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Theorem proving
Formal Methods
Lecture 8

Farn Wang 
Department of Electrical Engineering
National Taiwan University

Theorem Proving: Historical Perspective

Theorem proving (or automated deduction) = 
logical deduction performed by machine
At the intersection of several areas

Mathematics: original motivation and techniques
Logic: the framework and the meta-reasoning 
techniques



2

Theorem proving

Prove that an implementation satisfies a 
specification by mathematical reasoning

implement Spec

implication

equivalence
or

Theorem proving

Implementation and specification expressed as 
formulas in a formal logic
Required relationship (logical 
equivalence/logical implication) described as a 
theorem to be proven within the context of a 
proof calculus
A proof system:

A set of axioms and inference rules (simplification, 
rewriting, induction, etc.)
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Proof checking

It is a purely syntactic matter to decide whether each 
theorem is an axiom or follows from previous theorems 
(axioms) by a rule of inference

Proof checker
“is this a proof?”

Purported proof “Yes” / “No”

Proof generation

Complete automation generally impossible: theoretical 
undecidability limitations
However, a great deal can be automated (decidable 
subsets, specific classes of applications and 
specification styles)

Proof generator
“prove this theorem”

purported theorem a proof
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Applications 

Hardware and software verification (or 
debugging)
Automatic program synthesis from specifications
Discovery of proofs of conjectures

A conjecture of Tarskiwas proved by machine (1996)
There are effective geometry theorem provers

Program Verification 

Fact: mechanical verification of software would 
improve software productivity, reliability, 
efficiency
Fact: such systems are still in experimental 
stage

After 40 years !
Research has revealed formidable obstacles
Many believe that program verification is extremely 
difficult
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Program Verification

Fact:
Verification is done with respect to a specification
Is the specification simpler than the program ?
What if the specification is not right ?

Answer:
Developing specifications is hard
Still redundancy exposes many bugs as 
inconsistencies
We are interested in partial specifications

An index is within bounds, a lock is released…

Programs, Theorems. Axiomatic Semantics 

Consists of:
A language for writing specifications about programs
Rules for establishing when specifications hold

Typical specifications:
During the execution, only non-null pointers are 
dereferenced
This program terminates with x = 0

Partial vs. total correctness specifications
Safety vs. liveness properties
Usually focus on safety (partial correctness)
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Specification Languages 

Must be easy to use and expressive (conflicting 
needs)

Most often only expressive
Typically they are extensions of first-order logic

Although higher-order or modal logics are also used
We focus here on state-based specifications 
(safety)

State = values of variables + contents of heap (+ past 
state)

Not allowed: “variable x is live”, “lock L will be released”, 
“there is no correlation between the values of x and y”

A Specification Language 

We’ll use a fragment of first-order logic:
Formulas P ::= A | true | false | P1∧P2| P1∨P2| ¬P | ∀x.P
Atoms      A ::= E1≤E2| E1= E2| f(A1,…,An) | …

※ All boolean expressions from our language are atoms
Can have an arbitrary collection of predicate symbols

reachable(E1,E2) - list cell E2 is reachable from E1
sorted(a, L, H)      - array a is sorted between L and H
ptr(E,T)                 - expression E denotes a pointer to T
E : ptr(T)               - same in a different notation

An assertion can hold or not in a given state
Equivalently, an assertion denotes a set of states
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Program Verification Using 
Hoare’s Logic

Hoare Triples 

Partial correctness: { P } s { Q }
When you start s in any state that satisfies P
If the execution of s terminates
It does so in a state that satisfies Q

Total correctness: [ P ] s [ Q ]
When you start sin any state that satisfies P
The execution of s terminates and
It does so in a state that satisfies Q

Defined inductively on the structure of 
statements
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Hoare Rules 

Assignments
y:=t

Composition
S1; S2

If-then-else
if e the S1 else S2

While 
while e do S

Consequence

Greatest common divisor

{x1>0 ∧ x2>0}
y1:=x1;
y2:=x2;
while ¬(y1=y2) do

if y1>y2 then y1:=y1-y2
else y2:=y2-y1

{y1=gcd(x1,x2)}
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Why it works?

Suppose that y1,y2 are both positive integers.
If y1>y2 then gcd(y1,y2)=gcd(y1-y2,y2)
If y2>y1 then gcd(y1,y2)=gcd(y1,y2-y1)
If y1-y2 then gcd(y1,y2)=y1=y2

Hoare Rules: Assignment 

General rule:
{p[t/y]} y:=t {p}

Examples: 
{y+5=10} y:=y+5 {y=10}
{y+y<z} x:=y {x+y<z}
{2*(y+5)>20} y:=2*(y+5) {y>20}

Justification: write p with y’ instead of y, and add 
the conjunct y’=t. Next, eliminate y’ by replacing 
y’ by t.
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Hoare Rules: Assignment

{p} y:=t {?}
Strategy: write p and the conjunct y=t, where y’ replaces 
y in both p and t.  Eliminate y’.

Example:
{y>5} y:=2*(y+5) {?}

{p} y:=t {∃y’ (p[y’/y]    t[y’/y]=y)}
y’>5    y=2*(y’+5) → y>20

∧
∧

Hoare Rules: Composition

General rule:
{p} S1 {r}, {r} S2 {q} → {p} S1;S2 {q}

Example: 
if the antecedents are
1. {x+1=y+2} x:=x+1 {x=y+2}
2. {x=y+2} y:=y+2 {x=y}
Then the consequent is

{x+1=y+2} x:=x+1; y:=y+2 {x=y}
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Hoare Rules: If-then-else

General rule:
{p ∧ e} S1 {q}, {p ∧ ¬e} S2 {q}
{p} if e then S1 else S2 {q}

Example:
p is gcd(y1,y2)=gcd(x1,x2) ∧ y1>0 ∧ y2>0 ∧ ¬(y1=y2)
e is y1>y2
S1 is y1:=y1-y2
S2 is y2:=y2-y1
q is gcd(y1,y2)=gcd(x1,x2) ∧ y1>0 ∧ y2>0

Hoare Rules: While

General rule:
{p ∧ e} S {p}
{p} while e do S {p ∧ ¬e}

Example:
p is {gcd(y1,y2)=gcd(x1,x2) ∧ y1>0 ∧ y2>0}
e is (y1 ≠ y2)
S is if y1>y2 then y1:=y1-y2 else y2:= y2-y1
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Hoare Rules: Consequence

Strengthen a precondition
r p, {p} S {q}
{r} S {q}

Weaken a postcondition
{p} S {q}, q r
{p} S {r}

Soundness

Hoare logic is sound in the sense that everything 
that can be proved is correct!
This follows from the fact that each axiom and 
proof rule preserves soundness.
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Completeness

A proof system is called complete if every 
correct assertion can be proved.

Propositional logic is complete.
No deductive system for the standard arithmetic 
can be complete (Godel).

And for Hoare logic?

Let S be a program and p its precondition.
Then {p} S {false} means that S never 
terminates when started from p. This is 
undecidable. Thus, Hoare’s logic cannot be 
complete.
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Hoare Rules: Examples

Consider
{ x = 2 } x := x + 1 { x < 5 }
{ x < 2 } x := x + 1 { x < 5 }
{ x < 4 } x := x + 1 { x < 5 }

They all have correct preconditions
But the last one is the most general (or weakest) 
precondition

Dijkstra’s Weakest Preconditions 

Consider { P } s { Q }
Predicates form a lattice:

valid precondictions

false true

strong weak

To verify { P } s { Q }
compute WP(s, Q) and prove P ≠ WP(s, Q)
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Weakest prendition, 
Strongest postcondition

For an assertion p and code S, let post(p,S) be 
the strongest assertion such that 
{p}S{post(p,S)}
That is, if {p}S{q} then post(p,S) q.

For an assertion q and code S, let pre(S,q) be 
the weakest assertion such that 
{pre(S,q)}S{q}
That is, if {p}S{q} then p pre(S,q).

Relative completeness

Suppose that either 
post(p,S) exists for each p, S, or
pre(S,q) exists for each S, q.

Some oracle decides on pure implications.
Then each correct Hoare triple can be proved.
What does that mean? The weakness of the
proof system stem from the weakness of the (FO) 
logic, not of Hoare’s proof system.
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Extensions

Many extensions for Hoare’s proof rules:
Total correctness
Arrays
Subroutines
Concurrent programs
Fairness

Higher-Order Logic
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Higher-Order Logic

First-order logic:
only domain variables can be quantified.

Second-order logic:
quantification over subsets of variables (i.e., over 
predicates).

Higher-order logics:
quantification over arbitrary predicates and functions.

Higher-Order Logic

Variables can be functions and predicates,
Functions and predicates can take functions as 
arguments and return functions as values,
Quantification over functions and predicates.

Since arguments and results of predicates and 
functions can themselves be predicates or 
functions, this imparts a first-class status to 
functions, and allows them to be manipulated 
just like ordinary values
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Higher-Order Logic

Example 1: (mathematical induction)
∀P. [P(0) ∧ (∀n. P(n)→P(n+1))] → ∀n.P(n) 
(Impossible to express it in FOL)

Example 2: 
Function Rise defined as Rise(c, t) = ¬c(t) ∧ c(t+1)
Rise expresses the notion that a signal c rises at time t.
Signal is modeled by a function c: N → {F,T}, passed as 
argument to Rise.
Result of applying Rise to c is a function: N → {F,T}.

Higher-Order Logic (cont’d)

Advantage:
high expressive power!

Disadvantages:
Incompleteness of a sound proof system for most 
higher-order logics
Theorem (Gödel, 1931)
There is no complete deduction system for the 
second-order logic.
Reasoning more difficult than in FOL, need ingenious 
inference rules and heuristics.
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Higher-Order Logic (cont’d)

Disadvantages:
Inconsistencies can arise in higher-order systems if semantics 
not carefully defined 
“Russell Paradox”:
Let P be defined by P(Q) = ¬Q(Q). By substituting P for Q, leads 
to P(P) = ¬P(P),

(P: bool → bool, Q: bool → bool)

Introduction of “types” (syntactical mechanism) is effective 
against certain inconsistencies.
Use controlled form of logic and inferences to minimize the risk 
of inconsistencies, while gaining the benefits of powerful 
representation mechanism.
Higher-order logic increasingly popular for hardware verification!

Contradiction!

Theorem Proving Systems

Automated deduction systems (e.g. Prolog)
full automatic, but only for a decidable subset of FOL
speed emphasized over versatility
often implemented by ad hoc decision procedures
often developed in the context of AI research

Interactive theorem proving systems
semi-automatic, but not restricted to a decidable 
subset
versatility emphasized over speed
in principle, a complete proof can be generated for 
every theorem
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Theorem Proving Systems

Some theorem proving systems:
Boyer-Moore (first-order logic)
HOL (higher-order logic)
PVS (higher-order logic)
Lambda (higher-order logic)

HOL

HOL (Higher-Order Logic) developed at 
University of Cambridge
Interactive environment (in ML, Meta Language) 
for machine assisted theorem proving in higher-
order logic (a proof assistant)
Steps of a proof are implemented by applying 
inference rules chosen by the user; HOL checks 
that the steps are safe
All inferences rules are built on top of eight 
primitive inference rules
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HOL

Mechanism to carry out backward proofs by 
applying built-in ML functions called tactics and 
tacticals
By building complex tactics, the user can 
customize proof strategies
Numerous applications in software and 
hardware verification
Large user community

HOL Theorem Prover

Logic is strongly typed (type inference, abstract data 
types, polymorphic types, etc.)
It is sufficient for expressing most ordinary mathematical 
theories (the power of this logic is similar to set theory)
HOL provides considerable built-in theorem-proving 
infrastructure:

a powerful rewriting subsystems
library facility containing useful theories and tools for general use
Decision procedures for tautologies and semi-decision 
procedure for linear arithmetic provided as libraries
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HOL Theorem Prover

The primary interface to HOL is the functional 
programming language ML
Theorem proving tools are functions in ML 
(users of HOL build their own application specific 
theorem proving infrastructure by writing 
programs in ML)
Many versions of HOL:

HOL88: Classic ML (from LCF);
HOL90: Standard ML
HOL98: Moscow ML

HOL Theorem Prover (cont’d)

The HOL systems can be used in two main ways:
for directly proving theorems: when higher-order logic is a 
suitable specification language (e.g., for hardware verification
and classical mathematics)
as embedded theorem proving support for application-specific 
verification systems when specification in specific formalisms 
needed to be supported using customized tools.

The approach to mechanizing formal proof used in HOL is due to 
Robin Milner.
He designed a system, called LCF: Logic for Computable Functions. 
(The HOL system is a direct descendant of LCF.)

HOL and ML

The ML Language
Some predefined functions + typesHOL =
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Specification in HOL

Functional description:
express output signal as function of input signals, e.g.:

AND gate:
out = and (in1, in2) = (in1 ∧ in2)

Relational (predicate) description:
gives relationship between inputs and outputs in the form of a 
predicate (a Boolean function returning “true” of “false”), e.g.:

AND gate:
AND ((in1, in2),(out)):= out =(in1 ∧ in2)

Specification in HOL

Notes:
functional descriptions allow recursive functions to be 
described. They cannot describe bi-directional signal 
behavior or functions with multiple feed-back signals, 
though
relational descriptions make no difference between 
inputs and outputs
Specification in HOL will be a combination of 
predicates, functions and abstract types
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Specification in HOL

conjunction “∧” of implementation module predicates
M (a, b, c, d, e):= M1 (a, b, p, q) ∧ M2 (q, b, e) ∧ M3 (e, p, c, d)

hide internal lines (p,q) using existential quantification
M (a, b, c, d, e):= ∃ p q. M1 (a, b, p, q) ∧ M2 (q, b, e) ∧ M3 (e, p, c, d)

Network of modules

M1

M2

M3

a
b

c
d

e

p

q

M

Specification in HOL

SPEC (in1, in2, in3, in4, out):= 
out = (in1 ∧ in2) ∨ (in3 ∧ in4)

IMPL (in1, in2, in3, in4, out):=
∃ l1, l2. AND (in1, in2, l1) ∧ AND (in3, in4, l2) ∧ OR (l1, l2, out)

where AND (a, b, c):= (c =a ∧ b)
OR (a, b, c):= (c = a ∨ b)

Combinational circuits
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Specification in HOL

Note: a functional description would be:
IMPL (in1, in2, in3, in4, out):=

out = (or (and (in1, in2), and (in3, in4))
where and (in1, in2) = (in1 ∧ in2)

or (in1, in2) = (in1 ∨ in2)

Specification in HOL

Sequential circuits
Explicit expression of time (discrete time modeled as natural 
numbers).
Signals defined as functions over time, e.g. type: (nat → bool) or 
(nat → bitvec)
Example: D-flip-flop (latch):
DFF (in, out):= (out (0) = F) ∧ (∀ t. out (t+1) = in (t))
in and out are functions of time t to boolean values: type (nat → bool)
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Specification in HOL

Notion of time can be added to combinational circuits, e.g., AND
gate
AND (in1, in2, out):= ∀ t. out (t) = (in1(t) ∧ in2(t))

Temporal operators can be defines as predicates, e.g.:
EVENTUAL sig t1 = ∃ t2. (t2 > t1) ∧ sig t2
meaning that signal “sig” will eventually be true at time t2 > t1 .

Note: This kind of specification using existential quantified time 
variables is useful to describe asynchronous behavior

HOL Proof Mechanism

A formal proof is a sequence, each of whose 
elements is

either an axiom
or follows from earlier members of the sequence by a 
rule of inference

A theorem is the last element of a proof
A sequent is written:

Γ P, where Γ is a set of assumptions and P is the 
conclusion
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HOL Proof Mechanism

In HOL, this consists in applying ML functions 
representing rules of inference to axioms or previously 
generated theorems
The sequence of such applications directly correspond to 
a proof
A value of type thm can be obtained either

directly (as an axiom)
by computation (using the built-in functions that represent the 
inference rules)

ML typechecking ensures these are the only ways to 
generate a thm:
All theorems must be proved!

Verification Methodology in HOL

1. Establish a formal specification (predicate) of the 
intended behavior (SPEC)

2. Establish a formal description (predicate) of the 
implementation (IMP), including:

behavioral specification of all sub-modules
structural description of the network of sub-modules

3. Formulation of a proof goal, either
IMP ⇒ SPEC (proof of implication), or
IMP ⇔ SPEC (proof of equivalence)

4. Formal verification of above goal using a set of 
inference rules
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Example 1: Logic AND

AND Specification:
AND_SPEC (i1,i2,out) := out = i1 ∧ i2

NAND specification:
NAND (i1,i2,out) := out = ¬(i1 ∧ i2)

NOT specification:
NOT (i, out) := out = ¬ I

AND Implementation:
AND_IMPL (i1,i2,out) := ∃x. NAND (i1,i2,x) ∧ NOT (x,out)

Example 1: Logic AND
Proof Goal:

∀ i1, i2, out. AND_IMPL(i1,i2,out) ⇒ ANDSPEC(i1,i2,out)

Proof (forward)
AND_IMP(i1,i2,out) {from above circuit diagram}

∃ x. NAND (i1,i2,x) ∧ NOT (x,out) {by def. of AND impl}
NAND (i1,i2,x) ∧ NOT(x,out) {strip off “∃ x.”}
NAND (i1,i2,x) {left conjunct of line 3}
x =¬ (i1 ∧ i2) {by def. of NAND}
NOT (x,out) {right conjunct of line 3}
out = ¬ x {by def. of NOT}
out = ¬(¬(i1 ∧ i2) {substitution, line 5 into 7}
out =(i1 ∧ i2) {simplify, ¬¬ t=t}
AND (i1,i2,out) {by def. of AND spec}
AND_IMPL (i1,i2,out) ⇒ AND_SPEC (i1,i2,out)

Q.E.D.
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Example 2: CMOS-Inverter
Specification (black-box behavior)

Spec(x,y):= (y = ¬ x)

Implementation

Basic Modules Specs
PWR(x):= (x = T)
GND(x):= (x = F)
N-Trans(g,x,y):= (g ⇒ (x = y))
P-Trans(g,x,y):= (¬ g ⇒ (x = y))

p

q

x y

(P-Trans)

(N-Trans)

Example 2: CMOS-Inverter

Implementation (network structure)
Impl(x,y):= ∃ p, q. 

PWR(p) ∧
GND(q) ∧
N-Tran(x,y,q) ∧
P-Tran(x,p,y)

Proof goal
∀ x, y. Impl(x,y) ⇔ Spec(x,y)

Proof (forward)
Impl(x,y):= ∃ p, q. 

(p = T) ∧
(q = F) ∧ (substitution of the definition of PWR and GND) 
N-Tran(x,y,q) ∧
P-Tran(x,p,y)
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Example 2: CMOS-Inverter

Impl(x,y):= ∃ p q. 
(p = T) ∧
(q = F) ∧ (substitution of p and q in P-Tran and N-Tran) 
N-Tran(x,y,F) ∧
P-Tran(x,T,y)

Impl(x,y):= 
(∃ p. p = T) ∧
(∃ q. q = F) ∧ (use Thm: “∃a. t1 ∧ t2 = (∃a. t1) ∧ t2” if a is free in t2)
N-Tran(x,y,F) ∧
P-Tran(x,T,y)

Example 2: CMOS-Inverter

Impl(x,y):=
T ∧
T ∧ (use Thm: “(∃a. a=T) = T” and “(∃a. a=F) = T”)
N-Tran(x,y,F) ∧
P-Tran(x,T,y)

Impl(x,y):= 
N-Tran(x,y,F) ∧ (use Thm: “x ∧ T = x”)
P-Tran(x,T,y)

Impl(x,y):= 
(x ⇒ (y = F)) ∧ (use def. of N-Tran and P-Tran)
(¬ x ⇒ (T = y))
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Example 2: CMOS-Inverter

Impl(x,y):= 
(¬ x ∨ (y = F)) ∧ ((use “(a ⇒ b) = (¬ a ∨ b)”)
(x ∨ (T = y))

Boolean simplifications:
Impl(x,y):= (¬ x ∧ x) ∨ (¬ x ∧ (T = y)) ∨ ((y = F) ∧ x) ∨ ((y = F) ∧ (T = y))
Impl(x,y):= F ∨ (¬ x ∧ (T = y) ) ∨ ((y = F) ∧ x) ∨ F
Impl(x,y):= (¬ x ∧ (T = y)) ∨ ((y = F) ∧ x)

Example 2: CMOS-Inverter

Case analysis x=T/F
x=T:Impl(T,y):= (F ∧ (T = y) ) ∨ ((y = F) ∧ T)
x=F:Impl(F,y):= (T ∧ (T = y) ) ∨ ((y = F) ∧ F)

x=T:Impl(T,y):= (y = F)
x=F:Impl(F,y):= (T = y)

Case analysis on Spec:
x=T:Spec(T,y):= (y = F)
x=F:Spec(F,y):= (y = T)

Conclusion:     Spec(x,y) ⇔ Impl(x,y)

=
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Abstraction Forms

Structural abstraction:
only the behavior of the external inputs and outputs of a module
is of interest (abstracts away any internal details)

Behavioral abstraction:
only a specific part of the total behavior (or behavior under 
specific environment) is of interest

Data abstraction:
behavior described using abstract data types (e.g. natural 
numbers instead of Boolean vectors)

Temporal abstraction:
behavior described using different time granularities (e.g. 
refinement of instruction cycles to clock cycles)

Example 3: 1-bit Adder

Specification:
ADDER_SPEC (in1:nat, in2:nat, cin:nat, sum:nat, cout:nat):= 
in1+in2 + cin = 2*cout + sum

Implementation:

Note: Spec is a structural abstraction of Impl.
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1-bit Adder (cont’d)

Implementation:
ADDER_IMPL(in1:bool, in2:bool, cin:bool, sum:bool, cout:bool):=

∃ l1 l2 l3. EXOR (in1, in2, l1) ∧
AND (in1, in2, l2) ∧
EXOR (l1,cin,sum) ∧
AND (l1, cin, l3) ∧
OR (l2, l3, cout)

Define a data abstraction function (bn: bool → nat) needed to relate 
Spec variable types (nat) to Impl variable types (bool):

bn(x) :=
1, if x = T

0, if x = F

1-bit Adder (cont’d)

Proof goal:
∀ in1, in2, cin, sum, cout.
ADDER_IMPL (in1, in2, cin, sum, cout)

⇒ ADDER_SPEC (bn(in1), bn(in2), bn(cin), bn(sum), bn(cout))
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Verification of Generic Circuits

used in datapath design and verification
idea: 

verify n-bit circuit then specialize proof for specific 
value of n, (i.e., once proven for n, a simple 
instantiation of the theorem for any concrete value, 
e.g. 32, gets a proven theorem for that instance).

use of induction proof

Example 4: N-bit Adder

N-bit Adder

Specification
N-ADDER_SPEC (n,in1,in2,cin,sum,cout):= 
(in1 + in2 + cin = 2n+1 * cout + sum)
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Example 4: N-bit Adder

Implementation

1-bit
ADDER sum[n-1]

coutin
1
[n-1]

in2[n-1]

cin

1-bit
ADDER

1-bit
ADDER

in
1
[n-2]

in
2
[n-2]

in
1
[0]

in
2
[0]

sum[n-2]

sum[0]

w

N-bit Adder (cont’d)

Implementation
recursive definition:
N-ADDER_IMP(n,in1[0..n-1],in2[0..n-1],cin,sum[0..n-1],cout):=
∃ w. N-ADDER_IMP(n-1,in1[0..n-2],in2[0..n-2],cin,sum[0..n-2],w) ∧

N-ADDER_IMP(1,in1[n-1],in2[n-1],w,sum[n-1],cout)
Note:

N-ADDER_IMP(1,in1[i],in2[i],cin,sum[i],cout) = 
ADDER_IMP(in1[i],in2[i],cin,sum[i],cout)

Data abstraction function (vn: bitvec → nat) to relate bit 
vctors to natural numbers:

vn(x[0]):= bn(x[0])
vn(x[0,n]):= 2n * bn(x[n]) + vn(x[0,n-1]
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N-bit Adder (cont’d)

Proof goal:
∀ n, in1, in2, cin, sum, cout.
N-ADDER_IMP(n,in1[0..n-1],in2[0..n-1],cin,sum[0..n-1],cout)
⇒ N-ADDER_SPEC(n, vn(in1[0..n-1]), vn(in2[0..n-1]), vn(cin), 

vn(sum[0..n-1]), vn(cout))

can be instantiated with n = 32:
∀ in1, in2, cin, sum, cout.
N-ADDER_IMP(in1[0..31],in2[0..31],cin,sum[0..31],cout)
⇒ N-ADDER_SPEC(vn(in1[0..31]), vn(in2[0..31]), 
vn(cin), vn(sum[0..31]), vn(cout))

N-bit Adder (cont’d)

Proof by induction over n:
basis step:
N-ADDER_IMP(0,in1[0],in2[0],cin,sum[0],cout)
⇒ N-ADDER_SPEC(0,vn(in1[0]),vn(in2[0]),vn(cin),vn(sum[0]),vn(cout))

induction step:
[N-ADDER_IMP(n,in1[0..n-1],in2[0..n-1],cin,sum[0..n-1],cout) ⇒
N-ADDER_SPEC(n,vn(in1[0..n-1]),vn(in2[0..n-1]),vn(cin),vn(sum[0..n-1]),vn(cout))]
⇒
[N-ADDER_IMP(n+1,in1[0..n],in2[0..n],cin,sum[0..n],cout) ⇒
N-ADDER_SPEC(n+1,vn(in1[0..n]),vn(in2[0..n]),vn(cin),vn(sum[0..n]),vn(cout))]
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N-bit Adder (cont’d)

Notes:
basis step is equivalent to 1-bit adder proof, i.e.
ADDER_IMP(in1[0],in2[0],cin,sum[0],cout)
⇒ ADDER_SPEC(bn(in1[0]),bn(in2[0]),bn(cin),bn(sum[0]),bn(cout))

induction step needs more creativity and work load!

Practical Issues of Theorem Proving

No fully automatic theorem provers. All require 
human guidance in indirect form, such as:

When to delete redundant hypotheses, when to keep a 
copy of a hypothesis
Why and how (order) to use lemmas, what lemma to use 
is an art
How and when to apply rules and rewrites
Induction hints (also nested induction)
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Practical Issues of Theorem Proving

Selection of proof strategy, orientation of equations, etc.
Manipulation of quantifiers (forall, exists)
Instantiation of specification to a certain time and 
instantiating time to an expression
Proving lemmas about (modulus) arithmetic
Trying to prove a false lemma may be long before 
abandoning

PVS
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Prototype Verification System 
(PVS)

Provides an integrated environment for the 
development and analysis of formal 
specifications.
Supports a wide range of activities involved in 
creating, analyzing, modifying, managing, and 
documenting theories and proofs.

Prototype Verification System 
(cont’)

The primary purpose of PVS is to provide formal 
support for conceptualization and debugging in 
the early stages of the lifecycle of the design of a 
hardware or software system.
In these stages, both the requirements and 
designs are expressed in abstract terms that are 
not necessarily executable.
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Prototype Verification System 
(cont’)

The primary emphasis in the PVS proof checker 
is on supporting the construction of readable 
proofs.
In order to make proofs easier to develop, the 
PVS proof checker provides a collection of 
powerful proof commands to carry out 
propositional, equality, and arithmetic reasoning 
with the use of definitions and lemmas.

The PVS Language

The specification language of PVS is built on 
higher-order logic

Functions can take functions as arguments and return 
them as values
Quantification can be applied to function variables

There is a rich set of built-in types and type-
constructors, as well as a powerful notion of 
subtype.
Specifications can be constructed using 
definitions or axioms, or a mixture of the two.
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The PVS Language (cont’)

Specifications are logically organized into 
parameterized theories and datatypes.
Theories are linked by import and export lists.
Specifications for many foundational and 
standard theories are preloaded into PVS as 
prelude theories that are always available and 
do not need to be explicitly imported.

A Brief Tour of PVS

Creating the specification
Parsing
Typechecking
Proving
Status
Generating LATEX
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A Simple Specification Example

sum: Theory
BEGIN

n: VAR nat
sum(n): RECURSIVE nat =
(IF n = 0 THEN 0  ELSE n + sum(n-1) ENDIF)
MEASURE (LAMBDA n : n)
closed_form: THEOREM sum(n) = (n * (n + 1)) / 2

END sum

Creating the Specification

Create a file with a .pvs extension
Using the M-x new-pvs-file command (M-x nf) to create a new 
PVS file, and typing sum when prompted. Then type in the sum 
specification.
Since the file is included on the distribution tape in the 
Examples/tutorial subdirectory of the main PVS directory, it  can 
be imported with the M-x import-pvs-file command (M-x imf). Use 
the M-x whereis-pvs command to find the path of the main PVS 
directory.
Finally, any external means of introducing a file with 
extension .pvs into the current directory will make it available to 
the system. ex: using vi.
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Parsing

Once the sum specification is displayed, it can 
be parsed with the M-x parse (M-x pa) command, 
which creates the internal abstract 
representation for the theory described by the 
specification.
If the system finds an error during parsing, an 
error window will pop up with an error message, 
and the cursor will be placed in the vicinity of the 
error.

Typechecking

To typecheck the file by typing M-x typecheck
(M-x tc, C-c t), which checks for semantic errors, 
such as undeclared names and ambiguous 
types.
Typechecking may build new files or internal 
structures such as TCCs. (when sum has been 
typechecked, a message is displayed in the 
minibuffer indicating the two TCCs were 
generated)
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Typechecking (cont’)

These TCCs represent proof obligations that 
must be discharged before the sum theory can 
be considered typechecked.
TCCs can be viewed using the M-x show-tccs
command.

Typechecking (cont’)

% Subtype TCC generated (line 7) for n-1

% unchecked

sum_TCC1: OBLIGATION (FORALL (n : nat) : NOT n=0 IMPLIES n-1 >= 0);

% Termination  TCC generated (line 7) for sum

% unchecked

sum_TCC2: OBLIGATION (FORALL (n : nat) : NOT n=0 IMPLIES n-1 < n);
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Typechecking (cont’)

The first TCC is due to the fact that sum takes an argument of 
type nat, but the type of the argument in the recursive call to sum 
is integer, since nat is not closed under substraction.

Note that the TCC includes the condition NOT n=0, which holds 
in the branch of the IF-THEN-ELSE in which the expression n-1 
occirs.

The second TCC is needed to ensure that the function sum is 
total. PVS does not directly support partial functions, although its 
powerful subtyping mechanism allows PVS to express many 
operations that are traditionally regarded as partial.

The measure function is used to show that recursive definitions 
are total by requiring the measure to decrease with each 
recursive call.

Proving

We are now ready to try to prove the main 
theorem
Place the cursor on the line containing the 
closed form theorem and type M-x prove M-x pr 
or C-c p
A new buer will pop up the formula will be 
displayed and the cursor will appear at the Rule 
prompt indicating that the user can interact with 
the prover
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Proving (cont’)

First, notice the display, which consists of a single 
formula labeled {1} under a dashed line.
This is a sequent: formulas above the dashed lines are 
called antecedents and those below are called 
succedents

The interpretation of a sequent is that the conjunction of the 
antecedents implies the disjunction of the succedents
Either or both of the antecedents and succedents may be empty

Proving (cont’)

The basic objective of the proof is to generate a proof 
tree in which all of the leaves are trivially true
The nodes of the proof tree are sequents and while in 
the prover you will always be looking at an unproved leaf 
of the tree
The current branch of a proof is the branch leading back 
to the root from the current sequent
When a given branch is complete (i.e., ends in a true 
leaf), the prover automatically moves on to the next 
unproved branch, or, if there are no more unproven 
branches, notifies you that the proof is complete
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Proving (cont’)

We will prove this formula by induction n.
To do this, type (induct “n”)
This generates two subgoals the one displayed is the 
base case where n is 0
To see the inductive step type (postpone) which 
postpones the current subgoal and moves on to the 
next unproved one Type (postpone) a second time to 
cycle back to the original subgoal (labeled 
closed_form.1)

Proving (cont’)

To prove the base case, we need to expand the 
denition of sum, which is done by typing (expand 
“sum”)
After expanding the denition of sum, we send 
the proof to the PVS decision procedures, which 
automatically decide certain fragments of 
arithmetic, by typing (assert)
This completes the proof of this subgoal and the 
system moves on to the next subgoal which is 
the inductive step
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Proving (cont’)

The first thing to do here is to eliminate the FORALL 
quantifier
This can most easily be done with the skolem! command, 
which provides new constants for the bound variables
To invoke this command type (skolem!) at the prompt
The resulting formula may be simplified by typing (flatten), 
which will break up the succedent into a new antecedent 
and succedent

Proving (cont’)

The obvious thing to do now is to expand the 
denition of sum in the succedent. This again is 
done with the expand command, but this time we 
want to control where it is expanded, as 
expanding it in the antecedent will not help. 
So we type (expand “sum” +),  indicating that we 
want to expand sum in the succedent
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Proving (cont’)

The final step is to send the proof to the PVS 
decision procedures by typing (assert)
The proof is now complete the system may ask 
whether to save the new proof and whether to 
display a brief printout of the proof

closed_form :

| - - - - - - -
{1} (FORALL (n : nat) : sum(n) = (n * (n + 1)) / 2)

Rule? (induct “n”)
Inducting on n,
this yields 2 subgoals
closed_form.1 :

| - - - - - - -
{1} sum(0) = (0 * (0 + 1)) / 2

Rule? (postpone)
Postponing closed_form.1
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closed_form.2 :

| - - - - - - -
{1} (FORALL (j : nat) :

sum(j) = (j * (j + 1)) / 2
IMPLIES sum(j + 1) = ((j + 1) * (j + 1 + 1)) / 2

Rule? (postpone)
Postponing closed_form.2

closed_form.1 :

| - - - - - - -
{1} sum(0) = (0 * (0 + 1)) / 2

Rule? (expand “sum”)
(IF 0 = 0 THEN 0 ELSE 0 + sum(0 - 1) ENDIF)

simplifies to 0
Expanding the definition of sum,
this simplifies to:
closed_form.1 :

| - - - - - - -
{1} 0 = 0 / 2

Rule? (assert)
Simplifying, rewriting, and recording with decision procedures,

This completes the proof of closed_form.1.

closed_form.2 :

| - - - - - - -
{1} (FORALL (j : nat) :

sum(j) = (j * (j + 1)) / 2
IMPLIES sum(j + 1) = ((j + 1) * (j + 1 + 1)) / 2
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Rule? (skolem!)
Skolemizing,
this simplifies to:
closed_form.2 | - - - - - - -
{1} sum(j ! 1) = (j ! 1 * (j ! 1 + 1)) / 2

IMPLIES sum(j ! 1 + 1) = ((j ! 1 + 1) * (j ! 1 + 1 + 1)) / 2

Rule? (flatten)
Applying disjunctive simplification to flatten sequent,
This simplifies to:
closed_form.2 :

{-1}sum(j ! 1) = (j ! 1 * (j ! 1 + 1)) / 2
| - - - - - - -

{1} sum(j ! 1 + 1) = ((j ! 1 + 1) * (j ! 1 + 1 + 1)) / 2

Rule? (expand “sum” +)
(IF j ! 1 + 1 = 0 THEN 0 ELSE j ! 1 + 1 + sum(j ! 1 + 1 - 1) ENDIF)
simplifies to 1 + sum(j ! 1) + j ! 1
Expanding the definition of sum,
this simplifies to:
closed_form.2:

[-1] sum(j ! 1) = (j ! 1 * (j ! 1 + 1)) / 2
| - - - - - - -

{1} 1 + sum(j ! 1) + j ! 1 = (2 + j ! 1 + (j ! 1 * j ! 1 + 2 * j ! 1)) / 2

Rule? (assert)
Simplifying, rewriting, and recording with decision procedures,

This completes the proof of closed_form.2.

Q.E.D

Run time = 5.62 secs.
Real time= 58.95 secs.
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Status

Type M-x status-proof-theory (M-x spt) and you 
will see a buffer which displays the formulas in 
sum (including the TCCs), along with an 
indication of their proof status

This command is useful to see which formulas and 
TCCs still require proofs

Another useful command is M-x status-
proofchain (M-x spc), which analyzes a given 
proof to determine its dependencies

Generating LATEX

Type M-x latex-theory-view (M-x ltv). You will be 
prompted for the theory name ─ type sum, or 
just Return if sum is the default
After a few moments the previewer will pop up 
displaying the sum theory, as shown below.
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Generating LATEX (cont’)

sum: THEORY
BEGIN
n: VAR nat
sum(n): RECURSIVE nat =

(IF n = 0 THEN 0 ELSE n + sum(n - 1) ENDIF)
MEASURE (λ n : n)

closed_form: THEOREM sum(n) = (n * (n + 1)) / 2
END sum

Generating LATEX (cont’)

Finally using the M-x latex-proof command, it is 
possible to generate a LATEX file from a proof

Expanding the definition of sum

closeed_form.2:
'

0
{ 1}  ( ' ( ' 1)) / 2j

i
i j j

=
− = × +∑

' 1 1

0
{1}    (IF ' 1 0 THEN 0 ELSE ' 1  ENDIF) (( ' 1) ( ' 1 1)) / 2j

i
j j i j j+ −

=
+ = + + = + × + +∑
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Conclusions

Advantages of Theorem Proving
High abstraction and expressive notation
Powerful logic and reasoning, e.g., induction
Can exploit hierarchy and regularity, puts user in control
Can be customized with tactics (programs that build 
larger proofs steps from basic ones)
Useful for specifying and verifying parameterized 
(generic) datapath-dominated designs
Unrestricted applications (at least theoretically)

Conclusions

Limitations of Theorem Proving:
Interactive (under user guidance): use many lemmas, 
large numbers of commands
Large human investment to prove small theorems
Usable only by experts: difficult to prove large / hard 
theorems
Requires deep understanding of the both the design and 
HOL (while-box verification)
must develop proficiency in proving by working on simple 
but similar problems.
Automated for narrow classes of designs


