Temporal Floorplanning Using 3D-subTCG *

Ping-Hung Yuh!, Chia-Lin Yang!, Yao-Wen Chang?, Hsin-Lung Chen?

IDepartment of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan
{r91089, yangg@csie.ntu.edu.tw
2Graduate Institute of Electronics Engineering & Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
ywchang@cc.ee.ntu.edu.tw
Etron Technology Inc., Hsin-Chu, Taiwan
gis89536@cis.nctu.edu.tw

Abstract —_—
Improving logic capacity by time-sharing, dynamically reconfigurable FP- i TRFuoP1
GAs are employed to handle designs of high complexity and functionality. _— *1 |
In this paper, we use a novel topological floorplan representation, naired 7Y ReuoR2 s

subTCG (3-Dimensional sub-Transitive Closure Graph) to deal with the 3- — i,
dimensional (temporal) floorplanning/placement problem, arising from dy- P

namically reconfigurable FPGAs. The 3D-subTCG uses three transitive clo- p—

sure graphs to model the temporal and spatial relations between modules. _
We derive the feasibility conditions for the precedence constraints induced
by the execution of the dynamically reconfigurable FPGAs. Because the
geometric relationship is transparent to 3D-subTCG and its induced opera- @
tions, we can easily detect any violation of temporal precedence constraints

on 3D-subTCG. We also derive important properties of the 3D-subTCG tq:igure 2:(a) A running program. (b) A 3D-placement of the running program.
reduce the solution space and shorten the running time for 3D (temporal)

foorplanning/placement. Experimental results show that our 3D-subTCG

based algorithm is very effective and efficient.

how to place these modules into the RFU becomes a 3-D placement prob-
1 Introduction lem as shown in Figure 2(b). We may denote each module as a 3-D box

. : ith spatial dimensions andy and the temporal dimensidn There exists
A Field Programmable Gate Arrays (FPGA) is a (re)programmable log}¢ : :
device that ?mplements multilevel)llog(ic. Tra)ditionélly?pangFPGA needs% mporal relation among scheduled modules since the result of one module
be reconfigured as a whole. Recently, several vendors have proposed gy Pe needed by another one. The objective of temporal floorplanning is to
chitectures that allow partially dynamic reconfiguration, such as the XiIinSiocl’gﬁ;e Thoedyelsns 'Srg;isn';?r;?n?gt'm'ze the area and execution time without
XC4000E FPGAs [18], the Atmel AT6000 Series FPGAs [2], the Xilinx 9 P)
XC6200 Series FPGAs [11], and Xilinx Virtex Series FPGAs [20]. 1.1 PreviousWork

Teich et al. in [17], first usedomponent graphsto deal with such a problem

: — assuming no dependence among scheduled modules. They derived neces-

e [.— sary and sufficient conditions for a feasible placement and proposed an enu-
'

DLL | Pad 1 10Bs

FFy

7
‘ -
L

| etsrowo meration scheme by using a branch-and-bound tree search algorithm to find
a feasible solution. In practice, however, there often exist temporal prece-

dence constraints among scheduled modules since the output of one module
may be needed as the input of another module. Therefore, Fekete et al. in

FFx

CLBs

Left IOBS
S801 146y

Left Block SelectRAM
WvHI08]8S %00lg 1ubry

Sicot || [[Steeo [7] later extended their work to solve the placement problem with temporal
PRy [- [. L precedence constraints by using an additional dependency graph. Bazargan
_ Frx Frx et al. in their pioneering works [3], [4] and [5] considered both offline place-

| | ment (3D template placement) and online placement. In the offline place-
@ ®) ment, they modeled each RFUOP as a 3D box and fixed the width and height
of the RFU. They proposed a 3D-floorplanner which implements four effec-
] tive methods, including one greedy method called KAMER-BF (Keep All
Figure 1:(a) The Virtex architecture. (b) One-column of a 2-slice Virtex CLB. Maximal Empty Rectangle with Best Fit). In the online placement, they al-
located the free space of RFU to an RFUOP dynamically based on different

Figure 1(a) shows the Xilinx Virtex model [20]. The Virtex configurationgreedy methods (e.g. best-fit and first-fit).
memory can be considered as an array of bits. The bits of one-bit width t -
extend from the top to the bottom of the array constitute a vertieate, hfl& . Our Contribution . .)
which is the smallest portion of the configuration memory (i.e., the atomi@ this paper, we solve the 3-dimensional floorplanning/placement problems
unit that can be written to or read from in this device). Several frames aféthe general reconfigurable architecture by using a novel topological floor-
grouped together into larger units calledumns. Figure 1(b) shows one Plan representation, call&D-subTCG (3-Dimensional sub-Transitive Clo-
column ofconfigurable logic blocks (CLBs for short). In such a device, we Sureé Graph). To the best knowledge of the authors, this is the first work
have to specify a full column of a chip for reconfiguration and read-in/out dhat uses a topological representation to handle the 3-dimensional placement
flip-flop of contents. problem p]‘ a dynamically reconflgurablg device. '

Because of the partial reconfiguration capability in an FPGA, studies_Transitive closure graphs were previously proposed to handle classical
have shown that an FPGA-based reconfigurable hardware system can #R-floorplanning/placement problems [15]. The main challenge to solve the
prove performance for many applications [10]. A reconfigurable system & floorplanning problems is that there exists additioteedporal prece-
usually composed of a host processor and an FPGA coprocessor, aaled &lence constraints, for which some tasks must be executed before other
configurable functional unit (RFU) [3]. An RFU, which can be reconfigured tasks start. We use the 3D-subTCG which consists of three transitive clo-
during program execution, may have various configurations at different tim@ire graphs to model the temporal as well as the spatial relations between
Figure 2(a) shows a program with four parts of codes mapped into RFU ks/modules. We .derlve the.feasllblllty conditions for thg temporal prece-
erations (callecRFUOPs or modules). Because of the place constraint, wedence and the spatial constraints induced by the execution of the dynami-
may not load all the modules into the device at the same time. Therefof@lly reconfigurable FPGAs. Because the geometric relationship is trans-
parent to the 3D-subTCG and its induced operations, we can easily de-

*Yao-Wen Chang’s work was partially supported by the National Science CoundgCt any violation of temporal precedence and spatial constraints in the 3D-
of Taiwan under Grant No. NSC 91-2215-E-002-038. subTCG. Therefore, we can guarantee a feasible solution without resorting

to time-consuming post-processing to remove infeasible ones. We also &- 3D-subT CG for Temporal Floor planning

rive important properties of the 3D-subTCG to reduce the solution space .

shorten the running time for 3D (temporal) foorplanning/placement. E?q ! Revqu of TCG))

perimental results show that our 3D-subTCG based algorithm can obtdif¢ first review the TCG representation presented in [15]. TCG uses two

significantly better floorplans than the Sequence Triplet (ST) representati@f@Phs.a horizontal transitive closure graph C), anda vertical transitive

(35.18% deadspace in ST v.s. 14.86% in 3D-subTCG). The running-tirgsure graph C', to describe the geometric relations among modules. For

requirement of 3D-subTCG is also significantly smaller than ST (312.18 sBC non-overlap modulels; andb;, b; is said to benorizontally (vertically)

as ST v.s. 166.46 sec as 3D-subTCG). related to b;, denoted by; F b; (b;Lb;), if b; is on the left (bottom) side of
The remainder of this paper is organized as follows. Section 2 formulatésa@nd their projections o (x) axis overlap. For two non-overlap modules

the temporal floorplanning problem. Section 3 reviews the TCG represéh-andb;, bi is said to bediagonally related to b; if b; is on the left side

tation and presents the 3D-subTCG for temporal floorplanning. Section®4 b;, and their projections on the axis andy axis do not overlap. To

introduces our temporal floorplanning algorithm. Section 5 reports the exMPplify the operations on geometric relations, we treat a diagonal relation
perimental results. Finally, conclusions are given at Section 6. as a horizontal one, unless there exists a chain of vertical relationsbfrom

(b;), followed by the modules enclosed with the rectangle defined by the
. two closest corners df; andb; , and finally tob; (b;), for which we make

2 Formulation b; Lbj(b;Lb;). For each moduléi, we introduce one node; both inCh
In the reconfigurable architecture task v is loaded into the device for a andC,. If b; - b;, a directed edgeng, n;) is constructed irC. Similarly,
period of time for execution. Let’” = {v1,v2, ..., vm } be a set ofn tasks ~ we construct a directed edge;(n;) in C, if b;Lb;. Figure 3(a) shows a
whose widths, heights, and durations are denotetibyH,;, and7;, 1 < placement with five modules, b, ¢, d, ande whose widths and heights are
i < m. Let(z;,y:) (=}, y;)) denote the coordinate of the bottom-left (top-(2, 1), (2, 2), (3, 2), (1, 2), and (3, 1), respectively. Figure 3(b) shows the
right) corner of a task; and ,1 < i < m, on the chip. We usg¢; (t;) to TCG corresponding to the placement of Figure 3(a). The weight of each
represrent the starting (ending) timew@f 1 < i < m, scheduled in the node inC} (C.) represents the width (height) of the corresponding module
reconfigurable device. b;. Sinceb, - by, we construct a directed edge.,ns) in C. Similarly,

To guarantee the correctness of the functions in the reconfigurable arc$inceb, Lb., a directed edgen(,, n.) is constructed irC',.
tecture, we must satisfy temporal precedence requirements, which describel CG has the following threteasibility properties [15]:
the temporal ordering among tasks. We refer to the temporal precedence re-

quirements aprecedence constraints. Let D = {(v;, v;)|1 < i,§ < m,i # 1. Gy andC, are acyclic.
j} denote the precedence constraints for the taskadv;. The precedence 2. Each pair of nodes must be connected by exactly one edge either in
constraints should not be violated during floorplanning/placement. Cy, orin C,.

In order to measure the quality of a floorplan, we consider the following 3 The transitive closure afy, (C,) is equal toC, (C.) itself.!
objective functions:

e Volume (the minimum bounding box of a placement): In a tem-
poral floorplanning, we need to consider the area of a device and the
total execution time tradeoff. If we use a larger device, the total ex- e
ecution time could be shorten. In contrast, it takes longer time if a
smaller one is used. Therefore, we shall minimize the product of the
area of the device and the total execution time.

e Wirelength (the summation of half bounding box of intercon-
nections): Due to the special architecture of the reconfigurable de-
vice, the method to estimate the wirelength in the temporal floorplan-
ning is different from the traditional floorplanning/placement prob- @ ®
lem. Given a net, those nodes in the net may be executed at the same
time or at different times. If they are executed at the same time, we s

can estimate the wirelength according to their geometric distance di-
rectly. However, we have to project all nodes into the same time frame A
nS

before computing their wirelength in the other condition. 0 .
X/

e Communication overhead: We quantify the communication over-
head based on the Xilinx Virtex XCV1000 described in Section 1.
Similar to the work by Fekete et al. [7], we assume that a task com- Na M
municates with another task (data-dependence) in the following way:
the results of a CLB, which are read by the successor task, are first Augmented G
written to external memory through a bus interface. The dependent Augmented Cy
task, which has been loaded at the specified position, then perform a ©
read-in of the results. Recall thaframe is the atomic unit that can
be Wri.tten to or r.ead from. EaCh frame qontains 1248 b|ts and the bﬁgure 3(a) A p|acemen[_ (b) TCG. (C) Augmented TCG (augme@gdﬁndcv)‘
width is only 8 bit. Thus, it takes approximatelg48/8 + 24 = 180
clock cycles in each read-in or read-out, where the 24 cycles are the) .
configuration overhead of the bus interface as described on the Xil- 1he first property ensures that a modtjecannot be both left and right
inx FPGA data book [20]. Therefore, the communication overhead ¢ (P€low and above) another modulein a placement. The second prop-
each reconfiguration takés0 x f clock cycles time (we should first erty guarantees that no two modules overlap since each pair of modules have

write the data to the external memory and then read back the datafifactly one of the horizontal or vertical relation. The third property elimi-
data inf columns need to be transferred. ates redundant solutions. Figure 4 illustrates the third property. As shown

in Figure 4 (a) , since there is a path from nedeo noden. in C,,, the edge

(ne, ne) must be inC,,. If we place the edgén., n.) into Cj, as shown in
igure 4 (c), the resulting area of placement must be larger or equal to the
onfiguration of Figure 4 (a). Figure 4 (b) and (d) shows the two placement.

e Reconfiguration overhead: As described in Section 1, Xilinx Virtex
XCV1000 is column-oriented (i.e., all bits in one column should b
updated in each read-in or read-out). Suppose that atastcupies

W; x H; CLBs. We have to reconfigutd; columns of CLBs in each Thth.h'rd pr_lc_)ggty elllmlnates this rsdur;dapt ség)llut;on.. b formi
reconfiguration. As an example, each CLB column in a Virtex FPGA @Véna + a placement can be obtaine@{m”) time by performing

consists of 48 frames, which take248/8) x 48+ 24 = 7512 clock & Well-knownlongest path algorithm [14] on TCG, wherem is the number
cycles to configure pér CLB column. This means we ridéc 7512 of modules. To facilitate the implementation of the longest path algorithm,

clock cycles in total if the addresses in the column are incrementalff}€ WO closure graphs can be augmented as follows. For each closure graph,
updated. e introduce two special nodes with zero wights, the soutcand the sink

nt, and construct an edge from to each node with in-degree equal to zero
In this paper, we treat a task as a three-dimensional box. A placementand also from each node with out-degree equal to zena toFigure 3(c)

P is an assignment ofz;, v, ;) for eachwv;, 1 < i < m, such that no shows the augmented TCG for the TCG shown in Figure 3(b).

two boxes overlap and all precedence constraints are satisfied. The goal of

temporal floorplanning is to optimize a predefined cost metric (defined in the 1 The transitive closure of a directed acyclic gragtis defined as the graph’ =
above)induced by a placement. (V, E"), whereE’ ={(n;, n;): there is a path from node; to noden; in G}.

H Ney 1 relation ofv; andwv;. In Figure 6, since task. (vq) is left to (below)wvy
ne (vy), there exists an edd@ic, ns) ((na,nys)) in Cp (Cy). Similarly, since
H h . taskv, must be executed before task there exists an edde., nq) in Cs.
Nd P q To obtain the coordinate of each task, we apply the longest path algorithm to
. the three graphs in a 3D-subTCG. (See Section 3.1 for the details.)
”20 . , ¢ 3D-subTCG has the following thrdeasibility properties:
na np na np 2 b 1. Cy, C, andC; are acyclic.
G & 2. Each pair of nodes must have exactly one edge eithé¥,inC, or
@ ® Ct.
3 Ne
- . 3. There must exist an edge., n;) if there is a path fromm; to n; in
1 one graph and there exists no closure edge betwgandn; in other
o [e] graphs.
. : The first two properties, which are the same as TCG, guarantee that a
”2° . , ¢ solution is feasible. The third property is to eliminate the redundant solu-
e K . tions. An edge;,n;) is said to be alosure edge if there exists a path
A ‘g a | P from noden; to noden; except the edgen(, n;) itself. For example, the
© @ edges(ny, na), (e, na), (ne, ne), and(ne, ny) in Cp, of Figure 6 are clo-

sure edges. If there exists a path from nedeto noden; in one graph,
Figure 4:(a) A feasible TCG that the edde., n.) liesinC,. (b) The correspond- the closure edgen, ;) should appear in the same graph instead of others
ing placement of Figure 4 (a). (c) A non-feasible TCG that the dagen.) liesin 0 €liminate the redundant solutions as explained in section 3.1. However,
C},. (d) The corresponding placement of Figure 4 (c). before adding a new closure edgeg ,(n;) after each operation, we need to
make sure that there exists no closure edges betwgemdn; in other
graphs. Figure 7 illustrates this scenario. Figure 7 (a) shows a 3D-subTCG
that noden,, andn; have a closure edge ifi,. Figure 7 (b) shows the re-
sulting graph after deleting edge., ns) in C; and adding edgéns, n.) to
Ch. Now there is a path from,, to n,, in C,. However, in order to maintain
the second property, we cannot add the closure edgenf) in Cp since
f (na, np) has already existed i@, .

Let Ly (n;) (L»(n;)) denote the weight of the longest path from to
n; in the augmented’, (C,). Ln(n:) (L. (ns)) can be determined by per-
forming the single source longest path algorithm on the augmeri€d’,)
in O(m?) time, wherem is number of modules. The coordinat¥,(;)
of a moduleb; is given by Cn(n;), Lv(n;)). Further, the coordinates o
all modules are determined in the topological orde€in(C,). Since the

respective width and height of the placement for the given TCG.ate::) s % o 3
andL,(n.), the area of the placement is given by(n:) x L,(n:). Since e - i
each module has a unique coordinate after packing, there exists a unique Zn ;“’
TCG corresponding to any placement. y 1 o
2 n 4 3
32 3D-subTCG Nl e
S G
5. (b)
4 ne 2
g5 5 2 3
5? 3 §na " 2 i ng
o~ nd. %{ " 1 4
e o n Na ne. na. nc.
Helght Ch C\/ Ct

(©)

Figure 5:A placement. . . .
Figure 7:(a) A 3D-subTCG with only one path between nadg andn;, in C,.

(b) A 3D-subTCG contains two paths @, andC,, between node, andn,,.

r‘IC.Z e 3 . .
o4 i . 4 Temporal Floorplanning Algorithm
Our algorithm is based on simulated annealing [12]. Given an initial 3D-
2 V2 |1 VA subTCG, we perturb the 3D-subTCG to obtain a new 3D-subTCG. The cost
ne ng ng " e function® used in our algorithm is given by
“ @ O = aV + BW + 70, @

whereV is the volume of the placemeni is the total wirelengthQ is

the reconfiguration and communication overheads,camt] and~ are user-

specified constants. In this section, we first describe how to identify a reduc-
As shown in the previous section, TCG describes the geometric relatioiisn edge, and then show the perturbation operations in simulated annealing.

among modules based on two grapfis,andC,. For a dynamically recon- Finally, we introduce the feasibility condition that a 3D-subTCG must satisfy

figurable device, there exists temporal ordering among tasks. For two tasksing each perturbation in order to maintain the correct temporal ordering

v; andv;, v; is said to beemporally related to v;, denoted byw; < v;, if v; among tasks.

must be executed befotg starts. To solve the 3D floorplanning/placement) o

problems, we need to consider the temporal and spatial relations at the s#kde Reduction Edge | dentification

time. Therefore, we introduce a new graph to model the temporal relatioR8st we illustrate the concept oéduction edge. An edge ., n;) is called

among tasks, namelytamporal transitive closure graph C;. This new rep- reduction edge if there does not exist another path from nedeo noden;

resentation is called 3D-subTCG, which contains three transitive gréhs, except the edgeng, n;) itself. For example, the edg€ss, ny), (ns, ne)

C, andC%. For each task;, we construct one node; in each graph. If and(n.,n.) in C} of Figure 6 are reduction edges. Recall that 3D-subTCG

v F v; (v;Ln;), we construct one edge, n;) in Cy, (Cy). If v; must be is formed by directed acyclic transitive closure graphs. Given an arbitrary

executed before;, we construct an edge{, n;) in C. noden; in one transitive closure graph, there exists at least one reduction
Figure 5 shows a placement with six tasksb, c, d, e, and f whose edge(n;,n;), wheren; € Fo.:(n;). Here we define the fan-in (fan-out)

widths, heights and durations are (5, 1, 4), (3, 5, 4), (3, 2, 3), (3, 2, 1), (2, & a noden;, denoted byF;, (n;)(Fout(n:)), as the nodes,’s with edges

1), and (2, 2, 3), respectively. Figure 6 shows the 3D-subTCG correspondifig;, n:) ((ni,n;)). For nodesig,n; € Fout(ns), the edge(n;, ny) can-

to the placement of Figure 5. The value associated with a no@g (€, or not be a reduction edgeif, € F,.:(n:). Hence, we remove those nodes

Ct) gives the width (height or duration) of the corresponding task, and the F..:(n;) that are fan-outs of others. The edges betwegand the re-

edge(n;, n;) in Cy (C, or Ct) denotes the horizontal (vertical or temporal)maining nodes inf,,.(n;) are reduction edges. In th@; of Figure 6,

Figure 6:The corresponding 3D-subTCG of Figure 5.

Fout(ne) = {na,ne,ne,ns}. Sinceng, ne, andny belong toFo.:(ns),

edges(n., n.) and(n.,ny) are closure edges while., ny) is a reduction ms

one. The reason for identifying reduction edges is that the operations de- 3 g

fined below are only applied to reduction edges. The time complexity of Nd

finding such a reduction edge@(m?), wherem is the number of modules 3 ¥ o, o4 3

(tasks) [15]. e e ne
G

4.2 Solution Perturbation
We define the following five operations to perturb a 3D-subTCG:
e Rotation: Rotate a task.

ng 2
3 1 2
e Swap: Swap two nodes i, C.,, and C,. , En) , A ns ;
e Reverse: Reverse aeduction edgein Cy,, C.,, or Ct. nd 2{ 2 g M
e Move: Move areduction edge from one graph s, C., or C;) to 3 ésg 2 [v, .,
n np nf na . ne Ne
Ch &

(a) Initial configuration of 3D-subsTCG

another graph. c

e Transpositional Move: Move areduction edge from one graph@s,
C,, or Cy) to another graph, and then transpose the two nodes associ- (b) Rotate ng
ated with the edge. Itis clear later that this operation is different from
performing Move followed by Reverse.

Note that Rotation, Swap, Reverse, and Move are first introduced in [15], s
which can be performed in respecti@(1), O(1),0(m?), and O(m?) nd
times, wherem is the number of modules (tasks). Further, the resulting
graph after performing any of these operations on a 3D-subTCG is still a
3D-subTCG. Rotation and Swap do not change the topology of 3D-subTCG,
while Revere, Move, and Transpositional Move do. Therefore, to maintain
the properties of a 3D-subTCG, we may need to update the resulting graphs (©) Move (n¢ np)
after performing Reverse, Move and Transpositional Move. Further, in or- '

der to guarantee that the precedence constraints are not violated by t @% . . I
: T - . . re 8:Examples of perturbations. (a) The initial 3D-subTAG,(C.,, andC}).
operations, we shall perform feasibility detection, which are described B) The resuilting 3D-subTCG after rotating the taskshown in(a). (c) The resulting

section 4.3. We first detail the operations in the following. 3D-subTCG after moving the reduction edge., n,) from theC), of (b) to C;.

421 Rotation

To rotate aask v;, we only need to exchange the weights of the correspond-

ing nodes; in Cy,, C,,, andC;. Figure 8 (b) shows the result after rotatingIn one case, Transpositional Move switches the geometric relation of the
the module a in Figure 8. two tasksv; and v, between a horizontal relation and a vertical one and
422 Move changes the ordering of the two tasksandv; in their geometric relation.

. . . For two tasksy; andv;, v; F v; (v; L v;) if there exists a reduction edge
The Move operation movesraduction edge(n;, n;) in one graph to one of & vp, vi b vy (s L vg) 9

. : i i» nj) in Cy (C,); after transpositionally moving the edge;, n;) to C
the others in a 3D-subTCG. Move could switch the relations of the two tas lh)nil\)/e haCe(thvg new geomgtric remigﬁ] 1w %,. = U,)geﬁn%q)e othfer
. . . ’ (3 7 i)
i 223 vj betlxveerz a Eor'z)oi?ttﬁgglzt)'(?sqsa;‘?egl}’(iirgﬁael dogr]eek F?rirgwco taskSise, Transpositional Move changes the temporal relation of the two tasks
Vi Vj, Vi v; (Vs Vj ik M5 h

. . v; andwv;. For two tasksv; andv;, v; < v, if there exists a reduction
(Cy); after moving the edgén., n;) to C,, (C), we have the new geometric oqqe . " n.) in C.: after transpositionally moving the edae. (1.) to
relationv; L v; (v; F v;). Move could also change the temporal relatio ge i, my) in P y 9 ge:(n;) to O

; - Cy), we change the temporal relation into the new geometric relation
of the two tasks; andv;. For two tasks; andv;, v; < vj if there exists) g b 9 4

. . : . vi (v; L v;). If there exists a reduction edge;(n;) in C, (Cy); after
areduction edger;, n;) in Ct; after moving the edgen, n;) t0 Cr, (C), yrangpositionally moving the edde., n;) to Ct, we have the new temporal
we change the temporal relation into the new geometric relatior v;

) . . ; ; relationv; < v;.
(vi L vy). Ifthere exists a reduction edgei(;) in C, (C.); after moving To transpositionally move a reduction edge, (n,) from one grapt to
the edgg(n;, n;) to Cy, we have the new temporal relation< v;.

: another graplt:’, we first delete the edge{, n,) from G' and add 45, n;)

o To r?ovtedalr?dltﬁtlor(lj ed?@(')?ﬂ') frc&m OS?hgrangdr(to an)otthg/ glr:aph to . Similar to the Move operation, for each nodg € Fj,,(n;) U{n;}
, we first delete the edge{, n;) from G and then addr(;, n;) to G’. For Foo (1 . hall check whether th ;

each nodey, € Fi,(n;) U{n;} éndm € Fout(nj)U{n,}, wé shall check andn; € Four(ni) U {n:}, we shall check whether the edge, ru) exists

NP) in G’. If G’ contains the edge, we do nothing; otherwise, we need to add the
whether the edgéns, n;) exists inG’. If G’ contains the edge, we do noth- edge toG’ and delete the (?orresponding e(%%?m) or (ny,nx) in G or
ing; otherwise, we need to add the edgeoand delete the corresponding G"| if any, to maintain the properties of the 3D-subTCG. Figure 9 (c) shows

edge(ny, ni) Or (ni, nk) in G or G”, if any, to maintain the properties of yhe'resyit of transpositionally moving the e ns) from C;. of Figure 9
the 3D-subTCG. Figure 8 (c) shows the result of moving the edger(,) (b) to C,,. Note Wepdelete thg edg(aagne) indg‘?’anla) add it téCv. 9
in C}, of Figure 8 (b) toC;. ’

423 Swap 4.3 Feasibility Detection

To swap nodes,; andn; of two tasksv; andv;, we only need to exchange To maintain the temporal ordering among tasks, the 3D-subTCG must guar-
the nodes; andn; in Cy, C,, andC;. Figure 9 (a) shows the result of antee that all precedence constraints are satisfied. Among the five operations

swapping nodes, andny shown in Figure 8 (c). mentioned above, Move, Swap, Reverse, and Transpositional Move could
violate the constraints. We now show how to detect a violation during per-

424 Reverse _ o) _ turbation.

The Reverse operation reverses the directionreflaction edge (., n;) in When we move an edgen{,n;) or reverse/transpositionally move

one graph. For two modules andv;, v; - v; (v; L v;) if there exists (5, p,), the precedence constraint will be violatedife Fy,(n;) U {n},
a reduction edger(;, n;) in C, (Cy); after reversing the eddew;, n;), we " ¢ F,,,(n;) U {n,}, and(n;, nx) € C: since(ns,nx) € D. As men-
have the new geometric relation + v; (v; L vi). Similarly, v; < v; if tioned in Section 2] denotes the precedence constraints. When we swap

there exists a reduction edge;(n;) in C;; after reversing the edde., 7;), two nodesn; andn;, three scenarios could happen:
we have the new temporal relation < v;.

To reverse a reduction edge,(n;) in a graph, we first delete the 1. there exists a precedence constraint betweemdsn;,
edge from the graph, and then add the edgg ;) to the same graph. 2. neither ofn; andn; has a precedence constraint, or
Similar to the Move operation, for each nodg € I, (nj) U {n,;} and 3. eithern; or n; has precedence constraint.
?ﬁkengmg((gt)s Lijn{g]ig |nne\t/t/1 ZP:[;I;I’] grﬁptfll,evgerasglﬁ "CSES;J;;N tf;:zthee(;gtgevigge In the first case, it is clear that we cannot swap the two nodes. However,
nothing; otherwise, we need to add the edge to the graph and delete theiﬁ)?g;ﬁgitrl of \T/l\}itﬁgﬂ:lljbsh:?)fa grneecrg(ljitlen(ﬁecggjgaégts’uvr\;eeﬁﬁgtsr:;?j%gds
responding edgén, n;) or (n;,nx) in the other transitive closure graphs, "/ Y. g Y,

. oS :] : ecedence constraints to detail the third case. If nodbas precedence
if any, fo maintain the properties of the 3D-subTCG. Figure 9 {(b) shows t nstraints, we can apply the same approach to check the feasibility. In the

result after reversing the edgec(n.) in C', of Figure 9 (a). first condition,n; has a precedence-constrained edger;), we can swap
4.25 Transpositional Move n; andn; without any violation ifni, € F,.:(n;) in C;. On the other hand,
The Transpositional Move operation removesaguction edge(n;, n;) from if n; has a precedence-constrained edgg ;) andny € Fin(n;) in Ct,
one graph, and add an ed@e;, n;) to one of the others in a 3D-subTCG. we can also swap; andn,;.

3
5 n 3 0 ne L ne 3
. 4 b 2 1
Na . 5 .
* 2 Np Ng n
3 3 2 1 / Nd 3 3 2
:
ne Nd N Ne ¢ ne Ne Vi g 3 4 4
ne Na a nc Na Np
“h G Ch Y G
(@) swap (ny ng) (@) Swap (ng ne)
22
2 3 2 Ma W 2
ny 2 m 4 B ne nt 3
. o Np 2
B Ne b 5 Ne :
n, 1 n
% 3 2 1 g ne ¢
2
Nc nd *nt Ne : g [: 3 4 4
ne Na Nc Nd Nt ny L Ne « o
G, G a e na omp
Ch =Y G

b) Reverse (ng ny)
e a (b) Reverse the edgéng ne)in Gy,

2 M2 2ne
HE . A n n 3 Figure 11: (a) The resulting 3D-subTCG after swapping the nodgsand n.
5 e : shown in Figure 9(c). (b) The resulting 3D-subTCG after reversing the reduction edge
e i / nd (ng,ne) intheCy, shown in Figure 9(c).
3 3 2 1,
ng>~d “ry w1 ne n3 n‘.1 n;.‘
Sh S G Based on simulated annealing [12], we implemented the temporal floor-
(¢) Transpositional Move the edgi@e Mp) from G to G, planning algorithm in the C++ programming language on a 433 MHz SUN

. Ultra-60 workstation with 1 GB memory. We compared 3D-subTCG with
Figure 9: Examples of perturbations (continued from Figure 8). (a) The resulSequence Triplet (ST). ST is extended from the well-known Sequence Pair

ing 3D-subTCG after swapping the nodeg andn, shown in Figure 8(c). (b) The (SP) [16], which is very popular for handling floorplanning/placement in

resulting 3D-subTCG after reversing the reduction e@igg n,) in the C}, shown ; : ;
in (a). (c) The resulting 3D-subTCG after transpositional moving the reduction ed@é’th industry and academfaA sequence triplet consists of three module

(ne,np) from theCy of (b) 10 Ch. equencesI,, I'y, I'.). The relation between two modules is defined as
follows: (1) if the sequence of two modules b is the same (from left to
right) in (T, T.), i.e., €z, Iy, ') = (.a..b..,, ..a..b..), it means that
modulea is on theZ™ direction of module; (2) if the sequence of the two
modulesa, b is not the same inl{,,I".), the s, T'y, I';) is identical to
Sequence Paifl’;,I'y). For example, the ST representation of Figure 5 is
(debfea, cbeafd, dafebc). Based on the same simulated annealing scheme
as that for 3D-subTCG, ST employs the following three perturbation oper-
ations: (1) M1: randomly swap two modules in one of the, Iy, andT".
sequences; (2) M2: randomly swap two module§ jp, I'y, andI', simul-
taneously; (3) M3: randomly choose one module and change its height with
width, width with length, or length with height (i.e., 3D rotation). We imple-
mented the ST algorithm with the same simulated annealing engine as that of
3D-subTCG with the limiting that rotation can only change width and height
E) ; (i.e., duration remains the same), and added precedence constraints, recon-
Height g . figuration overheads and communication overheads for comparative studies.
R To verify our algorithm, we first tested 3D-subTCG on five synthetic cir-
cuits that can be packed without deadspace. Table 1 shows the results. Note
Figure 10:The resulting placement of 3D-subTCG in Figure 9(c). that the volume of a placement is the minimum bounding box enclosing the
placement. We can see that 3D-subTCG obtains the optimal placements for
the first three test cases and near optimal solutions for the last two larger

. . . circuits, all in reasonable time. The results show that our approach is very
Figure 11(a) shows the resulting,, C,, andC; after swapping the nodes ef(f]ective for cost optimization.

nq andn. in Figure 9(c). Assume that there exists a precedence-constrainé
edge f.., n¢). The precedence constraint will be violated if we swap the two
nodesng andn. sinceny & Fou:(nq) in the Cy. Figure 11(b) showg’,,

Duration
;

C,, andC; after reversing the edge.q, n.) in the C, in Figure 9(c). Since | Circurt || e s H fa%fs || Eor || pms | # o precedence
{ne} N Fin(ne)={ne, ne} and{nq} N Fout(nq)={nq, ns} in Cy, we shall ID-apte 5 73 57 ~Ta 3
check(n.,ny) for the precedence constraint. If there exists a precedence- 3D-xerox 10 107 || 203 || 696 3
constrained edgex, 1), the precedence constraint will be violated. e 3 p A A = 3
By doing the feasibility detection during the Move, Reverse, Transposi- 3D-ami49 49 24 || 408 || 931 11
tional Move, or Swap operations, we can guarantee that the resulting 3D-
subTCG still satisfies all the precedence constraints. We thus have the fol- Table 3:The five 3D-MCNC benchmark circuits.
lowing theorem.
Theorem 1 The precedence constraints of a 3D-TCG are not violated by the To compare 3D-subTCG with ST, we performed two experiments. In
Move, Swap, Reverse, or Transpositional Move operation with the feasibility ~ €aCh experiment, we sat= 3~ = 1. In the first experiment, our objective
detection. is to minimize the volume with reconfiguration and communication over-

heads. For this experiment, we adopted the benchmark circuits used in [8]
. and added the reconfiguration and communication overheads. As shown in
5 Experimental Results Table 2, the 3D-subTCG based method outperforms the ST-based one by a
large margin. For example, 3D-subTCG achieved an average deadspace of
only 19.38% while ST resulted in an average deadspace 32.01%.
The second experiment is intended to test the 3D placement with

| Cireutt H s || Sum of || Volume H Dee&?pacen (Soe) || the considerations of precedence constraints, wirelength, and reconfigura-
Circut L || 10 512 512 0.0 83 tion/communication overheads. For this experiment, we used the MCNC
g!fcu!gg %8 fgooo fggo 8-8 é'? benchmarks. Since the MCNC benchmarks do not have execution times and
Circuit4 || 20 3840 || 2032 a7 s precedence constraints, we assigned their execution times and precedence
Circuit5 || 30 4096 4608 111 127.8 constraints by ourselves. The new benchmark suite is called the 3D-MCNC

. ot 2
Table 1:Results of volume optimation (volumersm? x clock cycles). 2The work [16] has been selected as one of the 40 best papers published at ICCAD

during the past 20 years [13].

Circuit (#oftasks) | Sum of Volume 3D-subTCG
volume Dead Space Time volume Dead Space[Time
(mm? x clockcycles) (%) (sec.) | (mm? x colckcycles) (%) (sec.)
beasleyl 10 6218 8710 7286 7.7 7504 17.1 85
beasley? 17 11497 14664 215 45.7 12402 7.2 285
beasley3 2T 10362 16016 35.3 441 12640 18.0 224
beasley4 7 10205 13800 26.0 3.0 13064 718 2.0
beasleys 14 16734 22750 264 18.2 18912 115 16.0
beasley6 15 11040 14994 26.3 279 13200 16.3 2438
beasley7) 17168 24570 30.1 38 20574 16.5 23
beasley8 13 83044 132275 37.2 15.4 98280 155 19.4
beasley9 18 133204 174496 736 30.6 167751 205 172
beasleyI0 13 293746 660480 250 13.0 575685 142 10.8
beasleyll 15 383391 786381 2438 175 438702 126 9.8
beasley12 22 646158 922080 29.9 100.0 823816 215 585
okpl 50 1.24 x 10 2.16 x 10 42.6 1607.2 1.73 x 10 28.4 387.3
okp2 30 8.54 x 107 1.28 x 10 33.2 285.3 1.10 x 10 22.3 73.8
okp3 30 1.23 x 10 1.85 x 10 33.1 280.7 1.60 x 10 23.0 70.6
okp4 61 2.38 x 10 4.17 x 10 42.8 791.3 3.28 x 10 27.3 501.9
okp5 97 1.89 x 10 4.48 x 10 57.7 607.8 2.95 x 10 35.8 565.9
Average 32.01 19.38
Table 2: Results for volume optimization with reconfiguration overhead and communication overhead.
Circuit Total 3D-subTCG
volume Volume Wirelength Dead space fime Volume Wirelength Dead space fime
(mm? x clockcycles) ‘ (mm) H (%) H (sec.) (mm? x clockcycles) (mm) H (%) H (sec.)
3D-apte || 9.88 x 107 1.18 x 10 495.0 16.2 7.7 1.05 x 10°% 335,3 5.9 3.9
3D-xerox || 4.05 x 107 5.27 x 107 613.2 23.1 19.5 4.42 x 107 602.0 8.4 8.9
3D-hp 1.29 x 107 2.06 x 107 387.3 37.2 20.6 1.50 x 107 158.3 13.7 11.2
3D-ami33 || 2.32 x 10° 4.18 x 10° 84.7 445 446.4 3.08 x 10° 777 24.7 128.1
3D-ami49 || 1.32 x 108 2.93 x 108 1040.8 54.9 1066.7 1.68 x 108 807.1 21.6 680.2
Average 35.18 312.18 14.86 166.46

Table 4:Results of volume and wirelength optimization for the five 3D-MCNC benchmark circuits.

benchmark. Table 3 lists the statistics of the five 3D-MCNC benchmark& cknowledgements

For this experiment, we simultaneously optimized volume and wirelengtfhis work was supported in part by the National Science Council of Taiwan

with precedence constraints, and reconfiguration/communication overheagsder Grant # NSC 92-2213-E-002-014 and NSC 92-215-E-002-043. We
Table 4 shows the results. As shown in Table 4, 3D-subTCG achieved betdso thank anonymous reviewers for their helpful comments.

volume utilization (15% deadspace v.s. 35% deadspace) and shorter wige-
length compared to ST. 3D-subTCG also needed less CPU time than I
Figure 12 shows the resulting placement of 3D-xerox.]
Although it is hard to quantify, a key insight to the different performance 2]
between 3D-subTCG and Sequence Triplet (ST) lies in the effects of their[
perturbations: swapping two modules in an ST may lead to a dramatic®
change from the original placement while the change for the 3D-subTCG
perturbation is smaller, which makes simulated annealing easier to convergg,
to an optimal solution. (Here is an analogy: Like the gradient search for the
optimization of nonlinear programming, the step size plays an important role
in determining whether a search scheme can converge to the global optiméil
solution—a huge step size may fail to converge to an optimal solution.)

(6]
(7]
8]
&)

[10]

[11]

[12]

(23]

[14]

(18]

Figure 12:The result of 3D-xerox with optimizing volume and wirelength simulta-
neous.

[16]
6 Conclusion

We have presented the 3D-subTCG representation to handle the tempo[r1a7ﬂ
floorplanning/placement problem for dynamically reconfigurable FPGAsyg
We have explored the feasibility conditions for the temporal relations amor;g
tasks/modules. Our algorithm can guarantee a feasible placement in e cﬂ
perturbation. Experimental results have shown that our method is very eVl
fective and efficient for temporal floorplanning/placement.

erences

T. Cormen, C. Leiserson, and R. Rivebtfroduction to Algorithms, McGraw-Hill Book
Company, 1990.

Atmel, “AT6000 FPGA Configuration Guide,” Atmel, Inc.

] K. Bazargan, R. Kastner, and M. Sarrafzadeh, “Fast Template Placement for Reconfig-

urable Computing SystemdEEE Design & Test of Computers, vol.17, no. 1, pp. 68-83,
Mar. 2000.

K. Bazargan and M. Sarrafzadeh, "Fast Online Placement for Reconfigurable Computing
Systems,”|IEEE Symposium on FPGAs for Custom Computing Machines, pp. 300-302,
1999.

K. Bazargan, R. Kastner and M. Sarrafzadeh, "3-D Floorplanning: Simulated Annealing
and Greedy Placement Methods for Reconfigurable Computing Systesesigh Automa-
tion for Embedded Systems - RSP'99 Special Issue, Apr. 2000.

J. E. Beasley, “An Exact Two-Dimensional Non-Guillotine Cutting Stock Tree Search Pro-
cedure,"Operations Research, vol.33, no. 1, pp. 49-64, 1985.

S. P. Fekete, E. &hler, and J. Teich, “Optimal FPGA Module Placement with Temporal
Precedence Constraint®foc. DATE, pp. 658-665, Mar. 2001.

S. P. Fekete, and J. Schepers, “On more-dimensional packing Ill: Exact AlgoritAR,”
Technical Report 97-290 1997.

M. Gokhale, B. Holmes, A. Kopster, D. Kunze, D. Lopresti, S. Lucas, R. Minnich, and

P. Olsen, “Splash: A Reconfigurable Linear Logic Arralyjternational Conference on
Parallel Processing, pp. 526-532, 1990.

S. Hauck, “The Roles of FPGAs in Reprogrammable SysteRrsg. of the |EEE, vol.86,
no. 4, pp. 615-639, Apr. 1998.

S. Hauck, Z. Li, and E.J. Schwabe, “Configuration Compression for the Xilinx XC6200
FPGA,” Proc. of the IEEE Symposium on FPGAs for Custom Computing Machines, pp.
138-146, 1998.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by Simulated Annealing,”
Science, vol. 220, no. 4598, pp.671-680, May, 1983.

A. Kuehlmann, Ed.The Best of ICCAD—20 Years of Excellence in Computer-Aided De-
sign, Kluwer Academic Pub., 2003.

E. Lawler,Combinatorial Optimization: Networks and Matroids, Holt, Rinehart, and Win-
ston, 1976.

J.-M. Lin and Y.-W Chang, “TCG: A Transitive Closure Graph-Based Representation for
Non-Slicing Floorplans,Proc. DAC, pp. 764—769, June 2001.

H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani, “Rectangle-Packing Based Module
Placement,Proc. ICCAD, pp. 472-479, 1995.

J. Teich, S. P. Fekete, and J. Schepers, “Compile-Time Optimization of Dynamic Hardware
Reconfigurations,Proc PDPTA, pp. 1097-1103, June 1999.

S. Trimberger, “A Time-Multiplexed FPGAProc. FCCM’97.
Xilinx, “XC6200 Field Programmable Gate Arrays Data Sheet,” Xilinx, Inc., Oct. 1996.

Xilinx, “XAPP151 Virtex Series Configuration Architecture User Guide v1.5,” Xilinx, Inc.,
Sep. 2000.

