
1

Process Algebrae
Formal Methods
Lecture 7

Farn Wang
Department of Electrical Engineering
National Taiwan University

What is Process Algebra?

An algebraic approach to the study of
concurrent communicating processes.
The term "process algebra" was coined in
1982 by Bergstra & Klop and was used to
denote an area of science since 1984.
A process algebra was a structure in the
sense of universal algebra that satisfied a
particular set of axioms.

2

The main algebraic approaches to concurrency

Communicating Sequential Processes (CSP)
Hoare (1969, 1978)

Calculus of Communicating Systems (CCS)
Milner (1980)

Algebra of Communicating Processes (ACP)
Bergstra & Klop (1984)

Preliminaries: Equatioal Specification

Definition: Equational Specification (Σ,Ε).
Here Ε is a set of equations of the form t1=t2
where t1 and t2 are terms (axioms) and Σ is
the signature.

3

Example: Natural Number(Ε1,Σ1)

Ε1: axioms
a(x,0)=x
a(x,s(y))=s(a(x,y))
m(x,0)=0
m(x,s(y))=a(m(x,y),x)

Σ1: signature
Constant symbol: 0
variables: x,y
Function symbol: s(successor), a(addition)
and m(multiplication)

Term

Definition:
variables x,y… are terms
constant symbols 0… are terms
if F is a function symbol of arity n, and t1,….,tn are
terms, then F(t1,…,tn) is a term

open term: a term that contains a variable
closed term: a term without variables

4

Σ-algebra

If A is a Σ-algebra, then the equation t1=t2
over (Σ,Ε) has a meaning in A, when we
interpret the constant and function symbols in
t1, t2 by the corresponding constants and
function in A
Abbreviation: A╞ Ε

If the Σ-algebra A satisfies all equation t1 = t2 of Ε
(A is a model of Ε)

Basic Process Algebra (ΣBPA,ΕBPA)

ΕBPA(Syntax)
x+y = y+x A1
(x+y)+z=x+(y+z) A2
x+x=x A3
(x+y)z=xz+yz A4
(xy)z=x(yz) A5
x+δ A6

The operator ⋅ is often omitted, thus xy means x ⋅ y
Brackets are also omitted
⋅ binds stronger than +, thus xy+z means (xy)+z

5

Basic Process Algebra (ΣBPA,ΕBPA)

Semantics
A1(the commutativity of +)
A2(the associativity of +)
A3(the idempotency of +)
A4(the right distributivity of ⋅ over +)
A5(the associativity of ⋅)
A6(termination or deadlock)

Basic Process Algebra (ΣBPA,ΕBPA)

If M╞ (ΣBPA,ΕBPA), then the elements of its
domain are called processes
Example processes

δ
x ⋅ y ⋅ x ⋅ δ
x ⋅ δ + y ⋅ δ
x ⋅(y ⋅ z ⋅ δ + z ⋅ δ)

6

Reasoning in BPA

(x ⋅ y + x ⋅ w) ⋅ z + x ⋅ y ⋅ z
= x ⋅ y ⋅ z + x ⋅ w ⋅ z + x ⋅ y ⋅ z (A4)
= x ⋅ w ⋅ z + x ⋅ y ⋅ z + x ⋅ y ⋅ z (A1)
= x ⋅ w ⋅ z + (x ⋅ y ⋅ z + x ⋅ y ⋅ z) (A2)
= x ⋅ w ⋅ z + x ⋅ y ⋅ z (A3)

Example: Coffee Machine

Consider a simple coffee machine. Coffee
costs 40 cents and tea costs 30 cents.
Excess money should be returned.
Define set of actions: {c10, C, T, d, r10}
First coffee machine:

M1 = c10 ⋅ c10 ⋅ c10 ⋅ c10 ⋅ C ⋅ d ⋅ δ + c10 ⋅ c10 ⋅ c10 ⋅ T ⋅ d ⋅ δ

Another coffee machine:
M2 = C ⋅ c10 ⋅ c10 ⋅ c10 ⋅ c10 ⋅ d ⋅ δ + T ⋅ c10 ⋅ c10 ⋅ c10 ⋅ d ⋅ δ

7

Example: Coffee Machine (cont.)

A better coffee machine
M3 = c10 ⋅ c10 ⋅ c10 ⋅(T ⋅ d ⋅ δ + c10 ⋅(T ⋅ d ⋅ r10 δ + C ⋅ d ⋅ δ))

What does it do?
insert three 10 cent coins (c10)
choose between tea (T) or another 10 cent coin
choose between tea or coffee (C)
dispense drink (d)
return excess money

From processes to transition systems

x →x’ means x can execute a and become x’
Derivation rules for transitions

x →x’ y →y’
a ⋅ x →x’ x + y →x’ x + y →y’

Constructing process graphs:
Take process terms as states
Add an edge from x to x’ with label a if x →x’ can
be derived from the transition rules.

a

a

a

a

a

aa

8

Example: Deriving transitions

Constructing a process graph for x ⋅ y ⋅ δ
Derive transition x ⋅ y ⋅ δ → y ⋅ δ
Derive transition y ⋅ δ → δ
Define states: x ⋅ y ⋅ δ, y ⋅ δ and δ

x

y

x ⋅ y ⋅ δ y ⋅ δ δ

x y

Equality on process graphs

Equality on process graphs should match
equality on processes as defined by the
axioms

So and

Are equal, because x ⋅ y ⋅ δ + x ⋅ y ⋅ δ = x ⋅ y ⋅ δ (A3)

x

x

y

y

x y

9

Bisimulation between G1 and G2

Let N= N1 U N2

A relation R : N1 x N2 is a bisumulation if
If (m,n) in R then
1. If m → m’ then ∃n’:n → n’

and (m’,n’) in R
2. If n → n’ then ∃m’:m → m’

and (m’,n’) in R.

a a

a a

Algorithm for bisimulation:

Partition N into blocks B1∪B2∪…∪Bn=N.
Initially: one block, containing all of N.
Repeat until no change:

Choose a block Bi and a letter a.
If some of the transitions of Bi move to

some block Bj and some not, partition
Bi accordingly.

At the end: Structures bisimilar if initial states of two
structures are in same blocks.

10

Correctness of algorithm

Invariant: if (m,n) in R then m and n remain in the
same block throughout the algorithm.
Termination: can split only a finite number of times.

Example:

A=a.((b.nil)+(c.d.A))

B=(a.(b.nil))+(a.c.d.B)

a b
c

d
s
0

s
1

s
2

s
3

a

d

b

a
c

t0

t1

t4

t2

t3

11

Example:

a b
c

d
s
0

s
1

s
2

s
3

a

d

b

a
c

t0

t1

t4

t2

t3
{s0,s1,s2,s3,t0,t1,t2,t3,t
4}

Example:

a b
c

d
s
0

s
1

s
2

s
3

a

d

b

a
c

t0

t1

t4

t2

t3
{s0,s1,s2,s3,t0,t1,t2,t3,t4} split on
a.{s0,t0},{s1,s2,s3,t1,t2,t3,t4}

12

Example:

a b
c

d
s
0

s
1

s
2

s
3

a

d

b

a
c

t0

t1

t4

t2

t3{s0,t0},{s1,s2,s3,t1,t2,t3,t4} split on
b{s0,t0},{s1,t1},{s0,s2,s3,t2,t3,t4}

Example:

a b
c

d
s
0

s
1

s
2

s
3

a

d

b

a
c

t0

t1

t4

t2

t3
{s0,t0},{s1,t1},{s2,s3,t2,t3,t4} split on c

{s0,t0},{s1},{t1},{s2,s3,t2,t3,t4}

13

Example:

{s0,t0},{s1},{t1},{s2,s3,t2,t3,t4} split on c

{s0,t0},{s1},{t1},{t4},{s2,s3,t2,t3}

a b
c

d
s
0

s
1

s
2

s
3

a

d

b

a
c

t0

t1

t4

t2

t3

Example:

{s0,t0},{s1},{t1},{t4},{s2,s3,t2,t3} split on d

{s0,t0},{s1},{t1},{t4},{s3, t3},{s2,t2}

a b
c

d
s
0

s
1

s
2

s
3

a

d

b

a
c

t0

t1

t4

t2

t3

14

Example:

{s0,t0},{s1},{t1},{t4},{s2,t2},{s3,t3} split on a

{s0},{t0},{s1},{t1},{t4},{s3, t3},{s2,t2}

a b
c

d
s
0

s
1

s
2

s
3

a

d

b

a
c

t0

t1

t4

t2

t3

Example:

{s0},{t0},{s1},{t1},{t4},{s2,s3,t2,t3} split on d

{s0},{t0},{s1},{t1},{t4},{s3},{t3},{s2,t2}

a b
c

d
s
0

s
1

s
2

s
3

a

d

b

a
c

t0

t1

t4

t2

t3

15

Extending BPA

To make BPA useful for real applications, it
has been extended with:

Successful termination: x⋅δ vs x⋅ε
Sequential processes: (x⋅ε + y⋅ε) ⋅ (y⋅δ + x⋅δ)
Recursion: M = x ⋅(y ⋅ M + x ⋅ε) or M = x ⋅(y ⋅ M + x ⋅ M)
Parameterization: M(n) = x⋅ (y⋅M(n) + x⋅M(n + 1))

The resulting theory is called Theory of
Sequential Processes (TSP)

Coffee Machine Example

A coffee machine that makes coffee and
chocolate. It can breakdown unexpectedly.
Coffee costs 25 cent, chocolate costs 20 cent.
The user can insert coins (5 cent, 10 cent,
and 20 cent) and make choices in any order.
If a choice is made and there is enough
money inserted, the drink is offered and
change is returned.

How to describe this system?

16

Coffee Machine Example

Simplify:
Ignore user
Ignore coins of 10 and 20 cent
Ignore chocolate
No breakdown

Actions:
ins5: machine accepts 5 cent coin
Coff: machine selects coffee
makeDrink: machine prepares selected drink
returnDrink: machine offers drink
ret5: machine returns 5 cent coin

Coffee Machine Example

Problems:
Sloppy notation for infinite systems
No structuring mechanism

ins5 ins5 ins5 ins5 ins5 ins5 ins5

ins5 ins5 ins5 ins5ins5
Coff Coff Coff Coff Coff Coff Coff Coff

makeDrink

returnDrink

ret5 ret5

17

Coffee Machine Example

Machine represented by Mm,c:
m∈{5⋅n|n is a natural number} denote money (cent)
c∈{nil,Coff} denotes choice of drink

M0,nil = ins5 ⋅ M5,nil + Coff ⋅ M0,Coff
M5,nil = ins5 ⋅ M10,nil + Coff ⋅ M5,Coff

.

.
M25,Coff = makeDrink ⋅ returnDrink ⋅ M0,nil
M30,Coff = ret5 ⋅ M25,Coff
M35,Coff = ret5 ⋅ M25,Coff

.

.

Coffee Machine Example
General from:

Relation with transition-system:

m+5,c m,Coff

m+5,c
m,c

0,nil

m-5,c

ins5 M Coff M if c Coff
ins5 M if m<25 and c=Coff

M
makeDrink returnDrink M if m=25 and c=Coff
ret5 M

⋅ + ⋅ ≠

⋅
=

⋅ ⋅

⋅ if m>25 and c=Coff

⎧
⎪
⎪
⎨
⎪
⎪
⎩

ins5 ins5 ins5 ins5 ins5 ins5 ins5

ins5 ins5 ins5 ins5ins5
Coff Coff Coff Coff Coff Coff Coff Coff

makeDrink

returnDrink

ret5 ret5

18

Coffee Machine Example

Observations
Even the simplified coffee machine is quite complex
Structuring mechanism needed
Two mathematical domains:

transition-systems (possibly infinite)
Equations on terms (possibly recursive)

Results in one domain should hold in the other as well
Transition-systems are more intuitive
Equations are better suited for formal reasoning

Extending TSP

To make TSP more useful for real
applications, it has been extended with:

Parallelism: M║M║(x⋅y⋅ε + y⋅z⋅ε)
Communication: s(3)⋅x║(r(1) + … + r(10))⋅b
Abstraction: τ{i1,i2}{a⋅i1⋅i2⋅y⋅ε}

We call the resulting theory Algebra of
Communicating Processes (ACP)

19

Parallelism: Interleaving Concurrency

If A and B are processes which cannot
communicate, then the parallel composition
A ║B executes A and B arbitrarily
interleaved.
For example: A = a⋅b⋅ε and B = b⋅c⋅δ, then
A║B can execute a,b,b,c, or b,a,c,b, or
a,b,c,b, etc.

The ║ operator can be eliminated:
A║B=a⋅(b⋅b⋅c⋅δ+b⋅(b⋅c⋅δ+c⋅b⋅δ))+b⋅(a⋅(b⋅c⋅δ+c⋅b⋅δ)+c⋅a⋅b⋅δ)

Process graph of A║B
A║B

A

B

a b

a b

b

c

b

c

b

c

b

c

a b

a b

20

Parallelism: Interleaving Concurrency and
Communication

A and B as before, but now they
communicate on action b. The result of a
communication is an action d:

γ(b,b)=d
Again, the║operator can be eliminated:

A║B=a⋅(b⋅b⋅c⋅δ+b⋅(b⋅c⋅δ+c⋅b⋅δ)+d⋅c⋅δ)+b⋅(a⋅(b⋅c⋅δ+c⋅b⋅δ)+c⋅
a⋅b⋅δ)

Process graph of A║B with
communication

A║B

A

B

a b

a b

b

c

b

c

b

c

b

c

a b

a b

d

21

Enforcing Communication

By encapsulating (disabling) certain actions,
communication can be enforced.
New process operator: ∂H(), with H ⊆ A
Process ∂H(x) is like x, but cannot execute
action a ∈ H
For example,

∂{b}(A║B) = a ⋅ d ⋅ c ⋅ δ
The b actions of A║B are encapsulated.

Building Concurrent Systems

Specify separate components
Specify the communication actions between
these components
Construct parallel compositions of
components
I Encapsulate certain actions to enforce
communication

22

Example

4 sequential components: A, B, C and D.
Communication between A and B; A and C; B
and D; and C and D.
Send actions: sX,Y and receive actions rX,Y
where X, Y range over A, B, C, D.
Communication actions: γ(sX,Y , rX,Y) = cX,Y

Complete system:
S = ∂H(A║B║C║D) where H={sX,Y} ∪{rX,Y}

A║B║C║D

A

B

C

D

sB,DrA,B

sA,B
rB,D

sA,C

rA,C sC,D

rC,D

23

Abstraction

Operator: τH(), with H ⊆ A
Purpose: hide internal action of components

First, all a ∈ H are renamed into τ
Then some τ’s are removed using axioms for τ

For example:
 τ{b,c}(a ⋅ b ⋅(c ⋅ a ⋅ ε + c ⋅ ε))
=a ⋅ τ ⋅(τ ⋅ a ⋅ ε + τ ⋅ ε)
=a ⋅(τ ⋅ a + τ ⋅ ε)

Only τ’s that don’t make a choice can be removed!

