
REDLIB

A Library for Integrated BDD-like Diagrams ∗

Farn Wang

Dept. of Electrical Engineering
Graduate Institute of Electronic Engineering

National Taiwan University

1, Sec. 4, Roosevelt Rd., Taipei, Taiwan 106, ROC;
+886-2-33663602; FAX:+886-2-23671909;

farn@cc.ee.ntu.edu.tw; http://cc.ee.ntu.edu.tw/˜farn

RED 7.0 is available at http://cc.ee.ntu.edu.tw/˜val

October 14, 2008

Table of contents

1 Introduction . 4

2 Technology of REDLIB . 13

3 Structure of a REDLIB program .14

3.1 Model declaration through API . 14

3.2 Model declaration through a file . 21

3.3 Model modification through API . 23

3.4 Model modification through a file . 24

4 Variable declarations . 25

5 Expression strings . 26

6 Constraint strings .26

7 Model structure declarations . 32

∗The work is partially supported by NSC, Taiwan, ROC under grants NSC 93-2213-E-002-130.

8 Accesses to the model structures . 37

9 Basic diagram operations . 47

9.1 Basic constraint construction . 48

9.2 Inductive constraint construction . 49

9.3 Normalization . 50

9.4 Abstraction . 50

9.5 Reduction . 53

10 Precondition & postcondition constructions . 54

10.1 Preconditions & postconditions of time progress . 54

10.2 Preconditions & postconditions out of a declared model . 54

10.3 Flexible analysis-time precondition & post-condition calclulation 60

11 Packaged verification tasks .63

11.1 Reachability analysis .63

11.2 Model-checking with REDLIB . 70

11.3 Simulation & bisimulation-checking with REDLIB . 74

12 Miscellaneous operations .78

12.2 Special diagrams . 79

12.4 Garbage collection . 81

12.5 Diagram string representation procedures . 83

12.6 Checking, selecting, and executing process transitions in reachability graph construc-

tion . 84

12.7 Diagram profiling . 89

12.8 Session run-time profiling . 90

12.9 Print-out procedures . 90

13 Examples of using REDLIB . 92

13.2 A Sudoku solver . 93

13.3 A safety analyzer . 98

2

References . 102

Appendix B Syntax of RED input file format. .107

3

1 Introduction

REDLIB is constructed out of the TCTL model-checker RED . The basic motivation is for

BDD-like diagrams that allow the integrated representation and manipulation of state-space

characterizations of both discrete and dense variables. Conceptually, a BDD-like diagram is a

directed acyclic graph (DAG) whose internal nodes are labeled with variables and whose ex-

ternal nodes are with true or false. The BDD-like diagrams used in REDLIB were originally

called RED (Region-Encoding Diagrams) which are zero-suppressed. At this moment, REDLIB

supports the following four types of variables.

• Boolean variables: Each variable in this category may have value true or false.

• Discrete variables: Each variable in this category is declared with a value lower-bound

and an upper-bound. The values of such a variable are within the lower-bound and the

upper-bound.

• Clock-restriction variables: Each variable in this category is of the form x− y where x are

y are declared dense-value clock variables. The values of such a variable are upper-bounds

like either < c or ≤ c, where c is no greater than the biggest timing constants used in a

model description and specification. The increment rates of all clocks are uniform. Such

variables are specifically used for the verification of timed automata (TA) [2]. Note that the

users of REDLIB do not declare the clock-restriction variables. They are automatically

constructed from the model description, specification, and state-space manipulation.

• Hybrid-restriction variables: Each variable in this category is of the form a1x1 + a2x2 +

. . . + anxn, where a1, a2, . . . , an ∈ Z and x1, x2, . . . , xn are dense variables. The dense

variables can increment or decrement their values at different rates. Such variables are

specifically used for the verification of linear hybrid automata (LHA) [3]. Note that the

users of REDLIB do not declare the clock-restriction variables. They are automatically

constructed from the model description, specification, and state-space manipulation.

One way that REDLIB gain its performance is through an integration of BDD-like diagrams for

BDD, MDD, CRD, and HRD. Such integration allows structure-sharing among constraints for

discrete and dense spaces. REDLIB does not allow a BDD-like diagram that uses both clock-

restriction variables and hybrid-restriction variables. One without hybrid-restriction variables

is called a CRD+MDD while one without clock-restriction variables is called a HRD+MDD.

Example 1 : The CRD+MDD for (0 − x1 < −3 ∧ ((b ∧ x1 − x3 < −1) ∨ ((¬b) ∧ (4 ≤ d ≤

6 ∨ 1 ≤ d ≤ 2)))) ∨ (0 − x1 ≤ −5 ∧ (x1 − x3 < −1 ∨ (x1 ≤ 5 ∧ (4 ≤ d ≤ 6 ∨ 1 ≤ d ≤ 2)))) is

in figure 1(a). Here x1 and x3 are declared clock variables, b is a Boolean variable, and d is a

discrete variable. Note that we allow upper-bound < ∞ which is always satisfied. Variables like

4

true true

(a) (b)

0 − x1

< −3

x1 − x3

x1 − 0 b

d

≤ −5

≤ 5

[4, 6]
< −1

[1, 2]

truefalse
< ∞

< 3

2

b

d

≤ −5

8

≤ 5

[4, 6]
< −1

3

[1, 2]

truefalse

−x2

−x1 + 3x2

2x1 + 3x2 − x3

< ∞

Figure 1: A CRD+MDD diagram

x − y in the diagrams are either specified by the users or constructed by programs.

In figure 1(b), we have an HRD+MDD for (−x1+3x2 < 3

2
∧((b∧−x2 < −1

3
)∨((¬b)∧(4 ≤ d ≤

6∨1 ≤ d ≤ 2))))∨(−x1+3x2 ≤ −5

8
∧(−x2 < −1

3
∨(2x1+3x2−x3 ≤ 5∧(4 ≤ d ≤ 6∨1 ≤ d ≤ 2)))).

Here x1, x2, x3 are declared dense variables. Variables like −x1 + 3x2, −x2, and 2x1 + 3x2 − x3

in the diagrams are either specified by the users or constructed by programs. �

REDLIB not only allows us to manipulate BDD-like diagrams. It also allows us to declare

behavior structures represented as parameterized communicating automata (PCA). A commu-

nicating automaton consists of a set of process automata that communicate through CSP-style

communication channels. A communicating automaton is parameterized since we let many pro-

cess automata share the same automaton template and identify each process automaton with

a process index. REDLIB also allows us to declare local variables of each process automaton,

and reference the local variables through their process indices.

There are two types of dense variables that we may use with REDLIB . The first type

is for clock variables, in timed automata [2], whose increment rates are always 1. The second

type is for dense variables, in linear-hybrid automata [3], whose rates of changes can be any real

numbers specified in an interval with rational bounds. REDLIB has the following restrictions

on the model construction and verification tasks.

• If we want to do full TCTL model-checking, then all dense variables must be clock variables.

In this case, the models are also called CTA (Communicating Timed Automata).

• If we want to reason the constraints on unknown dense parameters, then we must use linear-

hybrid automata as our models. In this case, we may declare dense variables whose rates

of changes may not be uniform, we may specifiy any constraints on any linear expressions

5

idle

active collision
2

3 4

5

7
8

9

10

11

12
13

146

1

wait

!begin

!end

?cd

?busy

?cd ?busy

?cd
!begin

?cd

x == 808 x = 0;

x = 0;

x = 0;
x = 0;

x = 0;

x < 52
x = 0;

x < 52
x = 0;

x < 52
x = 0;

x = 0;

(a) sender p

?end

?begin !cd !cd

?begin

!busy

x = 0; x = 0;

x < 26x = 0;

x < 26
x < 26

x = 0;

x <= 26

(b) bus

x < 52x <= 808
retrytransm

Figure 2: the model of bus-contending systems

of dense variables, and we may perform parametric analysis of the dense parameters. In

this case, we call the model CLHA (Communicating Linear-Hybrid Automata).

Example 2 : We may declare the CSMA/CD bus arbitration protocol in figure 2 as a CTA of

three process automata. The six ovals represent the control locations, wait, transm, retry, idle,

active, and collision. The graph in figure 2(a) is a template of the process automata for all the

sender processes. In the template, we use a local clock x. For process p, we may reference its

local clock by name x[p] in a specification formula. The graph in figure 2(b) is a template of the

process automata for the bus process. The CTA consists of two sender processes and one bus

process.

Inside each oval, we may write a formula for the invariance condition of that location. We

use arcs to represent the transitions between locations. By each arc, we label the corresponding

triggering condition, synchronization events in CSP-style, and the actions. �

To use the behavior structure and local variables, the users must first declare the range of

process indices. The process indices are from 1 to a positive integer constant given by a user.

The initial formula and the specification formulas are to be described separately. The initial and

specification formulas can be input as strings to REDLIB . For details, please read section 3.

Example 3 : We may write down the initial condition of the system in figure 2 as follows.

idle[1] && x[1] == 0 && forall i:i>1, (wait[i] && x[i] == 0)

6

The formula says that process one starts its execution from location idle with local clock x[1]

set to zero. Moreover, all other processes start their execution from location wait also with

their local clock set to zero. �

After the delcaration of the process count, the variables, and the model structure, we can

use REDLIB to manipulate the the state-spaces and carry out our verification tasks. In the

following, we briefly discuss the capabilities of REDLIB.

Basic diagram manipulations

Given two BDD-like diagrams D1 and D2, we can use REDLIB to do the following basic

operations.

• A logic atom. Please check page 80.

• A disjunction of D1 and D2. Please check page 49.

• A conjunction of D1 and D2. Please check page 49.

• The complement of D1. Please check page 49.

• The restriction of D1 with an atom. Please check pages ??, ??, and ??.

• Fourier-Motzkin elimination of a variable v from D1. Conceptually, the result is ∃v(D1).

Please check page ??.

Precondition & postcondition calculation

REDLIB supports precondition & postcondition construction at the following granularity.

• A single discrete action. Please check pages ?? and ??.

• A single discrete transition rule. Please check pages 54, 55, 62, and ??.

• A synchronous global transition composed a set of process transitions from synchronizing

processes. This could be efficient when each synchronization does not engender the enu-

meration of many processes’ triggerible transitions. Please check pages 55, 56, ??, ??, 59,

and 60.

• A set of synchronous global transitions represented as a BDD-like diagrams. This could

be efficient when the synchronization among processes engenders the enumeration of many

processes’ triggerible transitions. Please check pages 57, 57, 58, and 58.

• Time-progress. Please check page 54.

Reachable state-spaces

REDLIB supports the calculation of various reachabilities.

• The backward and forward reachabilities. Please check pages ?? and ??.

7

• The backward and forward reachabilities with untimed abstraction. Please check pages ??

and ??. Note that the untimed abstaction is carried out in the calculation in the interme-

diate steps instead of at the final reachability images.

• The backward and forward reachabilities with magnitude abstraction. Please check pages ??

and ??. Note that the magnitude abstaction is carried out in the calculation in the inter-

mediate steps instead of at the final reachability images.

• The backward and forward reachabilities with diagonal abstraction. Please check pages ??

and ??. Note that the diagonal abstaction is carried out in the calculation in the interme-

diate steps instead of at the final reachability images.

Normalization

Diagrams with only Boolean variables and discrete variables are automatically canonical and

minimal. But in general, CRD+MDDs and HRD+MDDs are not canonical. REDLIB also

supports the following procedures for the normalization.

• Tight form: A diagram is in tight form (or all-pair-shortest-form) if every constraints that

can be transitively deduced for a convex polyhedron are also included. For CRD+MDDs,

REDLIB supports the calculation of tight forms. For HRD+MDDs, strict tight form may

not be computable since the set of inequalities for each convex polyhedron may be infinite.

REDLIB does supports the procedure that adds in inequalities, that can be constructed

from two inequalities in one iteration, to a convex polyhedron. REDLIB also supports

procedures that get rid of some subsumed inequalities from a convex polyderon. Please

check page 50.

• Magnitude reduced form: A magnitude inequality is either like x ≤ c or −x ≤ c. This is

very much similar to the tight form except that all inequalities that are subsumed by two

magnitude inequalties are eliminated. Please check page 50.

State-space abstraction

Given a model structure and an initial condition, REDLIB has several procedures to automati-

cally construct abstractions of the forward reachable state-space. Following are the possibilities.

• The untimed reachable state-space: This is the forward reachability obtained by ignoring

all timing variables of the automata. Please check page ??.

• Magnitude reachable state-space: This is the forward reachability obtained by ignoring

all timing inequalities containing more than one dense or clock variables. Please check

page ??.

8

• Discrete-time reachable state-space: This is the forward reachability obtained by only

recording the integer values of all clocks. Please check page ??.

• Diagonal reachable state-space: This is a forward reachability obtained by keeping only

some timing constraints of the form x − y ∼ c. Note that constraints with only one clock

or dense variable are also omitted. Please check page ??.

Such abstractions can be used to check whether the verification tasks can be carried out with

the abstract state-spaces characterizations.

Reduction techniques

REDLIB supports several reduction techniques. If we do state-space manipulation in fine

granularity piece by piece, then they can be invoked as procedures. If we do it in coarse

granularity, like one iterations of a fixpoint, then we can use options to choose whether to

invoke the reductions or not.

• Inactive variable elimination: A variable is inactive if it will not be read unless it is

written to again. Inactive variables’ values do not affect the computation and thus are

omitted from state-space representation. This reduction is invoked automatically in coarse

granularity. Please check page 53.

• Symmetry reduction: REDLIB supports an approximiation of process-oriented symmetry

reduction. It can be either invoked with procedures or with flags. Please check page 53.

For more technical details, please check [8, 17].

• Early decision of greatest fixpoint evaluation (EDGF): While doing greatest fixpoint eval-

uation, usually we are in the context of evaluating a formula like p → ∀♦q whose negation

is p ∧ ∃�¬q. The EDGF strategy is to return false when we find the conjunction of p and

the image of the greatest fixpoint of ∃�¬q is false in a fixpoint iteration. This strategy

holds since the greatest fixpoint images of ∃�¬q shrinks iteration by iteration. EDGF

is very effective and does not cost much. Thus it is always invoked automatically in the

coarse granularity. For technical details, please check [16].

• Pruning strategy based on parameter space construction (PSPSC): This is a strategy used

to speed up the parametric analysis of linear hybrid systems. It is always invoked auto-

matically in the coarse granularity. Please check [14] for its technical explanation.

Verification tasks

At this moment, REDLIB supports the following verification tasks.

9

Safety analysis

Users can write a risk condition or a safety condition. The safety condition is translated to its

negation for a risk analysis.

Example 4 : We may write down the risk condition of the system in figure 2 as follows.

risk transm[2] && transm[3] && (x[2] >= 52 || x[3] >= 52);

The formula says that both processes 2 and 3 are in location transm while one of their local

clock x reads no less than 52 time units. �

REDLIB uses an on-the-fly approach to construct a state-space representation. If the risk

condition is satisfiable, REDLIB can also construct a counter-example. Please check page ??.

If the model is a parameterized commuicating linear-hybrid automata, REDLIB constructs a

constraint for the reachability of the risk condition. Please check page ??.

TCTL model-checking of CTA

REDLIB supports more than full TCTL model-checking with. It also supports strong and weak

fairness assumptions of CTA. There are options supported by REDLIB for model-checking with

or without Zeno-ness assumption. Please check page ??.

Example 5 : For the system in figure 2, we may want to require that if prorcess 2 is in

location transm with its local clock reads no less than 52 time units, process 2 will inevitably

enter location wait again. In CMU’s notations, this can be written as follows.

AG((transm[2] ∧ x[2] ≥ 52) −→ AFwait[2])

In Pnueli’s notations, this can be as follows.

∀�((transm[2] ∧ x[2] ≥ 52) −→ ∀♦wait[2])

In REDLIB , we just input the following string through our API.

tctl forall always ((transm[2] && x[2] >= 52) implies forall eventually wait[2]);

REDLIB supports several options to help enhancing the performance of inevitability checking.

�

REDLIB also allows the assumptions of strong and weak fairness. Conceptually, a run

satisfies a strong fairness assumption of φ, if for every t1 ∈ R
≥0, there is a t2 > t1 such that

along the run φ is true at time t2. A run satisfies a weak fairness assumption of φ, if there exists

a t1 ∈ R
≥0 such that for every t2 ≥ t1, φ is true at time t2. In REDLIB , you may specify that

10

wait
execute
x <= 1

x = 0;

x == 0&&step < 10
x = 0; step + +1;

x == 0&&step == 10

Figure 3: A process to finish its execution with fairness assumption

for every run that satisfies some strong and weak fairness assumptions, a property is true. The

motivation for the fairness assumption is that sometimes some liveness properties can only be

proven when you assume that some ‘good’ things have a ‘fair’ share of execution time.

Example 6 : Suppose that we have a process automaton that needs 10 time units to finish its

execution. The operating system may only occasionally let the process execute. Figure 3, we

have drawn such an automaton. There is a global discrete variable step and a local clock x.

There is only one process. Initially, the system is in location wait. Everytime, the system gets

to execute, it increment the value of step by one. We may want to prove that if the system

has infinitely opportunity to execute, then eventually the value step is no less than 10. In

REDLIB, this can be written as the following formula.

tctl forall strong {execute[1];} eventually step >= 10;

The predicate in the parentheses after ‘strong’ is a strong fairness assumption. Users may also

write down many strong fairness assumptions in the same parentheses, each terminated with a

semicolon. �

Simulation-checking of CTAs

Based on a new formulation of the simulation between two timed automata, REDLIB is now

able to support the simulation-checking of CTAs. A simulation between a CTA A1 and another

CTA A2 is a binary relation between the states of A1 and A2. Conceptually, a binary relation

B is a simulation from A1 to A2 if for every (ν1, ν2) ∈ B, in case A1 can do a transition with

some synchronization events at time t from ν1, then A2 can also match the transition with the

same synchronization events at time t from ν2. A1 is simulated by (or implements) A2 if there

exists a simulation B from A1 to A2 such that for every initial state ν1 of A1, there is an initial

state ν2 of A2 and (ν1, ν2) ∈ B. In a rigorous way, this is also called a stuttering (or branching)

simulation.

11

Since in REDLIB, systems are described as parameterized communicating automata, we

create the concept of model processes, specification processes, and environment processes. That

is, given a system of m processes, the users invoke the simulation-checking capability by telling

REDLIB which processes are for the model and which are for the specification. The remaining

processes are for the environment. For example, for the system in figure 2, we may have 1 bus

and 3 senders. Then we may want to check if the CTA of processes 1 (the bus), 2, and 4 is

simulated by the CTA of processes 1, 3, and 4. Intuitively, this could be interpreted as to check

whether process 2 is simulated by process 3 with respect to the environment of processes 1 and

4. In REDLIB, this can be written as the following specification.

implementation 2; 3;

Such a design could significantly reduce the complexity in representing the bisimulation. Please

check page ??.

Miscellaneous

There are the following procedures that can also be used to support users’ verification tasks

with REDLIB.

Print-out services

We can use REDLIB to print out a diagram in several formats. We can print it out as a

formula with parentheses and Boolean operators for users’ convenience. This could be easy to

read when the formula is not too complicate. We can also print out a diagram as a directed

graph. In fact, we print it out as a tree with shared structures printed out only at the first time.

We can also print out a diagram as a sequence of zones. Each zone is printed out as a sequence

of discrete constraints or dense inequalities. Please check subsection 12.9 in page 90.

Sizes and memory

We can also use REDLIB to return the size (number of nodes and arcs) or the memory of a

diagram. Please check subsection 12.7 in page 89.

We can also use REDLIB to tell us all the memory used by all the diagrams and the other

supporting data-structures. Please check subsection 12.8 in page 90.

Queries to the declarations and model structures

We can also use REDLIB to check the process count, the declared variables, the declared model

structures, the initial condition, and the specification formula. Please check subsection ?? in

12

page ??.

Also we may query for the invariance condition derived from the model declaration. This

invariance is actuallythe conjunction of the invariance conditions of all the processes. The

invariance condition of a process is the disjunction of the invariance conditions of all locations

that can be reached by the process in its automaton graph. Please check page 43. In a sense,

the is the starting place for the calculation of all reachabilities.

Garbage collection

At this moment, REDLIB does not do automatic garbage collection. The users can invoke a

garbage-collector in REDLIB to reclaim all the diagram structures that are not referenced. It

is up to the users’ discretion to determine when to do this. The users can check the total memory

consumptions of REDLIB and determine whether to collect the garbage or not. REDLIB also

supplies a stack. All diagrams saved in this stack will not be garbage-collected. Please check

page 81.

Option setting

There are also many options that we can choose to tune the performance of REDLIB . We can

also check the values of those flags of REDLIB . Please check page ??.

2 Technology of REDLIB

REDLIB supports BDD-like diagrams with many sorts of variable types, including Booleans,

discretes with finite ranges, clocks, and dense variables. Precisely, REDLIB is a package

for shared BDD-like diagrams with zero suppressed. That is, all diagrams calculated out of the

REDLIB packages share common structures. This could add some overhead in diagram manip-

ulations. But it could also save memory consumption in representations and save computation

time in identity checking.

Unlike most BDD packages that use hash tables to check the structure sharing in diagrams,

REDLIB uses 2-3 trees. The 2-3 tree management is through non-recursive procedures and

provides a stable performance.

While analyzing a communicating automaton, REDLIB does not support the construction

of the product automaton first. REDLIB constructs fixpoint images in an on-the-fly style.

However, REDLIB supports the construction of several abstraction of the reachability images,

forward and backward. Please check page ??, ??, ??, and ??. Such abstract reachability images

can be used to effectively constrain the exploration space in an on-the-fly reachability analysis.

13

. . .
red begin session(system type, name, n); (A)

. . .
red begin declaration(); (B)

. . .
VARIABLE DECLARATIONS; (C)

. . .
[OPTIONAL MODEL STRUCTURE DECLARATION;] (D)

. . .
red end declaration(); (E)

. . .
[OPTIONAL PROCESSING OF THE DIAGRAMS;] (F)

. . .
red end session(name); (G)

. . .

Table 1: A template for using REDLIB.

For example, in the standard backward safety analysis procedures, REDLIB first calculate

the an abstraction of the forward reachability. Then while calculating the on-the-fly backward

reachability, REDLIB uses the abstraction to constrain the backward exploration. Depending

on the characeristics of the verification tasks, different abstractions may enable us to finish the

verification tasks in the abstract state-spaces.

3 Structure of a REDLIB program

In the following, we first show two templates for using REDLIB . Then we show examples.

There are two ways that we can incorporate REDLIB in users’ applications. The first is to

make declarations through REDLIB API (Application Program Interface). The second is to

read declarations from a file. We explain how to declare a model in these two ways respectively

in subsections 3.1 and 3.2.

Moreover, sometimes, we may want to change the transition rules without changing the

number of processes and delcaration of variables. We can also We discuss how to do this

through API and through files respectively in subsections 3.3 and 3.4.

3.1 Model declaration through API

Now we briefly explain the first approach. REDLIB procedures can be used intermixing with

C/C++ statements. REDLIB needs to be used according to the template in table 1. Statement

14

(A) starts a REDLIB session while statement (G) ends a REDLIB session. At this mo-

ment, we do not allow overlapping sessions. Parameter system type is for the system type.

Now it can be RED SYSTEM TIMED for timed automaton verification. It can also be

RED SYSTEM LINEAR HYBRID for linear-hybrid automaton verification. Parameter

name is for the name of the session. The name can be used for the creation of many working

variables in the session. Parameter n is for the number of processes in the system model. The

parameters name in both statements (A) and (G) must be the same.

Statements (B) starts the declaration section while statement (E) finishes it. Statement (E)

also constructs all the tables used for the verification, including the variable table, transition

table, process tables, etc. Note that the BDD-like diagrams of REDLIB also consists of lo-

cal variables, clock inequalities, and linear-hybrid inequalities. The ordering among the local

variables and inequality variables are cannot be told from the declaration of the discrete, clock,

and dense variables. Statement (E) is necessary since clock inequality variables, like x − y, and

linear-hybrid inequality variables, like −x + 3y + 2z, are not declared and must be generated

automatically from the clock variables and the dense variables. The indices in the variable

actually specify the variable ordering in the BDD-like diagrams constructed with REDLIB.

Those code lines at segment (C) are for the declaration of macro constants and variables.

Segment (D) is optional and can be used to describe a communicating automaton. Segment (F)

is also optional and is used to manipulate BDD-like diagrams.

What statements (A), (C), and (D) do is the following. It creates a file with the session

name and writes all the declarations to a file. The file adheres to the format of the input file to

TCTL model-checker RED. Then statement (D) calls the parser module in RED to construct

the parsing tree and the tables. The created file can be viewed by the users for the debugging

and educational purposes.

In the following, we have an example piece of code for the system in figure 2.

/* (1)*/ #include <stdlib.h>

/* (2)*/ #include <ctype.h>

/* (3)*/ #include <stdio.h>

/* (4)*/ #include <string.h>

/* (5)*/ #include <math.h>

/* (6)*/ #include <float.h>

/* (7)*/ #include "redlib.h"

/* (8)*/ #include "redlib.e"

/* (9)*/ main(int argc, char **argv) {

/*(10)*/ redgram *red_ini;

/*(11)*/ int ini, inv, rch;

15

/*(12)*/ struct reachable_return_type *rr;

/*(13)*/ red_begin_session(RED_SYSTEM_TIMED, "CSMA-CD", 3);

/*(14)*/ if (argc < 2)

/*(15)*/ exit(0);

/*(16)*/ red_switch_output(fopen(argv[1], "w"));

/*(17)*/ // start all the declaration.

/*(18)*/ red_begin_declaration();

/*(19)*/ // define constants used in RED descriptions.

/*(20)*/ red_comment("Three constants used in the specification.");

/*(21)*/ red_define_const("A", 26);

/*(22)*/ red_define_const("B", 52);

/*(23)*/ red_define_const("LAMBDA", 808);

/*(24)*/ // declare variables

/*(25)*/ red_comment("One local clock.");

/*(26)*/ red_declare_local_variable(RED_TYPE_CLOCK, 0, 0, "x");

/*(27)*/ // declare synchronizers, which are also global variables

/*(28)*/ red_comment("4 synchronizers.");

/*(29)*/ red_declare_variable(RED_TYPE_SYNCHRONIZER, 0, 0, "begin");

/*(30)*/ red_declare_variable(RED_TYPE_SYNCHRONIZER, 0, 0, "end");

/*(31)*/ red_declare_variable(RED_TYPE_SYNCHRONIZER, 0, 0, "busy");

/*(32)*/ red_declare_variable(RED_TYPE_SYNCHRONIZER, 0, 0, "cd");

/*(33)*/ // start declaring the optional model structure.

/*(34)*/ // modes for the bus.

/*(35)*/ red_begin_mode("idle", "true");

/*(36)*/ red_transition("?begin (true)", "x= 0; goto active;");

/*(37)*/ red_end_mode();

/*(38)*/ red_begin_mode("active", "true");

/*(39)*/ red_transition("?end (true)", "x= 0; goto idle;");

/*(40)*/ red_transition("!busy (x >= A)", ";");

/*(41)*/ red_transition("?begin (x < A)", "x= 0; goto collision;");

/*(42)*/ red_end_mode();

/*(43)*/ red_begin_mode("collision", "x < A");

/*(44)*/ red_transition("!cd !cd (x < A)", "x= 0; goto idle;");

/*(45)*/ red_end_mode();

/*(46)*/ // modes for the senders.

/*(47)*/ red_comment("3 modes for the senders.");

/*(48)*/ red_begin_mode("wait", "true");

/*(49)*/ red_transition("!begin (true)", "x= 0; goto transm;");

/*(50)*/ red_transition("?cd (true)", "x= 0;");

/*(51)*/ red_transition("?cd (true)", "x= 0; goto retry;");

/*(52)*/ red_transition("?busy (true)", "x= 0; goto retry;");

/*(53)*/ red_end_mode();

/*(54)*/ red_begin_mode("transm", "x <= LAMBDA");

/*(55)*/ red_transition("!end (x==LAMBDA)", "x= 0; goto wait;");

16

/*(56)*/ red_transition("?cd (x<B)", "x= 0; goto retry;");

/*(57)*/ red_end_mode();

/*(58)*/ red_begin_mode("retry", "x < B");

/*(59)*/ red_transition("!begin (x < B)", "x= 0; goto transm;");

/*(60)*/ red_transition("?busy (true)", "x= 0;");

/*(61)*/ red_transition("?cd (x < B)", "x= 0;");

/*(62)*/ red_end_mode();

/*(63)*/ // finish all the declaration and start constructing tables.

/*(64)*/ red_end_declaration();

/*(65)*/ // print out some tables to file ‘out’.

/*(66)*/ red_print_variables();

/*(67)*/ red_print_xtions();

/*(68)*/ red_print_sync_xtions();

/*(69)*/ // print out those transitions to be executed in a bulk.

/*(70)*/ red_print_diagram(red_bulk_xtions());

/*(71)*/ red_ini = red_diagram(

/*(72)*/ "idle[1] && x[1]==0 && forall i:i>1, (wait[i] && x[i]==0)"

/*(73)*/);

/*(74)*/ ini = red_push(red_ini);

/*(75)*/ red_print_line(red_stack(ini));

/*(76)*/ // get an abstract image of the forward reachability.

/*(77)*/ inv = red_push(red_query_declared_invariance_diagram());

/*(78)*/ // For untimed forward abstract reachability

rr = red_reach_fwd(

red_stack(ini), red_stack(inv), red_false(),

RED_TASK_GOAL,

RED_NO_PARAMETRIC_ANALYSIS,

RED_SIM_MODL | RED_SIM_SPEC | RED_SIM_ENVR,

RED_FULL_REACHABILITY,

-1,

RED_NO_COUNTER_EXAMPLE,

RED_NO_TIME_PROGRESS,

RED_NORM_ZONE_NONE,

RED_ACTION_APPROX_UNTIMED,

RED_REDUCTION_INACTIVE,

RED_OAPPROX_MODL_GAME_UNTIMED

| RED_OAPPROX_SPEC_GAME_UNTIMED

| RED_OAPPROX_ENVR_GAME_UNTIMED

| RED_OAPPROX_GLOBAL_GAME_UNTIMED,

RED_NO_SYMMETRY,

RED_NO_PRINT

);

red_set_stack(inv, rr->reachability);

/*(79)*/ // For magnitude forward abstract reachability.

rr = red_reach_fwd(

red_stack(ini), red_stack(inv), red_false(),

RED_TASK_GOAL,

RED_NO_PARAMETRIC_ANALYSIS,

17

RED_SIM_MODL | RED_SIM_SPEC | RED_SIM_ENVR,

RED_FULL_REACHABILITY,

-1,

RED_NO_COUNTER_EXAMPLE,

RED_TIME_PROGRESS,

RED_NORM_ZONE_CLOSURE,

RED_ACTION_APPROX_NOXTIVE,

RED_REDUCTION_INACTIVE,

RED_OAPPROX_MODL_GAME_MAGNITUDE

| RED_OAPPROX_SPEC_GAME_MAGNITUDE

| RED_OAPPROX_ENVR_GAME_MAGNITUDE

| RED_OAPPROX_GLOBAL_GAME_MAGNITUDE,

RED_NO_SYMMETRY,

RED_NO_PRINT

));

red_set_stack(inv, rr->reachability);

/*(80)*/ // risk analysis.

/*(81)*/ rch = red_push(red_diagram("transm[2]&&transm[3]&&(x[2]>=B||x[3]>=B)"));

/*(82)*/ rr = red_reach_bck(

red_stack(ini), red_stack(inv), red_stack(rch),

RED_TASK_RISK,

RED_NO_PARAMETRIC_ANALYSIS,

RED_SIM_MODL | RED_SIM_SPEC | RED_SIM_ENVR,

RED_NO_FULL_REACHABILITY,

-1,

RED_COUNTER_EXAMPLE,

RED_TIME_PROGRESS,

RED_NORM_ZONE_CLOSURE,

RED_NO_ACTION_APPROX,

RED_REDUCTION_INACTIVE,

RED_NOAPPROX_MODL_GAME

| RED_NOAPPROX_SPEC_GAME

| RED_NOAPPROX_ENVR_GAME

| RED_NOAPPROX_GLOBAL_GAME,

RED_NO_SYMMETRY,

RED_NO_PRINT

));

/*(83)*/ print_reachable_return(rr);

/*(87)*/ red_pop(rch);

/*(88)*/ red_pop(inv);

/*(89)*/ red_pop(ini);

/*(90)*/ red_end_session("CSMA-CD");

/*(91)*/ }

This piece of code uses REDLIB to carry out backward reachability analysis. For conve-

nience of discussion, we have labeled each statement line with a commented statement number

to the left. At statements (7) and (8), we include the header files for REDLIB . At statements

(10), (11), and (12), we declare a file variable, a BDD-like diagram variable, and three index

18

variables to the stack supported by REDLIB.

Statements (13), (18), (64), and (90) respectively correspond to statements (A), (B), (E),

and (G) in table 1. Statement (16) sets the output file pointer of the whole REDLIB session,

i.e. RED OUT, to the file specified as the first command-line argument. Statements (21) to (32)

are for variable and constant declarations and correspond to segment (C) in table 1. Statements

(35) to (62) are for the model behavior structure declaration and correspond to the optional

segment (D) in table 1. Statements (65) to (89) are for BDD-like diagram manipulation and

correspond to the optional segment (F) in table 1.

Statements (21) to (23) declare three macro constants used in the model behavior structure.

Statements (26) to (32) declare one local clock and four global synchronizers. At statements

(20), (25), and (28), we also add comments to the input file to the RED parser.

We pick some statements in segment (D) to explain how to declare the model behavior

structure with REDLIB. The declaration is a sequence of mode declarations. A typical mode

declaration can be found from statements (54) to (57). Statement (54) declares a mode whose

name is “transm” and whose invariance condition is “x <= LAMBDA.” Statement (57) finishes

the mode declaration.

Note that the invariance condition is specified without process index reference to variable

‘x.’ In general, in the mode declarations, we assume the transitions are to be executed by a

process in the mode (or control location). All local variables without a process index reference

are assumed to reference the local variable of the executing process. A constraint with local

variables without process index references is called a local constraint. One without is called a

global constraint. A global constraint is a special case of local constraint. Local constraints are

only allowed in mode declarations.

Inside a mode declaration, we may have transition declarations. Statement (55) declares a

transition rule with a synchronizer ‘end,’ a triggering condition “x==LAMBDA,” and two actions

“x=0; goto wait;.” There is an implicit local discrete variable, mode, created by REDLIB.

The variable records the operation mode of each process. Action “goto wait;” is executed by

setting local variable mode to the index of mode ‘wait.’

From statements (65) to (89), we use REDLIB to process BDD-like diagrams for the safety

analysis. Statements (66) to (68) print out the variable table, the transition table, and the

synchronous transition table to file ‘out.’ The transition table records the rules declared by the

users. In the execution, since we are using CSP-style communication channels, several transition

rules may have to be combined to make a global simultaneous execution. For example, the rule

declared at statement (55) can be executed only when the one at statement (39) is also executed

simultaneously. For another example, the rule declared at statement (44) can be executed by

19

the bus only when the two sender processes both execute a transition with synchronizer ‘?cd’

at the same time. The synchronization of some transition rules are recorded in the synchronous

transition table.

For performance consideration, not all transition synchronizations are recorded in the syn-

chronous transition table. REDLIB also records some transition synchronization information

in a BDD-like diagrams called red bulk xtions(). Statement (70) prints out this BDD-like

diagram in a tree-like format.

Statement (71) uses procedure ‘red diagram()’ to create a BDD-like diagram. red diagram()

allows the users to write a formula as a string in C/C++ format. It automatically translates the

formula in the string to a BDD-like diagram. The diagram is stored in variable red ini of type

red type. Statement (74) pushes the diagram to a stack created by REDLIB. Any BDD-like

diagrams in the stack will not be reclaimed in a latter garbage-collection process. Procedure-call

red push() at statement (74) returns the stack index of the frame used to store the just-pushed

diagram. Later, for example in statement (75), we can use procedure-call red stack(ini) to

refer to the diagram stored in this frame. We can also use procedure-call red set stack() to

change the content of a stack frame. For example, in statements (78) and (79).

Statements (76) to (79) calculates an abstract image of the forward reachability and uses this

image for the refined invariance condition. Statement (77) gets the diagram for an invariance

condition of the model structure with procedure-call red declared invariance() and pushes

it to the stack. This invariance condition is constructed out of the invariance conditions in

the mode declarations. Statement (78) then uses this invaraince condition as the system global

invariance to calculate an untimed abstraction of the forward reachable state-space from the

initial states.

Statement (79) uses the untimed abstraction of the reachable state-space as a new global

invariance condition to calculate a finer abstraction of the forward reachable-space from the

initial states.

Statements (80) to (86) then do the risk analysis with backward reachability analysis. State-

ment (81) constructs a BDD-like diagram for contraint

“transm[2]&&transm[3]&&(x[2]>=B||x[3]>=B)”

as the risk condition. Statement (82) constructS the backward reachability analysis to the risk

condition. Statements (83) to (86) check whether the backward reachability contains any initial

states. Statement (83) calls procedure red_normal() to normalize the representation of the

BDD-like diagram for the intersection between the reachability and the initial condition. If the

normalized representation is false, there is no initial state that can reach the risk states and the

20

. . .
red begin session(system type, name, n); (A)

. . .
red input model(file); (B)

. . .
[OPTIONAL PROCESSING OF THE DIAGRAMS;] (C)

. . .
red end session(name); (D)

. . .

Table 2: A template for using REDLIB with an input model.

system is safe. Otherwise, the system is unsafe.

Note that procedure-calls red reach untimed fwd() at statement (78), red reach magnitude fwd()

at statement (79), red reach bck() at statement (82), and red normal() at statement (83) all

may invoke garbage-collections. Thus it is wise to keep important diagrams in the stack while

calling such procedures.

3.2 Model declaration through a file

Now we briefly explain the second approach. We can directly input the model from a file in

the format of to the parser of RED. REDLIB needs to be used according to the template

in table 2. The only difference is that statement (B) in table 2 now replaces statement (B),

segment (C), segment (D), and statement (E) in table 1. The input file for the declaration in

table 1 is as follows.

/* Three constants used in the specification. */

#define A 26

#define B 52

#define LAMBDA 808

process count = 3; /* 1 is for bus, the others for senders. */

/* One local clock. */

local clock x;

/* 4 synchronizers. */

global synchronizer begin, end, cd, busy;

/* 3 modes for the bus. */

21

mode idle (true) {

when ?begin (true) may x= 0; goto active; /* 1 */

}

mode active (true) {

when ?end (true) may x= 0; goto idle; /* 2 */

when !busy (x >= A) may ; /* 3 */

when ?begin (x < A) may x= 0; goto collision; /* 4 */

}

mode collision (x < A) {

when !cd !cd (x < A) may x= 0; goto idle; /* 5 */

}

/* red_comment("3 modes for the senders. */

mode wait (true) {

when !begin (true) may x= 0; goto transm; /* 6 */

when ?cd (true) may x= 0; /* 7 */

when ?cd (true) may x= 0; goto retry; /* 8 */

when ?busy (true) may x= 0; goto retry; /* 9 */

}

mode transm (x <= LAMBDA) {

when !end (x==LAMBDA) may x= 0; goto wait; /* 10 */

when ?cd (x<B) may x= 0; goto retry; /* 11 */

}

mode retry (x < B) {

when !begin (x < B) may x= 0; goto transm; /* 12 */

when ?busy (true) may x= 0; /* 13 */

when ?cd (x < B) may x= 0; /* 14 */

}

initially

idle[1] && x[1]==0 && forall i:i>1, (wait[i] and x[i]==0);

risk

transm[2] && transm[3] && (x[2]>=B || x[3]>=B);

Segment (C) and statement (D) in table 2 are then respectively the same as segment (F) and

22

. . .
red change declaration(flag vars, flag rules); (B’)

. . .
VARIABLE DECLARATIONS; (C)

. . .
[OPTIONAL MODEL STRUCTURE DECLARATION;] (D)

. . .
red end declaration(); (E)

. . .
[OPTIONAL PROCESSING OF THE DIAGRAMS;] (F)

. . .

Table 3: A template for using REDLIB.

statement (G) in table 1. Note that all comments are written in C-style. The mode declarations

start with reserved words mode. The transition rule declarations start with reserved words when.

The action sequence in a rule starts with reserved word may.

In the beginning of the file, we may also declare the number of processes. But it is over-

ridden by the third parameter of procedure-call red begin session(). In the end, we may also

declare the initial condition and the risk condition. They can be referenced in REDLIB with

procedure-calls red query diagram initial() and red risk().

3.3 Model modification through API

Sometimes we may want to change the behavior structure of a model without changing the vari-

able declarations and process declarations. In this case, we can use the template in table 3 to do

the job. Note the piece of code is almost the same as the one from statements (B) to (F) in table 1

except that we change procedure red begin declaration() to red change declaration(flag vars,

flag rules). This procedure, red change declaration(flag vars, flag rules), allows us

to make some augmentations to the original declarations. Between statements (B’) and (E) in

table 3, we can make any variable, mode, transition declarations. If variable declarations are

also made between the two statements, we only check if they have already been declared or in

conflict with some previous declarations.

flag vars may have the following two values.

• RED RENEW VARIABLES: This option says that in the new round of declaration, all previously

declared variables will be discarded. Also a new variable table, a new mode table, a new

transition table, and the other derived new tables will be constructed. All previous BDD-

like diagrams will be reclaimed.

23

• RED ADD VARIABLES: This option says that in the new round of declaration, newly declared

variables will be added to those previously declared variables. The newly and previously

declared will be used together in verification session henceforth. However, any inconsis-

tency in the new declarations and the previous ones will be signaled and terminate the

program. For example, if we have a local clock declaration x in both the previous and

the new declarations, then it is considered consistent and OK. On the other hand, if x is

declared as a discrete in the new declaration and a clock in the previous one, then this is

considered an inconsistency and program termination happens.

A new variable table, a new mode table, a new transition table, and the other derived new

tables will be constructed. All previous BDD-like diagrams will be reclaimed.

• RED CHECK VARAIABLES: This option says that in the new round of declaration, all newly

declared variables will be discarded. Only the previously declared variables will be used

as for the new verification session henceforth. However, any inconsistency in the new dec-

larations and the previous ones will be signaled and terminate the program. For example,

if we have a local clock declaration x in both the previous and the new declarations, then

it is considered consistent and OK. On the other hand, if x is declared as a discrete in the

new declaration and a clock in the previous one, then this is considered an inconsistency

and program termination happens.

The previous variable table will be used. All previous BDD-like diagrams will be main-

tained.

flag rules may have the following two values.

• RED RENEW RULES: This option says that in the new round of declaration, all previously

declared rules will be discarded. Also a new mode table, a new transition table, and the

other derived new tables will be constructed.

• RED ADD RULES: This option says that in the new round of declaration, newly declared rules

will be added to those previously declared rules. The newly and previously declared will

be used together in verification session henceforth. A new mode table, a new transition

table, and the other derived new tables will be constructed.

In fact, procedure-call red begin declaration() is implemented exactly as red change declaration(RED RENEW

RED RENEW RULES).

However, we cannot change the concurrency sizes at this moment with procedure red change declaration(flag)

To change the concurrency sizes, we need to initiate a new REDLIB session.

3.4 Model modification through a file

REDLIB also supports the run-time modification to the model declarations. The procedure is

24

red input model changes(file, flag vars, flag rules)

The two flags are exactly the same as the ones explained in subsection 3.3. The procedure

behaves the same as red input model(file) except that we may discard or add variables and

rules in the new declaration according to the values of the two flags.

4 Variable declarations

This is for variable declarations. A global variable can be declared with the following statement.

red_declare_variable(type, lb, ub, name, ...);

Note that we can certainly use the corresponding values specified in redlib.h instead of the

macro names for the constants. But then the application programs could suffer from incompat-

ibility with future versions of REDLIB with redefinitions of the macro constants.

Parameter ‘type’ specifies the type of the variable. Values of the parameter can be as follows.

RED_TYPE_DISCRETE

RED_TYPE_POINTER

RED_TYPE_BOOLEAN

RED_TYPE_CLOCK

RED_TYPE_DENSE

RED_TYPE_SYNCHRONIZER

Type value ‘RED TYPE DISCRETE’ creates a discrete variable. Type value ‘RED TYPE POINTER’

creates a discrete variable whose range is from zero to the number of processes. Type value

‘RED TYPE BOOLEAN’ creates a Boolean variable. Type value ‘RED TYPE CLOCK’ creates a clock

variable. Type value ‘RED TYPE DENSE’ creates a dense variable in linear-hybrid system.

Parameters ‘lb’ and ‘ub’ are only used for discrete variables. These two non-negative integers

specify the lower-bound and upper-bound of the range of a discrete variable.

Parameter ‘name’ is a format string (like the one in printf()) for the name of the variable.

The format string can be followed by a variable-length list of arguments. This allows for the

development of concise code for the variable declaration. For example, we may want to declare

10 binary variables named s0, s1, . . . , s9. We may use the following code to do the job.

for (i = 0; i < 10; i++)

red_declare_variable(RED_TYPE_DISCRETE, 0, 1, "s%1d", i);

25

For the construction of concise models, REDLIB also supports the declaration of local

variables. A local variable declaration has an instance for each process. The instance of a local

variable with name x for process i can be accessed as x[i]. A local variable can be declared with

the following procedure.

red_declare_local_variable(type, lb, ub, name, ...);

It also allows for a variable-length list of arguments. name is again a format string like the

format string in printf().

5 Expression strings

An arithmetic expression (or expression) is an arithmetic combination of variable references. In

general, an expression E of REDLIB can be constructed with the following inductive grammar

rules. For convenience, we use letters between apostrophes for terminals of reserved words.

Slanted letters for non-terminals.

E ::= M | M ‘+’ E1 | M ‘-’ E1

M ::= V | V ‘*’ M1 | N ‘/’ M1 | N ‘%’ number | N ‘%’ macro constant
N ::= V | number | macro constant | ‘#PS’ | ‘P’

V ::= var name | var name‘[’E‘]’ | var name‘->’R | var name‘[’E‘]’‘->’R
R ::= var name | var name‘->’R

‘%’ is the modulo (remainder) operator. Now we only allow for modulo operations with constant

divisors. number is an integer. Only when it is the first coefficient, it is allowed be negative.

macro constant is a macro symbol for a constant declared with procedure red define const().

‘#PS’ is a macro constant for the number of processes in the model. ‘P’ can only be used

in local constraints and represents the process index of the executing process.

A local variable can be referenced without an explicit process index only when it is used

in a local constraint. The implicit interpretation of the process index is that of the executing

process. The process index expressions must contain no clock and dense variables.

REDLIB also supports pointer references. Given a variable reference like ‘y1->. . . ->yn->x’,

y1 through yn must be either discrete variables or pointers. If the value of yi in the current state

is less than 0 or greater than #PS, the evaluation fails without execution.

6 Constraint strings

As can be seen from the example program in section 3, users can write strings for a constraint

with REDLIB . There are three types of constraint strings that we can write with REDLIB.

26

They are the following.

• Local constraints are constraints with the following restrictions.

− No variables in the constraints are synchronizers.

− No modal operators (until, always, eventually, often, almost).

• Global constraints are constraints with the following restrictions.

− No variables in the constraints are synchronizers.

− No references to local variables with implicit process indcies.

In general, the constraint strings F of REDLIB can be constructed with the following inductive

grammar rules. For convenience, we use letters between apostrophes for terminals of reserved

words. Slanted letters for non-terminals.

F ::= D1 | D1 ‘implies’ D2

D ::= C | C ‘||’ D1

C ::= L | L ‘&&’ C1

L ::= ‘(’ F ‘)’ | ‘not’ L | T

Here F is a formula, D is a disjunction with operator ‘or’ denoted as ‘||’ . C is a conjunction

with operator ‘and’ denoted as ‘&&’ . L is a formula with parentheses, or a negation, or a

temporal atom. Thus F is a Boolean combination of temporal atoms.

A temporal atom T can be of the following types.

• false

• true

• Current mode specification. In a local constraint, the current mode of the executing process

can be written as

mode name

where mode name is a declared mode name.

In both local and global constraints, we can also specify that the current mode of a specific

process. This can be done as

mode name[E]

where E is an arithmetic expression. The square brackets around E denotes that E is to be

interpreted as a process index. The grammar for arithmetic expressions will be discussed

in page 26.

• Inequalities. An inequality is of the form E1 ∼ E2 where E1 and E2 are arithmetic

expressions and ∼ is one of ‘<’ (less than), ‘<=’ (less than or equal to), ‘==’ (equal to),

‘!=’ (not equal to), ‘>=’ (greater than or equal to), and ‘>’ (greater than).

In REDLIB, there are two classes of variables. Class I consists of the clock and dense

variables. Class II consists of the remainings. REDLIB does not allow an inequality

27

REDLIB modal operators Pnueli’s Clarke’s

forall ∀ A
exists ∃ E
until U U

always � G
eventually ♦ F

often �♦ (or ♦∞) GF
almost ♦� (or �∞) FG

Table 4: correspondence between modal operators in REDLIB and those in the literature

with variables from both classes. Also, if the system is of type RED_SYSMTE_TIMED, an

inequality with clock variables must be like one of the following.
‘x ∼ number’ ‘x[E] ∼ macro constant’
‘number ∼ x’ ‘macro constant ∼ x[E]’

• Quantified constraints over processes. We can make quantified constraints over the pro-

cesses with REDLIB . Such a constraint can be in one of the following four forms.
‘forall’ var name ‘,’ L1

‘forall’ var name ‘:’ L1 ‘,’ L2

‘exists’ var name ‘,’ L1

‘exists’ var name ‘:’ L1 ‘,’ L2

var name is a quantified variable name over the scope of L1 and L2. The value of var name

is over the set of process indices. var name may or may not be declared in the variable

declaration segment. In this scope, it is treated as a pointer variable.

• Clock reset constraints. We can evaluate a constraint with the assumption that a clock

reads zero. Such a constraint can be written as follows.

‘reset’ clock name L

Note that such constraints can only be used in global constraints.

• Temporal formulas. We can also use TCTL formulas with fairness assumptions. Such a

formula can only be used in global constraints and is in one of the following four forms.
‘forall’ fairness sop L1

‘exists’ fairness sop L1

‘forall’ fairness L1 ‘until’ L2

‘exists’ fairness L1 ‘until’ L2

sop is a modal operators. The possibilities for sop are ‘eventually’, ‘always’, ‘often’,

and ‘almost’. The correspondence between the modal operators to the traditional nota-

tions in the literature can be found in table 4.

fairness is the fairness constraint. It can be an empty string, a weak fairness assumption,

a strong fairness assumption, or both. A weak fairness assumption is specified as follows.

‘weak’ ‘{’ W1 ‘;’ . . . ‘;’ Wn ‘;’ ‘}’

where W1, . . . ,Wn are either global constraints or event constraints. For a weak assumption

28

global constraint W ′, it specifies that along the computation, eventually all states in the

computation satisfies W ′. For a weak assumption event predicate W ′, it specifies that

along the computation, eventually the synchronizers in all transitions must satisfy W ′.

A strong fairness is similarly defined as

‘strong’ ‘{’ S1 ‘;’ . . . ‘;’ Sn ‘;’ ‘}’

For a weak assumption global constraint S′, it specifies that along the computation, there

are infinitely many states in the computation satisfies S′. For a weak assumption event

predicate S′, it specifies that along the computation, there are infinitely many transitions

with synchronizers that satisfy S′. Note that the “infinitely many” is interpreted with the

divergence of computations. Technically, this means that for any time value t, there is a

t′ > t such that the strong fairness assumption is satisfied at time t′ along the computation.

Specifically, we have the following explanation of typical combinations of the components.

A computation satisfies strong fairness assumption S1, . . . , Sm and weak fairness assump-

tion W1, . . . ,Wm if and only if it has

− infinitely many states satisfying global constraints in S1, . . . , Sm,

− infinitely transitions satisfying event predicates in S1, . . . , Sm, and

− a tail computation (suffix) along which

∗ all states satisfy global constraints in W1, . . . ,Wn, and

∗ all transitions satisfy event predicates in W1, . . . ,Wn,

With this concept, we can explain the various combinations of the components in a modal

formula as follows.

− A formula like

forall strong { S1; . . . ;Sm } weak { W1; . . . ;Wn } F1 until F2

specifies states from which if a computation satisfies strong fairness assumption

S1, . . . , Sm and weak fairness assumption W1, . . . ,Wm, then along the computation,

F1 is true until eventually F2 is true.

− A formula like

exists strong { S1; . . . ;Sm } weak { W1, . . . ,Wn } F1 until F2

specifies states from which there is a computation satisfying strong fairness assump-

tion S1, . . . , Sm and weak fairness assumption W1, . . . ,Wm, Moreover, along the com-

putation, F1 is true until eventually F2 is true.

− A formula like

forall strong { S1; . . . ;Sm } weak { W1, . . . ,Wn } eventually F2

specifies states from which if a computation satisfies strong fairness assumption

S1, . . . , Sm and weak fairness assumption W1, . . . ,Wm, then along the computation,

29

eventually F2 is true.

− A formula like

exists strong { S1; . . . ;Sm } weak { W1, . . . ,Wn } eventually F2

specifies states from which there is a computation satisfying strong fairness assump-

tion S1, . . . , Sm and weak fairness assumption W1, . . . ,Wm, Moreover, along the com-

putation, eventually F2 is true.

− A formula like

forall strong { S1; . . . ;Sm } weak { W1, . . . ,Wn } always F2

specifies states from which if a computation satisfies strong fairness assumption

S1, . . . , Sm and weak fairness assumption W1, . . . ,Wm, then along the computation,

only transitions satifying E1 can happen.

− A formula like

exists strong { S1; . . . ;Sm } weak { W1, . . . ,Wn } always F2

specifies states from which there is a computation satisfying strong fairness assump-

tion S1, . . . , Sm and weak fairness assumption W1, . . . ,Wm, Moreover, along the com-

putation, only transitions satifying E1 can happen.

− A formula like

forall strong { S1; . . . ;Sm } weak { W1, . . . ,Wn } often F2

specifies states from which if a computation satisfies strong fairness assumption

S1, . . . , Sm and weak fairness assumption W1, . . . ,Wm, then along the computation,

infinitely many times a transition satisfying E1 happens and ending at a state satis-

fying F2.

− A formula like

exists strong { S1; . . . ;Sm } weak { W1, . . . ,Wn } often F2

specifies states from which there is a computation satisfying strong fairness assump-

tion S1, . . . , Sm and weak fairness assumption W1, . . . ,Wm, Moreover, along the com-

putation, infinitely many times a transition satisfying E1 happens and ending at a

state satisfying F2.

− A formula like

forall strong { S1; . . . ;Sm } weak { W1, . . . ,Wn } almost F2

specifies states from which if a computation satisfies strong fairness assumption

S1, . . . , Sm and weak fairness assumption W1, . . . ,Wm, then the computation has

a tail computation along which, immediately after all transitions that satisfy E2, F2

is always true.

− A formula like

30

exists strong { S1; . . . ;Sm } weak { W1, . . . ,Wn } almost F2

specifies states from which there is a computation satisfying strong fairness assump-

tion S1, . . . , Sm and weak fairness assumption W1, . . . ,Wm, Moreover, along the com-

putation, there is a tail computation along which, immediately after a transition that

satisfies E1, F2 is always true.

Please be again reminded that phrases strong {...} and weak {...} are both optional.

REDLIB has the power to automatically construct the BDD-like diagrams for such con-

straints represented as strings. For an event constraint string F , we can use procedure-call

red_diagram(F) to construct the BDD-like diagram for the constraint. For a global con-

straint without modal operators F , we can also use procedure red_diagram(F) to construct

the BDD-like diagram. In fact, red_diagram() allows for variable-length arguments in the style

of printf(...).

Example 7 : Given a local clock variable x, a local pointer variable p, and a global discrete

variable a, procedure-call

“red_diagram("p[2]->x <= 3 && x[1] > 2 && a<= 5 && a->p > 1");”

returns a BDD-like diagram. On the other hand, procedure-call

“red_diagram("p->x <= 3 && x[1] > 2 && a<= 5 && a->p > 1");”

is illegal and returns NULL.

We may also write

red_diagram("%s==%d && %s!=%d", a, 1, b, 0)

When a is ”friend” and b is ”enemy”, the procedure-call constructs a diagram for

”friend==1 && enemy==0”. �

REDLIB also allows the users to construct diagrams from formula strings with local vari-

able references. For such local constraints, we need to tell REDLIB how to interpret local

variable names. Specifically, we need to tell REDLIB the index of the executing process to

construct the corresponding BDD-like diagrams. This can be done through procedure-call like

red_diagram_local(p, F, ...) where p is the index of an executing process.

Example 8 : Given a local clock variable x, a local pointer variable p, and a global discrete

variable a, procedure-call

“red_diagram("p[2]->x<=%d && x[1]>%1d && a<= 5 && a->p > 1", 3, 2);”

31

returns the same BDD-like diagram as procedure-call

“red_diagram_local(2, "p->x<=%d && x[1]>%1d && a<= 5 && a->p > 1", 3, 2);”

does. Note here we interpret variable name p as p[2]. �

7 Model structure declarations

This optional segment consists of a sequence of mode declarations. A mode is a control location.

A control location can be labeled with an invariance condition. In side a mode, we can then

declare a sequence of transition rules. The template for a mode declaration with REDLIB is

as follows.

red_begin_mode(name , inv);

. . .

RED RULES;

. . .

red_end_mode();

Here parameter name is the name of the mode. inv is a local constraint string that specifies

the invariance condition of the executing process in the mode.

Specifically, REDLIB have the following two parameterized procedures to begin and end a

mode declaration.

int red_begin_mode(int flag uergent , char *name , char *inv , ...)

This procedure starts the declaration of a mode with name name and invariance condition

expressed as a format string inv. This procedure again is parameterized (as in the printf

style) with variable length arguments. Users can use place-holders in the string inv and

fill them in with the variable-length arguments represented with the three dots.

There is also a flag argument flag urgent. This flag tells REDLIB whether this mode is

an urgent mode or not. An urgent mode does not allow time to progress before leaving it.

The two possible values of flag urgent are

The procedure returns macro constant RED_MODE_FAIL if the operation fails. Otherwise it

returns RED_MODE_SUCCESS. �

int red_end_mode()

32

This procedure ends the declaration of a mode. It does some primitive check that the

mode declaration ends properly. The procedure returns macro constant RED_MODE_FAIL if

the declaration does not end correctly. Otherwise it returns RED_MODE_SUCCESS. �

7.1 Rules for rate specificaitons of dense variables

For convenience, a fractional expression is either an integer (or a macro constant) or an expression

like c/d where c and d are integers (or macro constants). An interval expression is of the form

lbrac K1 , K2 rbrac

where K1 and K2 are fractional expressions, lbrac is either ‘[’ (for left-closed intervals) or ‘(’

(for left-open intervals), and rbrac is either ‘]’ (for right-closed intervals) or ‘)’ (for right-open

intervals).

There can be zero or many rules in between a red_begin_mode() statement and a matching

red_end_mode() statement. There are two types of rule. The first is for the declaration of the

changing rate of a dense variable in a linear-hybrid system. A rule of this type can be declared

with the following procedure-call.

int red_dense_rate(var name , rate range)

char *var name, /* a string for the variable name */

rate range; / a string for the rate interval */

Here parameter var name is a string that specifies a declared dense variable. rate range

is a string that specifies the range of rate. rate range can be in one of the following three

forms.

− A string for an integer constant (or macro constant).

− A string for an expression like c/d where c and d are two integer constants (or macro

constants).

− A string for an interval expression.

�

Example 9 : Procedure-call “red_dense_rate("x", "3");” specifies that in a mode, the rate

of variable x is 3.

Procedure-call “red_dense_rate("x", "(3/5,7]");” specifies that in a mode, the rate of

variable x is in (3/5, 7]. �

7.2 Rules for discrete transitions

A CSP-style synchronization primitive is in one of the following forms.

33

‘!’ sync name | ‘!’ sync name ‘@’ qvar name | ‘!’ sync name ‘@’ ‘(’ E ‘)’

‘?’ sync name | ‘?’ sync name ‘@’ qvar name | ‘?’ sync name ‘@’ ‘(’ E ‘)’

Here ‘!’ intuitively means the sending of a message while ‘?’ means the receiving of a message.

sync name is a declared synchronizer variable name. qvar name is an undeclared quantifier vari-

able of type pointer. When a synchronizer name is followed by something like “‘@’ qvar name”,

qvar name can be used in the scope of a transition to reference the process index of the process

that corresponds to this synchronizer. When a synchronizer name is followed by something

like “‘@’ ‘(’ E ‘)’”, arithmetic expression E specifies the index of the process that must

correspond to this synchronizer.

A discrete transition in a mode can be declared with the following procedure.

int red_transition(char *rule , ...)

Here argument rule is a format string of the following syntax.

when trigger may actions

trigger is a string for the triggering condition of the transition while parameter actions is

a string for a sequence of actions. Note that actions must consist of at least one action.

However the action can be a null action represented by a single semicolon.

Since the procedure is with variable-length arguments, we can use the varaible-length

arguments to substitute in the place-holders in the format string rule.

A triggering condition is a sequence of CSP-style synchronization primitives followed by a

local constraint in parentheses. A triggering condition conceptually means that when all

the synchronization primitives are corresponded and the local constraint is satisfied, then

the transition CAN happen. Note since the model is nondeterministic in nature, ‘CAN’

does not means ‘must.’ When a transition happens, it execute its sequence of actions

instantaneously.

Since the explanation is long, we leave it to the following paragraphs. �

An action can be of the following ten forms.

1. Assignment action: Such an action is like

V ‘=’ E ‘;’

Here V is a variable reference defined in page 26. Note that V can be with process index

and pointer links. Also E is an expression defined in page 26.

Here are some of the restrictions.

− If the system type is RED_SYSTEM_TIMED and V is a clock variable reference, then E

can only be either a number (or macro constant) or an expression like y + c where y

34

is another clock variable reference.

− If V is a clock variable reference, then there is no discrete variable in E.

− If V is a discrete variable reference, a pointer reference, or a Boolean variable refer-

ence, then there is neither clock variable nor dense variable in E.

Example 10 : Suppose we are given a local clock variable x, a local pointer variable p,

and a global discrete variable a. We may have the following simple actions.
x = 3;

x = x+3;

x = x[2]3;+
a = 3*a+2*p-3;

We may also have the following actions with pointer references.
p->p->x = 3;

a->x = p->x+3;

p[1]->x = p[2]->x3;+
a->p = 3*(a+2*p[2]->p)-3;

However, the syntax combination of such actions can be very complicate. We have to ask

for your understanding that REDLIB is a non-profit library developed in the academia. If

you ever find some actions not supported as specified, please email to farn@cc.ee.ntu.edu.tw

and we will try to correct it as soon as possible. �

2. Interval assignment action: Such an action is like

V ‘in’ I ‘;’

Here I is an interval expression. Semantically, this action assigns an arbitrary value in the

interval expression to variable reference V .

Example 11 : Suppose we are given a local clock variable x, a local pointer variable p,

and a global discrete variable a. We may have the following simple actions.
x in [3,5);

a in [3,7];

We may also have the following actions with pointer references.
p->p->x in [3,5);

a->x in (0,7];

p[1]->x in (2,8);

a->p in [1,2];
�

3. Increment action: Such an action is like

V ‘++’ number ‘;’

Here number can also be a macro constant. Variable reference V must be a discrete variable

or a pointer. Semantically, this action increments the value o f variable reference V by the

value of number.

35

Example 12 : Suppose we are given a local clock variable x, a local pointer variable p,

and a global discrete variable a. We may have the following simple actions.

a ++ 5;

We may also have the following actions with pointer references.

a->p ++ (A+3);

Here A is a macro constant. Note that no variables are allowed in the increment offset. �

4. Decrement action: Such an action is like

V ‘--’ number ‘;’

Here number can also be a macro constant. Variable reference V must be a discrete variable

or a pointer. Semantically, this action decrements the value o f variable reference V by

the value of number.

Example 13 : Suppose we are given a local clock variable x, a local pointer variable p,

and a global discrete variable a. We may have the following simple actions.
a -- 5;

p[2] -- 5;

We may also have the following actions with pointer references.
a->p->p->p -- (3*A+1);

p[1]->p->p->p -- (3*(A+B*2));

Here A and B are macro constants. Note that no variables are allowed in the increment

offset. �

5. Goto action: This action changes the control location (or mode) of the executing process.

It is of the following format.

‘goto’ mode name ‘;’

As we have said, there is a system-generated local discrete variable mode which records

the current mode of the executing process. This action merely assign the index of mode

mode name to the local variable of mode.

6. Empty action: This is simply a semicolon ‘;’ which conceptually means no-operation.

7. Block action: A block action is a sequence of action enclosed in a pair of parentheses.

Example 14 : Suppose we are given a local clock variable x, a local pointer variable p,

and a global discrete variable a. Then we may have the following block action.

{ x[2]->p = 3; p->p->x = x + 3; a = p[2]->p; }

�

8. Loop action: This is like a while-loop in the traditional program languages. It is of the

following format.

‘when’ ‘(’ F ‘)’ action

Here F is a formula and action is an action.

36

Example 15 : Suppose we are given a local clock variable x, a local pointer variable p,

and a global discrete variable a. Then we may have the following loop action.

when (a > 3) a--1;

We may have the following more complex loop action.

when (a > 3) { x[2]->p = 3; p->p->x = x + 3; a = p[2]->p; }

�

9. If action: This is like an if-statement in the traditional program languages. It is of the

following format.

‘if’ ‘(’ F ‘)’ action

Here F is a formula and action is an action.

Example 16 : Suppose we are given a local clock variable x, a local pointer variable p,

and a global discrete variable a. Then we may have the following loop action.

if (a > 3) a--1;

We may have the following more complex loop action.

if (a > 3) { x[2]->p = 3; p->p->x = x + 3; a = p[2]->p; }

�

10. If-else action: This is like an if-statement in the traditional program languages. It is of

the following format.

‘if’ ‘(’ F ‘)’ action1 ‘else’ action2

Here F is a formula and action1 and action2 are two actions.

Example 17 : Suppose we are given a local clock variable x, a local pointer variable p,

and a global discrete variable a. Then we may have the following loop action.

if (a > 3) a--1; else a++2;

We may have the following more complex loop action.

if (a > 3) { p->p->x = x + 3; a = p[2]->p; } else { x[2]->p = 3; a++2; }

�

8 Accesses to the model structures

8.1 Declared model attributes

We may use REDLIB to access the information stored in a model structure.

Variable table

The table includes all the system-generated variables, including false, true, all the declared

variables, some system clocks, discrete variables for the marking the synchronization between

37

Macro constants Attributes

RED_VAR_TYPE the type of the variable

RED_VAR_SCOPE the scope of the variable, local or global

RED_VAR_SYSGEN a boolean value to tell if this variable is system-generated

RED_VAR_PRIMED a boolean value to tell if this is a primed variable or not

RED_VAR_PROC if this is a global variable, the value is zero;
if this is a local one, the value is the index of
the process to which the variable belongs.

RED_VAR_LB if this is a discrete (or pointer) variable,
this is the lower-bound of its values.

RED_VAR_UB if this is a discrete (or pointer) variable,
this is the upper-bound of its values.

RED_VAR_CLOCK1 if this is a clock inequality variable,
this is the clock index of the first clock.

RED_VAR_CLOCK2 if this is a clock inequality variable,
this is the clock index of the second clock.

RED_VAR_CLOCK_INDEX if this is a clock variable,
this is the clock index of the clock.

Table 5: Attribute type values of the variable table

processes, clock inequality variables, linear-hybrid inequality variables, and primed variables.

The index of a variable in the table marks its evaluation ordering in the BDD-like diagrams.

Note that it is in general impossible to predict the number of linear-hybrid expressions that

is to be constructed in the verification process of a linear-hybrid system. Thus REDLIB does

not allocate a unique variable index for each linear-hybrid expression. Instead, a class of linear-

hybrid expressions are mapped to a variable index.

For the variable table, we have the following procedures.

int red_query_var_count()

This procedure returns the size of the variable table. �

int red_query_var_attribute(vi , attr)

int vi, /* a variable index */

attr; /* an attribute index */

This procedure returns an integer attribute of the variable with index vi. The value of

parameter attr specifies the attribute whose value is to return. Values of parameter attr

are declared in redlib.h and can be found in table 5. �

char *red_query_var_name(vi)

38

int vi; /* a variable index */

This procedure returns the name of the variable with index vi. �

int red_query_var_index(vname, pi)

char *vname; // a decalred variable name int pi; /* a process index */

This procedure returns the index of the declared variable with name vname owned by

process index pi. If vname is the name of a global variable, then the value of pi does not

matter. �

int red_query_clock_count()

This procedure returns the number of clocks, including global ones and the local copies of

all local clocks, in the varaible table. �

int red_query_clock_var(ci)

int ci; /* a clock index */

This procedure returns the variable index of clock ci. �

int red_query_zone_index(ci1,ci2)

int ci1, ci2; /* the left and right clock indices */

This procedure returns the variable index of expression for the difference between clocks

ci1 and ci2. �

Transition tables

Note that a transition table stores all the information of those declared transitions in the input

model structure. In addition, REDLIB adds in a null transition, with transition index 0, that

does nothing. In general, transition information in a transition table is not enough for the execu-

tion of the model. Please be reminded that there may be synchronizations among the transitions.

REDLIB constructs a synchronous transition table and a bluk synchronization diagram out of

a transition table. The synchronization transition table and the bulk synchronization diagram

together record the information necessary for the synchronous execution among the processes.

We may use the following procedures to access information related to the transitions.

int red_query_xtion_count()

This procedure returns the number of transitions in a model structure. �

int red_query_xtion_attribute(xi , attr)

int xi, /* a declared transition index */

39

Macro constants Attributes

RED_XTION_SYNC_COUNT the number of synchronization primitives

RED_XTION_SRC_MODE the source mode index of the declared transition

RED_XTION_DST_MODE the destination mode index of the declared transition

RED_XTION_PROCESS_COUNT the number of processes that may execute it

RED_XTION_ACTION_COUNT the number of top level actions

Table 6: Attribute type values of the declared transition table

attr; /* an attribute index */

This procedure returns an integer attribute of the declared transition with index xi. The

value of parameter attr specifies the attribute whose value is to return. Values of parameter

attr are declared in redlib.h and can be found in table 6. �

redgram *red_query_xtion_trigger_diagram(xi,pi)

int xi, /* a declared transition index */

pi; /* a process index */

This procedure returns a BDD-like diagram that is the triggering condition of transition

xi for process pi. �

char *red_query_xtion_action_string(xi)

int xi; /* a declared transition index */

This procedure returns a string for the action of transition xi. �

char *red_query_xtion_string(xi)

int xi; /* a declared transition index */

This procedure returns a string for transition xi. �

int red_query_xtion_process(xi, i)

int xi, /* a declared transition index */

i; /* an index to the processes that execute transition xi */

The restriction is that i <red_query_xtion_process_count(xi). When the restriction is

satisfied, this procedure returns the index of the i’th process that can execute transition

xi. �

Process attributes

We have the following procedures to let the users access the attributes of processes.

int red_query_process_count()

40

This process returns the number of processes in the system. �

int red_query_process_xtion_count(pi)

int pi; /* a process index */

This process returns the number of declared transitions that can be executed by process

pi. �

int red_query_process_xtion(pi,xi)

int pi, /* a process index */

xi; /* a declared transition index */

This process returns the index of the xi’th declared transition that can be executed by

process pi. �

Mode attributes

We have the following procedures to let the users access the attributes of the declared modes.

int red_query_mode_count()

The procedure returns the number of modes declared in the system. �

int red_query_mode_attribute(mi , attr)

int mi, /* a declared mode index */

attr; /* an attribute index */

This procedure returns an integer attribute of the declared mode with index mi. The value

of parameter attr specifies the attribute whose value is to return. Values of parameter attr

are declared in redlib.h and can be found in table 7. �

char *red_query_mode_name(mi)

int mi; /* a mode index */

The procedure returns a string for the name of mode mi. �

int red_query_mode_xtion(mi,xi)

int mi, /* a mode index */ xi; /* an index to a transition declared in mode mi */

The procedure returns an integer for the index of of xi’th declared transition in mode

mi. If mi is not a valid mode index, xi is smaller than zero, or xi is no less than

red_mode_attribute(mi, RED_MODE_XTION_COUNT), ‘-1’ will be returned. �

int red_query_mode_process(mi,pi)

41

Macro constants Attributes

RED_MODE_XTION_COUNT the number of declared transition
that can be executed in this mode

RED_MODE_URGENT a Boolean flag to tell if the mode is urgent.
It returns a non-zero value if and only if it is.
In an urgent mode, time is not allowed to progress.

RED_MODE_PROCESS_COUNT the number of processes that can stay in this mode

RED_MODE_RATE_LB_NUM the numerator of the lower-bound of the declared change rate
of a dense varaible in the mode in a linear-hybrid system.
Note that if the returned value is -1*red_hybrid_oo(),
it means no lower-bound.
If the returned value is even, it actually means
a closed rational lower-bound with numerator equal to
half the returned value. If the returned value is odd,
it means an open rational lower-bound with numerator equal to
half the returned value minus one, i.e.,
(red_mode_attribute(mi, RED_MODE_RATE_LB_NUM)-1)/2.
If the system is not linear-hybrid or vi does not index a
dense or clock variable, REDLIB might not withdraw all your savings
in the bank and burn the computer.
But we don’t guarantee the proper running of the verification task.

RED_MODE_RATE_LB_DEN the denominator of the lower-bound of the declared change rate
of a dense varaible in the mode in a linear-hybrid system.
Note that if the returned value is -1*red_hybrid_oo(),
it means no lower-bound.

RED_MODE_RATE_UB_NUM the numerator of the upper-bound of the declared change rate
of a dense varaible in the mode in a linear hybrid system.
Note that if the returned value is red_hybrid_oo(),
it means no upper-bound.
If the returned value is even, it actually means
a closed rational upper-bound with numerator equal to
half the returned value. If the returned value is odd,
it means an open rational upper-bound with numerator equal to
half the returned value plus one, i.e.,
(red_mode_attribute(mi, RED_MODE_RATE_LB_NUM)1)/2+.

RED_MODE_RATE_UB_DEN the denominator of the upper-bound of the declared change rate
of a dense varaible in the mode in a linear-hybrid system.
Note that if the returned value is red_hybrid_oo(),
it means no upper-bound.

Table 7: Attribute type values of the declared mode table

42

RED_SYSTEM_UNTIMED 1
RED_SYSTEM_TIMED 2

RED_SYSTEM_HYBRID 3

Table 8: System type macro constants

int mi, /* a mode index */

pi; /* an index to a process that may stay in mode mi */

The procedure returns an integer for the index of of pi’th declared process that may stay

in mode mi. If mi is not a valid mode index, pi is smaller than one, or pi is greater than

red_process_count(), ‘-1’ will be returned. �

redgram *red_query_mode_invariance_diagram(mi,pi)

int mi, /* a mode index */

pxi; /* a process index */

The procedure returns a BDD-like diagram for the invariance condition of the mode for

process pi. �

8.2 Some derived system attributes

There are several information pieces important for the manipulation of dense-time spaces.

/* Procedure for invariance conditions of all processes */

redgram *red_query_declared_invariance_diagram()

The procedure returns a BDD-like diagram for the invariance condition constructed out

of the mode invariance conditions and their executing processes. Intuitively, it is the

conjunction of the invariance conditions of all the processes. The invariance condition of a

process is the disjunction of the invariance conditions of all locations that can be reached

by the process in its automaton graph. Some simple control flow analysis is done to tell

which process can execute in a mode. �

int red_system_type()

The procedure returns an integer for the system type of the model structure. The system

types are indexed with the macro constants defined in redlib.h in table 8. �

43

8.3 Synchronous transitions

As we have said, declared transitions may not be executable by themselves if they are with

synchronizers. Several declared transitions can be combined to form a synchronous transition.

The synchronous transitions are partitiioned and stored in two ways. The partition is determined

by a REDLIB parameter returned with procedure red_query_sync_bulk_depth().

int red_query_sync_bulk_depth()

This procedure returns a threshold integer value. Synchronous transitions with the number

of processes no greater than this threshold will be given unique process indices and can be

accessed and executed independently. Synchronous transitions withou in a synchronous

transitions with the number of processes greater than this threshold will be saved in

red_query_diagram_xtion_sync_bulk() and can only be used in execution as a whole.

When the model is read from an input file, the default value of red_query_sync_bulk_depth()

is 2 for risk analysis and model-checking and 3 for simulation checking. �

void red_set_sync_bulk_depth(d)

int d;

This procedure changes the value of red_sync_bulk_depth() to d. This procedure, if

executed, must be executed before invoking either procedure red_end_declaration()

or procedure red_input_model in the current session. The reason is that in those two

procedues, REDLIB uses the value of red_sync_bulk_depth() to partition synchronous

transitions into the synchronous transition table and the red_xtion_sync(). Violation of

the restriction, um, has not effect. �

If a synchronous transition involves no more than redlib_sync_bulk_depth() declared tran-

sitions, it is assigned a non-negative synchronous transition index. All information about this

synchronous transition can then be accessed through the following procedures. We have designed

a set of procedures to allow the users to access the synchronous transitions.

int red_query_sync_xtion_count()

This procedure returns the number of synchronous transitions in a model structure con-

structed out of the declared transitions. Thus, integers 0 through

red_query_sync_xtion_count−1 are the indices to the valid synchronous transitions de-

clared in a model. Moreover, there are two special synchronous transitions. The first is

with index 0 and is the null synchronous transition that does nothing. The other is with

44

index red_query_sync_xtion_count−1 which represents the bulk synchronous transition.

�

int red_sync_xtion_party_count(sxi)

int sxi; /* a synchronous transition index */

This procedure returns the number of processes involved in the synchronization of syn-

chronous transition sxi. �

int red_sync_xtion_party_process(sxi, pti)

int sxi; /* a synchronous transition index */

int pti; /* a party index */

This procedure returns the process index for the party with party index pti involved in the

synchronization of synchronous transition sxi. A valid party index must be in the range

from 0 to red_sync_xtion_party_count(sxi)-1. The procedure aborts when either sxi

is not a valid synchronous transition idex or pti is not a valid party index for synchronous

transition sxi. �

int red_sync_xtion_party_xtion(sxi, pti)

int sxi; /* a synchronous transition index */

int pti; /* a party index */

This procedure returns the transition index for the party with party index pti involved in

the synchronization of synchronous transition sxi. A valid party index must be in the range

from 0 to red_sync_xtion_party_count(sxi)-1. The procedure aborts when either sxi

is not a valid synchronous transition idex or pti is not a valid party index for synchronous

transition sxi. �

redgram *red_sync_xtion_trigger(sxi)

int sxi; /* a synchronous transition index */

This procedure returns a BDD-like diagram that is the triggering condition of synchronous

transition sxi. �

char *red_sync_xtion_action_string(sxi)

int sxi; /* a synchronous transition index */

This procedure returns a string for the actions of synchronous transition sxi. �

Especially, we have the following procedure that outputs a synchronous transition in a special

format that can be accepted for the calculation of preconditions or postconditions by REDLIB.

char *red_sync_xtion_string(sxi)

int sxi; /* a synchronous transition index */

45

This procedure returns a string for synchronous transition sxi. �

Suppose that synchronous transition sxi involves the execution of declared transitions of n

participating processes. This output string red_sync_xtion_string(sxi) is of the following

form.

‘sync’ ‘xtion’ XTION1 . . . XTIONn

Here F is a global constraint string defined in page 27. XTIONi, 1 ≤ i ≤ n, are abbreviated

strings for declared transitions. Each XTION is a string of the following syntax.

i ‘:’ MODE ‘(’ F ‘)’ ACTS

Here i is a constant for a process index. F is a local consrtraint string for the triggering condition.

ACTS is a sequence of local actions defined in pages 34 to 37. MODE is a name of a mode at

which the following transition is to be executed by process i.

Example 18 : Suppose we have the timed systems described in figure 2 and subsection 3.2.

The fifth declared transition is declared in mode idle as follows.

when !cd !cd (x < A) may x= 0; goto idle; /* 5 */

The seventh and eighth declared transition are then in mode wait respectively as follows.

when ?cd (true) may x= 0; /* 7 */

when ?cd (true) may x= 0; goto retry; /* 8 */

Please be reminded there are three processes in the system. The execution of transition 5 sends

out two signals cd while those of 7 and 8 respectively receive one signal cd. Thus the execution

of transition 5 by process 1 and those of 7 and 8 respectively by processes 2 and 3 together

make a legitmate synchronous transition with CSP-style synchronization primitives. Suppose

that this synchronous transition is indexed 2. Then the invocation of

red_sync_xtion_string(2)

prints out the following string.

"sync xtion 1:idle(x<A) may x=0; goto idle; 2:wait(true) may x=0; 3:wait(true) may x=0; goto retry;"

This string, as will be noted, could be used as a parameter to some REDLIB procedures

to calculate the precondition or post-condition of the synchronous transition. The string is

simply the concatenation of the declared transitions without the strings for ‘when’ and the

synchronization primitives. �

46

For all synchronous transitions that involve more than red_sync_bulk_depth() declared

transitions, we pack them in BDD-like diagrams accessible through the following procedures.

redgram *red_query_diagram_xtion_sync_bulk()

This procedure returns a BDD-like diagram that characterizes the synchronization among

the declared transitions. Those synchronization declared by the sychronous transitions are

not included in this diagram. �

redgram *red_query_diagram_xtion_sync_bulk_with_trigger()

This procedure returns a BDD-like diagram that characterizes the synchronization among

the declared transitions. Those synchronization declared by the sychronous transitions

are not included in this diagram. Triggering conditions of the participating transitions are

also incorporated in the diagram. �

9 Basic diagram operations

REDLIB supports two ways of diagram manipulations. The first is the traditional one in

which the users can make initial diagrams, conjunct them, disjunction them, and complement

them. This way should be good for some basic symbolic manipulations to carry out ordinary

state-space manipulations and verification tasks. The procedures to support this way of basic

diagram manipulation are explained in subsection 9.1.

However the first way does not quite allow the users to explore the structure of diagrams

and make specialized diagram operations. Sometimes, the users may want to experiment with

specialized diagram reduction techniques or normalization techniques. Sometimes they may

want to construct some special diagrams which cannot be done efficiently with those basic

manipulation procedures. For example, we may want to find out the maximum value of a

particular discrete variable in a diagram. We may also want to enforce the following constraints,

For every k1 and k2, if v1=k1 and v2=k2, then v3=k1+k2.

Such constraints cannot be efficiently constructed out of the basic manipulation procedures

since we may have to enumerate the ranges of variables v1 and v2. REDLIB supported a set

of procedures for the customized manipulation of diagrams. These procedures allows the users

to examine the structures inside a diagram in a recursive way. The way to do this is to call

procedure red_diagram_process(D, proc)

on diagram D. The users only have to provide a procedure proc as a parameter to tell REDLIB

47

how to process a typical node in the diagram. The users should implement proc with the

procedures discussed in this section to manipulate the structures in D. Explanation of and

examples for the procedures in the second way can be found in subsection ??.

9.1 Basic constraint construction

REDLIB supports the following procedures to manipulate diagrams.

/* Procedure that returns Boolean true. */

redgram *red_true()

This procedure returns a diagram for Boolean true. �

/* Procedure that returns Boolean false. */

redgram *red_false()

This procedure returns a diagram for Boolean false. �

redgram *red_diagram(F, ...)

char *F ; /* a global constraint string or an event constraint string. */

...; /* a sequnce of argments of either type string or type integer.*/

The procedure returns a BDD-like diagram for constraint format string F with variable

numbers of arguments. The format string is like a constraint except that there could be

place-holder strings like “%s” and “%d” for strings and integers respectively. The format

string F is like those in procedure printf(). The procedure substitutes the i’th arguments

in the variable-length argument list for the i’th place-holder strings in F . �

redgram *red_diagram_local(F,pi, ...)

char *F ; /* a global constraint string or an event constraint string. */

int pi; /* a process index */

...; /* a sequnce of argments of either type string or type integer.*/

The procedure returns a BDD-like diagram for constraint string F interpreted with respect

to process pi. The format string is like a constraint except that there could be place-holder

strings like “%s” and “%d” for strings and integers respectively. The format string F is

like those in procedure printf(). The procedure substitutes the i’th arguments in the

variable-length argument list for the i’th place-holder strings in F . �

Note that unlike other package for BDD diagrams that supports procedure to construct

diagrams for atomic propositions, red_diagram() and red_diagram_local() are powerful in

48

constructing diagrams complicate constraints. The parameters to the two procedures can even

contain linear-hybrid constraints.

9.2 Inductive constraint construction

REDLIB also supports construction of diagrams from other diagrams. The following three are

the regular Boolean ones.

redgram *red_and(D1,D2)

redgram *D1, *D2; /* Diagrams for the two conjuncts */

The procedure returns a BDD-like diagram for the conjunction of D1 and D2. �

redgram *red_or(D1,D2)

redgram *D1, *D2; /* Diagrams for the two disjuncts */

The procedure returns a BDD-like diagram for the disjunction of D1 and D2. �

redgram *red_not(D)

redgram *D; /* Diagrams to be complemented */

The procedure returns a BDD-like diagram for the complement of D. �

REDLIB also supports flexible quantification on a diagram. For example, given a diagram

D with a local variable x[1] and a global variable y, if we want to calculate the constraint for

the following expression.

∃x[1](x[1] ≤ 5 ∧ ∀y(y < 3 ⇒ D))

we may use the following procedure call.

red_quantify(D, "exists x[1], (x[1]<=5)&& forall y, (y<3)=>");

REDLIB also supports flexible parameterized invocation. For example, we may rewrite the

same procedure-call as follows.

red_quantify(D,

"exists %s, (%s[%1d]<=5)&& forall %s, (%s<3)=>",

"x[1]", "x", 1, "y", "y"

);

Procedure red_quantify() is described as follows.

redgram *red_quantify(D,K, ...)

redgram *D; /* Diagrams to be restricted */

char *K ; /* a string of quantifications with optional restrictions. */

...; /* a sequnce of argments of either type string or type integer.*/

49

The procedure returns a diagram by applying the quantification operations specified with

argument K and the variable-length arguments to diagram D. After the substitutions of

the variable-length arguments to K, the syntax of K should be as follows.
K ::= S K | S
S ::= Q V ‘,’ ‘(’ F ‘)’ P | Q V ‘,’ ‘~’ | Q V ‘,’

Q ::= ‘exists’ | ‘forall’

P ::= ‘&&’ | ‘=>’

Here K can be a non-empty sequence of structure S. There are three alternative structures

for S. All the three alternatives start with a quantification operator, either ‘exists’ or

‘forall’. We can associate a quantification with a Boolean restriction. The first structure

of S

Q V ‘,’ ‘(’ F ‘)’ P

allows us to associate the quantification with a Boolean restriction of operator P and

formula F . P can be a Boolean AND (i.e., ‘&&’) or a Boolean implication (i.e., ‘=>’). F

is a for a general constraint. The syntax of F can be found in page 6.

The second structure of S

Q V ‘,’ ‘~’

allows us to negate the formula to be quantified. ‘~’ is the complementation operator.

The third structure S

Q V ‘,’

does not use any Boolean restriction. �

9.3 Normalization

CRD and HRD do not have a natural canonical form. REDLIB supports several algorithms

to normalize the diagrams.

/* Procedure for customized diagram manipulation with single diagram parameter */

redgram *red_norm(D, op)

redgram *D//; the diagram to be normalized.

int op//; option for the normalization

This procedure returns a normalzied diagram that is equivalent to D according to option

op. The choices of op are the macro constants defined in redlib.h and listed in table 9.

�

9.4 Abstraction

50

Macro constants Options for normalization

RED_NORM_TIGHT All-pair-shortest-form for timed automata.
One-pass transitive deduction for linear-hybrid autoamta.

RED_NORM_MAG_REDUC Using two magnitude constraints to subsume any other other constraint.

Table 9: Option values for diagram normalization

/* Procedure for untimed reduction */

redgram *red_abstract(

redgram D,

int flag_state_approx,

char *R\verb, // a string for role specification. +

...) /* a sequnce of argments of either type string or type integer.*/

This procedure flexibly returns an abstract representation of diagram D according to the

description in flag_state_approx according to the role specification in string role_spec.

REDLIB allows the users to make adaptive abstraction decision on each variable accord-

ing to the class of the owner process of the variable. Variables are partitioned into four

classes.

− the global class: The variable is declared global and belongs to no processes.

− the model class: The variable is declared local to a process in the model class.

− the specification class: The variable is declared local to a process in the specification

class.

− the environment class: The variable is declared local to a process in the environment

class.

This argument is composed of four flag values for the abstraction techniques to be used

respectively for variables in these four classes. For the model class variables, we have the

following flag values.

− RED_NOAPPROX_MODL_GAME: With this flag value, REDLIB makes no effort to remove

any constraints with variables in the model class.

− RED_OAPPROX_MODL_GAME_DIAG_MAG: This flag value is only used with linear hybrid

automatas. It means that for a dense variable in the model class, we keep all its

magnitude1 constraints. We also keep every of its diagonal2 constraints if the other

1A magnitude constraint is of the form ax ∼ c where a is an integer constant, x a dense variable, ∼ an

inequality operator, and c an integer constant.
2A magnitude constraint is of the form ax + by ∼ c where a, b are integer constants, x, y dense variables, ∼ an

inequality operator, and c an integer constant.

51

variable in the diagonal constraint is not to be abstracted according to the flag values.

− RED_OAPPROX_MODL_GAME_DIAGONAL: This flag value tells the procedure to eliminate

all magnitude constraint of clock variables in the model class.

− RED_OAPPROX_MODL_GAME_MAGNITUDE: This flag value tells the procedure to eliminate

all diagonal constraint of clock variables in the model class.

− RED_OAPPROX_MODL_GAME_UNTIMED: This flag value tells the procedure to remove all

clock constraints for clock variables in the model class.

− RED_OAPPROX_MODL_GAME_MODE_ONLY: This flag value tells the procedure to remove

all local variables, except the mode variable, in the model class.

− RED_OAPPROX_MODL_GAME_NONE: This flag value tells the procedure to remove all local

variables in the model class.

The flag values for variables in the specification class are RED_NOAPPROX_SPEC_GAME,

RED_OAPPROX_SPEC_GAME_DIAG_MAG, RED_OAPPROX_SPEC_GAME_DIAGONAL, RED_OAPPROX_SPEC_GAME_MAGNI

RED_OAPPROX_SPEC_GAME_UNTIMED, RED_OAPPROX_SPEC_GAME_MODE_ONLY, and RED_OAPPROX_SPEC_GAME_NONE

Their meanings are similar to the ones for the model-class variables. The flag values for

variables in the environment class are RED_NOAPPROX_ENVR_GAME, RED_OAPPROX_ENVR_GAME_DIAG_MAG,

RED_OAPPROX_ENVR_GAME_DIAGONAL, RED_OAPPROX_ENVR_GAME_MAGNITUDE, RED_OAPPROX_ENVR_GAME_UNTI

RED_OAPPROX_ENVR_GAME_MODE_ONLY, and RED_OAPPROX_ENVR_GAME_NONE. Their mean-

ings are similar to the ones for the model-class variables.

The flag values for variables in the global class are RED_NOAPPROX_GLOBAL_GAME, RED_OAPPROX_GLOBAL_GAME_

RED_OAPPROX_GLOBAL_GAME_DIAGONAL,RED_OAPPROX_GLOBAL_GAME_MAGNITUDE,RED_OAPPROX_GLOBAL_GAME_UN

RED_OAPPROX_GLOBAL_GAME_MODE_ONLY, and RED_OAPPROX_GLOBAL_GAME_NONE. Their mean-

ings are similar to the ones for the model-class variables.

To specify an appropriate combination of the flags for the classes, we use bitwise disjunction

of the flag values for the four variable classes.

A role specification string R is a string of the following form.

"m1, m2, ..., mk; s1, s2, ..., sj;"

Here m1, m2, . . ., mk, s1, s2, . . ., and sj are process indices. We require that the sets

of {m1, m2, . . . , mk} and {s1, s2, . . . , sj} are disjoint. Suppose that the process count is

M . a role specification string tells REDLIB that the model automaton is constructed of

processes with indices in

{p | 1 ≤ p ≤ M,
∧

1≤i≤j p 6= si}

while the specification automaton is constructed of processes with indices in

{p | 1 ≤ p ≤ M,
∧

1≤i≤k p 6= mi}.

The format string is like a role specification string except that there could be place-holder

52

strings like “%s” and “%d” for strings and integers respectively. The format string R is

like those in procedure printf(). The procedure substitutes the i’th arguments in the

variable-length argument list for the i’th place-holder strings in F . �

Example 19 The argument value of

RED_OAPPROX_MODL_GAME_DIAGONAL

| RED_OAPPROX_SPEC_GAME_MAGNITUDE

| RED_OAPPROX_ENVR_GAME_DIAGONAL

| RED_OAPPROX_GLOBAL_GAME_NONE

says that all magnitude constraints about either the model-class or the environment-class

clock variables are to be removed, all diagonal constraints about the specification-class clock

variables are to be removed, and all constraints about global variables are also to be removed.

If a flag is not set for a class, its default value is no abstraction. For the explanation of the

following procedures, we have the following terms. A constraint of dense variables is called

magnitude if it is of the form x ∼ c, where c is a number constant and ∼∈ {<,≤,=, 6=,≥, >}.

A constraint is called diagonal if it is of the form x − y ∼ c. �

9.5 Reduction

At this moment, REDLIB supports several reduction techniques. Some techniques are auto-

matically carried out. An example is the inactive variable elimination. The reduction procedures

may lower the precision of the state-space representation. There are several reduction techniques

discussed in subsection 1. However, only the symmetry reduction and the inactive variable elim-

ination reduction can be invoked by the users. The others are always in effect.

/* Procedure for process-oriented symmetry reduction */

redgram *red_symmetry(D)

redgram *D//; the diagram to be reduced.

This procedure returns a reduced diagram that is symmetry-equivalent to D based on the

process-oriented symmetry reduction techniques by Emerson, Sistla, et al. �

/* Procedure for inactive variable elimination reduction */

redgram *red_reduc_inactive(D)

redgram *D//; the diagram to be reduced.

This procedure returns a reduced diagram out of D by eliminating all recordings of inactive

variables. �

53

10 Precondition & postcondition constructions

We partition procedures discussed in this section into two classes. One is for the precondition

and postcondition calculation of discrete transitions and time-progress. The other is for high-

level procedures that calculate a large-step of reachability analysis or verification tasks. The

procedures of the second class are built on those of the first class.

10.1 Preconditions & postconditions of time progress

We have the following procedures to support precondition and post-condition calculation.

redgram *red_time_bck(D1, D2)

redgram *D1, /* a diagram for the progress path */

D1; / a diagram for the post-condition */

This procedure returns a BDD-like diagram for the weakest precondition due to time

progress in the dense time domain. D1 specifies the space for the time-progress. D2

specifies the space for the destination states of the time-progress. �

redgram *red_time_fwd(D1, D2)

redgram *D1, /* a diagram for the progress path */

D1; / a diagram for the precondition */

This procedure returns a BDD-like diagram for the weakest post-condition due to time

progress in the dense time domain. D1 specifies the space for the time-progress. D2

specifies the space for the starting states of the time-progress. �

10.2 Preconditions & postconditions out of a declared model

REDLIB supports the precondition and post-condition calculation with the transitions declared

in a model.

redgram *red_xtion_bck(D, pi, xi)

redgram *D; /* a diagram for the post-condition */

int pi, /* a process index */

xi; /* a declared transition index */

The procedure returns a BDD-like diagram for the weakest precondition for states that

go to a state in D through executing declared transition xi by process pi. Note that

declared transition xi may not be executable by itself since it may has some uncorresponded

synchronization primitives. Also, process pi may not be able to execute declared transition

xi. The procedure constructs the diagram regardless of the two just-mentioned cases. �

54

redgram *red_xtion_fwd(D, pi, xi)

redgram *D; /* a diagram for the precondition */

int pi, /* a process index */

xi; /* a declared transition index */

The procedure returns a BDD-like diagram for the weakest post-condition for states that

come from a state in D through executing declared transition xi by process pi. Note that

declared transition xi may not be executable by itself since it may has some uncorresponded

synchronization primitives. Also, process pi may not be able to execute declared transition

xi. The procedure constructs the diagram regardless of the two just-mentioned cases. �

redgram *red_sync_xtion_bck(

redgram D, /* a diagram for the post-condition */

redgram P, /* a diagram for the path condition */

int sxi, /* an index for a synchronous transition */

int flag_game_roles, /* a flag telling who can execute. */

int flag_time_progress, /* a flag telling to make time progress or not. */

int flag_action_approx /* a flag for the approximation of evaluation */

)

The procedure returns a BDD-like diagram for the weakest precondition for states that go

to a state in D through executing synchronous transition sxi. The execution of the syn-

chronous transition must happen in the state described with the path constraint diagram

P .

Also, there are two flag values for the control of the synchronous transition execution.

• flag_game_roles: REDLIB allows the users to partition the processes into three

classes: the model, the specification, and the environment. For safety analysis, risk

analysis, and model-checking, the default is to let all processes be in the model class.

Each process has a set of transition rules that it can execute. The argument al-

lows the users to control the transition rules of which classes are to be executed

in the reachability analysis. The argument actually consists of three flag values:

RED_SIM_MODL (the same as RED_BISIM_MODL) for the model class, RED_SIM_SPEC

(the same as RED_BISIM_SPEC) for the specification class, and RED_SIM_ENVR (the

same as RED_BISIM_ENVR) for the environment class. To specify the transition rules

of some classes are to be executed, we use bitwise disjunction to make the specifi-

55

cation. For example, if only the environment and the model classes are executing

transition rules, then we let the argument value be

RED_SIM_MODL | RED_SIM_ENVR

Such partitioning of the process classes is usually implicitly set with procedures

red_bisim_check() and red_sim_check().

• flag_time_progress: This argument tells the procedure whether to execute a time-

progress step after each discrete-step evaluation. The two argument values are

RED_NO_TIME_PROGRESS and RED_TIME_PROGRESS.

• flag_action_approx: This argument tells the procedure how to abstract the predi-

cate after each discrete-transition precondition or post-condition calculation. This is

exactly the same as the argument with the same name to procedures red_sync_xtion_string_bck()

and red_sync_xtion_string_fwd() in pages 60 and respectively. There are the fol-

lowing three values.

− RED_NO_ACTION_APPROX: This option says that no abstraction is used in the con-

struction of the post-condition.

− RED_ACTION_APPROX_NOXTIVE: This option says that clock difference constraints,

of the form x − y ∼ c where c is an integer constant, will be removed from the

constructed post-condition. That is, for clock constraints, only upper-bound and

lower-bound constraints will be kept in the returned post-condition.

− RED_ACTION_APPROX_UNTIMED: This option says that all clock constraints will be

removed from the returned post-condition. In other words, the returned diagram

is an untimed abstraction of the true post-condition.

The number of synchronous transitions can be accessed with procedure

red_query_sync_xtion_count(). The range of synchronous transition indices is in

[0, red_query_sync_xtion_count()). �

redgram *red_sync_xtion_fwd(

redgram D, /* a diagram for the precondition */

redgram P, /* a diagram for the path condition */

int sxi, /* an index for a synchronous transition */

int flag_game_roles, /* a flag telling who can execute. */

int flag_time_progress, /* a flag telling to make time progress or not. */

int flag_action_approx /* a flag for the approximation of evaluation */

)

56

The procedure returns a BDD-like diagram for the weakest post-condition for states that

come from a state in D through executing synchronous transition sxi. The execution of

the synchronous transition must happen in the state described with the path constraint

diagram P .

Also, there are two flag values for the control of the synchronous transition execution. The

two flag arguments: flag_game_roles and flag_action_approx are used exactly in the

same way as the ones in procedure red_sync_xtion_bck() in page 55.

The number of synchronous transitions can be accessed with procedure

red_query_sync_xtion_count(). The range of synchronous transition indices is in

[0, red_query_sync_xtion_count()). �

redgram *red_sync_xtion_bulk_bck(

redgram D, /* a diagram for the post-condition */

redgram P, /* a diagram for the path condition */

int flag_game_roles, /* a flag telling who can execute. */

int flag_time_progress, /* a flag telling to make time progress or not. */

int flag_action_approx /* a flag for the approximation of evaluation */

)

This procedure returns a BDD-like diagram for the weakest precondition for states that go

to a state in D through executing some synchronous transitions recorded in red_query_diagram_xtion_sync_

The execution of the synchronous transition must happen in the state described with the

path constraint diagram P .

Also, there are two flag values for the control of the synchronous transition execution. The

two flag arguments: flag_game_roles and flag_action_approx are used exactly in the

same way as the ones in procedure red_sync_xtion_bck() in page 55. �

redgram *red_sync_xtion_bulk_fwd(

redgram D, /* a diagram for the precondition */

redgram P, /* a diagram for the path condition */

int flag_game_roles, /* a flag telling who can execute. */

int flag_time_progress, /* a flag telling to make time progress or not. */

int flag_action_approx /* a flag for the approximation of evaluation */

)

This procedure returns a BDD-like diagram for the weakest post-condition for states that

57

come from a state in D through executing some synchronous transitions recorded in

red_query_diagram_xtion_sync_bulk(). The execution of the synchronous transition

must happen in the state described with the path constraint diagram P .

Also, there are two flag values for the control of the synchronous transition execution. The

two flag arguments: flag_game_roles and flag_action_approx are used exactly in the

same way as the ones in procedure red_sync_xtion_bck() in page 55. �

redgram *red_sync_xtion_bulk_given_bck(

redgram D, /* a diagram for the post-condition */

redgram P, /* a diagram for the path condition */

redgram B /* a diagram for the bulk description of synchronous transitions */,

int flag_game_roles, /* a flag telling who can execute. */

int flag_time_progress, /* a flag telling to make time progress or not. */

int flag_action_approx /* a flag for the approximation of evaluation */

)

This procedure returns a BDD-like diagram for the weakest precondition for states that go

to a state in D1 through executing some synchronous transitions recorded in D2. This re-

sult of red_sync_xtion_bulk_bck(D, P , f1, f2) is the same as

red_sync_xtion_bulk_given_bck(D,, P red_query_diagram_xtion_sync_bulk(), f1, f2).

This procedure allows the users to experiment with different ways to evaluate the pre-

condition through a bulk of synchronous transitions. The execution of the synchronous

transition must happen in the state described with the path constraint diagram P .

Also, there are two flag values for the control of the synchronous transition execution. The

two flag arguments: flag_game_roles and flag_action_approx are used exactly in the

same way as the ones in procedure red_sync_xtion_bck() in page 55. �

redgram *red_sync_xtion_bulk_given_fwd(

redgram D, /* a diagram for the precondition */

redgram P, /* a diagram for the path condition */

redgram B, /* a diagram for the bulk description of synchronous transitions */

int flag_game_roles, /* a flag telling who can execute. */

int flag_time_progress, /* a flag telling to make time progress or not. */

int flag_action_approx /* a flag for the approximation of evaluation */

)

58

This procedure returns a BDD-like diagram for the weakest post-condition for states that

come from a state in D1 through executing some synchronous transitions recorded in D2.

This result of red_sync_xtion_bulk_fwd(D, P , f1, f2) is the same as

red_sync_xtion_bulk_given_fwd(D,, P red_query_diagram_xtion_sync_bulk(), f1, f2).

This procedure allows the users to experiment with different ways to evaluate the post-

condition through a bulk of synchronous transitions. The execution of the synchronous

transition must happen in the state described with the path constraint diagram P .

Also, there are two flag values for the control of the synchronous transition execution. The

two flag arguments: flag_game_roles and flag_action_approx are used exactly in the

same way as the ones in procedure red_sync_xtion_bck() in page 55. �

redgram *red_sync_xtion_all_bck(

redgram D, /* a diagram for the post-condition */

redgram P, /* a diagram for the path condition */

int flag_game_roles, /* a flag telling who can execute. */

int flag_time_progress, /* a flag telling to make time progress or not. */

int flag_action_approx /* a flag for the approximation of evaluation */

)

This procedure returns a BDD-like diagram for the weakest precondition for all states that

go to some states in D through executing some synchronous transitions constructed from

the declared transitions in the behavior model.

The execution of the synchronous transition must happen in the state described with the

path constraint diagram P .

Also, there are two flag values for the control of the synchronous transition execution. The

two flag arguments: flag_game_roles and flag_action_approx are used exactly in the

same way as the ones in procedure red_sync_xtion_bck() in page 55. This procedure

may perform autonomous garbage-collection. �

redgram *red_sync_xtion_all_fwd(

redgram D, /* a diagram for the precondition */

redgram P, /* a diagram for the path condition */

int flag_game_roles, /* a flag telling who can execute. */

int flag_time_progress, /* a flag telling to make time progress or not. */

int flag_action_approx /* a flag for the approximation of evaluation */

)

59

This procedure returns a BDD-like diagram for the weakest post-condition for all states

that come from some states in D through executing some synchronous transitions con-

structed from the declared transitions in the behavior model.

The execution of the synchronous transition must happen in the state described with the

path constraint diagram P .

Also, there are two flag values for the control of the synchronous transition execution. The

two flag arguments: flag_game_roles and flag_action_approx are used exactly in the

same way as the ones in procedure red_sync_xtion_bck() in page 55. This procedure

may perform autonomous garbage-collection. �

10.3 Flexible analysis-time precondition & post-condition calclulation

redgram red_sync_xtion_string_bck(D, flag action approx, sxt , ...)

redgram *D; /* a diagram for the post-condition */

int flag action approx; /* flag for action approximation */

char *sxt; /* a string for a declared transition */

...; /* a sequnce of argments of either type string or type integer.*/

The procedure returns a BDD-like diagram for the weakest precondition for states that

go to a state in D through executing a synchronous transition represented with string sxt

by abstraction option flag action approx. The string sxt may not be with any transition

declared in the model. This procedure allows the users to dynamically construct transitions

and check their execution results.

The format string sxt is like a sequence of pairs of process indices and transition rules. Each

transition rule follows the syntax of a transition rule in REDLIB file input. Formally

speaking, string sxt is of the following syntax.

sxt ::= p ‘:’ rule sxt |

Here p is a process index. rule is a string that declares a transition rule and starts with a

reserved word when, then a triggering condition, then a reserved word may, and finally

some actions. sxt consists of zero or more pairs of process indices and rule declarations.

Suppose we have sxt as a string p1 : r1p2 : r2 . . . pn : rn. The procedure then returns the

precondition of D through executing rule r1, . . . , rn respectively by process p1, . . . , pn. The

execution can be explained with the following pseudo-code.

For each i = 1 to n, do {

60

let D be the precondition of D through executing rule ri by process pi.

}

Return D ∧
∧

1≤i≤n
(the triggering condition of ri for process pi).

Just like the format strings used in printf() and red_diagram(), we also allow place-

holder strings like “%s” and “%d” for strings and integers respectively. The procedure

substitutes the i’th arguments in the variable-length argument list for the i’th place-holder

strings in sxt.

There are three options that we can use for argument flag action approx.

• RED NO ACTION APPROX: This option says that no abstraction is used in the construc-

tion of the precondition.

• RED ACTION APPROX NOXTIVE: This option says that clock difference constraints, of

the form x − y ∼ c where c is an integer constant, will be removed from the con-

structed precondition. That is, for clock constraints, only upper-bound and lower-

bound constraints will be kept in the returned precondition.

• RED ACTION APPROX UNTIMED: This option says that all clock constraints will be re-

moved from the returned precondition. In other words, the returned diagram is an

untimed abstraction of the true precondition.

�

Example 20 Here we have an example of using the procedure for a model with three processes.

result = red_false();

for (i = 2; i <= red_process_count(); i++) {

conj = red_sync_xtion_string_bck(

d, RED_NO_ACTION_APPROX,

"%1d:when ?begin (active[%1d] && x<=3) may x=0; goto collision; \

%1d:when !begin (wait[%1d]) may x=0; goto transm;",

1, 1, i, i

);

result = red_or(result, conj);

}

This piece of code calculates the precondition of two synchronous transitions of the space rep-

resented with diagram d. The precondition is saved in diagram result. The first synchronous

transition consists of executing

when ?begin (active[1] && x<=3) may x=0; goto collision;

61

and

when !begin (wait[2]) may x=0; goto transm;",

respectively by processes 1 and 2. The second synchronous transition consists of executing

when ?begin (active[1] && x<=3) may x=0; goto collision;

and

when !begin (wait[3]) may x=0; goto transm;",

respectively by processes 1 and 3. The preconditions of the two synchronous transitions are

unioned together and saved in variable result. �

redgram red_sync_xtion_string_fwd(D, flag action approx, sxt , ...)

redgram *D; /* a diagram for the post-condition */

int flag action approx; /* flag for action approximation */

char *sxt; /* a string for a declared transition */

...; /* a sequnce of argments of either type string or type integer.*/

The procedure returns a BDD-like diagram for the post-condition for states that come

from a state in D through executing a synchronous transition represented with string sxt

by abstraction option flag action approx. The string sxt may not be with any transition

declared in the model. This procedure allows the users to dynamically construct transitions

and check their execution results.

The format string sxt is like a sequence of pairs of process indices and transition rules. Each

transition rule follows the syntax of a transition rule in REDLIB file input. Formally

speaking, string sxt is of the following syntax.

sxt ::= p ‘:’ rule sxt |

Here p is a process index. rule is a string that declares a transition rule and starts with a

reserved word when, then a triggering condition, then a reserved word may, and finally

some actions. sxt consists of zero or more pairs of process indices and rule declarations.

Suppose we have sxt as a string p1 : r1p2 : r2 . . . pn : rn. The procedure then returns the

precondition of D through executing rule r1, . . . , rn respectively by process p1, . . . , pn. The

execution can be explained with the following pseudo-code.

Let D be D ∧
∧

1≤i≤n
(the triggering condition of ri for process pi).

For each i = 1 to n, do {

let D be the post-condition of D through executing rule ri by process pi.

62

}

Return D.

Just like the format strings used in printf() and red_diagram(), we also allow place-

holder strings like “%s” and “%d” for strings and integers respectively. The procedure

substitutes the i’th arguments in the variable-length argument list for the i’th place-holder

strings in sxt.

There are three options that we can use for argument flag action approx.

• RED NO ACTION APPROX: This option says that no abstraction is used in the construc-

tion of the post-condition.

• RED ACTION APPROX NOXTIVE: This option says that clock difference constraints, of

the form x−y ∼ c where c is an integer constant, will be removed from the constructed

post-condition. That is, for clock constraints, only upper-bound and lower-bound

constraints will be kept in the returned post-condition.

• RED ACTION APPROX UNTIMED: This option says that all clock constraints will be re-

moved from the returned post-condition. In other words, the returned diagram is an

untimed abstraction of the true post-condition.

�

11 Packaged verification tasks

11.1 Reachability analysis

Reachability analysis means to construct a characterization of those states reachable in a space

from or to a particular set of states with respect to a behavior model. There are two ways to

do this. The first is called forward reachability analysis in which we construct a characteriza-

tion of all states that can be reached from a set of initial states with respect to the declared

behavior structure. The second is called backward reachability analysis in which we construct a

characterization of all states that can reach some goal states with respect to the declared behav-

ior structure. REDLIB supports on-the-fly construction of forward and backward reachability

analysis with the following procedures.

/* Backward reachability analysis */

struct reachable_return_type *red_reach_bck(

redgram I, // a diagram for the initial states

redgram P, // a diagram for the path states

redgram G, // a diagram for the goal states

63

int flag_task,

int flag_parametric_analysis,

int flag_game_roles,

int flag_full_reachability,

int flag_reachability_depth_bound,

int flag_counter_example,

int flag_time_progress,

int flag_normality,

int flag_action_approx,

int flag_reduction,

int flag_state_approx,

int flag_symmetry,

int flag_print

)

Here I, P , and G serve as BDD-like diagrams that respectively specify the initial states,

the path states, and goal states of the backward reachability analysis. This procedure

returns a BDD-like diagram that characterizes the space of states satisfying P and can

reach some states in G through a path of states satisfying P with respect to the declared

behavior structure.

Note that P could be different from the global invariance diagram constructed with

red_query_decalred_invariance_diagram(). The design of this procedure allows the

users to experiment with strategies in abstract reachability analysis.

This procedure may perform autonomous garbage-collection.

There are sixteen flags we can set to control the construction of the backward reachabilities.

• flag_task: This argument tells the procedure in what verification task, this proce-

dure is called. This argument could be used if we find a computation (or counter-

example in safety/risk analysis) that makes a goal state reachable from an initial

state. In case that such a computation is detected, the procedure may print out some

messages in refering to the verification task.

There are the following possible values for the argument.

− RED_TASK_SAFETY: for safety analysis. This implies that G is the negation of a

safety predicate.

− RED_TASK_RISK: for risk analysis. This implies that G is the risk predicate.

− RED_TASK_GOAL: for goal analysis. Then G is the goal state predicate.

− RED_TASK_ZENO: for the reachability of Zeno states. Zeno states are those states

64

in a model from which no computation can lead to divergent time-progress. G

is supposedly a state predicate for Zeno states. The diagram for a subset of

the Zeno states in a model can be accessed with procedure red_query_zeno().

Please check page 79.

− RED_TASK_DEADLOCK: for the reachability of deadlock states. Deadlock states in

REDLIB are defined as those states in a model from which neither time can pro-

gresses nor any non-trivial discrete transition can happen. The diagram for the

deadlock states in a model can be accessed with procedure red_query_deadlock().

Please check page 79.

− RED_TASK_MODEL_CHECK: for the model-checking of TCTL formulas. This is not

expected. But it is allowed.

− RED_TASK_BRANCH_SIM_CHECK: for branching simulation checking. This is not

expected but allowed.

− RED_TASK_BRANCH_BISIM_CHECK: for branching bisimulation checking. This is

not expected but allowed.

• flag_parametric_analysis: This argument tells the procedure to also calculate

the parameter predicate that makes the reachability happen. This is only mean-

ingful for linear hybrid automatas. The two possible values of the argument are

RED_PARAMETRIC_ANALYSIS and RED_NO_PARAMETRIC_ANALYSIS.

• flag_game_roles: The use of this flag is exactly the same as the one for procedure

red_sync_xtion_bck() described in page 55.

• flag_full_reachability: This argument tells the procedure whether to stop when

the reachability between an initial state and a goal state is detected or to pursue

for the construction of the full reachable state spaces. The two argument values are

RED_FULL_REACHABILITY and RED_NO_FULL_REACHABILITY.

• flag_reachability_depth_bound: This is an integer argument that tells the pro-

cedure to only construct the predicate only for those states that is backward reach-

able from a goal state in at most flag_reachability_depth_bound timed transition

steps. If flag_reachability_depth_bound is -1, then the argument tells the proce-

dure to do reachability without any bound on the number of timed transition steps.

• flag_counter_example: This argument tells the procedure whether to construct a

counter example when a the reachability between an initial state and a goal state is de-

tected. The two argument values are RED_COUNTER_EXAMPLE and RED_NO_COUNTER_EXAMPLE.

• flag_time_progress: This argument tells the procedure whether to execute a time-

progress step after each discrete-step evaluation. The two argument values are

65

RED_NO_TIME_PROGRESS and RED_TIME_PROGRESS.

• flag_normality: This argument tells the procedure how to normalize the zone rep-

resentations. There are the following three values.

− RED_NORM_ZONE_NONE: No normalization at all.

− RED_NORM_ZONE_MAGNITUDE_REDUCED: Normalization by trying to remove redun-

dant clock difference constraints that can be derived from an upper-bound con-

straint (of either the form x ≤ c or the form x < c) and a lower-bound constraint

(of either the form x ≥ c or the form x > c).

− RED_NORM_ZONE_CLOSURE: The tight form is used for the normal form. That

is, all clock differences are tight. In other words, we cannot change lower the

upper-bound on any clock constraints without changing the shapes of the zones.

• flag_action_approx: The use of this flag is exactly the same as the one for procedure

red_sync_xtion_bck() described in page 55.

• flag_reduction: This argument tells the procedure whether to abstract out those

inactive variables or not. A variable is inactive in a state if its value does not af-

fect the the behavior of the model in the future. There are two possible values:

RED_NO_REDUCTION_INACTIVE (do not remove those inactive variables from a state

predicate) and RED_REDUCTION_INACTIVE (remove all inactive variables from a state

predicate).

• flag_state_approx: The explanation of this argument is the same as the one for

procedure red_abstract() in page 51.

• flag_symmetry: This argument tells the procedure whether to perform any process-

oriented symmetry reduction3 or not. There are four values for the argument.

− RED_NO_SYMMETRY: Do not do process-oriented symmetry reduction.

− RED_SYMMETRY_ZONE: Perform process-oriented symmetry reduction to normalize

zone representations.

− RED_SYMMETRY_DISCRETE: Perform process-oriented symmetry reduction to nor-

malize discrete-space representations.

− RED_SYMMETRY_POINTER: Perform process-oriented symmetry reduction to nor-

malize the directed graphs constructed with the pointer variables. Note that the

pointer variables in the REDLIB models all point to NULL or processes. In

such a directed graph, the nodes are the processes and the arcs are the pointer-to

relations.

3Process-oriented symmetry reduction was based on the idea of Emerson and Sistla to permute the process

indices to check if two state predicates are symmetric.

66

− RED_SYMMETRY_STATE: Perform process-oriented symmetry reduction to normal-

ize first the discrete-space then the representations of zones.

• flag_print: This argument tells the procedure whether to print out some messages

or not. At this moment, there are only to values RED_NO_PRINT and RED_PRINT.

The return value of the procedure is a data structure of type reachable_return_type

defined as follows.

struct counter_example_party_type {

int proc, xtion;

};

struct counter_example_node_type {

int exit_sync_xtion_party_count;

struct counter_example_party_type *exit_sync_xtion_party;

char *exit_sync_xtion_string;

redgram prestate;

struct counter_example_node_type *next_counter_example_node;

};

struct reachable_return_type {

int status,

#define MASK_REACHABLE_RETURN (0xF)

#define FLAG_RESULT_EARLY_REACHED 1

#define FLAG_RESULT_FULL_FIXPOINT 2

#define FLAG_RESULT_DEPTH_BOUND_FINISHED 4

#define FLAG_COUNTER_EXAMPLE_GENERATED (0x10)

#define FLAG_COUNTER_EXAMPLE_NOT_GENERATED (0x00)

#define FLAG_RESULT_PARAMETRIC_ANALYSIS (0x20)

#define FLAG_RESULT_NO_PARAMETRIC_ANALYSIS (0x00)

#define MASK_REACHABILITY_RESULT (0xF00)

#define FLAG_REACHABILITY_UNDECIDED 0

#define FLAG_NOT_REACHABLE (0x100)

#define FLAG_REACHABILITY_INCONCLUSIVE (0x200)

#define FLAG_REACHABILITY_DETECTED (0x300)

#define MASK_LFP_TASK_TYPE (0xF000)

#define MASK_LFP_TASK_RISK (0x1000)

#define MASK_LFP_TASK_GOAL (0x2000)

#define MASK_LFP_TASK_SAFETY (0x3000)

#define MASK_LFP_TASK_ZENO (0x5000)

#define MASK_LFP_TASK_DEADLOCK (0x6000)

67

iteration_count,

counter_example_length;

struct counter_example_node_type *counter_example;

struct red_type *reachability,

*risk_parameter;

};

This data structure encapsulates the result of a reachability analysis, backward or forward.

The data structure declaration allows the users to directly access the analysis result without

having to first dump it to a file and then read it in with a parser that you have to develop.

We explain the attributes of the data structure as follows.

• status: This attribute contains the following flags.

− Flags indicating how the reachability analysis finished.

∗ MASK_REACHABLE_RETURN: a mask for extracting flag values about how the

reachability analysis is finished.

∗ FLAG_RESULT_EARLY_REACHED: a flag value saying that the reachability anal-

ysis finished when the first computation that confirmed the reachability was

detected.

∗ FLAG_RESULT_FULL_FIXPOINT: a flag value saying that the reachability anal-

ysis finished when full reachability was reached.

∗ FLAG_RESULT_DEPTH_BOUND_FINISHED: a flag value saying that the reacha-

bility finished when the bound on the number of timed transition steps set

by the users is reached.

− Flag values indicating whether a counter example (a run that shows the reacha-

bility) has been constructed.

∗ FLAG_COUNTER_EXAMPLE_GENERATED: a counter has been constructed.

∗ FLAG_COUNTER_EXAMPLE_NOT_GENERATED: no counter example constructed.

− Flag values indicating whether predicate for parametric reachability has been

constructed.

∗ FLAG_RESULT_PARAMETRIC_ANALYSIS: This flag value is meaningful only for

linear hybrid automatas. It shows that reachability has been confirmed

with the condition on the parameters described in the diagram variable

risk_parameter.

∗ FLAG_RESULT_NO_PARAMETRIC_ANALYSIS: This flag value means that no pred-

icate has been constructed for the diagram variable risk_parameter.

• iteration_count: This attribute tells us how many iterations of least fixpoint are

used to calculate the reachability predicate.

68

• counter_example_length: This attribute tells us the length of the constructed

counter example, if any.

• counter_example: This attribute is a pointer to a list with node type counter_example_node_type.

This list represents a counter-example, i.e., a computation from an initial state to a

goal state that confirms the reachability. Each node in the list represent a a syn-

chronous transition in the model, and the precondition of those states in the counter-

example to the corresponding synchronous transition through time passage.

• reachability: This attribute is a diagram that represents the set of states reached

in the reachability analysis.

• risk_parameter: this attribute is a diagram that represents the constraint on input

parameter variables that supports the reachability. This is meaningful only for linear

hybrid automatas.

This procedure may incur autonomous garbage collection. Note that the diagrams used in

the return result are not automatically protected from garbage-collection. The users need

to push them to stack or mark them specifically. �

/* Forward reachability analysis */

struct reachable_return_type *red_reach_fwd(

redgram I, // a diagram for the initial states

redgram P, // a diagram for the path states

redgram G, // a diagram for the goal states

int flag_task,

int flag_parametric_analysis,

int flag_game_roles,

int flag_full_reachability,

int flag_reachability_depth_bound,

int flag_counter_example,

int flag_time_progress,

int flag_normality,

int flag_action_approx,

int flag_reduction,

int flag_state_approx,

int flag_symmetry,

int flag_print

)

69

The interpretation of all the arguments is the same as the one for procedure red_reach_bck()

in page 63. Specifically, the explanation of argument flag_state_approx is the same as

the one for procedure red_abstract() in page 51. This procedure returns a BDD-like

diagram that characterizes the space of states satisfying P and can be reached from some

states in I through a path of states satisfying P with respect to the declared behavior

structure.

This procedure may perform autonomous garbage-collection. Note that the diagrams used

in the return result are not automatically protected from garbage-collection. The users

need to push them to stack or mark them specifically. �

The commonly adopted verification framework of risk analysis and safety analysis can all be

fulfilled with this procedure, pending on the computing resources. Deadlock and Zeno analysis

can also be fulfilled by respectively using the return values of red_query_deadlock() (page 79)

and red_query_zeno() (page 79) as the goal state predicate argument G.

11.2 Model-checking with REDLIB

/* Procedure for model-checking */

struct model_check_return_type *red_model_check(

redgram I,

redgram P,

int flag_normality,

int flag_action_approx,

int flag_reduction,

int flag_state_approx,

int flag_zeno,

int flag_print,

char *f,

...

)

This procedure can only be used for timed automata. Here P represents th space in

which the model-checking is to be done. This procedure returns a structure for the model-

checking result for the TCTL formula (henceforth the specification) constructed out of

string f and the variable-length arugments in the space of P with respect to the declared

model structure from initial state I. The explanation of arguments flag_normality,

70

flag_action_approx, flag_reduction, flag_state_approx, flag_zeno, flag_print is

exactly the same as that for procedure red_reach_bck() in page 63. Argument flag_zeno

says that whether we should only consider those runs with divergent time values in the

model-checking. There are three values of this argument.

• RED_PLAIN_NONZENO: this flag value means that only runs with divergent time values

will be considered in the model-checking. This option may incur significant compu-

tation.

• RED_APPROX_NONZENO: this flag value means that REDLIB uses an abstraction tech-

nique to evaluate whether there is a divergent run from a state. This option may not

yield the precision for the correct checking of inevitability properties.

• RED_ZENO_TRACES_OK: this flag means that REDLIB will not check whether a run

is Zeno or with divergent time values. This option may not yield the precision for

the correct checking of inevitability properties.

This procedure is also with variable-length arguments. Those variable-length arguments

are used to fill in the place-holder values in string f. This arrangement allows the users to

write parameterized code.

The procedure returns a structure of type structure model_check_return_type declared

as follows.

struct red_predicate_type {
struct red_type *red, *original_red;

};

struct ps_bunit_type {
struct ps_exp_type *subexp;
struct ps_bunit_type *bnext;

};

struct ps_bexp_type {
int len;
struct ps_bunit_type *blist;

};

struct ps_rexp_type {
char *clock_name;
int clock_index;
struct parse_variable_type *var;
struct ps_exp_type *child;

};

struct ps_qexp_type {
char *quantifier_name;
int value;
struct ps_exp_type *quantification, *child;

};

71

struct ps_fairness_link_type {
int status, occ_vi;
struct parse_variable_type *occ_var;
struct ps_exp_type *fairness;
struct red_type *red_fairness;
struct ps_fairness_link_type *next_ps_fairness_link;

};

struct ps_mexp_type {
int time_lb, time_ub,

strong_fairness_count, weak_fairness_count;
struct ps_exp_type *path_child, *dest_child;
struct red_type *red_early_decision_maker;
struct ps_fairness_link_type *strong_fairness_list, *weak_fairness_list;

};

union ps_union {
struct red_predicate_type rpred;
struct ps_bexp_type bexp;
struct ps_rexp_type reset;
struct ps_qexp_type qexp;
struct ps_mexp_type mexp;

};

struct ps_exp_type {
int type, /* EXISTS_UNTIL, EXISTS_ALWAYS, RED,

* AND, OR, NOT, RESET, FORALL, EXISTS,
*/

status,
#define FLAG_TCTCTL_INSIDE (0x04000000)
#define FLAG_GFP_EARLY_DECISION (0x08000000)

lineno;
union ps_union u;
struct ps_exp_type *parent,

*original_form; // For atomic formulas,
// original_form is identical to
// the formula itself.
// For other formulas, this
// is a new copy.
// This can be used
// for educational purpose.
// It can also be used for
// model-checking analysis.

struct red_type *diagram_label;
};

struct model_check_return_type {
int status;

#define FLAG_MODEL_CHECK_SATISFIED 1
#define FLAG_MODEL_CHECK_UNSATISFIED 0

redgram initial_state_diagram, failed_state_diagram;
struct ps_exp_type *neg_formula;

};
/* model_check_return_type */

72

Attribute status in a structure model_check_return_type is a set of flags. At this mo-

ment, two flag values are FLAG_MODEL_CHECK_SATISFIED and FLAG_MODEL_CHECK_UNSATISFIED

for the analysis result of the model-checking. The former says that the model satisfies the

specification while the latter says the model does not.

Attribute initial_state_diagram is basically I. Attribute failed_state_diagram is

a diagram that describes those states that does not satisfy the specification. Attribute

neg_formula is a parsing tree for the negated specification.

Each node in the parsing tree is of type structure ps_exp_type. Attribute type specifies

the nine different types of the parsing tree nodes: EXISTS_UNTIL, EXISTS_ALWAYS, RED,

AND, OR, NOT, RESET, FORALL, and EXISTS. Attribute status tells us if the subformula

corresponding to the node is a TCTCTL formula, a special subclass of TCTL. Also when

the corresponding subformula is an ∃�-formula and evaluated as “not satisfied”, the flag

also tells us whehter the analysis answer was obtained with the early decision technique

on greatest fixpoint evaluation. Attribute union u is for the structures of the correspond-

ing subformula. Attribute original_form is for the original form of the corresponding

subformula. Users can print out the original form with procedure red_print_ps_exp().

Attribute diagram_label is a diagram that describes the set of states that satisfy the

corresponding subformula. �

Example 21 We may want to check what is the minimum integer values of c in [0, 100] that

makes the following TCTL formula satisfied the declared model.

forall always (collision[1] => forall eventually {<=c} idle[1])

Note that the above formula is not allowed in REDLIB since c is not a constant. We can write

the following code for the TCTL model-checking task.

k = red_push(d);

for (c = 0; c <100; c++) {

d = red_model_check(red_query_initial_diagram(), red_stack(k),

RED_NORM_ZONE_CLOSURE, RED_NO_ACTION_APPROX,

RED_REDUCTION_INACTIVE,

RED_NOAPPROX_MODL_GAME | RED_NOAPPROX_SPEC_GAME

| RED_NOAPPROX_ENVR_GAME | RED_NOAPPROX_GLOBAL_GAME,

RED_PLAIN_NONZENO, RED_PRINT,

"~forall always(collision[1]=>forall eventually{<=%1d}idle[1])",

c

);

if (red_norm(red_and(d, red_query_diagram_initial())) == red_false()) {

fprintf(RED_OUT, "\nThe formula is satisfied with c=%1d\n", c);

73

break;

}

}

d = red_pop(k);

This procedure may incur autonomous garbage collection. Note that the diagrams used in the

return result are not automatically protected from garbage-collection. Procedure red_push(d)

pushes diagram d to a stack maintained by REDLIB so that the diagram will not be claimed by

garbage-collection. It returns the stack frame index k for the diagram d. We later call procedure

red_stack(k) to refer to the diagram. The users need to push them to stack or mark them

specifically.

Procedure red_query_diagram_initial() returns the diagram for the initial condition de-

clared in the model structure. �

11.3 Simulation & bisimulation-checking with REDLIB

/* Procedure for simulation-checking */

struct sim_check_return_type *red_sim_check(

redgram I,

redgram S,

int flag_complete_greatest_fixpoint,

int flag_fixpoint_iteration_bound,

int flag_counter_example,

int flag_time_progress,

int flag_normality,

int flag_action_approx,

int flag_reduction,

int flag_state_approx,

int flag_symmetry,

int flag_zeno,

int flag_print,

char *R,

...

)

This procedure calcualtes the branching simulation between two timed automatas against

a common environment timed automata. Specifically, REDLIB checks if the model timed

74

automata (specified in string R and the variable-length arguments) is simulated by the

specification timed automata (also specified in string R and the variable-length arguments).

The procedure can only be used for timed automata at the moment.

Here S represents the initial description of the set of state pairs for the branching simula-

tion. I represents the state pairs for initial states in the branching simulation of the two

timed automatas.

There are some new flag arguments that need explanation. Flag flag_complete_greatest_fixpoint

tells the procedure whether to pursue complete greatest fixpoint evaluation or not in

the simulation checking. If this flag is set to RED_NO_COMPLETE_GREATEST_FIXPOINT,

REDLIB stops the greatest fixpoint evaluation if it sees that some initial states of the

model automata are not simulated by any initial states of the specification automata in the

greatest fixpoint image of the simulation relation at the present fixpoint iteration. If it is

set to RED_COMPLETE_GREATEST_FIXPOINT, REDLIB will continue the greatest fixpoint

evaluation until the greatest fixpoint image does not change with new iterations.

Flag flag_fixpoint_iteration_bound tells REDLIB a bound on the number of the

greatest point iterations to be executed. If flag_fixpoint_iteration_bound is set to -1,

then the argument tells the procedure to do the greatest fixpoint evaluations without any

bound on the number of iterations.

Flag flag_counter_example tells REDLIB whether to construct a counter example or

not. However the argument is at the moment neglected by REDLIB since we have not

implemented the counter-example capability for branching simulation yet.

Flag flag_zeno tells REDLIB whether to take Zeno computations into consideration.

This is a new feature of REDLIB . If this flag is set to RED_ZENO_TRACES_OK, the procedure

computes for the traditional branching simulation. If it is set to RED_PLAIN_NONZENO, then

only those states of the model timed automata that start a non-Zeno computations will

be checked for simulation by a state of the specification timed automata. If it is set to

RED_APPROX_NONZENO, then only those states of the model timed automata that start a run

that looks like a non-Zeno computation in the abstraction will be checked for simulation

by a state of the specification timed automata.

The explanation of the other flag arguments are the same as for the ones for procedures

red_abstract() in page 51, red_reach_bck() in page 63, and red_model_check() in

page 70.

R is a string for the specification of roles of the processes. Its explanation is the same as

the same-name argument for procedure red_abstract() in page 51.

This procedure returns a structure of type sim_check_return_type for the analysis result

75

of branching simulation checking.

struct sim_check_return_type {
int status;

#define MASK_REACHABLE_RETURN (0xF)
#define FLAG_RESULT_EARLY_REACHED 1
#define FLAG_RESULT_FULL_FIXPOINT 2
#define FLAG_RESULT_DEPTH_BOUND_FINISHED 4

#define FLAG_COUNTER_EXAMPLE_GENERATED (0x10)
#define FLAG_COUNTER_EXAMPLE_NOT_GENERATED (0x00)

#define FLAG_NO_SIMULATION 0
#define FLAG_NO_BISIMULATION 0

#define FLAG_SIMULATION_EXISTS (0x100)
#define FLAG_BISIMULATION_EXISTS (0x100)

int iteration_count;
redgram initial_state_pair_diagram,

final_sim_relation_diagram;
#define bisim_relation_diagram sim_relation_diagram

redgram *iteratively_removed_diagram;
char *temp;

};
/* sim_check_return_type */

Attribute status is a set of flags. At this moment, two flag values FLAG_NO_SIMULATION (or

FLAG_NO_BISIMULATION) and FLAG_SIMULATION_EXISTS (or FLAG_BISIMULATION_EXISTS)

tell us whether a simulation (or simulation) exists. Attribute iteration_count tells us

in how many greatest fixpoint iterations, the simulation relation is calculated. Attribute

initial_state_pair_diagram is basically I.

Attribute final_sim_relation_diagram is a diagram for the description of simulation re-

lation at the end of the greatest fixpoint evaluation. The interpretation of the this attribute

is subject to the flag values of FLAG_RESULT_EARLY_REACHED,FLAG_RESULT_FULL_FIXPOINT,

and FLAG_RESULT_DEPTH_BOUND_FINISHED.

Attribute iteratively_removed_diagram records an array of iteration_count diagrams

indexed 1, . . ., iteration_count. For any i ∈ [1, iteration_count], the i’th element in

the array is the diagram for those state pairs removed from the greatest fixpoint image at

the i’th iteration of the fixpoint loop.

The last attribute is named temp and is not used at the moment.

This procedure may perform autonomous garbage-collection. All diagrams in the returned

structure have been protected from garbage collection with procedure red_static_protect().

Users need to call red_static_unprotect() to make them recyclable in garbage collec-

76

tion. �

Example 22 : For the example in figure 2 and in subsection 3.2, we may have the following

verification task invocation.

red_sim_check(red_diagram("wait[2] && x[2]==0 && wait[3] && x[3]==0"),

red_query_declared_invariance_diagram(),

,

"%1d; %1d;", 2, 3

);

The verification task is to check whether the model automaton of processes 1 and 2 is simu-

lated by the specification automaton of processes 1 and 3. The initial greatest fixpoint image

of the simulation is constructed with red_query_declared_invariance_diagram(), the ini-

tial conditions of the model and the specification are respectively wait[2] && x[2]==0 and

wait[3] && x[3]==0. �

/* Procedure for bisimulation-checking */

struct sim_check_return_type *red_bisim_check(

redgram I,

redgram S,

int flag_complete_greatest_fixpoint,

int flag_fixpoint_iteration_bound,

int flag_counter_example,

int flag_time_progress,

int flag_normality,

int flag_action_approx,

int flag_reduction,

int flag_state_approx,

int flag_symmetry,

int flag_zeno,

int flag_print,

char *R,

...

)

This procedure calcualtes the branching bisimulation between two timed automatas against

a common environment timed automata. Specifically, REDLIB checks if the model timed

77

automata (specified in string R and the variable-length arguments) is simulated by the

specification timed automata (also specified in string R and the variable-length arguments).

The procedure can only be used for timed automata at the moment.

Here S represents the initial description of the set of state pairs for the branching simula-

tion. I represents the state pairs for initial states in the branching simulation of the two

timed automatas.

The explanation of the flag arguments are the same as for the ones for procedures red_sim_check()

in page 74.

R is a string for the specification of roles of the processes. Its explanation is the same as

the same-name argument for procedure red_abstract() in page 51.

Similar to procedure red_sim_check() in page 74, this procedure returns a structure of

type sim_check_return_type for the analysis result of branching bisimulation checking.

Attribute status is a set of flags. At this moment, two flag values FLAG_NO_SIMULATION (or

FLAG_NO_BISIMULATION) and FLAG_SIMULATION_EXISTS (or FLAG_BISIMULATION_EXISTS)

tell us whether a simulation (or simulation) exists.

This procedure may perform autonomous garbage-collection. All diagrams in the returned

structure have been protected from garbage collection with procedure red_static_protect().

Users need to call red_static_unprotect() to make them recyclable in garbage collec-

tion. �

12 Miscellaneous operations

12.1 Special constants

/* Procedure that returns the upper-bound of all clock constants. */

int red_clock_oo()

This procedure returns the upper-bound of all clock timing constants used in a zone. Note

that the constant returned actually is two times the maximum timing constants plus 1. �

/* Procedure that returns the maximum of the enumerators all hybrid constants. */

int red_hybrid_oo()

This procedure returns the upper-bound of the enumerators of all hybrid timing constants

used in a convex polyhedra. Note that the constant returned actually is two times the

maximum enumerators of all hybrid constants plus 1. �

78

12.2 Special diagrams

Many of the diagrams that returned here are derived from the model structure. With proper

use, they could be very useful in analyzing the system behavior.

redgram *red_process_modes(pi)

int pi; /* a process index */

Procedure that returns characterization of the union of invariance constraints of those

modes reachable in the control flow graph of process pi. �

redgram *red_process_xtions(pi)

int pi; /* a process index */

Procedure that returns characterization of the union of triggering constraints of those

transitions firable in the local control flow graph of process pi. �

redgram *red_query_deadlock()

Procedure that returns characterization of states that do not allow the execution of any

transition in the model description. �

redgram *red_query_urgent()

Procedure that returns characterization of states that do not allow any time-progress. �

redgram *red_query_zeno()

Procedure that returns characterization of states that can only lead to Zeno computations

in the model description. �

redgram *red_query_nonzeno()

Procedure that returns characterization of states that may lead to non-Zeno computations

in the model description. �

redgram *red_var_active(vi)

int vi; /* a variable index */

This procedure returns a BDD-like diagram for the constraint of the variable’s value to

be active in affecting the computation. That is, if the constraint is not satisfied, then the

value of the variable has no effect on the computation of the model. �

redgram *red_var_inactive(vi)

int vi; /* a variable index */

This procedure returns a BDD-like diagram for the constraint of the variable’s value to be

inactive in affecting the computation. It is simply the complement of red_var_inactive(

79

vi).

�

12.3 Role specification

void red_input_roles(R, ...)

char *R ; /* a string for role specification. */

...; /* a sequnce of argments of either type string or type integer.*/

The procedure tells REDLIB which roles each process plays. A role specification string

is a string of the following form.

"m1, m2, ..., mk; s1, s2, ..., sj;"

Here m1, m2, . . ., mk, s1, s2, . . ., and sj are process indices. We require that the sets

of {m1, m2, . . . , mk} and {s1, s2, . . . , sj} are disjoint. Suppose that the process count is

M . a role specification string tells REDLIB that the model automaton is constructed of

processes with indices in

{p | 1 ≤ p ≤ M,
∧

1≤i≤j p 6= si}

while the specification automaton is constructed of processes with indices in

{p | 1 ≤ p ≤ M,
∧

1≤i≤k p 6= mi}.

The format string is like a role specification string except that there could be place-holder

strings like “%s” and “%d” for strings and integers respectively. The format string R is

like those in procedure printf(). The procedure substitutes the i’th arguments in the

variable-length argument list for the i’th place-holder strings in F . �

Example 23 : Suppose we have a system with 5 processes and we want to calculate the reach-

ability of process pair 1 and i, with i ∈ [2, 5]. Then we can use the following piece of code to do

the job.

for (i = 2; i <= 5; i++) {
red_input_roles("1;%d;", i);
rr = red_reach_bck(

red_query_diagram_initial(),
red_query_diagram_global_invariance(),
red_diagram("transm[2] && transm[3] && x[2] >= 52"),
RED_TASK_RISK,
RED_NO_PARAMETRIC_ANALYSIS,
RED_SIM_MODL | RED_SIM_SPEC,
RED_FULL_REACHABILITY,
RED_NO_REACHABILITY_BOUND,
RED_NO_COUNTER_EXAMPLE,
RED_TIME_PROGRESS,
RED_NORM_ZONE_CLOSURE,

80

RED_NO_ACTION_APPROX,
RED_REDUCTION_INACTIVE,
RED_NO_ZONE_APPROX,
RED_NO_SYMMETRY,
RED_NO_PRINT

);
red_print_diagram(rr->reachability);

}

Note that the loop is executed four times for each process pair of (1, 2), (1, 3), (1, 4), and

(1, 5). �

12.4 Garbage collection

/* Procedure for user-invoked garbage-collection */

int red_garbage_collect(op)

int op//; option for garbage collection

This procedure reclaims all those diagram nodes and arcs that can not be referenced

through those system-used diagrams and those diagrams in the stack. There are the

following two values for parameter op.

#define RED_GARBAGE_SILENT 0

#define RED_GARBAGE_REPORT 1

If op is RED_GARBAGE_SILENT, it does not print out any message. If op is RED_GARBAGE_REPORT,

it print out some summary memssage. The procedure returns the size in bytes of the mem-

ory used by the data-structures related to REDLIB diagrams. �

/* Procedure for pushing a diagram to a stack to escape from garbage-collection. */

int red_push(D)

redgram *D//; the diagram to be pushed to the stack.

This procedure pushes diagram D to the stack so that D will not be reclaimed in garbage-

collection. The procedure returns an index to the stack frame that D stays in. This index

can be used in the future to access D in the stack. Also, when we want to pop D out of

the stack, we also want to use the index to check whether we have pop the stack frames in

a correct ordering. If the number returned is less than zero, then it shows that something

was wrong in the operation. �

/* Procedure for popping a diagram from a stack that protects

* its content diagrams from garbage collection. */

redgram *red_pop(i)

int i; \\ index to the top frame.

81

This procedure pops the top frame of the stack and returns the diagram saved in the top

frame. It double checks whether i is the index of the top frame. If it is not, NULL is

returned.

NOTE that the argument frame index i is not for REDLIB to pop a particular farme

indexed i. This violates the stack operation. Still, only the stack top frame can be popped.

The argument is meant for REDLIB to double check whether a pop operation respects

the stack usage. �

/* Procedure for referencing a diagram in a stack that protects its

content diagrams from garbage collection. */

redgram red_stack(i)

int i; \\ index to the top frame.

This procedure returns the diagram stored in stack frame i. If i is either less than zero or

greater than the index of the top frame, NULL is returned. �

The above-mentioned procedures that allows us to control the garbage collection with a

stack. Such stack operations sometimes can be difficult to manipulate since we may not want

to protect the diagrams according to the ordering of the stack frames. REDLIB also supports

alternatives in this regard for the users’ convenience. The following procedures allows us to

protect some diagrams from garbage collection without pushing them to the stack.

/* Procedure for marking a diagram for protection from garbage collection */

void red_protect_from_gc(redgram D)

This procedure marks all nodes used in D as protected from garbage collection with a

special bit. �

/* Another procedure for marking a diagram for protection

from garbage collection */

void red_protect_aux_from_gc(redgram D)

This procedure marks all nodes used in D as protected from garbage collection with yet

another special bit. �

Note that in the implementation, the two procedures use different bits to mark their diagrams

to be protected. This gives us some flexibility when we want to have some control in protecting

some diagrams while not protecting some others.

82

/* Procedure for unprotecting all diagrams from garbage collection */

void red_unprotect_all_from_gc()

This procedure marks all diagrams that were marked protected with procedure

red_protect_from_gc() as now unprotected. �

/* Another procedure for unprotecting all diagrams from garbage collection */

void red_unprotect_all_aux_from_gc()

This procedure marks all diagrams that were marked protected with procedure

red_protect_aux_from_gc() as now unprotected. �

Note that a diagram that has been protected with both red_protect_from_gc() and

red_protect_aux_from_gc() can only be released to the garbage collector when it has been

marked unprotected by both red_unprotect_all_from_gc() and

red_unprotect_all_aux_from_gc().

12.5 Diagram string representation procedures

/* Procedure for customized diagram manipulation with single diagram parameter */

char *red_diagram_string(D)

redgram *D//; the diagram to be translated to string.

This procedure returns a string for the global (or event) constraint represented with D.

The string can be again input to procedure red_diagram() to construct a diagram. The

space for the string is dynamically allocated by REDLIB . It is up to the users when to

free the space. If NULL is returned, it means something has gone wrong. �

/* Procedure for customized diagram manipulation with single diagram parameter */

char *red_initial_condition_string()

This procedure returns a string for the initial condition declared in the model structure. If

it has not been declared, then NULL is returned. The space for the string is dynamically

allocated by REDLIB . It is up to the users when to free the space. �

/* Procedure for customized diagram manipulation with single diagram parameter */

char *red_risk_condition_string()

This procedure returns a string for the risk condition declared in the model structure. If

it has not been declared, then NULL is returned. The space for the string is dynamically

83

allocated by REDLIB . It is up to the users when to free the space. �

12.6 Checking, selecting, and executing process transitions in reachability
graph construction

To support the construction of reachability graphs with various purposes, we have implemented

the following procedures. Conceptually, we figure that in each step of the reachability graph

construction, we need to know what set of synchronous transitions a user want to choose.

Thus we need to let the users know what the sets of synchronous transitions are available for

execution are from a set of states. The following routines let the users check and select the sets

of synchronous transitions in a process-by-process way.

/* Procedure for starting a session for checking, selecting,

and executing process transitions for backward precondition

calculation.

*/

redgram red_begin_sync_xtion_bulk_restriction_bck(

redgram ddst

)

This procedure starts a session for checking, selecting, and executing process transitions

in backward precondition calculation. Necessary data structures are arranged. The dia-

gram for all the synchronous transitions is returned as the implicit bulk representation for

synchronous transitions that can reach states in ddst. Note that this diagram is protected

from garbage collection by REDLIB automatically. This implicit diagram is also returned

to the user application program for further manipulation. �

/* Procedure for starting a session for checking, selecting,

and executing process transitions for forward postcondition

calculation.

*/

redgram red_begin_sync_xtion_bulk_restriction_fwd(

redgram dsrc

)

This procedure starts a session for checking, selecting, and executing process transitions

in forward postcondition calculation. Necessary data structures are arranged. The dia-

gram for all the synchronous transitions is returned as the implicit bulk representation

for synchronous transitions that be fired from states in ddsrc. Note that this diagram

84

is protected from garbage collection by REDLIB automatically. This implicit diagram is

also returned to the user application program for further manipulation. �

/* Procedure for ending a session for checking, selecting,

and executing process transitions.

*/

void red_end_sync_xtion_bulk_restriction()

This procedure ends a session for checking, selecting, and executing process transitions.

Necessary data structures are released. �

/* Procedure for restricting the implicit bulk representation

of all synchronous transitions.

*/

redgram red_restrict_sync_bulk(pi, xi)

int pi//; a process index.

int xi//; a transition index.

Ths procedure restricts the implicit bulk representation of synchronous transitions with

transition xi to be executed by process pi. The restricted bulk representation becomes

the new implicit bulk representation. Note that this diagram is protected from garbage

collection by REDLIB automatically. This implicit diagram is also returned to the user

application program for further manipulation. �

/* This procedure is related to an implicit list

* that records all the process and transition pairs

* with game roles specified in flag_game_roles in

* the implicit bulk representation of synchronous transitions.

* For each combination of game roles, REDLIB has such a list.

*/

int red_first_pxpair_for_roles(int flag_game_roles)

The use of this game role flag argument is exactly the same as the one for procedure

red_sync_xtion_bck() described in page 55 and specifies a set of game roles to be process

with this procedure. The procedure position an implicit working pointer to the head of

the list for role combination flag_game_roles. It returns 1 if there is such a non-null list.

Otherwise, it returns 0. �

/* This procedure is related to an implicit list

* that records all the process and transition pairs

85

* with game roles specified in flag_game_roles in

* the implicit bulk representation of synchronous transitions.

* For each combination of game roles, REDLIB has such a list.

*/

int red_next_pxpair_for_roles(int flag_game_roles)

The use of this game role flag is exactly the same as the one for procedure

red_first_pxpair_for_roles() described in page 85 and specifies a set of game roles to

be process with this procedure. The procedure advances an implicit working pointer by

one link in the list for role combination flag_game_roles. It returns 0 if no more pointer

advancement is possible. Otherwise, it returns 1. �

/* This procedure is related to an implicit list

* that records all the process and transition pairs

* with game roles specified in flag_game_roles in

* the implicit bulk representation of synchronous transitions.

* For each combination of game roles, REDLIB has such a list.

*/

int red_query_current_pi_for_roles(int flag_game_roles)

The use of this game role flag is exactly the same as the one for procedure

red_first_pxpair_for_roles() described in page 85 and specifies a set of game roles to

be process with this procedure. The procedure returns the process index of the process

transition pair pointed to by the implicit position pointer for role combination flag_game_roles.

If the implicit position pointer for the list for role combination flag_game_roles is already

NULL, then RED_FLAG_UNKNOWN is returned. �

/* This procedure is related to an implicit list

* that records all the process and transition pairs

* with game roles specified in flag_game_roles in

* the implicit bulk representation of synchronous transitions.

* For each combination of game roles, REDLIB has such a list.

*/

int red_query_current_xi_for_roles(int flag_game_roles)

The use of this game role flag is exactly the same as the one for procedure

red_first_pxpair_for_roles() described in page 85 and specifies a set of game roles

to be process with this procedure. The procedure returns the transition index of the

process transition pair pointed to by the implicit position pointer for role combination

86

flag_game_roles. If the implicit position pointer for the list for role combination flag_game_roles

is already NULL, then RED_FLAG_UNKNOWN is returned. �

/* This procedure is related to an implicit bulk representation

* for synchronous transitions manipulated with the other

* procedures in this subsection.

*/

redgram red_execute_sync_bulk_restriction(

redgram dpath,

int flag_game_roles,

int flag_time_progress,

int flag_action_approx

)

If the whole session for checking, selecting, and executing process transitions are started

with red_begin_sync_xtion_bulk_restriction_bck(), then this procedure sends the

arguments, together with the implicit bulk representation for synchronous transitions, to

routine red_sync_xtion_given_bulk_bck() to evaluate the (timed) backward precondi-

tion. Otherwise, it sends the arguments, together with the implicit bulk representation for

synchronous transitions, to routine red_sync_xtion_given_bulk_fwd() to evaluate the

(timed) forward precondition. �

To show how we can use the procedures presented in this subsection for a solution to construct

successive post-conditions with the synchronous transitions selected by the users, we have the

following example of program code. The procedure uses processes 2 and 3 as the model processes,

process 4 as the specification, and the others as the environment. The first command-line

argument is used to declare the process count, the second to declare the number of steps to

execute in path construction, and the third for the input model file name. In each iteration, it

asks for the users to select some model processes and transitions to be executed by the model

processes. Then the program evaluate the next state condition diagram.

/**

* This program accepts command line as follows.

*

* pathex process_count step_count model_input_file_name

*/

#include <stdlib.h>

#include <ctype.h>

#include <stdio.h>

#include <string.h>

#include <math.h>

87

#include <float.h>

#include "redlib.h"

#include "redlib.e"

main(argc, argv)

int argc;

char **argv;

{

int process_count, step_count, i, flag, pi, xi;

redgram pre;

FILE *inputfile;

if (argc < 4) {

printf("Input file for successive execution not specified!\n");

exit(0);

}

process_count = atoi(argv[1]); // the process count

if (process_count < 3) {

fprintf(RED_OUT, "\nNo this example needs at least 6 processes. \n\n");

exit(0);

}

step_count = atoi(argv[2]);

red_begin_session(RED_SYSTEM_TIMED, argv[3], process_count);

red_input_model(argv[3]); // argv[3] is the name of the input model file.

fprintf(RED_OUT, "\nAfter the input model.\n");

red_input_roles("2,3;4;"); // processes 1,2,3 are the model, 4 is the spec,

// and the others are the environment.

fprintf(RED_OUT, "\nAfter the input roles.\n");

for (i = 0, pre = red_query_diagram_initial();

i < step_count || pre == red_false();

i++

) {

printf("\n** step %1d **\nfrom:\n%s\n",

i, red_diagram_string(pre)

);

red_begin_sync_xtion_bulk_restriction_fwd(pre);

for (pi = 1; pi > 0;) {

printf("Now you have the following choices:\n");

for (flag = red_first_pxpair_for_roles(RED_SIM_MODL);

flag;

flag = red_next_pxpair_for_roles(RED_SIM_MODL)

) {

printf("pi:%1d, xi:%1d, %s\n",

red_query_current_pi_for_roles(RED_SIM_MODL),

red_query_current_xi_for_roles(RED_SIM_MODL),

red_query_string_xtion(

red_query_current_xi_for_roles(RED_SIM_MODL),

red_query_current_pi_for_roles(RED_SIM_MODL)

)

);

88

}

printf("\nPlease select your processes (-1 for stop): ");

scanf("%d", &pi);

if (pi <= 0)

break;

printf("Please select your transition (0 for no-op): ");

scanf("%d", &xi);

red_restrict_sync_bulk(pi, xi);

}

pre = red_execute_sync_bulk_restriction(

red_query_diagram_global_invariance(),

RED_SIM_MODL | RED_SIM_SPEC | RED_SIM_ENVR,

RED_TIME_PROGRESS,

RED_NORM_ZONE_CLOSURE,

RED_NO_ACTION_APPROX,

RED_REDUCTION_INACTIVE,

RED_OAPPROX_MODL_GAME_DIAG_MAG

| RED_OAPPROX_SPEC_GAME_DIAG_MAG

| RED_OAPPROX_ENVR_GAME_DIAG_MAG

| RED_OAPPROX_GLOBAL_GAME_DIAG_MAG,

RED_NO_SYMMETRY

);

red_end_sync_xtion_bulk_restriction();

}

red_end_session();

fclose(inputfile);

}

/* main() */

12.7 Diagram profiling

/* Procedure for customized diagram manipulation with single diagram parameter */

int red_diagram_node_count(D)

redgram *D//; the diagram to be analyzed.

This procedure returns the number of nodes in D. �

/* Procedure for customized diagram manipulation with single diagram parameter */

int red_diagram_arc_count(D)

redgram *D//; the diagram to be analyzed.

This procedure returns the number of arcs in D. �

/* Procedure for customized diagram manipulation with single diagram parameter */

int red_diagram_size(D)

redgram *D//; the diagram to be analyzed.

This procedure returns the number of nodes and arcs in D. �

89

/* Procedure for customized diagram manipulation with single diagram parameter */

int red_diagram_path_count(D)

redgram *D//; the diagram to be analyzed.

This procedure returns the number of root-to-terminal paths in D. �

12.8 Session run-time profiling

/* Procedure for customized diagram manipulation with single diagram parameter */

int red_cpu_time()

This procedure returns the CPU time in seconds used by the current REDLIB session.

�

/* Procedure for customized diagram manipulation with single diagram parameter */

int red_system_time()

This procedure returns the system time in seconds used by the current REDLIB session.

�

/* Procedure for customized diagram manipulation with single diagram parameter */

int red_space()

This procedure returns the number of bytes used by the current REDLIB session. �

12.9 Print-out procedures

/* Procedure for printing out information of varaibles */

void red_print_variables()

This procedure prints out the variable table in the behavior model for the users’ reference.

�

/* Procedure for printing out a variable */

void red_print_variable(vi)

This procedure prints out the table information for variable vi in the behavior model for

the users’ reference. �

90

/* Procedure for printing out declared transitions */

void red_print_xtions()

This procedure prints out the transition table in the behavior model for the users’ reference.

�

/* Procedure for printing out a declared transition */

void red_print_xtion(xi)

This procedure prints out the table information for declared transition xi in the behavior

model for the users’ reference. �

/* Procedure for printing out synchronous transitions */

void red_print_sync_xtions()

This procedure prints out the synchronous transition table in the behavior model for the

users’ reference. �

/* Procedure for printing out a synchronous transition */

void red_print_sync_xtion(sxi)

This procedure prints out the table information for synchronous transition sxi in the be-

havior model for the users’ reference. �

/* Procedure for printing out information of declared modes */

void red_print_modes()

This procedure prints out the mode table in the behavior model for the users’ reference.

�

/* Procedure for printing out information of a mode */

void red_print_mode(mi)

This procedure prints out the table information for mode mi in the behavior model for the

users’ reference. �

/* Procedure for printing out some summary information of the current session */

void red_print_summary()

91

This procedure prints out the CPU time, system time, and the memory usage of the

current REDLIB session. �

/* Procedure for printing out a diagram as a tree */

void red_print_graph(D)

This procedure prints out diagram D in a tree structure that shows the sharing in the

diagram. �

/* Procedure for printing out a diagram as a global (or event)

* constraint in a line */

void red_print_line(D)

This procedure prints out diagram D as a global (or event) constraint in a single line with

parentheses. �

/* Procedure for making a comment in the model structure file. */

red_comment(com)

char *com; // a string for the comment.

This procedure can only be used in the model construction after the invocation of procedure

red_begin_declaration() and before that of red_end_declaration(). It prints out a

comment line to the model file constructed by REDLIB . �

13 Examples of using REDLIB

To show how REDLIB may be used for various applications, we present two examples.

13.1 Precondition & postcondition construction of untimed complex pro-
gram

Remember that the statements of redlib transition rules can be composed of five types of state-

ment structures.

• Atomic statements like “x=y+3z+5;” where x, y, z are discrete variables.

• Concatenation statements like S1 S2 where S1 and S2 are some statement structures.

• While-loops like “while (E) S” where E is a formula and S is a statement structure.

• If-then and If-then-else statements like “if (E) S1” or “if (E) S1 else S2.”

• Parenthesized block statement like “{ S }” where S is a statement structure.

92

With these five types of statement structures, we can use REDLIB to conveniently construct

preconditions and postconditions of complex program structures.

13.2 Sudoku solver

Sudoku is a popular game with one player. According to the dkm software webpage

(http://www.dkmsoftware.com/sudoku/), a Sudoku game is as follows.

Sudoku is a puzzle with a grid containing nine large blocks. Each block is divided into

its own matrix of nine cells. The rules for solving Sudoku puzzles are very simple:

each row, column and block must contain one of the numbers from “1” to “9”. No

number may appear more than once in any row, column, or block. When you have

filled the entire grid, the puzzle is solved.

In the following, we present a program that solves a Sudoku game with REDLIB. Note the

program is purely for showing a typical application of REDLIB. REDLIB is considered a

heavy-weight library that aims at performance for dense-time system verification. Thus the

performance of this example program may not be comparable with implementations with those

solvers specifically designed for propositional logics.

Anyway, here is the program. This program takes one parameter as the file name for input

Sudoku games. The program reads in 81 digits to make a game. After a game is solved, the

program then reads in another 81 digits for another game. The loop continues until an asterisk

is read. In fact, anytime when the program reads an asterisk, it exits.

We declare night processes and night local discrete variables d1, d2, d3, d4, d5, d6, d7, d8,

and d9. Thus for any i, j ∈ [1, 9], di[j] records the value of cell i, j.

#include <stdio.h>

#include <stdlib.h>

#include "redlib.h"

#include "redlib.e"

char *s[9][9];

int count_print = 0;

struct red_type *slot_constraint(d, i, j)

struct red_type *d;

int i, j;

{

int value, h, k, nc, ac, gs;

redgram conj;

93

for(value =1; value <= 9; value++) {

for (h = 0; h < 9; h++){

if (h != i) {

conj = red_diagram("not(%s==%d && %s==%d)",

s[i][j], value, s[h][j], value

);

if ((++count_print) < 100 && (gs = red_diagram_size(d, &nc, &ac)) < 30) {

fprintf(RED_OUT, "\nMutual exclusion to value:%1d at %s and %s:\nconstraint:\n",

value, s[i][j], s[h][j]

);

red_print_line(conj);

fprintf(RED_OUT, "\n");

red_print_diagram(conj);

fprintf(RED_OUT, "input diagram:\n");

red_print_line(d);

fprintf(RED_OUT, "\n");

red_print_diagram(d);

}

d = red_and(d, conj);

if (count_print < 100 && gs < 30) {

fprintf(RED_OUT, "result diagram:\n");

red_print_line(d);

fprintf(RED_OUT, "\n");

red_print_diagram(d);

}

/*

fprintf(RED_OUT, "%s && %s, after one conjunction.\n", s[i][j], s[h][j]);

red_print_graph(d);

fprintf(RED_OUT, "\n");

fflush(RED_OUT);

*/

if ((h/3) == (i/3)) {

for (k = 0; k < 9; k++) {

if ((k/3)==(j/3) && (k!=j)) {

d = red_and(d,

red_diagram("~(%s==%d && %s==%d)",

s[i][j], value,

s[h][k], value

));

/*

fprintf(RED_OUT, "%s && %s, after one conjunction.\n", s[i][j], s[h][k]);

red_print_graph(d);

fprintf(RED_OUT, "\n");

fflush(RED_OUT);

*/

}

}

}

}

if (h != j) {

d = red_and(d,

red_diagram("~(%s==%d && %s==%d)",

94

s[i][j], value,

s[i][h], value

));

/*

fprintf(RED_OUT, "%s && %s, after one conjunction.\n", s[i][j], s[i][h]);

red_print_graph(d);

fprintf(RED_OUT, "\n");

fflush(RED_OUT);

*/

}

}

}

h = red_push(d);

red_garbage_collect(RED_GARBAGE_SILENT);

red_pop(h);

return(d);

}

/* slot_constraint() */

#define FLAG_MULTIPLE 1

#define FLAG_SINGLE 0

main(argc, argv)

int argc;

char **argv;

{

char a, *start, *condition, *p;

redgram sol, cube;

int i, j, k, u, v, h, m, c[9][9], lb[9][9], ub[9][9], flag;

char stop[30];

FILE *datafile;

if (argc < 2) {

printf("Input file for sudoko not specified!\n");

exit(0);

}

datafile = fopen(argv[1], "r");

if (datafile == NULL) {

printf("Can’t open the data file of sudoko!! \n");

exit(0);

}

//RED_input_file("sample.d");

red_begin_session(RED_SYSTEM_UNTIMED, "sudoku", 2);

red_begin_declaration(); /* each process for a row on the board. */

for (i = 0; i < 9; i++) {

95

for (j = 0; j < 9; j++) {

s[i][j] = malloc(4);

sprintf(s[i][j], "d%1d%1d", i, j);

red_declare_variable(RED_TYPE_DISCRETE, 1, 9, "%s", s[i][j]);

}

}

red_end_declaration();

/* How to access a variable ? */

//RED_print_variables();

//RED_print_xtions();

//RED_verify();

/* Declaration of the 81 slot variable indices as a 9X9 arrays.

* Note this is not for the array of slot variable values.

* This is only for the slot variable indices.

*/

do {

/* After the completion of the loop, sol should be the MBDD+CRD

* that records the solutions to your input board specification.

* Initially, we set sol to TRUE.

*/

sol = red_true();

/* Please fill in the code here to calculate the solution for

* the given sudoko puzzle.

* The details of the main processing body, that you should fill in,

include:

1. Read in the values of those given slots on the board and

construct the logic formula with the REDLIB procedures.

2. Iteratively restrict the formula you got in step 1 with

all the sudoko rules.

Now start filling in the main processing body in the following.

||

VV

*/

for (i = 0; i < 9; i++){

for (j = 0; j < 9; j++){

a = getc(datafile);

if (a == ’\n’)

a = getc(datafile);

sprintf(stop, "%c\0", a);

c[i][j] = atoi(stop);

if (c[i][j] != 0) {

sol = red_and(sol, red_diagram("%s==%d", s[i][j], c[i][j]));

sol = slot_constraint(sol, i, j);

}

}

}

for(i = 0; i < 9; i++) {

96

for(j = 0; j < 9; j++) {

if (c[i][j] == 0)

sol = slot_constraint(sol, i, j);

}

}

/* ^^

||

After the main processing body of the loop,

* we are now ready to print out the solution board specification.

* We do this in two ways.

* In the first way, we print the board as a 9X9 char array.

* We do this by first invoking the depth-first traversing procedure

* red_process_DFS() for MBDD+CRD.

* For each node in the MBDD+CRD, red_process_DFS() process the

* node with procedure max_rec() and each arc of the node with

* procedure arc_noop().

*

* In the second way, we print the MBDD+CRD of sol as a single-line

* Boolean formula.

*/

/*

red_print_diagram(sol);

*/

i = red_diagram_discrete_model_count(sol);

switch (i) {

case 0:

fprintf(RED_OUT, "\nNo solutions!\n");

break;

case 1:

fprintf(RED_OUT, "\nOnly 1 solution\n");

break;

default:

fprintf(RED_OUT, "\nTotal %1d solutions!\n", i);

break;

}

cube = red_first_cube(sol);

for (; cube != red_false(); cube = red_next_cube(sol)) {

fprintf(RED_OUT, "\n\nOne solution:\n");

flag = FLAG_SINGLE;

for (i = 0; i < 9; i++) {

for (j = 0; j < 9; j++) {

red_get_cube_discrete_value(

cube, s[i][j], &(lb[i][j]), &(ub[i][j])

);

if (lb[i][j] < ub[i][j])

flag = FLAG_MULTIPLE;

fprintf(RED_OUT, "%1d", lb[i][j]);

}

97

fprintf(RED_OUT, "\n");

}

if (flag != FLAG_MULTIPLE)

continue;

fprintf(RED_OUT, "\n\nOne more solution:\n");

for (i = 0; i < 9; i++) {

for (j = 0; j < 9; j++) {

fprintf(RED_OUT, "%1d", ub[i][j]);

}

fprintf(RED_OUT, "\n");

}

}

fprintf(RED_OUT, "\n--\n");

red_print_line(sol);

fprintf(RED_OUT, "\nsolution diagram:\n");

red_print_diagram(sol);

break;

}

while(strcmp(fgets(stop, 30, datafile), "end") != 0

&& strcmp(fgets(stop, 30, datafile), "END") != 0

);

red_end_session();

fclose(datafile);

}

/* main() */

13.3 A safety analyzer

In the following, we have a safety analyzer implemented with REDLIB. The program expects

up to 4 parameters. The first parameter specifies a file for model structure in RED format.

The second parameter is a number. If it is specified, then it is used as the number of processes.

Otherwise, we use the process number specified in the input model file. The third parameter

is a string for a global constraint for the initial condition. The fourth is a string for a global

constraint for the safety condition.

/*************************************

* A command line accepted by the program is as follows.

*

* safe in-file-name process-count initial-condition risk-condition

*/

#include <stdlib.h>

#include <ctype.h>

#include <stdio.h>

#include <string.h>

#include <math.h>

#include <float.h>

98

#include "redlib.h"

#include "redlib.e"

main(argc, argv)

int argc;

char **argv;

{

int ini, risk, cur, w, sxi, space, step;

struct reachable_return_type *rr;

if (argc < 2) {

printf("Model file for safety analyzer not specified!\n");

exit(0);

}

// The 2nd parameter is used for the number of processes.

if (argc < 3 || (w = atoi(argv[2])) <= 0)

red_begin_session(RED_SYSTEM_TIMED, "safety analyzer", -1);

else

red_begin_session(RED_SYSTEM_TIMED, "safety analyzer", w);

red_input_model(argv[1]); // the 1st parameter for the input file name.

// print out the model structure tables.

red_print_variables();

red_print_xtions();

red_print_sync_xtions();

red_print_diagram(red_query_diagram_xtion_sync_bulk());

if (argc < 4) // use the initial condition in the input file.

ini = red_push(red_query_diagram_initial());

else // use the 3rd parameter for the initial condition.

ini = red_push(red_diagram(argv[3]));

if (argc < 5) // use the risk condition in the input file.

risk = red_push(red_query_diagram_spec_risk());

else // use the 4th parameter for the safety condition.

risk = red_push(red_not(red_diagram(argv[4])));

// Call three abstraction routines to calculate the abstract reachability.

rr = red_reach_fwd(

red_stack(ini),

red_query_diagram_declared_invariance(),

red_false(), // redgram for the goal condition

RED_TASK_RISK,

RED_NO_PARAMETRIC_ANALYSIS,

RED_SIM_MODL | RED_SIM_SPEC | RED_SIM_ENVR,

RED_FULL_REACHABILITY,

-1,

RED_NO_COUNTER_EXAMPLE,

RED_NO_TIME_PROGRESS,

RED_NORM_ZONE_NONE,

RED_ACTION_APPROX_UNTIMED,

99

RED_REDUCTION_INACTIVE,

RED_OAPPROX

| RED_OAPPROX_MODL_GAME_UNTIMED

| RED_OAPPROX_SPEC_GAME_UNTIMED

| RED_OAPPROX_ENVR_GAME_UNTIMED

| RED_OAPPROX_GLOBAL_GAME_UNTIMED,

RED_NO_SYMMETRY,

RED_NO_PRINT

);

space = red_push(rr->reachability);

fprintf(RED_OUT, "\nAfter untimed reachability:\n");

red_print_diagram(red_stack(space));

rr = red_reach_fwd(

red_stack(ini),

red_stack(space),

red_false(), // redgram for the goal condition

RED_TASK_RISK,

RED_NO_PARAMETRIC_ANALYSIS,

RED_SIM_MODL | RED_SIM_SPEC | RED_SIM_ENVR,

RED_FULL_REACHABILITY,

-1,

RED_NO_COUNTER_EXAMPLE,

RED_TIME_PROGRESS,

RED_NORM_ZONE_MAGNITUDE_REDUCED,

RED_ACTION_APPROX_NOXTIVE,

RED_REDUCTION_INACTIVE,

RED_OAPPROX

| RED_OAPPROX_MODL_GAME_MAGNITUDE

| RED_OAPPROX_SPEC_GAME_MAGNITUDE

| RED_OAPPROX_ENVR_GAME_MAGNITUDE

| RED_OAPPROX_GLOBAL_GAME_MAGNITUDE,

RED_NO_SYMMETRY,

RED_NO_PRINT

);

red_set_stack(space, rr->reachability);

fprintf(RED_OUT, "\nAfter magnitude reachability:\n");

red_print_diagram(red_stack(space));

rr = red_reach_fwd(

red_stack(ini),

red_stack(space),

red_false(), // redgram for the goal condition

RED_TASK_RISK,

RED_NO_PARAMETRIC_ANALYSIS,

RED_SIM_MODL | RED_SIM_SPEC | RED_SIM_ENVR,

RED_FULL_REACHABILITY,

-1,

RED_NO_COUNTER_EXAMPLE,

RED_TIME_PROGRESS,

RED_NORM_ZONE_MAGNITUDE_REDUCED,

RED_NO_ACTION_APPROX,

100

RED_REDUCTION_INACTIVE,

RED_OAPPROX

| RED_OAPPROX_MODL_GAME_DIAG_MAG

| RED_OAPPROX_SPEC_GAME_DIAG_MAG

| RED_OAPPROX_ENVR_GAME_DIAG_MAG

| RED_OAPPROX_GLOBAL_GAME_DIAG_MAG,

RED_NO_SYMMETRY,

RED_NO_PRINT

);

red_set_stack(space, rr->reachability);

fprintf(RED_OUT, "\nAfter diagonal-magnitude reachability:\n");

red_print_diagram(red_stack(space));

// Each loop for iteration of the least fixpoint calculation.

w = red_push(red_false());

// The least fixpoint loop for the backward reachability.

for (step = 1; red_stack(w) != red_stack(risk); step++) {

fprintf(RED_OUT, "\n****** Step %1d *******\n", step);

red_set_stack(w, red_stack(risk));

// Calculate the timed precondition of each indexed synchronous transition.

for (sxi = 0; sxi < red_query_sync_xtion_count(); sxi++) {

cur = red_push(red_sync_xtion_bck(

red_stack(risk),

red_stack(space),

sxi,

RED_SIM_MODL | RED_SIM_SPEC | RED_SIM_ENVR,

RED_TIME_PROGRESS,

RED_NORM_ZONE_CLOSURE,

RED_NO_ACTION_APPROX,

RED_REDUCTION_INACTIVE,

RED_NOAPPROX,

RED_NO_SYMMETRY

));

fprintf(RED_OUT, "====== After step %1d, sx %1d, a new precondition:\n",

step, sxi

);

red_print_diagram(red_stack(cur));

red_set_stack(risk, red_or(red_stack(risk), red_stack(cur)));

red_pop(cur);

}

// Check if the intersection with initial condition is empty.

cur = red_push(red_and(red_stack(risk), red_stack(ini)));

if (red_norm(red_stack(cur), RED_NOAPPROX) != red_false()) {

printf("The system is not safe\n");

exit(0);

}

red_pop(cur);

}

printf("The system is safe with the backward reachability:\n");

red_print_diagram(red_stack(risk));

red_end_session();

101

}

/* main() */

The program first reads in the model structure, the initial condition, and the risk condition.

Then it calls red_reach_untimed_fwd(), red_reach_magnitude_fwd(), and

red_reach_diagonal_fwd() to calculate an abstract representation of the forward reachability.

Then in each iteration of the outer for-loop, we calculate the timed preconditions of those

preconditions to the synchronous transitions. All the calculated precondition are disjuncted with

and saved in red_stack(risk). In each iteration, we also check whether the newly constructed

precondition intersects with the initial condition. If it does, we conclude that the system is un-

safe. The loop repeats until a fixpoint is reached, i.e., when no more change to red_stack(risk)

is possible.

When the fixpoint is reached and does not contain any initial state, we exit and conclude

that the system is safe.

References

[1] R. Alur, C. Courcoubetis, D.L. Dill. Model Checking for Real-Time Systems, IEEE LICS,

1990.

[2] R. Alur, D.L. Dill. Automata for modelling real-time systems. ICALP’ 1990, LNCS 443,

Springer-Verlag, pp.322-335.

[3] R. Alur, T.A. Henzinger, P.-H. Ho. Automatic Symbolic Verification of Embedded Systems.

IEEE Transactions on Software Engineering 22:181-201, 1996. Also in IEEE RTSS’93.

[4] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L.Dill, L.J. Hwang. Symbolic Model Checking:

1020 States and Beyond, IEEE LICS, 1990.

[5] J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, Wang Yi. UPPAAL - a Tool Suite for

Automatic Verification of Real-Time Systems. Hybrid Control System Symposium, 1996,

LNCS, Springer-Verlag.

[6] R.E. Bryant. Graph-based Algorithms for Boolean Function Manipulation, IEEE Trans.

Comput., C-35(8), 1986.

[7] D.L. Dill. Timing Assumptions and Verification of Finite-state Concurrent Systems.

CAV’89, LNCS 407, Springer-Verlag.

102

[8] E.A. Emerson, A.P. Sistla. Utilizing Symmetry when Model-Checking under Fairness As-

sumptions: An Automata-Theoretic Approach. ACM TOPLAS, Vol. 19, Nr. 4, July 1997,

pp. 617-638.

[9] J.B. Fourier. (reported in:) Analyse des travaux de l’Académie Royale des Sciences pendant

l’année 1824, Partie Mathématique, 1827.

[10] H.N. Gabow, Z. Galil, T. Spencer, R.E. Tarjan. Efficient algorithms for finding minimum

spanning trees in undirected and directed graphs. Combinatorica, Vol. 6, Issue 2, 1986,

Pages:109-122, Springer-Verlag, New York.

[11] T.A. Henzinger, X. Nicollin, J. Sifakis, S. Yovine. Symbolic Model Checking for Real-Time

Systems, IEEE LICS 1992.

[12] C.A.R. Hoare. Communicating Sequential Processes, Prentice Hall, 1985.

[13] F. Wang. Efficient Verification of Timed Automata with BDD-like Data-Structures, STTT

(Software Tools for Technology Transfer), Vol. 6, Nr. 1, June 2004, Springer-Verlag; special

issue for the 4th VMCAI, Jan. 2003, LNCS 2575, Springer-Verlag.

[14] F. Wang. Symbolic Parametric Safety Analysis of Linear Hybrid Systems with BDD-like

Data-Structures. IEEE Transactions on Software Engineering, Volume 31, Issue 1 (Jan-

uary 2005), pp. 38-51, IEEE Computer Society. A preliminary version also appears in the

proceedings of 16th CAV, Boston, USA, July 2004, LNCS 3114, Springer-Verlag.

[15] F. Wang. Symbolic Parametric Analysis of Linear Hybrid Systems with BDD-like Data-

Structures. IEEE Transactions on Software Engineering, January 2005 (Vol. 31, No. 1),

p.38-51. A preliminary version of the paper also appears in proceedings of CAV 2004,

LNCS 3114, Springer-Verlag.

[16] F. Wang, G.-D. Huang, F. Yu. TCTL Inevitability Analysis of Dense-Time Systems: From

Theory to Engineering. IEEE Transactions on Software Engineering, Vol. 32, Nr. 7, July

2006, IEEE. A preliminary version appears in proceedings of the 8th CIAA (Conference

on Implementation and Application of Automata), July 2003, Santa Barbara, CA, USA;

LNCS 2759, Springer-Verlag.

[17] F. Wang, K. Schmidt, G.-D. Huang, F. Yu, B.-Y. Wang. BDD-based Safety Analysis of

Concurrent Software with Pointer Data Structures using Graph Automorphism Symmetry

Reduction. IEEE Transactions on Software Engineering, Vol. 30, Nr. 6, June 2004, ISSN

0098-5589, pp.403-417, IEEE.

103

[18] S. Yovine. Kronos: A Verification Tool for Real-Time Systems. International Journal of

Software Tools for Technology Transfer, Vol. 1, Nr. 1/2, October 1997.

104

A Another way to model the CSMA/CD system with API

/* (1)*/ FILE *out;

/* (2)*/ redgram *red_ini;

/* (3)*/ int ini, inv, rch;

/* (4)*/

/* (5)*/ red_begin_session(RED_SYSTEM_TIMED, "CSMA-CD", 3);

/* (6)*/ // start all the declaration.

/* (7)*/ red_begin_declaration();

/* (8)*/ // define constants used in RED descriptions.

/* (9)*/ red_comment("Three constants used in the specification.");

/*(10)*/ red_define_const("A", 26);

/*(11)*/ red_define_const("B", 52);

/*(12)*/ red_define_const("LAMBDA", 808);

/*(13)*/ red_comment("3 modes for the bus.");

/*(14)*/ red_define_const("bus_idle", 0);

/*(15)*/ red_define_const("bus_active", 1);

/*(16)*/ red_define_const("bus_collision", 2);

/*(17)*/ red_comment("3 modes for the senders.");

/*(18)*/ red_define_const("sender_wait", 0);

/*(19)*/ red_define_const("sender_transm", 1);

/*(20)*/ red_define_const("sender_retry", 2);

/*(21)*/ // declare variables

/*(22)*/ red_comment("One local clock.");

/*(23)*/ red_declare_variable(RED_TYPE_DISCRETE, "bus", 0, 2);

/*(24)*/ red_declare_variable(RED_TYPE_CLOCK, "x0", 0, 0);

/*(25)*/ red_declare_variable(RED_TYPE_DISCRETE, "sender1", 0, 2);

/*(26)*/ red_declare_variable(RED_TYPE_CLOCK, "x1", 0, 0);

/*(27)*/ red_declare_variable(RED_TYPE_DISCRETE, "sender2", 0, 2);

/*(28)*/ red_declare_variable(RED_TYPE_CLOCK, "x2", 0, 0);

/*(29)*/ // declare synchronizers, which are also global variables

/*(30)*/ red_comment("4 synchronizers.");

/*(31)*/ // start declaring the optional model structure.

/*(32)*/ // modes for the bus.

/*(33)*/ red_comment("Invrairance for the system.");

/*(34)*/ invariance = " (bus==bus_idle\

|| bus==bus_active\

|| (bus==bus_collision&&x0<A)\

) \

&& (sender1==sender_wait\

|| (sender1==sender_transm&&x1<=LAMBDA)\

|| (sender_1==sender_retry&&x1<B)\

)\

&& (sender2==sender_wait\

105

|| (sender2==sender_transm&&x2<=LAMBDA)\

||(sender_2==sender_retry&&x2<B)\

)";

/*(35)*/ red_comment("transitions for the system.");

/*(36)*/ red_comment("bus idle");

/*(37)*/ xtion[0] = "when (bus==bus_idle && sender1==sender_wait) \

may x0=0; x1=0; bus=bus_active; sender1=sender_transm;";

/*(38)*/ xtion[1] = "when (bus==bus_idle && sender2==sender_wait) \

may x0=0; x2=0; bus=bus_active; sender2=sender_transm;";

/*(39)*/ red_end_mode();

/*(40)*/ red_begin_mode("active", "true");

/*(41)*/ red_transition("?end (true)", "x= 0; goto idle;");

/*(42)*/ red_transition("!busy (x >= A)", ";");

/*(43)*/ red_transition("?begin (x < A)", "x= 0; goto collision;");

/*(44)*/ red_end_mode();

/*(45)*/ red_begin_mode("collision", "x < A");

/*(46)*/ red_transition("!cd !cd (x < A)", "x= 0; goto idle;");

/*(47)*/ red_end_mode();

/*(48)*/ // modes for the senders.

/*(49)*/ red_comment("3 modes for the senders.");

/*(50)*/ red_begin_mode("wait", "true");

/*(51)*/ red_transition("!begin (true)", "x= 0; goto transm;");

/*(52)*/ red_transition("?cd (true)", "x= 0;");

/*(53)*/ red_transition("?cd (true)", "x= 0; goto retry;");

/*(54)*/ red_transition("?busy (true)", "x= 0; goto retry;");

/*(55)*/ red_end_mode();

/*(56)*/ red_begin_mode("transm", "x <= LAMBDA");

/*(57)*/ red_transition("!end (x==LAMBDA)", "x= 0; goto wait;");

/*(58)*/ red_transition("?cd (x<B)", "x= 0; goto retry;");

/*(59)*/ red_end_mode();

/*(60)*/ red_begin_mode("retry", "x < B");

/*(61)*/ red_transition("!begin (x < B)", "x= 0; goto transm;");

/*(62)*/ red_transition("?busy (true)", "x= 0;");

/*(63)*/ red_transition("?cd (x < B)", "x= 0;");

/*(64)*/ red_end_mode();

/*(65)*/ // finish all the declaration and start constructing tables.

/*(66)*/ red_end_declaration();

/*(67)*/ // print out some tables to file ‘out’.

/*(68)*/ red_print_variables(out);

/*(69)*/ red_print_xtions(out);

/*(70)*/ red_print_sync_xtions(out);

/*(71)*/ // print out those transitions to be executed in a bulk.

/*(72)*/ red_print_diagram(out, red_bulk_xtions());

/*(73)*/ red_ini = red_diagram(

"idle[1] && x[1]==0 && forall i:i>1, (wait[i] && x[i]==0)");

/*(74)*/ ini = red_push(red_ini);

/*(75)*/ red_print_line(out, red_stack(ini));

106

/*(76)*/ // get an abstract image of the forward reachability.

/*(77)*/ inv = red_push(red_query_declared_invariance_diagram());

/*(78)*/ red_set_stack(inv, red_reach_untimed_fwd(red_stack(inv), red_stack(ini)));

/*(79)*/ red_set_stack(inv, red_reach_magnitude_fwd(red_stack(inv), red_stack(ini)));

/*(80)*/ // risk analysis.

/*(81)*/ rch = red_push(red_diagram("transm[2]&&transm[3]&&(x[2]>=B||x[3]>=B)"));

/*(82)*/ red_set_stack(rch, red_reach_bck(red_stack(inv), red_stack(rch)));

/*(83)*/ if (red_normal(red_and(red_stack(rch), red_stack(ini))) != RED_FALSE())

/*(84)*/ fprintf(out, "The system is risky.\n");

/*(85)*/ else

/*(86)*/ fprintf(out, "The system is safe.\n");

/*(87)*/ red_pop(rch);

/*(88)*/ red_pop(inv);

/*(89)*/ red_pop(ini);

/*(90)*/ red_end_session("CSMA-CD");

B Syntax of RED input file format

107

