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Introduction
Petri Nets

concurrent, asynchronous, distributed, parallel, 
nondeterministic and/or stochastic systems
graphical tool
• visual communication aid

mathematical tool
• state equations, algebraic equations, etc

communication between theoreticians and 
practitioners
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History
1962: C.A. Petri’s dissertation (U. Darmstadt, W. 
Germany)
1970: Project MAC Conf. on Concurrent Systems and 
Parallel Computation (MIT, USA)
1975: Conf. on Petri Nets and related Methods (MIT, USA)
1979: Course on General Net Theory of Processes and 
Systems (Hamburg, W. Germany)
1980: First European Workshop on Applications and 
Theory of Petri Nets (Strasbourg, France)
1985: First International Workshop on Timed Petri Nets 
(Torino, Italy)

Applications
performance evaluation
communication protocols
distributed-software systems
distributed-database systems
concurrent and parallel programs
industrial control systems
discrete-events systems
multiprocessor memory systems
dataflow-computing systems
fault-tolerant systems
etc, etc, etc
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Definition

Directed, weighted, bipartite graph
places
transitions
arcs (places to transitions or transitions 
to places)
weights associated with each arc

Initial marking
assigns a non-negative integer to each 
place

Transition (firing) rule

A transition t is enabled if each input 
place p has at least w(p,t) tokens
An enabled transition may or may 
not fire
A firing on an enabled transition t 
removes w(p,t) from each input 
place p, and adds w(t,p’) to each 
output place p’
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Firing example

2H2 + O2 → 2H2O
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Some definitions
source transition: no inputs
sink transition: no outputs
self-loop: a pair (p,t) s.t. p is both an input and an 
output of t
pure PN: no self-loops
ordinary PN: all arc weights are 1’s
infinite capacity net: places can accommodate an 
unlimited number of tokens
finite capacity net: each place p has a maximum 
capacity K(p)
strict transition rule: after firing, each output place can’t 
have more than K(p) tokens
Theorem: every pure finite-capacity net can be 
transformed into an equivalent infinite-capacity net

Modeling FSMs
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Modeling FSMs
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state machines:
each transition
has exactly
one input and
one output

Modeling FSMs
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Modeling concurrency

t2

t3

t1 t4
marked graph:
each place has
exactly one
incoming arc 
and one 
outgoing
arc.

Modeling concurrency
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Modeling dataflow 
computation

x = (a+b)/(a-b)
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Modeling communication 
protocols
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Modeling synchronization 
control

writing k reading

k

k

k

Behavioral properties (1)
Properties that depend on the initial 
marking
Reachability

Mn is reachable from M0 if exists a sequence 
of firings that transform M0 into Mn
reachability is decidable, but exponential

Boundedness
a PN is bounded if the number of tokens in 
each place doesn’t exceed a finite number k 
for any marking reachable from M0
a PN is safe if it is 1-bounded
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Behavioral properties (2)
Liveness

a PN is live if, no matter what marking has 
been reached, it is possible to fire any 
transition with an appropriate firing sequence
equivalent to deadlock-free
strong property, different levels of liveness 
are defined (L0=dead, L1, L2, L3 and L4=live)

Reversibility
a PN is reversible if, for each marking M 
reachable from M0, M0 is reachable from M
relaxed condition: a marking M’ is a home 
state if, for each marking M reachable from 
M0, M’ is reachable from M

Behavioral properties (3)
Coverability

a marking is coverable if exists M’ reachable 
from M0 s.t. M’(p)>=M(p) for all places p

Persistence
a PN is persistent if, for any two enabled 
transitions, the firing of one of them will not 
disable the other
then, once a transition is enabled, it remains 
enabled until it’s fired
all marked graphs are persistent
a safe persistent PN can be transformed into a 
marked graph
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Behavioral properties (4)
Synchronic distance

maximum difference of times two transitions 
are fired for any firing sequence

well defined metric for condition/event nets 
and marked graphs

Fairness
bounded-fairness: the number of times one 
transition can fire while the other is not firing 
is bounded
unconditional(global)-fairness: every 
transition appears infinitely often in a firing 
sequence

)()(max 2112 ttd σσ
σ
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Analysis methods (1)
Coverability tree

tree representation of all possible markings
• root = M0
• nodes = markings reachable from M0
• arcs = transition firings

if net is unbounded, then tree is kept finite by 
introducing the symbol ω
Properties
• a PN is bounded iff ω doesn’t appear in any node
• a PN is safe iff only 0’s and 1’s appear in nodes
• a transition is dead iff it doesn’t appear in any arc
• if M is reachable form M0, then exists a node M’ that 

covers M
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Coverability tree example
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Coverability tree example

t3

p2

t2

p1

t1

p3

t0

M0=(100)

M1=(001)
“dead end”

t1 t3

M3=(1ω0)

Coverability tree example

t3

p2

t2

p1

t1

p3

t0

M0=(100)

M1=(001)
“dead end”

t1 t3

M3=(1ω0)

t1

M4=(0ω1)



15

Coverability tree example
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Coverability tree example
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Analysis methods (2)

Incidence matrix
n transitions, m places, A is n x m
aij = aij

+ - aij
-

aij is the number of tokens changed in 
place j when transition i fires once

State equation
Mk = Mk-1 + ATuk

uk=ei unit vector indicating transition i 
fires
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Necessary reachability 
condition

Md reachable from M0, then
Md = M0 + AT (u1+u2+...+ud)
AT x = ΔM

then 
ΔM ∈ range(AT)
ΔM ⊥ null(A)
Bf ΔM = 0

where the rows of Bf span null(A)

Analysis methods (3)
Reduction rules that preserve liveness, 
safeness and boundedness

Fusion of Series Places
Fusion of Series Transitions
Fusion of Parallel Places
Fusion of Parallel Transitions
Elimination of Self-loop Places
Elimination of Self-loop Transitions

Help to cope with the complexity problem
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Subclasses of Petri Nets (1)
Ordinary PNs

all arc weights are 1’s
same modeling power as general PN, more 
convenient for analysis but less efficient

State machine
each transition has exactly one input place 
and exactly one output place

Marked graph
each place has exactly one input transition 
and exactly one output transition

Subclasses of Petri Nets (2)
Free-choice

every outgoing arc from a place is either 
unique or is a unique incoming arc to a 
transition

Extended free-choice
if two places have some common output 
transition, then they have all their output 
transitions in common

Asymmetric choice (or simple)
if two places have some common output 
transition, then one of them has all the output 
transitions of the other (and possibly more)
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Subclasses of Petri Nets (3)

PN

PN

AC EFC FC SM MG

Liveness and Safeness 
Criteria (1)

general PN
if a PN is live and safe, then there are no 
source or sink places and source or sink 
transitions
if a connected PN is live and safe, then the 
net is strongly connected

SM
a SM is live iff the net is strongly connected 
and M0 has at least one token
a SM is safe iff M0 has at most one token
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Liveness and Safeness 
Criteria (2)

MG
a MG is equivalent to a marked directed graph 
(arcs=places, nodes=transitions)
a MG is live iff M0 places at least one token on 
each directed circuit in the marked directed 
graph
a live MG is safe iff every place belongs to a 
directed circuit on which M0 places exactly 
one token
there exists a live and safe marking in a 
directed graph iff it is strongly connected

Liveness and Safeness 
Criteria (3)

siphon S
every transition having an output place in S 
has an input place in S
if S is token-free under some marking, it 
remains token-free under its successors

trap Q
every transition having an input place in Q 
has an output place in Q
if Q is marked under some marking, it 
remains marked under its successors
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Liveness and Safeness 
Criteria (4)

FC
a FC is live iff every siphon contains a marked 
trap
a live FC is safe iff it is covered by strongly-
connected SM components, each of which has 
exactly one token at M0
a safe and live FC is covered by strongly-
connected MG components

AC
an AC is live if every siphon contains a 
marked trap

Reachability Criteria (1)
acyclic PN

has no directed circuits
in an acyclic PN, Md is reachable from M0 iff
exists a non negative integer solution to AT x 
= ΔM

trap(siphon)-circuit net or TC (SC)
the set of places in every directed circuit is a 
trap(siphon)
in a TC (SC), Md is reachable from M0 iff (i) 
exists a non negative integer solution to AT x 
= ΔM, and (ii) the subnet with transitions fired 
at least once in x has no token-free siphons 
(traps) under M0 (Md)
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Reachability Criteria (2)
TCC (SCC) net 

there is a trap (siphon) in every directed 
circuit
in a TCC, Md is reachable from M0 if (i) exists 
a non negative integer solution to AT x = ΔM, 
and (ii) every siphon in the subnet with 
transitions fired at least once in x has a 
marked trap under M0
in a SCC, Md is reachable from M0 if (i) exists 
a non negative integer solution to AT x = ΔM, 
and (ii) there are no token-free traps under 
Md in the subnet with transitions fired at least 
once in x

Reachability Criteria (3)
forward(backward)-conflict-free net or 
FCF(BCF)

each place has at most one outgoing 
(incoming) arc

nondecreasing(nonincreasing)-circuit net 
or NDC(NIC)

the token content in any directed graph is 
never decreased (increased) by any transition 
firing

MG ⊂ FCF ⊂ NDC ⊂ TC ⊂ TCC
MG ⊂ BCF ⊂ NIC ⊂ SC ⊂ SCC
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Analysis of MGs
reachability

in a live MG, Md is reachable from M0 iff Bf ΔM 
= 0
in a MG, Md is reachable from M0 iff Bf ΔM = 0 
and the transitions that are fired don’t lie on a 
token-free directed circuit
in a connected MG, a firing sequence leads 
back to the initial marking M0 iff it fires every 
transition an equal number of times
any two markings on a MG are mutually 
reachable iff the corresponding directed graph 
is a tree

Synthesis of LSMGs (1) 
equivalence relation

M0~Md if Md is reachable from M0
ρ(G) = number of equivalence classes of live-
safe markings for a strongly connected graph 
G
we are interested in ρ(G)=1 (i.e., all markings 
are mutually reachable)
ρ(G)=1 iff there is a marking of G which 
places exactly one token on every directed 
circuit in G
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Synthesis of LSMGs (2)
ρ(G) is invariant under operations

series expansion
parallel expansion
unique circuit expansion
V-Y expansion
separable graph expansion

synthesis process can prescribe
liveness
safeness
mutual reachability
minimum cycle time
resource requirements

Synthesis of LSMGs (3)

PE SE UE

SE
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Other synthesis issues (1)

weighted sum of tokens
we are interested in finding the 
maximum and minimum weighted sum 
of tokens for all reachable markings
max {MTW | M∈R(M0)} =

min {M0
TI | I≥W, AI=0}

min {MTW | M∈R(M0)} =
max {M0

TI | I≤W, AI=0}

Other synthesis issues (2)
token distance matrix T

tij is the minimum token content among all 
possible directed paths from i to j
useful to determine
• firability (off-diagonal elements in a column >0)
• necessity of firing (off-diagonal 0 entries)
• synchronic distance (dij=tij+tji)
• liveness
• shortest firing sequence to enable a node(algorithm)

maximum concurrency
algorithm to find a maximum set of nodes 
that can be fired concurrently at some 
marking
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Other synthesis issues (3)
Synchronic distance matrix D

D = T + TT

D*D=D under Carre’s algebra
given D, find a MG whose synchronic distance 
matrix is D
• test distance condition
• construct a tree

• select nodes i0 with maximum distance
• draw arcs to nodes jr with minimum distance to nodes 

i0
• repeat until all arcs are drawn

• replace each arc in the tree by a pair of oppositely 
directed arcs

Structural properties (1)
properties that don’t depend on the initial 
marking
structural liveness

there exists a live initial marking
all MG are structurally live
a FC is structurally live iff every siphon has a 
trap

controllability
any marking is reachable from any other 
marking
necessary condition: rank(A)=#places
for MG, it is also sufficient
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Structural properties (2)
structural boundedness

bounded for any finite initial marking
iff exists a vector y of positive integers s.t. 
Ay≤0

(partial) conservativeness
a weighted sum of tokens is constant for 
every (some) place
iff exists a vector y of positive (nonnegative) 
integers s.t. Ay=0

Structural properties (3)
(partial) repetitiveness

every (some) transition occurs infinitely often 
for some initial marking and firing sequence
iff exists a vector x of positive (nonegative) 
integers s.t. ATx≥0

(partial) consistency
every (some) transition occurs at least once in 
some firing sequence that drives some initial 
marking back to itself
iff exists a vector x of positive (nonegative) 
integers s.t. ATx=0
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Timed nets
deterministic time delays introduced for 
transitions and/or places
cycle time

assuming the net is consistent, τ is the time 
to complete a firing sequence leading back to 
the starting marking
delays in transitions
• τmin=max{yk

T(A-) TDx/yk
TM0}

delays in places
• τmin=max{yk

TD (A+) Tx/yk
TM0}

timed MG
• τmin = max{total delay in Ck/M0 (Ck)}

Stochastic nets
exponentially distributed r.v. models the 
time delays in transitions
the reachability graph of a bounded SPN 
is isomorphic to a finite Markov chain
a reversible SPN generates an ergodic MC

steady-state probability distribution gives 
performance estimates
• probability of a particular condition
• expected value of the number of tokens
• mean number of firings in unit time

generalized SPN adds immediate 
transitions to reduce state space
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High-level nets (1)
they include

predicate/transition nets
colored PN
nets with individual tokens

a HL net can be unfolded into a regular 
PN

each place unfolds into a set of places, one for 
each color of tokens it can hold
each transition unfolds into a set of transitions, 
one for each way it may fire

High-level nets (2)
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High-level nets (3)
logic program

set of Horn clauses
B ← A1, A2, ..., An

where Ai‘s and B are atomic formulae
Predicate(arguments)

goal statement = sink transition 
assertion of facts = source transition
can be represented by a high-level net
• each clause is a transition
• each distinct predicate symbol is a place
• weights are arguments

sufficient conditions for firing the goal 
transition

Conclusions

PNs have a rich body of knowledge
PNs are applied succesfully to a 
broad range of problems
analysis and synthesis results are 
available for subclasses of PNs
there are several extensions of PNs
much work remains to be done


