Predicate Calculus Formal Methods Lecture 6

Farn Wang Dept. of Electrical Engineering National Taiwan University

Apt-pet

- An apartment pet is a pet that is small
- Dog is a pet
- Cat is a pet
- Elephant is a pet
- Dogs and cats are small.
- Some dogs are cute
- Each dog hates some cat
- Fido is a dog

 $\forall x \, small(x) \land pet(x) \supset aptPet(x)$ $\forall x \, dog(x) \supset pet(x)$ $\forall x \, cat(x) \supset pet(x)$ $\forall x \, elephant(x) \supset pet(x)$ $\forall x \, dog(x) \supset small(x)$ $\forall x \, cat(x) \supset small(x)$ $\exists x \, dog(x) \land cute(x)$ $\forall x \, dog(x) \supset \exists y \, cat(y) \land hates(x, y)$ dog(fido)

	On(A,B) False
В	Clear(B) True
A	On(C,Fl) True
Floor	On(C,Fl)∧¬On(A,B) T
Figure 15.1	
A Configuration of Blocks	
Predicate Calculus	World
Predicate Calculus	World A
A B	A B C
A B C	A B C Floor
A B C Fl On	A B C Floor On = {< B, A >, < A, C >, < C, Floor >}
A B C Fl	A B C Floor
A B C Fl On	A B C Floor On = {< B, A >, < A, C >, < C, Floor >}

Let $\ensuremath{\varnothing}$ denote an empty set. Then:

- A ground instance C of a clause C is satisfied by an interpretation *I* if and only if there is a ground literal *L*' in C such that *L*' is also in *I*, i.e. C ∩ *I*≠Ø.
- A clause *C* is satisfied by an interpretation *I* if and only if every ground instance of *C* is satisfied by *I*.
- A clause C is falsified by an interpretation *I* if and only if there is at least one ground instance C of C such that C is not satisfied by *I*.

71

• A set *S* of clauses is unsatisfiable if and only if for every interpretation *I* there is at least one ground instance *C* of some clause *C* in *S* such that *C* is not satisfied by *I*.

<text><text><list-item><list-item><list-item><text><text><text><text><text><text>

Resolution Principle - Properties of substitutions $(\omega s_1)s_2 = \omega(s_1s_2)$ $(s_1s_2)s_3 = s_1(s_2s_3)$ associativity $s_1s_2 \neq s_2s_1$ not commutative


```
Resolution Principle

- Unification algorithm

Unify(Terms)

Initialize k \leftarrow 0;

Initialize T_k = Terms;

Initialize \sigma_k = \{\};

* If T_k is a singleton, then output \sigma_k. Otherwise, continue.

Let D_k be the disagreement set of T_k

If there exists a var v_k and a term t_k in D_k such that v_k

does not occur in t_k, continue. Otherwise, exit with failure.

\sigma_{k+1} \leftarrow \sigma_k \{t_k / v_k\};

T_{k+1} \leftarrow T_k \{t_k / v_k\};

k \leftarrow k+1;

Goto *
```


Resolution Principle		
- Example of refutation		
1. $\{F(Art, Jon)\}$	Δ	
2. $\{F(Bob,Kim)\}$	Δ	
3. $\{\neg F(x,y), P(x,y)\}$	Δ	
4. $\{\neg P(Art, Jon)\}$	Γ	
5. $\{P(Art, Jon)\}$	1, 3	
6. $\{P(Bob,Kim)\}$	2, 3	
7. $\{\neg F(Art, Jon)\}$	3, 4	
8. {}	4, 5	
9. {}	1, 7	
		92


```
- Substitution
```

- Recall: Given a variable x, a term t and a formula P, we define P[t/x] to be the formula obtained by replacing ALL free occurrence of variable x in P with t.
- But with equality, we sometimes don't want to substitute for all occurrences of a variable.
- When we write P[t/x] above the line, we get to choose what P is and therefore can choose the occurrences of a term that we wish to substitute for.

119

- Equality: Semantics

- The semantics of the equality symbol is equality on the objects of the domain.
- In ALL interpretations it means the same thing.
- Normal interpretations are interpretations in which the symbol = is interpreted as designating the equality relation on the domain.

127

 We will restrict ourselves to normal interpretations from now on.

