Formal Methods \& Verification Midterm Exam

Instructor: Farn Wang
 Class hours: 9:10-12:00 Wednesday
 Course Nr. 921 U7600
 Room: BL 103

Student name:

Student ID:

1. We have an 8×8 chess board and 8 chess queens. The 8 -queens puzzle is to place the 8 chess queens on the chess board with the following restrictions.
1a. Each chess queen is in one of the 8×8 positions.
1b. No two queens are in the same row.
1c. No two queens are in the same column.
Suppose we have the following propositions for $\mathrm{i} \in[1,8]$ and $\mathrm{j} \in[1,8]$.
$q(i, j)$: true if and only if a queen is in row i and column j .

Please use the above propositions to define the solutions of the 8 -queens puzzle. (10pts/10)
(1):

$$
\widehat{i \in[1,8]}_{\wedge}[\underset{j \in[1,8]}{\vee}[q(i, j) \wedge[{\underset{k \in[1,8], k \neq j}{ }[\neg q(i, k)]]]]]}[\neg]
$$

(2):

$$
\underset{j \in[1,8]}{\wedge}[\underset{i \in[1,8]}{\vee}[q(i, j) \wedge[\widehat{k \in[1,8], k \neq i}[\neg q(k, j)]]]]
$$

Solutions: all board configurations that satisfy (1) $\wedge(2)$.
[Note that your answer should include the restriction "1a. Each chess queen is in one of the 8 x 8 positions".]
2. We have the following formula:

$$
((p \rightarrow(q \vee r)) \wedge \neg q) \rightarrow(p \rightarrow r)
$$

Please construct a truth table to show the formula is a tautology. (5pts/15)

p	q	r	$q \vee r$	$p \rightarrow(q \vee r)$	$\neg q$	$(p \rightarrow(q \vee r)) \wedge \neg q$	$p \rightarrow r$	$[(p \rightarrow(q \vee r)) \wedge \neg q] \rightarrow(p \rightarrow r)$
F	F	F	F	T	T	T	T	T
F	F	T	T	T	T	T	T	T
F	T	F	T	T	F	F	T	T
F	T	T	T	T	F	F	T	T
T	F	F	F	F	T	F	F	T
T	F	T	T	T	T	T	T	T
T	T	F	T	T	F	F	F	T
T	T	T	T	T	F	F	T	T

So the formula is a tautology.
3. Please use Natural Deduction to show that the formula in question 2 is a tautology. (5pts/20)
$\left.\begin{array}{l}{\left[\begin{array}{lll}1 & (p \rightarrow(q \vee r)) \wedge \neg q & \text { assumption } \\ {\left[\begin{array}{lll}2 & p & \text { assumption } \\ 3 & p \rightarrow(q \vee r) & \wedge e 1\end{array}\right.} \\ 4 & q \vee r & \rightarrow e 2,3 \\ 5 & \neg q & \wedge e 1 \\ 6 & r & \vee e 4,5 \\ 7 & p \rightarrow r & \rightarrow i 2,6\end{array}\right.} \\ 8\end{array}\right][(p \rightarrow(q \vee r)) \wedge \neg q] \rightarrow(p \rightarrow r) \quad \rightarrow i 1,7$.

So the formula is a tautology.
4. Please use the tableau method to prove that the formula in question 2 is a tautology. (10pts/30)

$$
\begin{aligned}
& (p \rightarrow(q \vee r)) \wedge \neg q \\
& \neg(p \rightarrow r) \\
& p \rightarrow(q \vee r) \\
& \neg q \\
& \text { p } \\
& \neg r
\end{aligned}
$$

Since $\neg[[(p \rightarrow(q \vee r)) \wedge \neg q] \rightarrow(p \rightarrow r)]$ is not satisfiable, the original formula is a tautology.
5. Please construct a resolution tree to show that the formula in question 2 is a tautology. (10pts/40)
$\neg[[(p \rightarrow(q \vee r)) \wedge \neg q] \rightarrow(p \rightarrow r)]$
$\equiv[(p \rightarrow(q \vee r)) \wedge \neg q] \wedge \neg(p \rightarrow r)$
$\equiv[(\neg p \vee(q \vee r)) \wedge \neg q] \wedge(p \wedge \neg r)$
$\equiv(\neg p \vee q \vee r) \wedge \neg q \wedge p \wedge \neg r$

4 clauses: $\neg p \vee q \vee r, \neg q, p, \neg r$

NIL

Since $\neg[[(p \rightarrow(q \vee r)) \wedge \neg q] \rightarrow(p \rightarrow r)]$ is not satisfiable, the original formula is a tautology.
6. Please use the DPLL algorithm to show that the formula in question 2 is a tautology. (10pts/50)
$\neg[[(p \rightarrow(q \vee r)) \wedge \neg q] \rightarrow(p \rightarrow r)]$
$\equiv[(p \rightarrow(q \vee r)) \wedge \neg q] \wedge \neg(p \rightarrow r)$
$\equiv[(\neg p \vee(q \vee r)) \wedge \neg q] \wedge(p \wedge \neg r)$
$\equiv(\neg p \vee q \vee r) \wedge \neg q \wedge p \wedge \neg r$

4 clauses : $\{\neg p \vee q \vee r\},\{\neg q\},\{p\},\{\neg r\}$

Unit propagation with $p=$ true, $q=$ false, $r=$ false:
$\Rightarrow\},\{$ true $\},\{$ true $\},\{$ true $\}$
$\Rightarrow\}$

Since $\neg[[(p \rightarrow(q \vee r)) \wedge \neg q] \rightarrow(p \rightarrow r)]$ is not satisfiable, the original formula is a tautology.
7. Assume the variable ordering in BDDs is $p \rightarrow q \rightarrow r$.

7a. Please construct the BDD of $p \rightarrow(q \vee r)$. (10pts/60)

7b. Please construct the BDD of $(p \rightarrow(q \vee r)) \wedge \neg q . \quad$ (10pts/70)

7c. Please construct the BDD of $((p \rightarrow(q \vee r)) \wedge \neg q) \rightarrow r . \quad(10 p t s / 80)$
$[(p \rightarrow(q \vee r)) \wedge \neg q] \rightarrow r \equiv \neg[(p \rightarrow(q \vee r)) \wedge \neg q] \vee r$

8. We have the following grammar for tree growth.

```
T : : = S F \| S S T T
S::=KLLK
```



```
\(\mathrm{K}::=\square\)
\(L::=\) CSS
```

Please draw the derivation tree of the following sentence. (10pts/90)
$\square \cos \square \square \cos \cos \square \square \cos \cos \square \square \cos \cos \square \square \cos \cos \square \cos \cos \square \operatorname{sis}^{3} \square \cos \cos \square \operatorname{sis}^{3}$

9. Please draw a state-transition graph for the following vending machine M that accepts nickels, dimes, and quarters. M accepts changes until 25 cents have been put in. It gives changes back for any amount greater than 25 cents. Then the customer can push buttons to receive a cola or a chocolate bar. If the machine detects a fake coin, it also returns the coin immediately and tells the customer that the coin is a fake.
Please use !e for an output event of type e and ?e for an input event of type e. (10pts/100)

