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Predicate Logic

Invented by Gottlob
Frege (1848–1925).
Predicate Logic is also 
called “first-order logic”.

“Every good mathematician is at least half a philosopher, 
and every good philosopher is at least half a 
mathematician.”
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Motivation

There are some kinds of human reasoning that 
we can’t do in propositional logic. 
For example:
Every person likes ice cream.
Billy is a person.
Therefore, Billy likes ice cream.
In propositional logic, the best we can do is  
A∧B C, which isn’t a tautology. 

We’ve lost the internal structure.
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Motivation

We need to be able to refer to objects. 
We want to symbolize both a claim and the object 
about which the claim is made. 
We also need to refer to relations between objects, 

as in “Waterloo is west of Toronto”. 

If we can refer to objects, we also want to be able to 
capture the meaning of every and some of.
The predicates and quantifiers of predicate logic 
allow us to capture these concepts.
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Apt-pet

An apartment pet is a pet 
that is small
Dog is a pet
Cat is a pet
Elephant is a pet
Dogs and cats are small. 
Some dogs are cute
Each dog hates some cat
Fido is a dog
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Universal quantification (∀) corresponds to 
finite or infinite conjunction of the application 
of the predicate to all elements of the domain.
Existential quantification (∃) corresponds to 
finite or infinite disjunction of the application 
of the predicate to all elements of the domain.
Relationship between ∀ and ∃ :

∃x.P(x) is the same as ¬∀x. ¬P(x)
∀x.P(x) is the same as ¬∃x. ¬P(x)

Quantifiers
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Functions

Consider how to formalize:
Mary’s father likes music
One possible way:  ∃x(f(x, Mary)∧Likes(x,Music))
which means: Mary has at least one father and he 
likes music.
We’d like to capture the idea that Mary only has one 
father. 

We use functions to capture the single object that can be in 
relation to another object.
Example: Likes(father(Mary),Music) 

We can also have n-ary functions.

8

Predicate Logic

syntax (well-formed formulas)
semantics
proof theory

axiom systems
natural deduction
sequent calculus
resolution principle
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Predicate Logic: Syntax

The syntax of predicate logic consists of:
constants
variables x, y, …
functions f(), g(), …
predicates P(), Q(), …
logical connectives ∧, ∨, ¬, , ↔
quantifiers ∀, ∃
punctuations: , . ( )

10

Predicate Logic: Syntax

Definition. Terms are defined inductively as 
follows:
Base cases 

Every constant is a term.
Every variable is a term.

inductive cases 
If t1,t2,t3,…,tn are terms then f(t1,t2,t3,…,tn) is a term, 
where f is an n-ary function.

Nothing else is a term.
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Predicate Logic
- syntax

Definition. Well-formed formulas (wffs) are defined 
inductively as follows:

Base cases: 
P(t1,t2,t3,…,tn) is a wff, where ti is a term, and P is an n-ary
predicate. These are called atomic formulas.

inductive cases: 
If A and B are wffs, then so are  

¬A, A∧B, A∨B, A⇒B, A⇔B
If A is a wff, so is ∃x. A
If A is a wff, so is ∀x. A

Nothing else is a wff.
We often omit the brackets using the same 
precedence rules as propositional logic for the logical 
connectives.

12

Scope and Binding of Variables (I)

Variables occur both in nodes next to quantifiers 
and as leaf nodes in the parse tree.
A variable x is bound if starting at the leaf of x, 
we walk up the tree and run into a node with a 
quantifier and x.
A variable x is free if starting at the leaf of x, we 
walk up the tree and don’t run into a node with a 
quantifier and x.

.( .( ( ) ( ))) ( ( ) ( ))x x P x Q x P x Q y∀ ∀ ∧ ⇒ ¬ ∨
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Scope and Binding of Variables (I)

The scope of a variable x is the subtree starting at 
the node with the variable and its quantifier 
(where it is bound) minus any subtrees with     or      
at their root. 

Example:
A wff is closed if it contains no free occurrences of 

any variable.

x∀ x∃

.( .( ( ) ( ))) ( ( ) ( ))x x P x Q x P x Q y∀ ∀ ∧ ⇒ ¬ ∨
scope of this xscope of this x

14

Scope and Binding of Variables

∀x((P(x) ⇒ Q(x))∧S(x,y))
Parsing tree:  

This is an open formula!

∀x

∧

⇒

P Q

xx

S

yx

scope of ∀x

interpreted with

interpreted with
interpreted with

bound variables

free variable
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Scope and Binding of Variables

∀x((∃x(P(x) ⇒ Q(x)))∧S(x,y))
Parsing tree:  

This is an open formula!

scope of ∀x

interpreted with

interpreted with

interpreted with

bound variables

free variable

∀x

∧

∃x

P Q

xx

S

yx⇒

scope of ∃x
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Substitution

Variables are place holders. 
Given a variable x, a term t and a formula P, 
we define P[t / x] to be the formula obtained 
by replacing each free occurrence of variable 
x in P with t.
We have to watch out for variable captures in 
substitution.
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Substitution

In order not to mess up with the meaning of the 
original formula, we have the following restrictions 
on substitution.  
Given a term t, a variable x and a formula P, 

“t is not free for x in P”
if 

x in a scope of ∀y or ∃y in A; and 
t contains a free variable y.  

Substitution P[t / x] is allows only if t is free for x in P. 

18

Substitution

Example:
∀y(mom(x)∧dad(f(y))) ≡ ∀z(mom(x)∧dad(f(z))) 

But
(∀y(mom(x)∧dad(y)))[f(y)/x] = ∀y(mom(f(y))∧dad(f(y)))

(∀z(mom(x)∧dad(z)))[f(y)/x] = ∀z(mom(f(y))∧dad(f(z)))

equivalent

[f(y)/x] not allowed since 
meaning of formulas 
messed up.
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Predicate Logic: Semantics

Recall that a semantics is a mapping 
between two worlds.
A model for predicate logic consists of:

a non-empty domain of objects:  
a mapping, called an interpretation that associates 
the terms of the syntax with objects in a domain

It’s important that      be non-empty, 
otherwise some tautologies wouldn’t hold 
such as  

ID

ID

( . ( )) ( . ( ))x A x x A x∀ ⇒ ∃

20

Interpretations (Models)

a fixed element c’ ∈ DI to each constant c of 
the syntax
an n-ary function f’:DI

n DI to each n-ary
function, f, of the syntax
an n-ary relation R’⊆ DI

n to each n-ary
predicate, R, of the syntax
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Example of a Model

Let’s say our syntax has a constant c, a function f
(unary), and two predicates P, and Q (both binary).

Example: P(c,f(c))
In our model, choose the domain to be the natural 

numbers
I(c) is 0.
I(f) is suc, the successor function.  
I(P) is `<‘
I(Q) is `=‘

22

Example of an Model

What’s the meaning of  P(c,f(c)) in this model?

Which is true.

( ( , ( ))) ( ) ( ( ))
0 ( ( ))
0 (0)
0 1

I P c f c I c I f c
suc I c
suc

= <
= <
= <
= <
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Valuations

Definition. 
A valuation v, in an interpretation I, is a function 
from the terms to the domain DI such that:
ν(c) = I(c)
ν(f(t1,…,tn)) = f’(ν(t1),…, ν (tn))
ν(x)∈DI, i.e., each variable is mapped onto 

some element in DI

24

Example of a Valuation

DI is the set of Natural Numbers
g is the function +
h is the function suc
c (constant) is 3
y (variable) is 1
( ( ( ), )) ( ( )) ( )

( ( )) 1
(3) 1

5

v g h c y v h c v y
suc v c
suc

= +
= +
= +
=
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Workout

DI is the set of Natural Numbers
g is the function +
h is the function suc
c (constant) is 3
y (variable) is 1

ν(h(h(g(h(y),g(h(y),h(c)))))) = ? 

26

    False
True
True

True∧ ¬

On(A,B) 

Clear(B)  

On(C,Fl)  

On(C,Fl) On(A,B)   



14

27

Workout
Interpret the following formulas with respect to 

the world (model) in the previous page. 
⇒
∧ ⇒
∨

On(A,Fl) Clear(B)

Clear(B) Clear(C) On(A,Fl)

Clear(B) Clear(A)

Clear(B)

Clear(C)

B

C

A

28

Konwoledge
Does the following knowledge base (set of 

formulae) have a model ?
⇒
∧ ⇒
∨

On(A,Fl) Clear(B)

Clear(B) Clear(C) On(A,Fl)

Clear(B) Clear(A)

Clear(B)

Clear(C)
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An example

∀ ⇒ ¬( x)[On(x,C) Clear(C)]

30

Closed Formulas

Recall: A wff is closed if it contains no free 
occurrences of any variable.
We will mostly restrict ourselves to closed 
formulas. 
For formulas with free variables, close the 
formula by universally quantifying over all its 
free variables.
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Validity (Tautologies)

Definition. A predicate logic formula is satisfiable if 
there is an interpretation and there is a valuation 
that satisfies the formula (i.e., in which the formula 
returns T).
Definition. A predicate logic formula is logically 
valid (tautology) if it is true in every interpretation. 

It must be satisfied by every valuation in every 
interpretation.

Definition. A wff, A, of predicate logic is a 
contradiction if it is false in every interpretation. 

It must be false in every valuation in every interpretation.

32

Satisfiability, Tautologies, Contradictions

A closed predicate logic formula, is satisfiable
if there is an interpretation I in which the 
formula returns true.
A closed predicate logic formula, A, is a 
tautology if it is true in every interpretation.

A
A closed predicate logic formula is a 
contradiction if it is false in every 
interpretation.
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Tautologies

How can we check if a formula is a tautology?
If the domain is finite, then we can try all the 
possible interpretations (all the possible functions 
and predicates).
But if the domain is infinite? Intuitively, this is why a 
computer cannot be programmed to determine if an 
arbitrary formula in predicate logic is a tautology (for 
all tautologies).
Our only alternative is proof procedures!
Therefore the soundness and completeness of our 
proof procedures is very important!

34

Semantic Entailment

Semantic entailment has the same meaning as 
it did for propositional logic.

means that if             and              and
then            , which is equivalent to saying

is a tautology, i.e.,

1 2 3, ,φ φ φ ψ

1( ) Tv φ = 2( ) Tv φ = 3( ) Tv φ =
( ) Tv ψ =

1 2 3( )φ φ φ ψ∧ ∧ ⇒

1 2 3 1 2 3( , , ) (( ) )φ φ φ ψ φ φ φ ψ≡ ∧ ∧ ⇒
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An Axiomatic System for Predicate Logic

FO_AL: An extension of the axiomatic system for 
propositional logic.  Use only:

where A contains 
no free occurrences of x

. .⇒ ¬∀
( )

( ( )) (( ) ( ))
( ) ( )

. ( ) ( ),  where  is free for  in 

.( ) ( ( . )),

A B A
A B C A B A C

A B B A
x A x A t t x A
x A B A x B

⇒ ⇒
⇒ ⇒ ⇒ ⇒ ⇒ ⇒

¬ ⇒ ¬ ⇒ ⇒
∀ ⇒
∀ ⇒ ⇒ ⇒ ∀

36

FO_AL Rules of Inference

Two rules of inference:
(modus ponens - MP) From A and          , B
can be derived, where A and B are any well-
formed formulas.
(generalization) From A,          can be derived, 
where A is any well-formed formula and x is 
any variable.

A B⇒

.x A∀
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Soundness and Completeness of FO_AL

FO_AL is sound and complete.
Completeness was proven by Kurt Gödel in 
1929 in his doctoral dissertation.
Predicate logic is not decidable

38

Deduction Theorem

Theorem. If                   by a deduction 
containing no application of generalization to 
a variable that occurs free in A, then  
Corollary. If A is closed and if                 then  

{ }
ph

H A B∪

ph
H A B⇒

{ }
ph

H A B∪

( )
ph

H A B⇒
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A closed formula is a tautology (valid) iff its 
negation is a contradiction. 
In other words, A closed formula is valid iff its 
negation is not satisfiable.
To prove {P1,…, Pn} ⊨ S is equivalent to 
prove {P1,…, Pn, ¬S} ⊨ false
To prove {P1,…, Pn} ⊨ S becomes to check if 
there is an interpretation for {P1,…, Pn, ¬S} .

Proof by Refutation

How many interpretations 

are there ?

40

Counterexamples

How can we show a formula is not a 
tautology?
Provide a counterexample. A counterexample 
for a closed formula is an interpretation in 
which the formula does not have the truth 
value T.
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Example

Prove . . . .
ph

x y A y x A∀ ∀ ∀ ∀

42

Workout: Counterexamples

Show that
is not a tautology by constructing a model 
that makes the formula false.

( . ( ) ( )) (( . ( )) ( . ( )))x P x Q x x P x x Q x∀ ∨ ⇔ ∀ ∨ ∀
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What does ‘first-order’ mean?

We can only quantify over variables.
In higher-order logics, we can quantify over 
functions, and predicates. 

For example, in second-order logic, we can 
express the induction principle:

Propositional logic can also be thought of as 
zero-order.

.( (0) ( . ( ) ( 1))) ( . ( ))P P n P n P n n P n∀ ∧ ∀ ⇒ + ⇒ ∀

44

A rough timeline in ATP … (1/3)
450B.C.   Stoics propositional logic (PL), 

inference (maybe)
322B.C. Aristotle ``syllogisms“ (inference rules), 

quantifiers
1565 Cardano probability theory (PL + undertainty) 
1646 Leibniz research for a general decision procedure 

-1716 to check the validty of formulas
1847 Boole PL (again) 
1879 Frege first-order logic (FOL) 
1889 Peano 9 axioms for natural numbers



23

45

A rough timeline in ATP … (2/3)

1920‘s Hilbert Hilbert‘s program 
1922 Wittgenstein proof by truth tables 
1929 Gödel completeness theorem of FOL 
1930 Herbrand a proof procedure for FOL based on 

propositionalization
1931 Gödel    incompleteness theorems for the consistency 

of Peano axioms
1936 Gentzen a proof for the consisitency of Peano axioms 

in set theory
1936 Church, undecidability

Turing of FOL 
1958     Gödel a method to prove the consistency of Peano

axioms with type theory

• To formalize all existing 
theories to a finite, 
complete, and 
consistent set of axioms. 

• decision procedures for 
all mathematical 
theories

• 23 open problems. 

Resolve the 
2nd Hilbert’s 
problem (in 
the theory of 
N)

Who is to 
prove the 
consistency 
of set theory ?

Is type 
theory  
consistent ?

46

A rough timeline in ATP … (3/3)
1954 Davis First machine-generated proof 
1955 Beth, Semantic Tableaus 

Hintikka
1957 Newell, First machine-generated proof in 

Simon Logic Calculus 
1957 Kangar, Lazy substitution by free (dummy) Vars 

Prawitz
1958 Prawitz First prover for FOL 
1959 Gilmore More provers 

Wang
1960 Davis Davis-Putnam Procedure 

Putnam, 
Longman

1963 Robinson Unification, resolution
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Kurt Gödel
1906-1978
• Born an Austro-Hugarian
• 12 Czech

• refuse to learn Czech
• 23 Austrian

• established the completeness of 
1st-order logic in his Ph.D. thesis

• 25, established the incompleteness 
of N

• 32 German 
• 34 joined Princeton
• 42 American 

• Einstein, “his work no longer meant 
much, that he came to the Institute 
merely … to have the privilege of 
walking home with Gödel.”

• On his citizen exam, …
• proved a paradoxial solution to the 

general relativity
• Permanent position, Princeton, 1946
• 1st Albert Einstein Award, 1951
• Full professor, 1953
• National Science Medal, 1974
• Emeritus professor, 1976

American is in danger 
of dictatorship because 
I can prove the 
contradiction in 
American constitution. 

• thought someone was to poison 
him.

• ate only his wife’s cooking.
• 1977, his wife was ill and could 

not cook. 
• Jan. 1978, died of mal-nutrition.

The greatest logician 
in the 20th century

One of the greatest 

achievements 

in the 20th century.

I knew the 
general 
relativity 
was wrong.

48

2007/04/03 stopped here.
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Predicate Logic: Natural Deduction
Extend the set of rules we used for 

propositional logic with ones to handle 
quantifiers.

50

Predicate Logic: Natural Deduction
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Example

Show . ( ) ( ), . ( ) . ( )
ND

x P x Q x x P x x Q x∀ ⇒ ∀ ∀

52

Workout

Show
Show 

( ), . ( ) ( ) ( )
ND

P a x P x Q x Q a∀ ⇒ ¬ ¬

. ( ) . ( )
ND

x P x x P x¬∀ ∃ ¬
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To prove {P1,…, Pn} ⊨ S  is equivalent to 
prove that there is no interpretation for 

{P1,…, Pn, ¬S} .
But there are infinitely many interpretations!
Can we limit the range of interpretations ? 
Yes, Herbrand interpretations!

Proof by Refutation

54

Herbrand’s theorem
- Herbrand universe of a formula S
Let H0 be the set of constants appearing in S.

If no constant appears in S, then H0 is to consist of a 
single constant, H0={a}.

For i=0,1,2,…
Hi+1=Hi ∪ {f n(t1,…,tn)| f is an n-place function in S; t1,…,tn ∈ Hi }

Hi is called the i-level constant set of S.
H∞ is the Herbrand universe of S.
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Herbrand’s theorem
- Herbrand universe of a formula S

Example 1: S={P(a),∼P(x)∨P(f(x))}
H0={a}
H1={a,f(a)}
H2={a,f(a),f(f(a))}
.
.
H∞={a,f(a),f(f(a)),f(f(f(a))),…}

56

Herbrand’s theorem
- Herbrand universe of a formula S

Example 2: S={P(x)∨Q(x),R(z),T(y)∨∼W(y)}
There is no constant in S, so we let H0={a}
There is no function symbol in S, hence
H=H0=H1=…={a}

Example 3: S={P(f(x),a,g(y),b)}
H0={a,b}
H1={a,b,f(a),f(b),g(a),g(b)}
H2={a,b,f(a),f(b),g(a),g(b),f(f(a)),f(f(b)),f(g(a)),f(g
(b)),g(f(a)),g(f(b)),g(g(a)),g(g(b))}
…
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Herbrand’s theorem
- Herbrand universe of a formula S

Expression 
a term, a set of terms, an atom, a set of atoms, a 
literal, a clause, or a set of clauses.

Ground expressions 
expressions without variables.

It is possible to use a ground term, a ground 
atom, a ground literal, and a ground clause –
this means that no variable occurs in respective 
expressions.

Subexpression of an expression E
an expression that occurs in E.

58

Herbrand’s theorem
- Herbrand base of a formula S
Ground atoms Pn(t1,…,tn) 

Pn is an n-place predicate occurring in S, 
t1,…,tn ∈ H∞

Herbrand base of S (atom set)
the set of all ground atoms of S

Ground instance of S
obtained by replacing variables in S by members of 
the Herbrand universe of S.
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Herbrand’s theorem
- Herbrand universe & base of a formula S

Example
S={P(x),Q(f(y))∨R(y)}
C=P(x) is a clause in S
H={a,f(a),f(f(a)),…} is the Herbrand universe of 
S.
P(a), Q(f(a)), Q(a), R(a), R(f(f(a))), and 
P(f(f(a))) are ground atoms of C.

60

Workout

{P(x), Q(g(x,y),a)∨R(f(x))} 
please construct the set of ground terms
please construct the set of ground atoms
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Herbrand’s theorem
- Herbrand interpretation of a formula S
S, a set of clauses.

i.e., a conjunction of the clauses
H, the Herbrand universe of S and 
H-interpretation I of S
I maps all constants in S to themselves.
Forall n-place function symbol f and h1,…,hn
elements of H, 

I (f (h1,…,hn) ) = f(h1,…,hn)

62

Herbrand’s theorem
- Herbrand interpretation of a formula S

There is no restriction on the assignment to 
each n-place predicate symbol in S.
Let A={A1,A2,…,An,…} be the atom set of S.
An H-interpretation I can be conveniently 
represented as a subset of A.  

If Aj ∈ I, then Aj is assigned “true”, 
otherwise Aj is assigned “false”.
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Herbrand’s theorem
- Herbrand interpretation of a formula S
Example: S={P(x)∨Q(x),R(f(y))}

The Herbrand universe of S is 
H={a,f(a),f(f(a)),…}.

Predicate symbols: P, Q, R.
The atom set of S:

A={P(a),Q(a),R(a),P(f(a)),Q(f(a)),R(f(a)),…}.
Some H-interpretations for S:

I1={P(a),Q(a),R(a),P(f(a)),Q(f(a)),R(f(a)),…}
I2= ∅
I3={P(a),Q(a),P(f(a)),Q(f(a)),…}

64

Herbrand’s theorem
- Herbrand interpretation of a formula S

An interpretation of a set S of clauses does 
not necessarily have to be defined over the 
Herbrand universe of S.
Thus an interpretation may not be an                 
H-interpretation.

Example:
S={P(x),Q(y,f(y,a))}
D={1,2}
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Herbrand’s theorem
- Herbrand interpretation of a formula S

But Herbrand is conceptually general enough.  
Example (cont.) S={P(x),Q(y,f(y,a))}

D={1,2}
– an interpretation of S:

12212

f(2,2)f(2,1)f(1,2)f(1,1)a

T

Q(2,2)

FTFFT

Q(2,1)Q(1,2)Q(1,1)P(2)P(1)

66

Herbrand’s theorem
- Herbrand interpretation of a formula S

But Herbrand is conceptually general enough.  

Example (cont.) – we can define an H-interpretation I* 
corresponding to I.
First we find the atom set of S

A={P(a),Q(a,a),P(f(a,a)),Q(a,f(a,a)),Q(f(a,a),a),Q(f(a,a),f(a,a)),…}
Next we evaluate each member of A by using the given table

P(a)=P(2)=F
Q(a,a)=Q(2,2)=T
P(f(a,a))=P(f(2,2))=P(1)=T
Q(a,f(a,a))=Q(2,f(2,2))=Q(2,1)=F
Q(f(a,a),a)=Q(f(2,2),2)=Q(1,2)=T
Q(f(a,a),f(a,a))=Q(f(2,2),f(2,2))=Q(1,1)=T

Then I*={Q(a,a),P(f(a,a)),Q(f(a,a),a),…}.

12212

f(2,2)f(2,1)f(1,2)f(1,1)a

T

Q(2,2)

FTFFT

Q(2,1)Q(1,2)Q(1,1)P(2)P(1)
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Herbrand’s theorem
- Herbrand interpretation of a formula S

If there is no constant in S, the element a used to 
initiate the Herbrand universe of S can be mapped 
into any element of the domain D. 
If there is more than one element in D, then there is 
more than one H-interpretation corresponding to I.

68

Herbrand’s theorem
- Herbrand interpretation of a formula S

Example: S={P(x),Q(y,f(y,z))}, D={1,2}

Two H-interpretations corresponding to I are:
I*={Q(a,a),P(f(a,a)),Q(f(a,a),a),…} if a=2,
I*={P(a),P(f(a,a)),…} if a=1.

1221

f(2,2)f(2,1)f(1,2)f(1,1)

T

Q(2,2)

FTFFT

Q(2,1)Q(1,2)Q(1,1)P(2)P(1)
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Herbrand’s theorem
- Herbrand interpretation of a formula S

Definition: Given an interpretation I over a domain D, 
an H-interpretation I* corresponding to I is an H-
interpretation that satisfies the condition:
Let h1,…,hn be elements of H (the Herbrand
universe of S). 
Let every hi be mapped to some di in D. 
If P(d1,…,dn) is assigned T (F) by I, then P(h1,…,hn) 
is also assigned T(F) in I*.

Lemma: If an interpretation I over some domain D
satisfies a set S of clauses, then any H-
interpretation I* corresponding to I also satisfies S.

70

Herbrand’s theorem

A set S of clauses is unsatisfiable if and only if S is 
false under all the H-interpretations of S.

We need consider only H-interpretations for 
checking whether or not a set of clauses is 
unsatisfiable.
Thus, whenever the term “interpretation” is used, a          
H-interpretation is meant.
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Herbrand’s theorem

Let ∅ denote an empty set. Then:
A ground instance C’ of a clause C is satisfied by an 
interpretation I if and only if there is a ground literal L’ in C’
such that L’ is also in I, i.e. C’∩I≠∅.
A clause C is satisfied by an interpretation I if and only if 
every ground instance of C is satisfied by I.
A clause C is falsified by an interpretation I if and only if there 
is at least one ground instance C’ of C such that C’ is not 
satisfied by I.
A set S of clauses is unsatisfiable if and only if for every 
interpretation I there is at least one ground instance  C’ of 
some clause C in S such that C’ is not satisfied by I.

72

Herbrand’s theorem
Example: Consider the clause C=∼P(x)∨Q(f(x)). Let I1, I2, 

and I3 be defined as follows:
I1= ∅
I2={P(a),Q(a),P(f(a)),Q(f(a)),P(f(f(a))),Q(f(f(a))),…}
I3={P(a),P(f(a)),P(f(f(a))),…}

C is satisfied by I1 and I2, but falsified by I3.

Example: S={P(x),∼P(a)}. 
The only two H-interpretations are: 

I1={P(a)}, 
I2= ∅.

S is falsified by both H-interpretations and therefore is 
unsatisfiable.



37

73

Resolution Principle
- Clausal Forms
Clauses are universally quantified disjunctions 

of literals; 
all variables in a clause are universally 

quantified
1 1

1

1

( ,..., )( ... )
written as 

...
or

{ ,..., }

n n

n

n

x x l l

l l

l l

∀ ∨ ∨

∨ ∨
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Resolution Principle
- Clausal forms

Examples:

We need to be able to work with variables !
Unification of two expressions/literals

gives

¬{Nat(s(A)), Nat(A)}

{Nat(A)} 

{Nat(s(A))}

gives

¬{Nat(s(s(x))), Nat(s(x))}

{Nat(s(A))} 

{Nat(s(s(A)))}

gives

¬{Nat(s(A)), Nat(A)}

{Nat(x)} 

{Nat(s(A))}
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Resolution Principle
- Terms and instances

Consider following atoms

Ground expressions do not contain any variables

alphabetic variant
instance

instance
  not an instance

P(x,f(y),B)

P(z,f(w),B)  

P(x,f(A),B) 

P(g(z),f(A),B) 

P(C,f(A),A)

76

Resolution Principle
- Substitution

1 1A substitution { / ,..., / } substitutes 
variables  for terms  (  does NOT contain )

Applying a substitution  to an expression 
yields the expression  which is 

with all occurrences of

n n

i i i i

s t v t v
v t t v

s
s

ω
ω ω

=

  replaced by i iv t

                       no substitution !

P(x,f(y),B)

P(z,f(w),B)          s={z/x,w/y} 

P(x,f(A),B)          s={A/y}

P(g(z),f(A),B)       s={g(z)/x,A/y}

P(C,f(A),A)
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Workout

Calculate the substitutions for the resolution of 
the two clauses and the result clauses after 
the substitutions. 
¬P(x), P(f(a))∨Q(f(y),g(a,b))
¬P(g(x,a)), P(y)∨Q(f(y),g(a,b))
¬P(g(x,f(a))), P(g(b,y))∨Q(f(y),g(a,b))
¬P(g(f(x),x)), P(g(y,f(f(y)))∨Q(f(y),g(a,b)))

78

Resolution Principle
- Composing substitutions

Composing substitutions s1 and s2 gives s1 s2   
which is that substitution obtained by first 
applying s2 to the terms in s1and adding 
remaining term/vars pairs to s1

Apply to 

θ ={g(x,y)/z}{A/x,B/y,C/w,D/z}=

{g(A,B)/z,A/x,B/y,C/w}

θP(x,y,z)

gives 

P(A,B,g(A,B))
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Resolution Principle
- Properties of substitutions

sω

1 2 1 2

1 2 3 1 2 3

1 2 2 1

( ) ( )  
( ) ( )  associativity

 not commutative

s s s s
s s s s s s

s s s s

ω ω=
=

≠

80

Resolution Principle
- Unification

Unifying a set of expressions {wi}
Find substitution s such that 
Example

The most general unifier, the mgu, g of {wi} has the 
property that if s is any unifier of {wi} then there 
exists a substitution s’ such that {wi}s={wi}gs’
The common instance produced is unique up to 
alphabetic variants (variable renaming)
usually we assume there is no common variables 
in the two atoms

for all ,i jw s w s i j=

not the simplest unifier
most general unifier (mgu)

{P(x,f(y),B),P(x,f(B),B)}

s={B/y,A/x} 

s={B/y} 
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Workout

P(B,f(x),g(A)) and P(y,z,f(w))
construct an mgu
construct a unifier that is not the most general.

82

Workout

Determine if each of the following sets is 
unifiable.  If yes, construct an mgu. 
{Q(a), Q(b)} 
{Q(a,x),Q(a,a)} 
{Q(a,x,f(x)),Q(a,y,y)}
{Q(x,y,z),Q(u,h(v,v),u)} 
{P(x1,g(x1),x2,h(x1,x2),x3,k(x1,x2,x3)), 
P(y1,y2,e(y2),y3,f(y2,y3),y4)} 
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Resolution Principle
- Disagreement set in unification

The disagreement set of a set of expressions 
{wi} is the set of subterms { ti } of {wi} at the 
first position in {wi} for which the {wi} disagree 

  gives 
gives 

 gives

{P(x,A,f(y)),P(w,B,z)} {x,w}

{P(x,A,f(y)),P(x,B,z)} {A,B}

{P(x,y,f(y)),P(x,B,z)}  {y,B}
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Resolution Principle
- Unification algorithm
Unify( )
Initialize 0;
Initialize ;
Initialize {};
* If  is a singleton, then output . O therwise, continue.
Let  be the disagreement set of  
If there exists a var  and a term  

k

k

k k

k k

k k

Terms
k
T Term s

T
D T

v t

σ
σ

←
=
=

1

1

in D  such that  
does not occur in ,  continue. O therw ise, exit w ith failure.

{ / };
{ / };

1;
Goto *

k k

k

k k k k

k k k k

v
t

t v
T T t v
k k

σ σ+

+

←
←

← +
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Predicate calculus Resolution

John Allan Robinson (1965)

1 2

1 1 2 2

1 2

1 2

1 1 2 2

1 2

Let  and  be two clauses with
literals    and   such that 
 and  do not contain common variables,

and ( , )
then [{ { }} { { }}]

is a resolvent of  and 

C C
l C l C

C C
mgu l l

C C l C l
C C

θ
θ

∈ ¬ ∈

=
= − − ¬∪
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John Allan Robinson (1965)

Given 
C:  l1∨l2∨…∨lm
C:  ¬k1∨k2∨…∨kn

θ=mgu(l1,k1)
the resolvent is 

l2θ ∨…∨ lmθ ∨ k2θ ∨…∨ knθ

Predicate calculus Resolution

no common 
variables!
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Resolution Principle
- Example and 

Standardizing the variables apart
and 

Substitution =
Resolvent 

θ

∨ ∨ ¬

∨ ∨ ¬

∨

P(x) Q(f(x)) R(g(x)) Q(f(A))

P(x) Q(f(x)) R(g(y)) Q(f(A))

{A/x}

P(A) R(g(y))

and 
Standardizing the variables apart

Substitution =
Resolvent 

θ

∨ ¬ ∨ ¬

∨ ¬

P(x) Q(x,y) P(A) R(B,z)

{A/x}

Q(A,y) R(B,z)

Why 
can we 
do this ?

Why we 
think the 
variables in 
2 clauses 
are 
irrelevant ?

88

Workout

Find all the possible resolvents (if any) of the 
following pairs of clauses. 
¬P(x)∨Q(x,b), 
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Workout

Find all the possible resolvents (if any) of the 
following pairs of clauses. 
¬P(x)∨Q(x,b), P(a)∨Q(a,b)
¬P(x)∨Q(x,x), ¬Q(a,f(a))
¬P(x,y,u)∨¬P(y,z,v)∨¬P(x,v,w)∨P(u,z,w), 
P(g(x,y),x,y)
¬P(v,z,v)∨P(w,z,w), P(w,h(x,x),w)

90

Resolution Principle
- A stronger version of resolution

Use more than one literal per clause

 and 
do not resolve to empty clause.

However, ground instances 
 and resolve to empty clause

¬ ¬

¬

{P(u),P(v)} { P(x), P(y)}

{P(A)} { P(A)} 
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Resolution Principle
- Factors

1

1. 1 1

Let  be a clause such that there exists
a substitution that is a mgu of a set of literals
in Then is a factor of 

Each clause is a factor of itself.
Also, {P(f(y)),R(f(y),y)}is a factor of {P(x

C

C C C
θ
θ

),P(f(y)),R(x,y)}
with { ( ) / }f y xθ =

92

Resolution Principle
- Example of refutation
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Resolution Principle
- Example

Hypothesies
∀x (dog(x) ⇒ animal(x))
dog(fido)
∀y (animal(y) ⇒ die(y))

Conclusion
die(fido)

Clausal Form
¬dog(x) ∨ animal(x)
dog(fido)
¬animal(y) ∨ die(y)

Negate the goal
¬die(fido)

94

Resolution Principle
- Example ¬dog(x) ∨ animal(x) ¬animal(y) ∨ die(y)

¬dog(y) ∨ die(y)

{x {x → y}

dog(fido)

die(fido)

{y → fido}

¬die(fido)

 ⊥
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Workout (resolution)
- Proof with resolution principle
Hypotheses: 

P(m(x),x) ∨ Q(m(x)) 
¬P(y,z) ∨ R(y) 
¬Q(m(f(x,y))) ∨ ¬T(x,g(y))
S(a) ∨ T(f(a),g(x))
¬R(m(y))
¬S(x) ∨ W(x,f(x,y))

Conclusion 
W(a, y) 

96

Resolution

Properties
Resolution is sound
Incomplete

But fortunately it is refutation complete
If KB is unsatisfiable then KB |-

Given 
Infer 

P(A)

{P(A),P(B)}
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Resolution Principle
- Refutation Completeness
To decide whether a formula KB ⊨ w,  do

Convert KB to clausal form KB’
Convert ¬w to clausal form ¬w’
Combine ¬w’ and KB’ to give Δ
Iteratively apply resolution to Δ and add the 
results back to Δ until either no more 
resolvents can be added, or until the empty 
clause is produced.

98

Resolution Principle
- Converting to clausal form (1/2)
To convert a formula KB into clausal form
1. Eliminate implication signs*

2. Reduce scope of negation signs*

3. Standardize variables

4. Eliminate existential quantifiers using Skolemization
* Same as in prop. logic

( ) becomes ( )p q p q⇒ ¬ ∨

( ) becomes ( )p q p q¬ ∧ ¬ ∨ ¬

(  becomes (∀ ¬ ∨ ∃ ∀ ¬ ∨ ∃x)[ P(x) ( x)Q(x)] x)[ P(x) ( y)Q(y)]
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Resolution Principle
- Converting to clausal form (2/2)
5. Convert to prenex form

Move all universal quantifiers to the front

6. Put the matrix in conjunctive normal form*
Use distribution rule 

7. Eliminate universal quantifiers
8. Eliminate conjunction symbol *
9. Rename variables so that no variable occurs in 

more than one clause.

100

Resolution Principle
- Skolemization

General rule is that each occurrence of an existentially 
quantified variable is replaced by a skolem function whose 
arguments are those universally quantified variables 
whose scopes includes the scope of the existentially 
quantified one

Skolem functions do not yet occur elsewhere !
Resulting formula is not logically equivalent !

Consider 
The  depends on the 
Define this dependence e skolem function xplicitly using a 
Formula becomes  

∀ ∃

∀
h

( x)[( y)Height(x,y)]

y x

( x)[Height(x,h(

(x)

x))]
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Resolution Principle
- Examples of Skolemization

A well formed formula and its Skolem form are not logically 
equivalent. 

However, a set of formulae is  (un)satisfiable if and only if 
its skolem form is (un)satisfiable. 

gives
∀ ⇒ ∀ ∀ ∃ ⇒ ∀

∀ ⇒ ∀ ∀ ⇒ ∀

[( w)Q(w)] ( x){( y){( z)[P(x,y,z) ( u)R(x,y,u,z)]}}

[( w)Q(w)] ( x){( y)[P(x,y,g(x,y)) ( u)R(x,y,u,g(x,y))]}

( gives (
but

( gi
Not logically equivalent

ves skolem constant
 !

∀ ∃ ∀

∃ ∀ ∀

x)[( y) F(x,y)] x)F(x,

y) [( x)F(x,y)] [( x)F(x, )]

)

sk  

h(x )

102

Resolution Principle
- Example of conversion to clausal form
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Workout

Convert the following formula to clausal form. 
∃x(P(x)∧∀y
((∃z.Q(x,y,s(z))) (Q(x,s(y),x)∧R(y))))
∀x∀y(S(x,y,z) ∃z(S(x,z) ∧ S(z,x)))

104

Resolution Principle
- Example of refutation by resolution

all packages in room 27 are smaller than any of those in 28

Prove 

¬ ∨ ¬ ∨ ¬ ∨ ¬ ∨

∨

¬

1. P(x) P(y) I(x,27) I(y,28) S(x,y)

2.P(A)

3.P(B)

4.I(A,27) I(A,28)

5.I(B,27)

6. S(B,A)

I(A,27)
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Resolution Principle
- Search Strategies

Ordering strategies
In what order to perform resolution ?
Breadth-first, depth-first, iterative deepening ?
Unit-preference strategy : 

Prefer those resolution steps in which at least one 
clause is a unit clause (containing a single literal)

Refinement strategies
Unit resolution : allow only resolution with unit 
clauses

106

Resolution Principle
- Input Resolution

at least one of the clauses being resolved is a 
member of the original set of clauses
Input resolution is complete for Horn-clauses 
but incomplete in general
E.g. 

One of the parents of the empty clause 
should belong to original set of clauses

{ , },{ , },{ , },{ , }P Q P Q P Q P Q¬ ¬ ¬ ¬
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Workout

Use input resolution to prove the theorem in 
page workout(resolution)!

108

Resolution Principle
- Linear Resolution

Linear resolvent is one in which at least one 
of the parents is either 

an initial clause or 
the resolvent of the previous resolution step.  

Refutation complete
Many other resolution strategies exist
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workout

Use linear resolution to prove the theorem in 
page workout(resolution)!

110

Resolution Principle
- Set of support

Ancestor : c2 is a descendant of c1 iff c2 is a 
resolvent of c1 (and another clause) or if c2 is a 
resolvent of a descendant of c1 (and another 
clause); c1 is an ancestor of c2
Set of support : the set of clauses coming from 
the negation of the theorem (to be proven) and 
their descendants
Set of support strategy : require that at least one 
of the clauses in each resolution step belongs to 
the set of support
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workout

Use set of support to prove the theorem in 
page workout(resolution)!

112

Resolution Principle
- Answer extraction
Suppose we wish to prove  whether KB |= 

(∃w)f(w) 
We are probably interested in knowing the w for 

which f(w) holds.
Add Ans(w) literal to each clause coming from 

the negation of the theorem to be proven; 
stop resolution process when there is a 
clause containing only Ans literal
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Resolution 
Principle
- Example
of answer 
extraction

all packages in room 27 are smaller than any of those in 28

Prove ( , i.e. in which room is A?

¬ ∨ ¬ ∨ ¬ ∨ ¬ ∨

∨

¬
∃

1. P(x) P(y) I(x,27) I(y,28) S(x,y)

2.P(A)

3.P(B)

4.I(A,27) I(A,28)

5.I(B,27)

6. S(B,A)

u)I(A,u)

114

Workout

Use answer extraction to prove the theorem 
in page workout(resolution)!
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Theory of Equality
Herbrand Theorem does not apply to FOL with equality. 
So far we’ve looked at predicate logic from the point of view of 
what is true in all interpretations. 

This is very open-ended.
Sometimes we want to assume at least something about our 
interpretation to enrich the theory in what we can express and 
prove.
The meaning of equality is something that is common to all 
interpretations. 

Its interpretation is that of equivalence in the domain. 
If we add = as a predicate with special meaning in predicate logic, 
we can also add rules to our various proof procedures.

Normal models are models in which the symbol = is interpreted 
as designating the equality relation.

116

Theory of Equality 
- An Axiomatic System with Equality
To the previous axioms and rules of inference, 

we add:
EAx1  .
EAx2  . . ( ( , ) ( , ))
EAx3  . . ( ) ( )

x x x
x y x y A x x A x y
x y x y f x f y

∀ =
∀ ∀ = ⇒ ⇒
∀ ∀ = ⇒ =
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Theory of Equality 
- Natural Deduction Rules for Equality

118

Theory of Equality 
- Natural Deduction Rules for Equality
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Theory of Equality 
- Substitution

Recall: Given a variable x, a term t and a 
formula P, we define          to be the formula 
obtained by replacing ALL free occurrence of 
variable x in P with t.
But with equality, we sometimes don’t want to 
substitute for all occurrences of a variable.
When we write          above the line, we get to 
choose what P is and therefore can choose 
the occurrences of a term that we wish to 
substitute for.

[ / ]P t x

[ / ]P t x

120

Theory of Equality 
- Substitution
Recall from existential introduction:

Matching the top of our rule,                , so line 3 
of the proof is            , which is  
So we don’t have to substitute in for every 
occurrence of a term.

0( , )P Q x x=

0[ / ]P x x 0( , )Q x x
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Theory of Equality 
- Examples
From these two inference rules, we can derive 

two other properties that we expect equality 
to have:
Symmetry :
Transitivity :

, .( ) ( )
ND

x y x y y x∀ = ⇒ =

, , .( ) ( ) ( )
ND

x y z x y y z x z∀ = ∧ = ⇒ =

122

Theory of Equality 
- Example
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Theory of Equality 
- Example

124

Theory of Equality 
- Leibniz’s Law

The substitution inference rule is related to 
Leibniz’s Law.
Leibniz’s Law:

Leibniz’s Law is generally referred to as the 
ability to substitute “equals for equals”.

1 2 1 2if  is a theorem, then so is [ / ] [ / ]t t P t x P t x= ⇔
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Leibniz

Gottfried Wilhelm von Leibniz (1646-
1716) 
The founder of differential and 
integral calculus. 
Another of Leibniz’s lifelong aims 
was to collate all human knowledge. 

“[He was] one of the last great 
polymaths – not in the frivolous 
sense of having a wide general 
knowledge, but in the deeper 
sense of one who is a citizen of 
the whole world of intellectual 
inquiry.”

126

Theory of Equality 
- Example

From our natural deduction rules, we can 
derive Leibniz’s Law:

1 2 1 2( ) ( )
ND

t t P t P t= ⇔
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Theory of Equality 
- Equality: Semantics

The semantics of the equality symbol is 
equality on the objects of the domain.
In ALL interpretations it means the same 
thing.
Normal interpretations are interpretations in 
which the symbol = is interpreted as 
designating the equality relation on the 
domain.
We will restrict ourselves to normal 
interpretations from now on.

128

Theory of Equality 
- Extensional Equality

Equality in the domain is extensional, meaning it is 
equality in meaning rather than form.
This is in contrast to intensional equality which is 
equality in form rather than meaning.
In logic, we are interested in whether two terms 
represent the same object, not whether they are the 
same symbols.
If two terms are intensionally equal then they are 
also extensionally equal, but not necessarily the 
other way around.
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Theory of Equality 
- Equality: Counterexamples

Show the following argument is not valid:

where A,B are constants
. ( ) ( ), ( ), ( )x P x Q x P A A B Q B∃ ∧ =

130

Theory of Arithmetic

Another commonly used theory is that of 
arithmetic. 
It was formalized by Dedekind in 1879 and 
also by Peano in 1889. 
It is generally referred to as Peano’s Axioms.
The model of the system is the natural 
numbers with the constants 0 and 1, the 
functions +, *, and the relation <.
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Peano’s Axioms

132

Intuitionistic Logic

“A proof that something exists is constructive if it provides a 
method for actually constructing it.”
In intuitionistic logic, only constructive proofs are allowed.
Therefore, they disallow proofs by contradiction. To show    , you 
can’t just show       is impossible.
They also disallow the law of the excluded middle arguing that 
you have to actually show one of      or       before you can 
conclude
Intuitionistic logic was invented by Brouwer. Theorem provers
that use intuitionistic logic are Nuprl, Coq, Elf, and Lego.
In this course, we will only be studying classical logic.

φ
φ¬

φ φ¬
φ φ∨ ¬
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Summary

Predicate Logic (motivation, syntax and 
terminology, semantics, axiom systems, 
natural deduction)
Equality, Arithmetic
Mechanical theorem proving


