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Assumption

Unless otherwise said, from now on we 
are concerned with two-element Boolean 
algebra (i.e. B = {0,1})
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Boolean Space
 B = {0,1}
 B2 = {0,1}{0,1} = {00, 01, 10, 11} 

Karnaugh Maps: Boolean Lattices:

BB00

BB11

BB22

BB33

BB44
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Boolean Function
 For B = {0,1}, a Boolean function f: Bn  B over variables 

x1,…,xn maps each Boolean valuation (truth assignment) in 
Bn to 0 or 1

Example
f(x1,x2) with f(0,0) = 0, f(0,1) = 1, f(1,0) = 1, f(1,1) = 0

0
0
1

1
x2

x1

x1

x2
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Boolean Function
 Onset of f, denoted as f1, is f1= {v  Bn | f(v)=1}

 If f1 = Bn, f is a tautology
 Offset of f, denoted as f0, is f0= {v  Bn | f(v)=0}

 If f0 = Bn, f is unsatisfiable. Otherwise, f is satisfiable.
 f1 and f0 are sets, not functions!
 Boolean functions f and g are equivalent if v Bn. f(v) =

g(v) where v is a truth assignment or Boolean valuation
 A literal is a Boolean variable x or its negation x (or x, x) 

in a Boolean formula

x3

x1

x2

x1

x2

x3

f(x1, x2, x3) = x1 f(x1, x2, x3) = x1



7

Boolean Function

 There are 2n vertices in Bn

 There are 22
n

distinct Boolean functions 
 Each subset f1  Bn of vertices in Bn forms a 

distinct Boolean function f with onset f1

x1x2x3 f
0 0 0    1
0 0 1    0
0 1 0    1
0 1 1    0
1 0 0   1
1 0 1    0
1 1 0    1
1 1 1    0

x1

x2

x3
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Boolean Operations
Given two Boolean functions:

f :  Bn  B
g : Bn  B

 h = f  g from AND operation is defined as
h1 = f1  g1; h0 = Bn \ h1

 h = f  g from OR operation is defined as
h1 = f1  g1; h0 = Bn \ h1

 h = f  from COMPLEMENT operation is defined as
h1 = f0; h0 = f1
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Cofactor and Quantification
Given a Boolean function:

f :  Bn  B, with the input variable (x1,x2,…,xi,…,xn)

 Positive cofactor on variable xi
h = fxi is defined as h = f(x1,x2,…,1,…,xn)

 Negative cofactor on variable xi
h = fxi is defined as h = f(x1,x2,…,0,…,xn)

 Existential quantification over variable xi

h = xi. f  is defined as h = f(x1,x2,…,0,…,xn)  f(x1,x2,…,1,…,xn)

 Universal quantification over variable xi

h = xi. f  is defined as h = f(x1,x2,…,0,…,xn)  f(x1,x2,…,1,…,xn)

 Boolean difference over variable xi
h = f/xi is defined as h = f(x1,x2,…,0,…,xn)  f(x1,x2,…,1,…,xn)
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Representation of Boolean Function

 Represent Boolean functions for two reasons
 to represent and manipulate the actual circuit we are 

implementing
 to facilitate Boolean reasoning

 Data structures for representation
 Truth table
 Boolean formula

Sum of products (Disjunctive “normal” form, DNF) 
Product of sums (Conjunctive “normal” form, CNF)

 Boolean network
Circuit (network of Boolean primitives)
And-inverter graph (AIG)

 Binary Decision Diagram (BDD)
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Boolean Function Representation
Truth Table
 Truth table (function table for multi-valued 

functions):
The truth table of a function f : Bn  B is a 
tabulation of its value at each of the 2n

vertices of Bn. 

In other words the truth table lists all mintems
Example: f = abcd + abcd + abcd + 

abcd + abcd + abcd + 
abcd + abcd

The truth table representation is
- impractical for large n
- canonical
If two functions are the same, then their 
canonical representations are isomorphic.

abcd f
0 0000 0
1 0001 1
2 0010 0
3 0011 1
4 0100 0
5 0101 1
6 0110 0
7 0111 0

abcd f
8 1000 0
9 1001 1
10 1010 0
11 1011 1
12 1100 0
13 1101 1
14 1110 1
15 1111 1
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Boolean Function Representation
Boolean Formula

 A Boolean formula is defined inductively as an expression 
with the following formation rules (syntax):

formula ::=  ‘(‘ formula ‘)’

|        Boolean constant (true or false)

|        <Boolean variable>

| formula “+” formula (OR operator)

| formula  “” formula (AND operator)

|         formula (complement)

Example

f = (x1  x2) + (x3) + ((x4  (x1)))

typically “” is omitted and ‘(’, ‘)’ and ‘’ are simply reduced by priority, 

e.g. f = x1 x2 + x3 + x4 x1
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Boolean Function Representation
Boolean Formula in SOP

 A cube is defined as a conjunction of literals, i.e. a product 
term.

Example
C = x1x2’x3 represents the function with onset: f1 = 
{(x1=1,x2=0,x3=1)} in the Boolean space spanned by 
x1,x2,x3, or f1 = {(x1=1,x2=0,x3=1, x4=0), 
(x1=1,x2=0,x3=1,x4=1)} in the Boolean space spanned 
by x1,x2,x3,x4, or …

x1

x2

x3

f = x1

x1

x2

x3

f = x1x2

x1

x2

x3

f = x1x2x3
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Boolean Function Representation
Boolean Formula in SOP

 If C  f1, C the onset of a cube c, then c is an 
implicant of f

 If C  Bn, and c has k literals, then |C|= 2n-k, i.e., 
C has  2n-k elements

Example
c = xy (c:B3  B), C = {100, 101}  B3

k = 2 , n = 3  |C| = 2 = 23-2

 An implicant with n literals is a minterm
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Boolean Function Representation
Boolean Formula in SOP

 A function can be represented by a sum-of-cubes (products):
f = ab + ac + bc

Since each cube is a product of literals, this is a sum-of-products 
(SOP) representation or disjunctive normal form (DNF)

 An SOP can be thought of as a set of cubes F
F = {ab, ac, bc} 

 A set of cubes that represents f is called a cover of f. 
F1={ab, ac, bc}  and F2={abc, abc, abc, abc}

are covers of        
f = ab + ac + bc. 

 Mainly used in circuit synthesis; seldom used in Boolean reasoning
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Boolean Function Representation
Boolean Formula in POS

 Product-of-sums (POS), or conjunctive normal form (CNF), 
representation of Boolean functions
 Dual of the SOP representation

Example 
 = (a+b+c) (a+b+c) (a+b+c) (a+b+c)

 A Boolean function in a POS representation can be derived 
from an SOP representation with De Morgan’s law and the 
distributive law

 Mainly used in Boolean reasoning; rarely used in circuit 
synthesis (due to the asymmetric characteristics of NMOS 
and PMOS)
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Boolean Function Representation
Boolean Network

 Used for two main purposes
 as target structure for logic implementation which gets 

restructured in a series of logic synthesis steps until 
result is acceptable

 as representation for Boolean reasoning engine

 Efficient representation for most Boolean problems
 memory complexity is similar to the size of circuits that 

we are actually building

 Close to the input and output representations of logic 
synthesis 
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Boolean Function Representation
Boolean Network

A Boolean network is a directed graph C(G,N) 
where G are the gates and N  GG) are the 
directed edges (nets) connecting the gates.

Some of the vertices are designated:
Inputs: I  G
Outputs: O  G 
I  O = 

Each gate g is assigned a Boolean function fg
which computes the output of the gate in terms 
of its inputs. 
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Boolean Function Representation
Boolean Network

 The fanin FI(g) of a gate g are the predecessor gates of g:
FI(g) = {g’ | (g’,g)  N} (N: the set of nets)

 The fanout FO(g) of a gate g are the successor gates of g:
FO(g) = {g’ | (g,g’)  N}

 The cone CONE(g) of a gate g is the transitive fanin (TFI) of 
g and g itself

 The support SUPPORT(g) of a gate g are all inputs in its 
cone:
SUPPORT(g) = CONE(g)  I
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Boolean Function Representation
Boolean Network

Example

I

O

6

FI(6) = {2,4}

FO(6) = {7,9}

CONE(6) = {1,2,4,6}

SUPPORT(6) = {1,2}

1

5

3

4

7
8

9

2
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Boolean Function Representation
Boolean Network

 Circuit functions are defined recursively:

If G is implemented using physical gates with positive (bounded)
delays for their evaluation, the computation of hg depends in 
general on those delays.

Definition
A circuit C is called combinational if for each input assignment of 
C for t the evaluation of hg for all outputs is independent of 
the internal state of C.

Proposition
A circuit C is combinational if it is acyclic. (converse not true!)

  

h
gi


x
i
                                                    if  g

i
 I

f
gi

(h
g j

,...,h
gk

), g
j
,...,g

k
FI (g

i
) otherwise
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General Boolean network:
 Vertex can have an arbitrary finite number of inputs and outputs

 Vertex can represent any Boolean function stored in different 
ways, such as:
 SOPs (e.g. in SIS, a logic synthesis package)
 BDDs (to be introduced)
 AIGs (to be introduced)
 truth tables
 Boolean expressions read from a library description
 other sub-circuits (hierarchical representation)

 The data structure allows general manipulations for insertion and 
deletion of vertices, pins (connection ports of vertices), and nets
 general but far too slow for Boolean reasoning

Boolean Function Representation
Boolean Network
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Boolean Function Representation
Boolean Network

Specialized Boolean network:
 Non-canonical representation in general

 computational effort of Boolean reasoning is due to this 
non-canonicity (c.f. BDDs)

 Vertices have fixed number of inputs (e.g. two)

 Vertex function is stored as label (e.g. OR, AND, XOR)

 Allow on-the-fly compaction of circuit structure
 Support incremental, subsequent reasoning on multiple 

problems
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Boolean Function Representation
And-Inverter Graph

 AND-INVERTER graphs (AIGs)
vertices: 2-input AND gates 
edges: interconnects with (optional) dots representing INVs

 Hash table to identify and reuse structurally isomorphic 
circuits

f

g g

f
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Boolean Function Representation
And-Inverter Graph

 Data structure for implementation
 Vertex:

pointers (integer indices) to left- and right-child and fanout 
vertices

collision chain pointer
other data

 Edge:
pointer or index into array
one bit to represent inversion

 Global hash table holds each vertex to identify isomorphic 
structures

 Garbage collection to regularly free un-referenced vertices
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Boolean Function Representation
And-Inverter Graph

 Data structure

0456
left

right
next

fanout
1345
….

8456
….

6423
….

7463
….

0
1

hash value

left pointer

right pointer

next in collision chain

array of fanout pointers

complement bits

Constant

One Vertex

zero

one

0456
0455

0457

...

...

Hash Table

0456
left

right
next

fanout

0
0
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Boolean Function Representation
And-Inverter Graph

 AIG package for Boolean reasoning
Engine application:

- traverse problem data structure and build Boolean problem using the interface

- call SAT to make decision

Engine Interface:

void INIT()

void QUIT()

Edge VAR()

Edge AND(Edge p1,

Edge p2)

Edge NOT(Edge p1)

Edge OR(Edge p1

Edge p2)

...

int  SAT(Edge p1)

Engine Implementation:

...

...

...

...

External reference pointers attached 

to application data structures
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Boolean Function Representation
And-Inverter Graph

 Hash table look-up

Algorithm HASH_LOOKUP(Edge p1, Edge p2) {
index = HASH_FUNCTION(p1,p2)
p     = &hash_table[index]
while(p != NULL) {
if(p->left == p1 && p->right == p2) return p;
p = p->next;

}
return NULL;

}

 Tricks:
 keep collision chain sorted by the address (or index) of p
 use memory locations (or array indices) in topological order for

better cache performance
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Boolean Function Representation
And-Inverter Graph

 AND operation

Algorithm AND(Edge p1,Edge p2){
if(p1 == const1) return p2
if(p2 == const1) return p1
if(p1 == p2)     return p1
if(p1 == p2)    return const0
if(p1 == const0 || p2 == const0) return const0

if(RANK(p1) > RANK(p2)) SWAP(p1,p2)

if((p = HASH_LOOKUP(p1,p2)) return p
return CREATE_AND_VERTEX(p1,p2)

}
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Boolean Function Representation
And-Inverter Graph

 NOT operation

Algorithm NOT(Edge p) {

return TOOGLE_COMPLEMENT_BIT(p)

}

OR operation

Algorithm OR(Edge p1,Edge p2){

return (NOT(AND(NOT(p1),NOT(p2))))

}
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Boolean Function Representation
And-Inverter Graph
 Cofactor operation

Algorithm POSITIVE_COFACTOR(Edge p,Edge v){
if(IS_VAR(p)) {

if(p == v) {
if(IS_INVERTED(v) == IS_INVERTED(p)) return const1
else                                 return const0

}
else                                     return p

}
if((c = GET_COFACTOR(p,v)) == NULL) {

left  = POSITIVE_COFACTOR(p->left, v)
right = POSITIVE_COFACTOR(p->right, v)
c = AND(left,right)
SET_COFACTOR(p,v,c)

}
if(IS_INVERTED(p)) return NOT(c)
else return c

}
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Boolean Function Representation
And-Inverter Graph

 Similar algorithm for NEGATIVE_COFACTOR

 Existential and universal quantifications can be 
built from AND, OR and COFACTORS

Exercise: Prove (f  g)v = fv  gv and (f) v = (fv)

Question: What is the worst-case complexity of 
performing quantifications over AIGs?
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Boolean Function Representation
Binary Decision Diagram (BDD)

 A graphical representation of Boolean function
 BDD is a Shannon cofactor tree:

 f = v fv + v fv (Shannon expansion)
vertices represent decision nodes (i.e. multiplexers) 

controlled by variables
 leaves are constants “0” and “1”

two children of a vertex of f represent two subfunctions fv
and fv

 Variable ordering restriction and reduction rules make 
(ROBDD) representation canonical

v
0 1

f

fv fv
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Boolean Function Representation
BDD – Canonicalization 
 General idea:

 instead of exploring sub-cases by enumerating them in time, try to
store sub-cases in memory
 KEY: two hashing mechanisms:

 unique table: find identical sub-cases and avoid replication
 computed table: reduce redundant computation of sub-cases

 Represent logic functions as graphs (DAGs):
 many logic functions can be represented compactly - usually better 

than SOPs
 Can be made canonical (ROBDD)

 Shift the effort in a Boolean reasoning engine from SAT algorithm to 
data representation

 Many logic operations can be performed efficiently on BDD’s:
 usually linear in size of input BDDs 
 tautology checking and complement operation are constant time

 BDD size critically depends on variable ordering
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Boolean Function Representation
BDD – Canonicalization 

 Directed acyclic graph (DAG)
 one root node, two terminal-nodes, 0 and 1
 each node has two children and is controlled by a variable

 Shannon cofactor tree, except reduced and ordered (ROBDD)
 Ordered:

 cofactor variables (splitting variables) in the same order along all 
paths

xi1
< xi2

< xi3
< … < xin

 Reduced:
 any node with two identical children is removed
 two nodes with isomorphic BDD’s are merged

These two rules make any node in an ROBDD represent a distinct 
logic function

a

c c

b

0 1

ordered
(a<c<b)

a

b c

c

0 1

not
ordered

b

a

b

0 1

f

b

0 1

f

reduce
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Boolean Function Representation
BDD

 Example

Same function with two different variable orders

a

b b

c c

d

0 1

c+bd b

root node

c+d
c

d

f = ab+a’c+bc’d a

c

d

b

0 1

c+bd

db

b

1

0

leaf node
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Boolean Function Representation
BDD – Canonicity of ROBDD

 Three components make ROBDD canonical 
(Bryant 1986):
 unique nodes for constant “0” and “1”

 identical order of case-splitting variables along 
each paths

 a hash table that ensures
(node(fv) = node(gv))  (node(fv) = node(gv)) 

node(f) = node(g)

and provides recursive argument that node(f) 
is unique when using the unique hash-table
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Boolean Function Representation
BDD – Onset Counting

F = b’+a’c’ = ab’+a’cb’+a’c’ (all paths to the 1 node)

 By tracing all paths to the 1 node, we get a cover of pairwise 
disjoint cubes

 BDD does not explicitly enumerate all paths; rather it represents 
paths by a graph whose size is measures by its nodes
 A DAG can represent an exponential number of paths with a linear 

number of nodes
 BDDs can be used to efficiently represent sets

 interpret elements of the onset as elements of the set
 f is called the characteristic function of that set

a

c
b

0 1

1
0

1

1
0

0

f

fa= b’
fa = cb’+c’
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Boolean Function Representation
BDD – ITE Operator

 Each BDD node can be written as a triplet: f = 
ite(v,g,h) = vg + v’h, where g = fv and h = fv, 
meaning  if v then g else h

(v is top variable of f)

v
f

0 1

h
g

1 0

f

v

g

mux

h
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Boolean Function Representation
BDD – ITE Operator
 ite(f,g,h) = fg + f’h

 ITE operator can implement any two variable logic function.  There are 16 such 
functions corresponding to all subsets of vertices of B2:

Table Subset Expression Equivalent Form

0000 0 0 0

0001 AND(f, g) f g ite(f, g, 0)

0010 f > g f g ite(f, g, 0)

0011 f f f

0100 f < g fg ite(f, 0, g)

0101 g g g

0110 XOR(f, g) f  g ite(f, g, g)

0111 OR(f, g) f + g ite(f, 1, g)

1000 NOR(f, g) (f + g) ite(f, 0, g)
1001 XNOR(f, g) f  g ite(f, g, g)
1010 NOT(g) g ite(g, 0, 1)

1011 f  g f + g ite(f, 1, g)
1100 NOT(f) f ite(f, 0, 1)

1101 f  g f + g ite(f, g, 1)

1110 NAND(f, g) (f g) ite(f, g, 1)

1111 1 1 1
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Boolean Function Representation
BDD – ITE Operator

Recursive operation of ITE

Ite(f,g,h) 
= f g + f h 
= v (f g + f h)v + v (f g + f h)v

= v (fv gv + fv hv) + v (fv gv +fv hv)
= ite(v, ite(fv,gv,hv), ite(fv,gv,hv))

 Let v be the top-most variable of BDDs f, g, h
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Boolean Function Representation
BDD – ITE Operator
 Recursive computation of ITE

Algorithm ITE(f, g, h)
if(f == 1) return g
if(f == 0) return h
if(g == h) return g 

if((p = HASH_LOOKUP_COMPUTED_TABLE(f,g,h)) return p
v  = TOP_VARIABLE(f, g, h )  // top variable from f,g,h
fn = ITE(fv,gv,hv)            // recursive calls
gn = ITE(fv,gv,hv)
if(fn == gn) return gn       // reduction
if(!(p = HASH_LOOKUP_UNIQUE_TABLE(v,fn,gn)) {

p = CREATE_NODE(v,fn,gn)  // and insert into UNIQUE_TABLE
}
INSERT_COMPUTED_TABLE(p,HASH_KEY{f,g,h})
return p

}
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Boolean Function Representation
BDD – ITE Operator
 Example

I = ite(F, G, H) 
= ite(a, ite(Fa , Ga , Ha ), ite(Fa , Ga , Ha ))
= ite(a, ite(1, C , H ), ite(B, 0, H ))
= ite(a, C, ite(b , ite(Bb , 0b , Hb ), ite(Bb , 0b , Hb )) 
= ite(a, C, ite(b , ite(1, 0, 1), ite(0, 0, D))) 
= ite(a, C, ite(b , 0, D))
= ite(a, C, J)

Check: F = a + b
G = ac
H = b + d
ite(F, G, H)  = (a + b)(ac) + ab(b + d) = ac + abd

F,G,H,I,J,B,C,D
are pointers

b1

1

a

0

1 0

1 0

F

B

1

1

a

0

1 0

0

G

c 0C

1

b

0

1 0

0

H

d
D

1
1

0

a
1 0

0

I

b
J

1

C

D
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Boolean Function Representation
BDD – ITE Operator
 Tautology checking using ITE

Algorithm ITE_CONSTANT(f,g,h) {   // returns 0,1, or NC
if(TRIVIAL_CASE(f,g,h) return result (0,1, or NC)
if((res = HASH_LOOKUP_COMPUTED_TABLE(f,g,h))) return res
v = TOP_VARIABLE(f,g,h)
i = ITE_CONSTANT(fv,gv,hv)
if(i == NC) {

INSERT_COMPUTED_TABLE(NC, HASH_KEY{f,g,h}) // special table!! 
return NC

}
e = ITE_CONSTANT(fv,gv,hv)
if(e == NC) {

INSERT_COMPUTED_TABLE(NC, HASH_KEY{f,g,h})
return NC

}
if(e != i) {

INSERT_COMPUTED_TABLE(NC, HASH_KEY{f,g,h})
return NC

}
INSERT_COMPUTED_TABLE(e, HASH_KEY{f,g,h})
return i;

}
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Boolean Function Representation
BDD – ITE Operator
 Composition using ITE

 Compose is an important operation, e.g. for building the BDD of a circuit 
backwards, Compose(F, v, G) :  F(v, x)  F(G(x), x), means substitute v = G(x)

Algorithm COMPOSE(F,v,G) {
if(TOP_VARIABLE(F) > v)  return F  // F does not depend on v
if(TOP_VARIABLE(F) == v) return ITE(G,F1,F0)
i = COMPOSE(F1,v,G)
e = COMPOSE(F0,v,G)
return ITE(TOP_VARIABLE(F),i,e)

}

Note:
1. F1 and F0 are the 1-child and 0-child of F, respectively
2. G, i, e are not functions of v
3. If TOP_VARIABLE of F is v, then ITE(G, F1, F0 ) does the replacement of v by G

46

Boolean Function Representation
BDD – Implementation Issues

Unique table:
 avoids duplication of existing nodes

 Hash-Table: hash-function(key) = value
 identical to the use of a hash-table in AND/INVERTER circuits

Computed table:
 avoids re-computation of existing results

hash value
of key

collision
chain

hash value
of key

No collision chain
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Boolean Function Representation
BDD – Implementation Issues
 Unique table

 Before a node ite(v, g, h) is added to BDD database, it is looked up in the 
“unique-table”. If it is there, then existing pointer to node is used to represent 
the logic function.  Otherwise, a new node is added to the unique-table and the 
new pointer returned.

 Thus a strong canonical form is maintained.  The node for f = ite(v, g, h) exists 
iff ite(v, g, h) is in the unique-table.  There is only one pointer for ite(v, g, h) 
and that is the address to the unique-table entry.

 Unique-table allows single multi-rooted DAG to represent all users’ functions

hash index
of key

collision
chain
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Boolean Function Representation
BDD – Implementation Issues

 Computed table
 Keep a record of (F, G, H) triplets already computed by the ITE

operator
 software cache (“cache” table) 
 simply hash-table without collision chain (lossy cache)
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Boolean Function Representation
BDD – Implementation Issues

 Use of computed table
 BDD packages often use optimized implementations for special 

operations
e.g. ITE_Constant (check whether the result would be a 

constant) AND_Exist (AND operation with existential 
quantification)

 All operations need a cache for decent performance
 local cache

 for one operation only - cache will be thrown away after 
operation is finished (e.g. AND_Exist)

special cache for each operation
 does not need to store operation type

shared cache for all operations
 better memory handling
 needs to store operation type
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Boolean Function Representation
BDD – Implementation Issues

 Complemented edges
 Combine inverted functions by using complemented edge

 similar to AIG
 reduces memory requirements
more importantly, makes operations NOT, ITE more efficient

0 1

G

0 1

G

two different
DAGs

0 1

G G
only one DAG
using complement
pointer
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Boolean Function Representation
BDD – Implementation Issues

 Complemented edges
 To maintain strong canonical form, need to resolve 4 

equivalences:

 Solution: Always choose the ones on left, i.e. the “then” leg 
must have no complement edge.

VV VV VV VV

VV VV VV VV
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Boolean Function Representation
BDD – Implementation Issues
 Complemented edges

Standard triples: ite(F, F, G)  ite(F, 1, G)
ite(F, G, F)  ite(F, G, 0)
ite(F, G, F)  ite(F, G, 1)
ite(F, F, G)  ite(F, 0, G)

To resolve equivalences: ite(F, 1, G)  ite(G, 1, F)
ite(F, 0, G)  ite(G, 1, F)
ite(F, G, 0)  ite(G, F, 0)
ite(F, G, 1)  ite(G, F, 1)
ite(F, G, G)  ite(G, F, F)

To maximize matches on computed table:
1. First argument is chosen with smallest top variable.
2. Break ties with smallest address pointer. (breaks PORTABILITY!)

Triples:
ite(F, G, H )  ite (F, H, G)  ite (F, G, H)  ite (F, H, G) 
Choose the one such that the first and second argument of ite should not be 
complement edges (i.e. the first one above)
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Boolean Function Representation
BDD – Implementation Issues

 Variable ordering – static 
 variable ordering is computed up-front based 

on the problem structure
works well for many practical combinational 

functions
general scheme: control variables first
DFS order is good for most cases

works bad for unstructured problems
e.g. using BDDs to represent arbitrary sets

 lots of ordering algorithms
simulated annealing, genetic algorithms
give better results but extremely costly
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Boolean Function Representation
BDD – Implementation Issues

 Variable ordering – dynamic
 Changes the order in the middle of BDD applications

must keep same global order
 Problem: External pointers reference internal nodes! 

BDD Implementation:

...

...

...

...

External reference pointers attached 

to application data structures
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Boolean Function Representation
BDD – Implementation Issues

 Variable ordering – dynamic
Theorem (Friedman):

Permuting any top part of the variable order has no effect on the 
nodes labeled by variables in the bottom part.
Permuting any bottom part of the variable order has no effect on the 
nodes labeled by variables in the top part.

 Trick: Two adjacent variable layers can be exchanged by keeping the 
original memory locations for the nodes

a

b b

c c c c

ff0 f1

f00 f01 f10 f11

bb b

c c c c

ff0 f1

f00 f01 f10 f11

aa

mem1

mem2

mem3

mem1

mem2

mem3
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Boolean Function Representation
BDD – Implementation Issues

 Variable ordering – dynamic
 BDD sifting:

shift each BDD variable to the top and then to the bottom 
and see which position had minimal number of BDD nodes

efficient if separate hash-table for each variable
can stop if lower bound on size is worse than the best 

found so far
shortcut: two layers can be swapped very cheaply if there 

is no interaction between them
expensive operation

 grouping of BDD variables:
 for many applications, grouping variables gives better 

ordering
 e.g. current state and next state variables in state traversal

grouping variables for sifting
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Boolean Function Representation
BDD – Implementation Issues

 Garbage collection
 Important to free and reuse memory of unused BDD nodes 

including
those explicitly freed by an external bdd_free operation
those temporary created during BDD operations

 Two mechanisms to check whether a BDD is not referenced:
Reference counter at each node

 increment whenever node gets one more referenced
 decrement when node gets de-referenced 
 take care of counter-overflow

Mark and sweep algorithm
 does not need counter
 first pass, mark all BDDs that are referenced
 second pass, free the BDDs that are not marked
 need additional handle layer for external references
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Boolean Function Representation
BDD – Implementation Issues

Garbage collection
 Timing is crucial because garbage collection is expensive

immediately when node gets freed
 bad because dead nodes get often reincarnated in 

subsequent operations

regular garbage collections based on statistics 
obtained during BDD operations

 Computed-table must be cleared since not used in 
reference mechanism

 Improving memory locality and therefore cache behavior
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Boolean Function Representation
BDD – Variants
 MDD:  Multi-valued DD

 have more then two branches
 can be implemented using a regular BDD package with binary 

encoding
 the binary variables for one MV variable do not have to stay together and 

thus potentially better ordering

 ADD: (Algebraic BDDs) MTBDD
 multi-terminal BDDs
 decision tree is binary
 multiple leaves, including real numbers, sets or arbitrary objects
 efficient for matrix computations and other non-integer applications

 FDD: Free-order BDD
 variable ordering differs
 not canonical anymore

 …
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Boolean Function Representation
BDD – Variants

 Zero suppressed BDD (ZDD)
 ZBDDs were invented by Minato to efficiently represent sparse

sets.  They have turned out to be useful in implicit methods for 
representing primes (which usually are a sparse subset of all 
cubes).

 Different reduction rules:
 BDD: eliminate all nodes where then edge and else edge point to 

the same node.
 ZBDD: eliminate all nodes where the then node points to 0.  

Connect incoming edges to else node.
 For both: share equivalent nodes.

0 1

0 1 0 1
0 1

0
1

0 1

0

BDD:
ZBDD:
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Boolean Function Representation
BDD – Variants

Theorem: ZBDDs are canonical given a variable 
ordering and the support set

x1

x2

01

BDD

x3

1

ZBDD if 
support is 
x1, x2, x3

1

ZBDD if
support is
x1, x2

Example

x1

x2

01

BDD

x3

1

ZBDD if
support is
x1, x2 , x3

x1

x2

01

x3

62

Boolean Function Representation
Summary

 Sum of products 
 Good for circuit synthesis

 Product of sums 
 Good for Boolean reasoning

 Boolean network
 Generic network

Good for multi-level circuit synthesis

 And-inverter graph
Good for Boolean reasoning

 Binary decision diagram
 Good for Boolean reasoning
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Boolean Reasoning

Reading:
Logic Synthesis in a Nutshell

Section 2

most of the following slides are by 
courtesy of Andreas Kuehlmann
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Boolean Reasoning
Satisfiability (SAT)

 Boolean reasoning engines need:
 a data structure to represent problem instances
 a decision procedure to decide about SAT or UNSAT

 Fundamental tradeoff
 canonical data structure (e.g. truth table, ROBDD)

data structure uniquely represents function
decision procedure is trivial (e.g., just pointer comparison)
Problem: size of data structure is in general exponential

 non-canonical data structure (e.g. AIG, CNF)
systematic search for satisfying assignment
size of data structure is linear
Problem: decision may take an exponential amount of time
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Boolean Reasoning
SAT

 Basic SAT algorithms:
 branch and bound algorithm

 branching on the assignments of primary inputs only or those of 
all variables
 E.g. PODEM vs. D-algorithms in  ATPG

 Basic data structures:
 circuits or CNF formulas
 SAT on circuits is identical to the justification part in ATPG

 1st half of ATPG: justification 
 find an input assignment that forces an internal signal to a 

required value
 2nd half of ATPG: propagation

 make a signal change at an internal signal observable at some 
outputs (can be easily formulated as SAT over CNF formulas)
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Boolean Reasoning
SAT vs. Tautology

 SAT:
 find a truth assignment to the inputs making a given 

Boolean formula true
 NP-complete

 Tautology:
 find a truth assignment to the inputs making a given 

Boolean formula false
 coNP-complete

 SAT and Tautology are dual to each other
 checking SAT on formula  = checking Tautology on 

formula , and vice versa
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Boolean Reasoning
SAT – AIG-based Decision Procedure 

 General Davis-Putnam procedure
 search for consistent assignment to entire cone of  

requested vertex in AIG by systematically trying all 
combinations (may be partial)

 keep a queue of vertices that remain to be justified
pick decision vertex from the queue and case split on 

possible assignments
for each case

 propagate as many implications as possible
 generate more vertices to be justified
 if conflicting assignment encountered, undo all 

implications and backtrack
 recur to next vertex from queue
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Boolean Reasoning
SAT – AIG-based Decision Procedure

 General Davis-Putnam procedure 
Algorithm SAT(Edge p) {

queue = INIT_QUEUE(p)
if(!IMPLY(p)) return FALSE 
return JUSTIFY(queue)

}

Algorithm JUSTIFY(queue) {
if(QUEUE_EMPTY(queue)) return TRUE
mark = ASSIGNMENT_MARK()
v = QUEUE_NEXT(queue)  // decision vertex
if(IMPLY(NOT(v)) {

if(JUSTIFY(queue)) return TRUE
}                                  // conflict
UNDO_ASSIGNMENTS(mark)
if(IMPLY(v)) {

if(JUSTIFY(queue)) return TRUE
}                                  // conflict
UNDO_ASSIGNMENTS(mark)
return FALSE

}
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Boolean Reasoning
SAT – AIG-based Decision Procedure

 Example

1st case for 9:

Queue Assignments

1

6

2 5
8

7

3

4

9

9

0

1

6

2 5
8

7

3

4

9

9

0

9

9

7

4

5

1

2

0
1

11

10 1

conflict !

- undo all assignments

- backtrack

SAT(NOT(9))??
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Boolean Reasoning
SAT – AIG-based Decision Procedure

 Example (cont’d)

2nd case for 9:

1st case for 5:

Assignments

1

6

2 5
8

7

3

4

9

5

6
0

9

7

8

5

6

01
0

0
0 1

Queue

1

6

2 5
8

7

3

4

9 0

9

7

8

5

6

2

3

01
0

0
0 1

0

Note:

vertex 7 is justified

by 8->5->7

0

Solution cube: 1 = x, 2 = 0, 3 = 0
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Boolean Reasoning
SAT – AIG-based Decision Procedure

Implication
 Fast implication procedure is key for efficient 

SAT solver!
don’t move into circuit parts that are not sensitized to 

current SAT problem
detect conflicts as early as possible

 Table lookup implementation (27 cases):
No-implication cases:

x

x
x

x

1
x

1

x
x

0

x
0

0

1
0

0

0
0

x

0
0

1

0
0

1

1
1
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Boolean Reasoning
SAT – AIG-based Decision Procedure

Implication (cont’d)
 Table lookup implementation (27 cases):

Implication cases:

Conflict cases:

Split case:

0

x
x

x

0
x

0

0
x

x

x
1

x

1
1

1

x
1

x

1
0

1

x
0

1

1
x

1

0
x

0

1
x

1

1
0

0

x
1

0

0
1

0

1
1

x

0
1

1

0
1

x

x
0
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Boolean Reasoning
SAT – AIG-based Decision Procedure

 Case split
 Different heuristics work well for particular problem classes
 Often depth-first heuristic is good because it generates 

conflicts quickly
 Mixture of depth-first and breadth-first schedule
 Other heuristics:

pick the vertex with the largest fanout
count the polarities of the fanout separately and pick the 

vertex with the highest count in either polarity
run a full implication phase on all outstanding case splits 

and count the number of implications one would get
pick vertices that are involved in small cut of the circuit

== 0?

“small cut”

74

Boolean Reasoning
SAT – AIG-based Decision Procedure

 Learning
 Learning is the process of adding “shortcuts” to the circuit structure 

that avoids case splits
 static learning: 

 global implications are learned
 dynamic learning: 

 learned implications only hold in current part of the search tree
 Learned implications are stores as additional network

 Example (cont’d)
 1st case for vertex 9 lead to conflict
 If we were to try the same assignment again (e.g. for the next 

SAT call), we would get the same conflict => merge vertex 7 with
zero-vertex

1

6

2 5
8

7

3

4

9 0

0
1

11

10 1

Zero Vertex
- if rehashing is invoked

vertex 9 is simplified and 

and merged with vertex 8
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Boolean Reasoning
SAT – AIG-based Decision Procedure

 Learning – static
 Implications that can be learned structurally from the circuit

Add learned structure as circuit

Use hash table to find structure in circuit:
Algorithm CREATE_AND(p1,p2) {
. . . // create new vertex p
if((p’=HASH_LOOKUP(p1,NOT(p2))) {
LEARN(((p=0)&(p’=0)) (p1=0))

}
if((p’=HASH_LOOKUP(NOT(p1),p2)) {
LEARN(((p=0)&(p’=0)) (p2=0))

}
}

Zero Vertex

p1

p2 p'

p
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Boolean Reasoning
SAT – AIG-based Decision Procedure

 Example (cont’d)
2nd case for 9 (original):

Assignments

1

6

2 5
8

7

3

4

9

5

6
0

9

7

8

5

6

01
0

0
0 1

Queue

2nd case for 9 (with static learning):

1

6

2 5
8

7

3

4

9 0

9

7

8

5

6

a

3

01
0

0
0 1

Zero Vertex
a

b

1

0

Solution cube: 1 = x, 2 = x, 3 = 0
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Boolean Reasoning
SAT – AIG-based Decision Procedure

 Learning – static
 Other learning based on contra-positive: 

if (P  Q), then (Q  P)

foreach vertex v {
mark = ASSIGNMENT_MARK()
IMPLY(v)
LEARN_IMPLICATIONS(v)
UNDO_ASSIGNMENTS(mark)
IMPLY(NOT(v))
LEARN_IMPLICATIONS(NOT(v))
UNDO_ASSIGNMENTS(mark)

}

 Problem: learned implications are far too 
many
 solution: restrict learning to non-

trivial implications and filter 
redundant implications

x y 1

0

0
0

(( 0) ( 1)) (( 0) ( 1))x y y x      

x y 0
1

Zero Vertex
0

0
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Boolean Reasoning
SAT – AIG-based Decision Procedure

 Learning – static and recursive
 Compute the set of all implications for both case splits on level i

 Static learning of constants, equivalences
 Intersect both split cases to learn for level i–1 

 Apply learning recursively until all case splits exhausted
 recursive learning is complete but very expensive in practice for 

levels > 2, 3
 restrict learning level to fixed number becomes incomplete

(( 1) ( 1) ( 0) ( 1)) ( 1)x y x y y        

x
y 0

x
y 0

x
y 0

1

0

1

1

1

1

x
y 0

1

x

x

assume permanent assignment
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Boolean Reasoning
SAT – AIG-based Decision Procedure

 Learning – static and recursive

Algorithm RECURSIVE_LEARN(int level) {
if(v = PICK_SPLITTING_VERTEX()) {

mark = ASSIGNMENT_MARK()
IMPLY(v)
IMPL1 = RECURSIVE_LEARN(level+1)
UNDO_ASSIGNMENTS(mark)
IMPLY(NOT(v))
IMPL0 = RECURSIVE_LEARN(level+1)
UNDO_ASSIGNMENTS(mark)
return IMPL1  IMPL0

}
else {    // completely justified

return IMPLICATIONS
}

}
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Boolean Reasoning
SAT – AIG-based Decision Procedure

 Learning – dynamic
 Learn implications in a sub-tree of searching

cannot simply add permanent structure because not 
globally valid
 add and remove learned structure (expensive)
 add branching condition to the learned implication

 of no use unless we prune the condition (conflict learning)
 use implication and assignment mechanism to assign and 

undo assigns
 e.g., dynamic recursive learning with fixed recursion level

Dynamic learning of equivalence relations (Stalmarck 
procedure)
 learn equivalence relations by dynamically rewriting the 

formula
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Boolean Reasoning
SAT – AIG-based Decision Procedure

 Learning – dynamic
 Efficient implementation of dynamic recursive learning

with level 1:
consider both sub-cases in parallel
use 27-valued logic in the IMPLY routine

(level0-value, level1-choice1, level1-choice2)

({0,1,x}, {0,1,x}, {0,1,x})

automatically set learned values for level0 if both level1 
choices agree, e.g.,

0 0 0

(x,1,0)

(x,x,1)

(1,1,1) 1

x

x

assume temporary assignment
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Boolean Reasoning
SAT – AIG-based Decision Procedure

 Learning – conflict-based (c.f. structure-based)
 Idea: Learn the situation under which a particular 

conflict occurred and assert it to 0
IMPLY will use this “shortcut” to detect similar conflict 

earlier
 Definition: An implication graph is a directed Graph 

I(G’,E), G’  G are the gates of C with assigned values vg 
 unknown, E  G’G’ are the edges, where each edge 
(gi,gj) E reflects an implication for which an assignment 
of gate gi leads to the assignment of gate gj.

0 (decision vertex)

0 (decision vertex)

1

2
3

4

0

1

1’

2’
3’

4’

Circuit: Implication graph:

0
0

0

1
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Boolean Reasoning
SAT – AIG-based Decision Procedure

 Learning – conflict-based
 The roots (w/o fanin-edges) of the implication graph 

correspond to the decision vertices, the leaves correspond to 
the implication frontier

 There is a strict implication order in the graph from the roots 
to the leaves
We can completely cut the graph at any point and identify value 

assignments to the cut vertices, we result in identical implications 
toward the leaves
C1 C2 Cn-1 Cn          (C1: decision vertices)

Cut assignment (Ci)
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Boolean Reasoning
SAT – AIG-based Decision Procedure

 Learning – conflict-based
 If an implication leads to a conflict, any cut assignment in the

implication graph between the decision vertices and the conflict will 
result in the same conflict!

(Ci Conflict) (NOT(Conflict) NOT(Ci))

 We can learn the complement of the cut assignment as circuit
 find minimal cut in the implication graph I (costs less to learn)
 find dominator vertex if exists
 restrict size of cuts to be learned, otherwise exponential blow-up
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Boolean Reasoning
SAT – AIG-based Decision Procedure

 Non-chronological backtracking
 If we learned only cuts on decision vertices, only the decision 

vertices that are in the support of the conflict are needed

 The conflict is fully symmetric with respect to the unrelated 
decision vertices!!
 Learning the conflict would prevent checking the symmetric parts

again
BUT: It is too expensive to learn all conflicts (any cut)

Decision levels: 5

4

1

3

6

2

6

5

4

3

2

1Decision Tree:
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Boolean Reasoning
SAT – AIG-based Decision Procedure

 Non-chronological backtracking
 We can still avoid exploring symmetric parts of the decision 

tree by tracking the decision support vertices of a conflict
 If no conflict of the first choice on a decision vertex depends on 

that vertex, the other choice will result in symmetric conflicts and 
their evaluation can be skipped!

 By tracking the implications of the decision vertices we can 
skip decision levels during backtrack

0

1

2

3

4

{2,4} {2,4,0}

{2,3}

{4,3} {4,0}

{2,0}

decision levels that cause a conflict
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Boolean Reasoning
SAT – CNF-based Decision Procedure

 CNF
 Product-of-Sums (POS) representation of Boolean 

function
 Describes solution using a set of constraints

very handy in many applications because new constraints 
can be simply added to the list of existing constraints

very common in AI community

 Example
= (a+b+c)(a+b+c)(a+b+c)(a+b+c)

 SAT on CNF (POS)  TAUTOLOGY on DNF (SOP)
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Boolean Reasoning
SAT – CNF-based Decision Procedure

 Circuit to CNF conversion
 Encountered often in practical applications
 Naive conversion from circuit to CNF:

 multiply out expressions of circuit until two level structure
 Example:  y = x1 x2  x2  ...  xn (parity function)

 circuit size is linear in the number of variables



 generated chess-board Karnaugh map
 CNF (or DNF) formula has 2n-1 terms (exponential in the # vars)

 Better approach:
 introduce one variable per circuit vertex
 formulate the circuit as a conjunction of constraints imposed on the vertex 

values by the gates
 uses more variables but size of formula is linear in the size of the circuit
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Boolean Reasoning
SAT – CNF-based Decision Procedure

 Circuit to CNF conversion
 Example

Single gate

Connected gates

b

a

c (a + b + c)(a + c)(b + c)

1

6

2 5
8

7

3

4

9 0

(1 + 2 + 4)(1 + 4)(2 + 4)
(2 + 3 + 5)(2 + 5)(3 + 5)
(2 + 3 + 6)(2 + 6)(3 + 6)
(4 + 5 + 7)(4 + 7)(5 + 7)
(5 + 6 + 8)(5 + 8)(6 + 8)
(7 + 8 + 9)(7 + 9)(8 + 9)
(9)

Justify to “0”
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Boolean Reasoning
SAT – CNF-based Decision Procedure

 DPLL procedure

Algorithm DPLL() {
while ChooseNextAssignment() {

while Deduce() == CONFLICT  {
blevel = AnalyzeConflict(); 
if (blevel < 0) return UNSATISFIABLE; 
else Backtrack(blevel);

} 
} 
return SATISFIABLE;

}

ChooseNextAssignment picks next decision variable and assignment
Deduce does Boolean Constraint Propagation (implications)
AnalyzeConflict backprocesses from conflict and produces learnt-clause
Backtrack undoes assignments
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Boolean Reasoning
SAT – CNF-based Decision Procedure

 DPLL (basic case splitting)

Source: Karem A. Sakallah, Univ. of Michigan 

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d)

1

2

3

4

5

6

7

8

a(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d)

(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

b

c

d d

b

c

d d

c

d(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)
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 Implication
 Implications in a CNF formula are caused by unit clauses

A unit clause is a CNF term for which all variables 
except one are assigned
 the value of that clause can be implied immediately

Example
clause (a+b+c) 
(a=0)(b=1)(c=1)
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Implication
 Example

x

x
x

x

1
x

1

x
x

0

x
0

0

1
0

0

0
0

x

0
0

1

0
0

1

1
1

(a+b+c)(a+c)(b+c)
a

c
b

Non-implication cases:

All clauses satisfied

Not all clauses satisfied (avoid exploring this part)

x

x
0

AND
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Implication
 Example (cont’d)

(a + b + c)    (a + c)        (b + c)

0

x
x

x

0
x

0

0
x

x

x
1

x

1
1

1

x
1

x

1
0

1

x
0

1

0
x

0

1
x

1

1
x

Implication cases:

(a+b+c)(a+c)(b+c)
a

c
b

AND
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 DPLL (w/ implication)

1

2

3

4

5

6

7

8

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d)

a(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d)

b

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d)

c

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d) d
7

7

b

c

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d) 8

8

8

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d) d
5

5

a

c

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d) 6

6

6

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d) c
3

3

a

b

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d) 5

5

d

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d)

6

6

6

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d)

b

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d)

c

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d) d
4

4

a

c

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d)

Source: Karem A. Sakallah, Univ. of Michigan 
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 Conflict-based learning
 Important detail for cut selection:

During implication processing, record decision level for 
each implication

At conflict, select earliest cut such that exactly one node of 
the implication graph lies on current decision level
 Either decision variable itself
 Or UIP (“unique implication point”) that represents a 

dominator node for current decision level in conflict graph

 By selecting such cut, implication processing will 
automatically flip decision variable (or UIP variable) to 
its complementary value
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 Conflict-based learning
 UIP detection

 Store with each implication the decision level, and a time stamp (integer 
that is incremented after each decision)
 UIP on decision level l has the property that all following implications towards the 

conflict have a larger time stamp
 When back processing from conflict, put all implications that are to be processed 

on heap, keeping the one with smallest time stamp on top
 If during processing there is only one variable on current decision level on heap 

then that variable must be a UIP

1
2

3

4

5

Decision level Learned clause

UIP on level 5

5

3

3
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 DPLL (conflict-based learning)

1

2

3

4

5

6

7

8

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d)

a(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d)

b

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d)

c

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d) d
7

7

b

c

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d) 8

8

8

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d)

bc  ¬


 (¬b + ¬c)

9 (¬b + ¬c)(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d)

9 (¬b + ¬c)

c9b

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d)

9 (¬b + ¬c)

a

d

5

5

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d)

9 (¬b + ¬c)

6

6

6

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d)

9 (¬b + ¬c)

ab  ¬


 (¬a + ¬b)

10 (¬a + ¬b)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d)

10 (¬a + ¬b)
9 (¬b + ¬c)

b

a

10

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d)

10 (¬a + ¬b)
9 (¬b + ¬c)

c3

3

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d)

10 (¬a + ¬b)
9 (¬b + ¬c)

d

5

5

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d)

10 (¬a + ¬b)
9 (¬b + ¬c)

6

6

6

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d)

10 (¬a + ¬b)
9 (¬b + ¬c)

a  ¬


 (¬a)

11 (¬a)11 (¬a)

10 (¬a + ¬b)
9 (¬b + ¬c)(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d)
a11

11 (¬a)

10 (¬a + ¬b)
9 (¬b + ¬c)(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d)

b
11 (¬a)

10 (¬a + ¬b)
9 (¬b + ¬c)(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d)
b 9 c

11 (¬a)

10 (¬a + ¬b)
9 (¬b + ¬c)(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d)
4

4 d

11 (¬a)

10 (¬a + ¬b)
9 (¬b + ¬c)(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d)

Source: Karem A. Sakallah, Univ. of Michigan 
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 Implementation issues
 Clauses are stores in arrays
 Track change-sensitive clauses (two-literal watching)

all literals but one assigned -> implication
all literals but two assigned -> clause is sensitive to a 

change of either literal
all other clauses are insensitive and do not need to be 

observed
 Learning: 

 learned implications are added to the CNF formula as 
additional clauses
 limit the size of the clause
 limit the “lifetime” of a clause, will be removed after some 

time
 Non-chronological back-tracking

similar to circuit case
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 Implementation issues (cont’d)
 Random restarts:

stop after a given number of backtracks
 start search again with modified ordering heuristic
 keep learned structures !

very effective for satisfiable formulas, often also effective 
for unsat formulas

 Learning of equivalence relations:
 if (a  b)  (b  a), then (a = b)
very powerful for formal equivalence checking

 Incremental SAT solving
solving similar CNF formulas in a row
 share learned clauses


