正規描述與自動驗證

Formal Description & Automated Verification

王 凡 國立台灣大學 電機工程系

產業升級壓力下的一代

- 大前研一(未來分析家): 「台灣理! 優勢只剩下五年。
- 杜書伍(聯強國政的優多大脚性後勢
- 台灣未來產業的競爭力 大陸的數位內

Verification (驗證)?

- 找出系統設計中的所有錯誤。
- 確認系統中已經(接近)沒有錯誤。

非常困難! 複雜系統的決勝關鍵! 各位同學的一條生路! 台灣產業的一條生路!

簡介

- 瞭解電腦系統的formal semantics
- 學習電腦輔助驗證的理論與製作


```
瞭解電腦系統的formal semantics
                       Is this program
divide (a, b) {
                       Ca How dallage
 while (a > 0)
                         It checks if a is
                         divioibl
  a = a-b;
                            I doubt it!
 if (a == 0) return 1;
                            What
 else return 0;
                            Well,
}
                            sometimes
                            happens!
```

```
瞭解電腦系統的formal semantics

divide (a, b) {
  while (a > 0)
    a = a-b;
  if (a == 0) return 1;
  else return 0;
  }

What does this `if' statement means?
```

瞭解電腦系統的formal semantics

- When we say a program is correct, what is the behavior model of the program?
- What is the mathematics of program behaviors?

學習電腦輔助驗證的理論與製作

Goedel's incompleteness theorem:

• 任何有限規則系統,都有一個無法證明的事實。

State-space explosion problem?

- When a and b are both 32 bits long, # states $2^{32} \times 2^{32}$
- The safety analysis problem of Boolean program is PSPACE-complete.
- The satisfiability problem of LTL is PSPACE-complete.
- The satisfiability problem of 1st-order logics is undecidable!
 No algorithm exists!
- The safety analysis problem of algorithm is undecidable!

Things to learn in the course

- State-transition models of computer systems
 - Only with mathematical models, you can build EDA tools.
- Mathematical model construction
- Verification algorithms
- Practical techniques to overcome the complexity!

Course plan:

- basic understanding of the knowledge of computer verification
- Three projects
 - use REDLIB to solve board games
 - use REDLIB to construct system model and making verification for untimed systems
 - use REDLIB to construct system model and making verification for timed systems

Course schedule

- 1. 9/16 Introduction
- 2. 9/23 Propositoinal Logic & BDD technology
- 3. 9/30 Propositoinal Logic & BDD technology
- 4. 10/7 Propositoinal Logic & BDD technology
 1st project announcement
- 5. 10/14 State Machines
- 6. 10/21 State Machines (→ 10/18)
- 7. 10/28 Temporal Logics & Symbolic Model-Checking
- 8. 11/4 Temporal Logics & Symbolic Model-Checking 1st project report, 2nd project announcement

Course schedule (continued)

- 9. 11/11 Temporal Logics & Symbolic Model-Checking
- 10. 11/18 Embedded Systems
- 11. 11/25 Midterm Exam
- 12. 12/2 Embedded Systems (→12/13)
- 13. 12/9 Embedded Systems & Symbolic Model-Checking 2nd project report, 3rd project announcement.
- 14. 12/16 Simulation & Bisimulation
- 15. 12/23 Theorem-Proving & Proof-Checking
- 16. 12/30 Paper reading
- 17. 1/7 3rd project report
- **18.** 1/13 Final Exam

課程網頁

http://cc.ee.ntu.edu.tw/~farn/courses/FMV/

Evaluation

Two scenarios

- With paper presentation midterm: 25%, final: 30%, projects: 30%, paper presentation: 15%
- Without paper presentation midterm: 30%, final: 30%, projects:30%, homework: 10%

參考資料:

- Handbook of Logic in Computer Science: Vol. 1-2, edited by S. Abramsky (1993), Oxford.
- Handbook of Theoretical Computer Science, Vol. A & B, edited by J. van Leeuwen, Elsevier.
- Model Checking, E. Clarke, O. Grumberg, D. Peled, MIT Press
- Formal Methods for Real-Time Systems edited by C. Heitmeyer, D. Mandrioli, Wiley
- 重要論文