: a Buchi automata

Model Checking Algorithm M E ¢
= construct B(—o) for the formula ¢
= ME ¢ iff LM x B(ad)) =

Complexity O(|M] x 2l¢l)

2010/9/29 123

'CTL
- model-checking

Given a finite Kripke structure M and a CTL
formula ¢, is M a model of ¢ ?

= usually, M is a finite-state automata.
= PTIME algorithm.

= When M is generated from a program with
variables, its size is easily exponential.

2010/9/29 124

61

'CTL
- model-checking algorithm

techniques

= State-space exploration

o state-spaces represented as finite Kripke structure
= directed graph
= nodes: states or possible worlds
= arcs: state transitions

= regular behaviors

= Usually the state count is astronomical.

2010/9/29 125

CTL
- model-checking algorithm (1/6)

Given M and o,
1. list the subformulas in ¢ according to their sizes

P P19, ...,
for all 0<’i<j <n - ¢, is not a subformula of @,

2. for i=0 to n, label (¢;) See next page!

3. for all initial states s, of M, if @ZL(S,), return "No!’
4. return "Yes!

2010/9/29 126

62

CTL
- model-checking algorithm (2/6)

label(p) {
case p, return;

case — vy, forall s, if y ¢ L(S), L(S) = L(S) U{—= v}

case vy, v ,, forall s, if v, eL(S) or v, €L(s),
L(s)=L(s) A,V v, }

case 30 v, for all s, if A(s,s’) with y eL(s’),
L(s)=L(s) {30 vy}

case 3y, Uy, , Ifp(yy, v,);
case 301 v, gfp(vy);

}

2010/9/29 127

CTL
- model-checking algorithm (3/6)

Ifp(v, , v,) /* least fixpoint algorithm */ {
for all s, if y, eL(s), L(S)=L(s)u{3v, Uy, };
repeat {
for all s, if v, eL(s) and 3(s,s’)(Fvy, Uy, €L(s’)),
L(s)=L(s)w{3y Vv, };
} until no more changes to L(s) for any s.

}

The procedure terminates since S is finite in the
Kripke structure.

2010/9/29 128

63

CTL
- model-checking algorithm (4/6)

Least fixpoint in modal
logics
iterative exp

2010/9/29

CTL
- model-checking algorithm (5/6)

ofp(v) /* greatest fixpoint algorithm */ {
for all s, if v eL(s), L(s)=L(s){3ly };
repeat {
for all s, if 300y el(s) and V(s,s)E0y&L(s)),
L(s)=L(s) - (300w };
} until no more changes to L(s) for any s.

}

The procedure terminates since S is finite in the
Kripke structure.

2010/9/29 130

64

CTL
- model-checking algorithm (6/6)

Greatest fixpoint in modal logics
iterative elimi

2010/9/29

| (303pUq) A Alp
Labeling funciton:
label the subforu true in each
state.

2010/9/29 132

65

| (303plig) A I0p
Evaluating 5pUq using least fixpoint

Ilteration O

2010/9/29

| (303plig) A I0p
Evaluating 7pUq using least [ixpoint

2010/9/29

66

| (3O03plg) A I0p
Evaluating 5pUq using least fixpoint

lteration 2

Iteration 2

)

2010/9/29

| (303plig) A I0p
Evaluating 7O Uq

\

2010/9/29 136

67

| (303pli) A 300p
Evaluating 5/ Jp using oreatest [1xpoint
Iteration O

2010/9/29 137

| (303plig) A I0p
Evaluating 7/ Jp using oreatest fixpoint
Iteration 1

2010/9/29 138

68

| (303pli) A 300p
Evaluating 7/ Jp using greatest fixpoint

Result:

| (303plig) A I0p
Finally, evaluating (7O5pllg) A 7 Jp

69

Workout: labelling

4

2010/9/29

CTL

(o
|

- model-checking problem complexities

The PLTL model-checking problem is PSPACE-
complete.

o definition: Is there a run that satisfies the formula ?
The PLTL without O (modal operator “next”)
model-checking problem is NP-complete.

The model-checking problem of CTL is PTIME-
complete.

The model-checking problem of CTL* is PSPACE-
complete.

2010/9/29

70

| Symbolic until analysis (backward)

Iy Uy,

Encode the states with variables xg,Xy,...,X,.

= the state set as a proposition formula: S(Xq,Xy,...,X;)
UKok Xe)s V(Ko X Xp)

= the transition set as R(Xg,Xy,-- XX 0sX 15+ X py)

by = Wo(XoXg- - Xn) AS(XoiXg,---.Xn); K =15 BERIEEE S lelgls
repeat procedure

b, = by vAX o 3IX 13X (W (Xge Xy -5 Xp)
A RMXg:Xq,- s Xps X 05X 154+ ,X)
Ay s change all

k=Kk+1; umprimed
variable in b,

untitb, =b,;

to primed.

CTL

- model-checking algorithm (2/6)

slabel(p) {

case p, return pAS(Xg,Xq,---,Xn);

case —, return S(Xg,Xy,...,X,)A—slabel(y);

case vy, Vv, , return slabel(y,) vslabel(y,)

case 30 vy, return

X I 1. IX (R(Xg X, - XX 0 X 1, - X) A(SIabEl () T));

case 3y, Uy, return the symbolic until analysis of
dslabel(y,)U slabel(y,);

case 31 y, return the symbolic liveness analysis of
Alslabel(vy);

}

2010/9/29 144

Safety analysis

Given M and p (safety predicate), do all states
reachable from initial states in M satisfy p ?

In model-checking:
Is M a model of VLIp ?

Or in risk analysis: Is there a state reachable from
initial states in M satisfy p ?

vOp = —-3O—p = —3true U—p

2010/9/29

Reachability analysis

Is there a state s reachable from another state
s’?

Encode risk analysis
Encode the complement of safety analysis
Most used in real applications

2010/9/29

145

146

72

12007/06/05 stopped here.

2010/9/29 147

| Symbolic weakest precondition

Assume program with rules
m X=3Ay=6 2 x:=2; 2:=7;

@@= =@

= X, Y, z are discrete variables with range
declarations

What is the weakest precondition of n for those
" 5

2010/9/29 148

73

| Symbolic weakest precondition

Assume program with rules
w I X=3Ay=6 2 x:=2; 2:=7;

- 2:2232/;)/2::37; -

What is the weakest precondition of n for those
states before the transitions ?

pre(r, n) gef X=3AY=6A3IXTZ(X=2 A Z=7AN)

2010/9/29 149

‘S mbolic safety analysis
Yy Yy Yy

Assume program with rules ry, r,, ..., 1,
What charcterizes all states that can reach —n?

Ifp (@) {
¢’ .= false;
while (¢ = @) { i B e

Q:=9; y o P risk :
= V Vizn re I’i, ;3 3 % - 4

}(p ? g ? B j--.,,predlcate..,.--'
return (); S Initial

} “..._condition .

74

| Symbolic liveness analysis

Assume program with rules ry, r,, ..., 1,

What is the charcterization of all states that may not
reach n?

¢ = false; s o

while (¢ = ¢’) { RERR
¢ =¢; iy L
@ = @ AV, pred(r, @); ¢ % negatlve
} 5 liveness
return (@); et . ;
1 (@) : Initial .,.Piedlcafi ,
2010/9/29 ...ponditior!_.v'.. h 151
'CTL

- symbolic model-checking with BDD

= System states are described with binary
variables.

n binary variables - 2" states

= we can use a BDD to describe legal states.
a Boolean function with n binary variables
state(Xy, Xy, , Xp)

2010/9/29 152

CTL
- symbolic model-checking with BDD

Example:
X1 Xz X3

state(x,, X,, X3) = (XyA—XoAX3)
\V4 (_|X1AX2A f— X3)

2010/9/29 153

CTL
- symbolic model-checking with BDD

Transition is a relation between 2 states.

Thus a relation between 2n binary variables.

a Boolean function with 2n binary variables
transition(x,, X,, v Xy Y1s Yor oeens ' Yn)

a2 <l

2010/9/29 154

76

CTL
- symbolic model-checking with BDD

Example:
X1 X2 X3 Y1 Y2 Y3

transition(X,, X,, X3, Y1, Yo, ¥3) =
(X 1/\—|X2/\X3/\—ly1/\—|y2/\y3)
\V/ (—|X1A—|X2/\X3/_Iyl/\y2/\ | y3)
Vo (5XAA T XATY AT AY S)

2010/9/29 155

CTL
- symbolic model-checking with BDD

the reachability relation is also among 2n binary
variables.

We can use a BDD of 2n binary variables to
describe the reachability relation

a Boolean funciton of 2n bianry variables
reach(x,, X,, s Xiy Y1 Yor ceeens V)

2010/9/29 156

CTL
- symbolic model-checking with BDD

Example: x; X, X3 Y1 Yo Y3

reach(Xy, Xo, X3, Y1, Y2, Y3) =
(X A=XOAXGATY AY,AY)
(GAXAKGATY I AY,AY)
(—|Xl/\—|X2/\X3/\—Iy1/\y2/\ — yS)
(—|Xl/\X2/\ = XgAY 1 AYHAY 3)
(—|Xl/\—|X2/\X3/_|y1/_‘y2Ay3)
(=X AXA = XgA =Y AV A = V)

< <K<K KL

2010/9/29 157

CTL
- symbolic model-checking with BDD

Safety analysis

with the BDD for reach(x,, X,, Xnr Y1r Yo coeeey Vo)
Given initial condition I(x,, X,, , X,) as a BDD and
safety conditionn(y,, V., , ¥,) as another BDD,
the system is risky if and only if
IA—nA reach(xy, X,, s Xy V1 Yoy ceeees ,Yp) IS not
false.

= Note true and false both have canonical
representations in BDD.

2010/9/29 158

78

A}

‘ S J..J_J

- symbolic model-checking with

BDD

Reachability analysis

with the BDD for reach(x,, X5,, Xns Y1r Yo coeeey Vo)
Given initial condition I(x,, X,, , X,) as a BDD and
goal conditionn(y, V,, -..... ,Y,) as another BDD,
the goal is reachable if and only if
IAnA reach(xy, X,, s Xps Y1 You ceeees , Yn) IS not

false.

= Note true and false both have canonical
representations in BDD.

2010/9/29 159

CTL
- symbolic model-checking with BDD

Given the BDD of transition T (X;, X5 yeeevey X,V 1,Y 2 geeee- Yn),

construct the BDD of reach(xy, X, v X Y1 Yoy ceeen v Yn)
= Byi=state(x,X,, ... s XIAT (X1, X5 yeveey XnY 1Y 2 0o Y1)
= Fork:i=1to....

By (X1 ooy XpsYpseeeensYn)
iff the path between the two states is shorter than 2k

2010/9/29 160

79

CTL
- symbolic model-checking with BDD

For the presentation of the algorithm, we define
pathw(xl, Xoy wennns s Xy Y11 Yoy ceeees ' Yn)

instead of reach(x,, x,, Xy Yir Yoo veeees ' Yn)
(X1, Xgy wvvees Xp) (Var Yar vy Yi)
there exists a path from state (x,, x,, , X,) to
state (v, Yo, ... , ¥,,) along which all states,
except the destination, satisfy w.
2010/9/29 161

'CTL
- symbolic model-checking with BDD

= Given a model M and a CTL formula@
= the subformulas of@:@,@, ...@, in ascending order of sizes
Fori:=1ton,do

if @= X, B(®;):=B(x,) A state(x,, x,, , %)

if @ =y, vy, B(p):=B(e,) vB(¢,)

if@;=—y,B(¢;) :=—B (¥)

ifog,=36U y,

B(g) := B(3z,.....3z, pathg(Xy,....... X0, Z1, -y ZYAW(ZY 5eveeesZp))
if o, =30y,

B (¢;):=B3z,..... 3z, path(Xq,......, X, Z1 4.ee0,Z)

apathy(z,....., 2., 21 ,.....,Z,
= B(3z,..... Z, T Wy..... N
path, (Xy,......, Xy Zg yeeeenZp)
Apathy, (Z, ..., Z,, Wy oo, W

2010/9/29 /\B\lgi Sl//n ((le :0/\Wi20 \/1 Zi :1/\\?\I)i:1)) 162

80

CTL
- symbolic model-checking with BDD

Construct the BDD of 3 z;..... 3z, B(z,,.....,2,,)?

= 3z, B(z,,.....,2,) = B(z4,..---.2,.1,0) v B(24 ,.....,Z,.1,1)
=(z2,=0AB(z,,.....,Z2,,.1, 2,))V(2,=1AB(Z ,.....,2,.1, Z)))
= Fori:=n-1to1,do
3z.....3z, B(z,,.....,Z,)
=3 z4q....-32,B(21,....,2.4, 0, Z 111 ---.,2))
v(3z,..... 32, B(z4 ,.... 1,20, 1, Z 141 40000 Zp))
2010/9/29 163

'CTL
- symbolic model-checking with BDD

Transition BDD: T (X4,......, Xy Y1 seeens Y,) and CTL formulag
the subformula of@: ¢, @, ...¢, in ascending order of sizes
Fori:=1ton, do

if @;,= X, B(@;) 1= B(x) A state(x, X,, Xp)
!f(Pi: W1 v Wy, B(@) :=B(Wy) v B (W)
if @, ==, B (@) :==B (W;)Astate(x,, Xy,, Xp)

if @ =30w;, B (@) = 3ypee. Iyn(T Xy, Xy Y1 oY)

it =3, w,,
B (@) :=1fp Z.(B(w, WAoo 3V T (X X Vi seeesYi)
AB(w,)
Arename(Z, X,2Yq,..., X, 2Yn)
))
if @ =300y, ,

B (@) :=9fp Z.(B(W)ATy;..... Yo T(Xqiosy Xy Y1 1eee3Yn)
Arename(Z, X, DYq,......, Xy 2Yn)
))

2010/9/29 164

81

| Implementation of 3z; B(z; ye.see5Z,,)

2010/9/29 165

‘ Bisimulation Framework

model Answer
<> Yes if the model
Design ‘—» IS equivalent to
i ST o the specification
No if not.

Mns Ztion speC pcation

2010/9/29 166

82

| Bisimulation-checking

= K=(S, Sy, R, AP, L)
K= (S, Sy, R, AP, L)

= Note K and K’ use the same set of atomic
propositions AP.

= BeSxS’ is a bisimulation relation between K and
K’ iff for every B(s, s’):
o L(s)=L'(s’) (BSIM 1)
o If R(s, s;), then there exists s;’ such that R'(s’, s;’) and
B(s;, s;'). (BISIM 2)
o If R(s’, s,’), then there exists s, such that R(s, s,) and
B(s,, s,). (BISIM 3)

2010/9/29 167

‘ Bisimulations

2010/9/29 168

83

‘ Bisimulations

K?
2010/9/29 169
‘ Bisimulations
K K’
2010/9/29 170

84

‘ Bisimulations

2010/9/29 171

| Examples

..........

2010/9/29 172

85

| Examples

o i ey e e
(p—(o)—(p)—(o—p)— (g~

Unwinding preserves bisimulation

2010/9/29 173

| Examples

AN
5y

2010/9/29 174

86

| Examples

222222222

87

| Examples

| Examples

88

| Examples

| Examples

89

Bisimulations

K=(S, Sy R, AP, L)
K'=(S’, Sy, R, AP, L)
K and K’ are bisimilar (bisimulation equivalent) iff
there exists a bisimulation relation By S £ S’
between K and K’ such that:
o For each sy in S, there exists sy’ in Sy’ such that
B(sy , So’)-
o Foreach sy’ in Sy’ there exists s, in S, such that
B(sy , So’)-

2010/9/29 181

The Preservation Property.

K=(S, Sy R, AP, L)

K'=(S’, Sy, R’, AP, L)

Bu S £S’, abisimulation.

Suppose B(s, s’).

FACT: For any CTL formula y (over AP), K, s
2yiff K, s 2 y.

If K> is smaller than K this is worth something.

2010/9/29 182

90

‘ Simulation Framework

model Answer

> Yes if the model
Design ‘—» satisfies the
hlementatio specification

No if not.
Mns gtion Spec' tion

im

2010/9/29 183

| Simulation-checking

»K=(S5, S, R,AP, L)
= (S, Sy, R, AP, L)
= Note K and K’ use the same set of atomic
propositions AP.

= BuS £ S’ isasimulation relation between
K and K’ iff for every B(s, s’):
a L(s)=L'(s’) (BSIM 1)
o If R(s, s,), then there exists s;’ such that R’(s’,
s,’) and B(sy, s;’). (BISIM 2)

2010/9/29 184

91

Simulations

K=(S, Sy R, AP, L)

K'=(S’, Sy, R, AP, L)

K is simulated by (implements or refines) K’ iff there
exists a simulation relation By S £ S’ between K and
K’ such that for each s, in S, there exists s’ in Sy’
such that B(sy , Sp’)-

2010/9/29 185

Simulation Quotients

K=(S, Sy R, AP, L)

There is a maximal simulationBu S £ S.

o Let R be this bisimulation.

a[s]={s’ jsRs’}

R can be computed “easily”.

K’ = K /R is the bisimulation quotient of K.

2010/9/29 186

Bisimulation Quotient

K=(S, Sy R, AP, L)

[sS]={s’ jsRs’}.

K'=K/R=(S, S, R, AP,L).

0 S’ ={s]js2S}

0 S’ ={[So] J So 2 Sp}

o R*={([s], [S’]) j R(s;, s;’) for some s, 2 [S]
and s;” 2 [s’]}

a L’([s]) = L(s).

2010/9/29

Examples

ﬁ\
I\

& &

S

2010/9/29

187

188

93

| Examples

| Examples

222222222

94

‘ Abstractions

= Bisimulations don’t produce often large
reduction.

= Try notions such as simulations, data
abstractions, symmetry reductions, partial
order reductions etc.

= Not all properties may be preserved.
= They may not be preserved in a strong sense.

2010/9/29 191

| Graph Simulation

Definition Two edge-labeled graphs G,, G,
A simulation is a relation R between nodes:
= if (X4, X,) € R, and (x;,a,y,) € Gy,
then exists (x,,a,y,) € G, (same label)
s.t. (Y1) € R

xl R —”
Gy 2l l i a G,
yl 4.‘ __________ R ________ q. y2

1M0te: if we insist that R be a function = graph homeomorphism 1,

95

Graph Bisimulation

Definition Two edge-labeled graphs G1, G2

A bisimulation is a relation R between nodes s.t.

both R and R™! are simulations

2010/9/29 193

Set Semantics for
Semistructured Data

Definition Two rooted graphs G,, G, are equal
if there exists a bisimulation R from G, to G,
such that (root(G,), root(G,)) € R

Notation: G; = G,
For trees, this is precisely our earlier definition

2010/9/29 194

96

| Examples of Bisimilar Graphs

<)
o
1
o
<)
o
o

QD
1
DL D D

2010/9/29 195

| Examples of non-Bisimilar Graphs

= This is a simulation but not a bisimulation
o Why ?
= Notice: G;, G, have the same sets of paths

2010/9/29 196

97

| Examples of Simulation

= Simulation acts like “subset”
{a, b} ={a, b, c}
A\ YR
{a, b:{c}} < {d, a:{e,f}, b:{c,g}}

d
y\b 4\2\
e f f\\ g
= Question: ¢

= if DB, c DB, and DB, c DB, then DB, ~ DB, ?

2010/9/29 197

‘ Answer

if DB, — DB, and DB, — DB, then DB, ~ DB, ?

No. Here is a counter example:
DB, DB,

a a
b

DB, c DB, and DB, DB, but NOT DB, ~ DB,

a

b

2010/9/29 198

98

‘ Path Simulation

Intuition: every path in concrete system is simulated by a path in
abstract system

simulates
Concrete /\ Abstract

simulates

simulates
simulates

A concrete path s, s,, ... is simulated by an abstract path a,, a,, ...

if Sim(s;,a;) for all i.
2010/9/29 199

| Computation Simulation

Intuition: every path in concrete system is simulated by a path in
abstract system

Concrete/ \Abstract

/,/

\

\
°%¢ o

Infeasible path due to
over-approximation.

There may be extra paths (termed “infeasible” paths) that are not present in the concrete
system. These are due to the approximate nature of our computation with abstract tokens.
Spgsiically, they arise from the over-approximations in test branching discussed previousjy,

99

'Reflection of LTL Properties

If there is a violating path in the concrete system, then there is a violating path in the
abstract system, since the simulation property guarantees that each concrete trace has a
corresponding trace in the abstract system. Technically, this means that properties are

reflected by abstraction.

\Abstract

Concrete
Y/

Infeasible path due to
over-approximation.

If there is a violating path in the abstract system, then there is not necessarily a violating

d{é%}g/gver-approximation. Technically, this means that properties are not preserved by201
abstraction.

Facts About a (Bi)Simulation

= The empty set is always a (bi)simulation
= If R, R’ are (bi)simulations, sois R U R’

= Hence, there always exists a maximal (bi)simulation:
o Checking if DB,=DB,: compute the maximal bisimulation R,
then test (root(DB,),root(DB,)) in R

2010/9/29 202

100

Computing a (Bi)Simulation

Computing the maximal (bi)simulation:
o Start with R = nodes(G,) x nodes(G,)

o While exists (X;, X,) € R that violates the definition,
remove (X,, X,) from R

This runs in polynomial time ! Better:

o O((m+n)log(m+n)) for bisimulation

o O(m n) for simulation

o Compare to finding a graph homeomorphism !

T NP-Complete

2010/9/29 203

101

