
Integrating Buffer Planning with Floorplanning for Simultaneous
Multi-Objective Optimization∗

Yi-Hui Cheng1, and Yao-Wen Chang2

Synopsys Inc., Taipei, Taiwan1

Graduate Institute of Electronics Engineering and Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan2

Abstract
As the process technology advances into the deep submicron era, interconnect plays a
dominant role in determining circuit performance and signal integrity. Buffer insertion
is one of the most effective and popular techniques to reduce interconnect delay and de-
couple coupling effects. It is traditionally applied to post-layout optimization. However,
It is obviously infeasible to insert hundreds of thousands buffers during the post-layout
stage when most routing regions are occupied. Therefore, it is desirable to incorporate
buffer planning into floorplanning to ensure timing closure and design convergence. In
this paper, we derive the formulae of feasible regions, and integrate buffer planning
with floorplanning to optimize area, timing, noise, and congestion (routability) simulta-
neously. In particular, we treat each buffer block as a soft module and apply Lagrangian
relaxation to optimize the floorplan area. Experimental results show that our method
obtains an average success rate of 94.9% (86.4%) of nets meeting timing constraint
alone (both timing and noise constraints) and consumes an average extra area of only
0.1% (0.2%) over the given floorplan.

1 Introduction
As the process technology advances into the deep submicron era, interconnect plays a
dominant role in determining circuit performance and signal integrity. Buffer insertion
is one of the most effective and popular techniques to reduce interconnect delay and
decouple coupling effects. It is shown that the delay of a signal wire is quadratically
proportional to the wire length, and inserting buffers which break a wire into shorter
wire segments makes the delay grow only linearly. A buffer can also be used to decou-
ple the coupling capacitance (and thus improve signal integrity and delay) since it is a
restoring device.

Traditionally, buffer insertion is performed during the post-layout or routing stage.
As the SIA technology roadmap predicts, the number of buffers inserted for perfor-
mance optimization will grow dramatically [14]. It is obviously infeasible to insert
hundred of thousands buffers during the post-layout stage when most routing region is
occupied by routing wires. Therefore, it is desirable to incorporate buffer planning into
floorplanning to ensure timing closure and design convergence.

Researchers have proposed a few post-layout buffer-insertion algorithms in the lit-
erature. Alpert and Devgan [1] presented formulae for computing the optimal num-
ber and locations of buffers for timing optimization. Cong, Kong, and Pan in [5, 6]
presented pioneering works on buffer block planning for interconnect-driven floorplan-
ning. Given a slicing floorplan, they computed the feasible regions for inserting buffers
to meet timing constraints, clustered buffers into blocks, and placed these buffer blocks
into the dead spaces and channels in the slicing floorplan for timing optimization. The
work by Sarkar Sundararaman, and Koh in [13] additionally considered the trade-off
between routing congestion and circuit area. In [15], Tang and Wong applied a network-
flow based algorithm to compute the maximum number of buffers that can be inserted
into a feasible region. Dragan [9] presented the problem of buffer assignments for a
given buffer block plan. More recently, Alpert et. al. [4] used a tile graph to distribute
buffer sites throughout the layout for early buffer and wire resource allocation.

All the previous works on buffer planning do not consider crosstalk noise. Further,
they work only after floorplanning when the related positions of modules have been
fixed. In such a situation, the location and size of space for buffer insertion are also
fixed. Since the deadspaces for buffer blocks are typically treated as unwanted cost dur-
ing floorplanning, they are often avoided or minimized. As a result, the size and location
of buffer blocks may not be suitable for later buffer insertion. Therefore, it is of sig-
nificant importance to integrate buffer planning into floorplanning to fully utilize useful
deadspaces for performance optimization. A previous work along this direction is due
to Jiang et. al. [11] which planned buffers during floorplanning for timing optimization.

As mentioned earlier, due to the increasing design complexity, it may not be fea-
sible to insert a large number of buffers for noise avoidance during the routing and
post-layout stages. Therefore, there is a need to consider buffer planning earlier at the
floorplanning stage when there is more flexibility to allocate silicon space for buffers to
ensure timing closure and design convergence.

The rest of the paper is organized as follows. Section 2 gives some notations and
models. Section 3 derives formulae for computing the feasible regions for inserting
buffers. Section 4 presents our unified buffer planning and floorplanning algorithm.
Section 5 shows the experimental results.

2 Preliminaries
In this section, we introduce the delay and the noise models applied in our work. Then,
we define the problem of unified buffer planning and floorplanning with simultaneous
delay, noise, area, and congestion consideration (UBF for short).

2.1 Delay Model
We model a buffer as a switch-level RC circuit and a wire segment as a π-model RC
circuit. See Figure 1 for an illustration.

∗This work was partially supported by the National Science Council of Taiwan under
Grant No. NSC 91-2215-E-002-038.

dLength

Wire

rb

bc

drw

Buffer
rb

Tin

2
wc d wc d

2

Figure 1: rw and cw are the sheet resistance and unit-length capacitance of a wire
segment. cb, rb and Tin are the input capacitance, output resistance and intrinsic delay
of a buffer.

As an example, for a two-pin net N of length d with driver resistance rd and a load
capacitance cL. The delay of N is given as

D = rd(dcw + cL) + drw(
dcw

2
+ cL)

= rd(dcw + cL) +
rwcwd2

2
+ drwcL. (1)

Based on Equation (1) and the Elmore delay model, we can compute the delay of
the net N with k buffers inserted as follows:

D = rd(d0cw + cb) +
rwcwd2

0

2
+ d0rwcb

+

k−1∑
i=1

(Tin + rb(dicw + cb) +
rwcwd2

i

2
+ dirwcb)

+ Tin + rb(dkcw + cL) +
rwcwd2

k

2
+ dkrwcL, (2)

where di denotes the distance between buffer i and buffer i + 1, as shown in Figure 2.

Source Sink(a)

(b)

d10d kd−kd 1

Figure 2: (a) A net with k buffers inserted. Here, di represents the distance between
two adjacent buffers. (b) The corresponding RC model for buffers and wire segments.

2.2 Noise Model
Coupling noise between adjacent nets could lead to unexpected circuit behavior. Fig-
ure 3 shows the effect of coupling noise between two adjacent nets. The coupling ca-
pacitance (cc) is proportional to the coupling length and inversely proportional to the
distance between the aggressor and the victim nets. If the peak noise voltage (χ) is
greater than the threshold voltage, it may cause the circuit to malfunction. Buffer inser-
tion can be used to reduce noise effect since the buffer is a restoring logic gate that can
prevent noise from being propagated from the input to the output of a buffer. In addi-
tion, inserting a buffer on a victim net will divide the net into two wire segments. As the
coupling length is cut short, the coupling noise received by the victim net is reduced.

Victim net

Aggressor net

cL

0
1

Iccc
cL

Figure 3: The noise model results from the coupling capacitance and crosstalk-
induced current.

We adopt the noise model presented by Devgan [8]. The noise metric proposed
in [8] has been shown to be the upper bound of noise for an RC circuit and specially
useful for physical design based noise avoidance. Alpert, et. al. in [2] applied this
noise metric to buffer insertion, and their results show that the metric is accurate and
computationally efficient. As shown in [2], the coupling capacitance from an aggressor
net to a victim net can be modeled as some fraction of the capacitance of the victim net.
Consider a wire e = (u, v) with t adjacent aggressor wire segments, where u and v
are two nodes in a buffered tree. Let Ce and Re denote the lumped capacitance and
resistance for wire e. Its total induced noise current Ie can be computed by

Ie = Ce

t∑
i=1

λiµi,

where λi is the ratio of coupling capacitance from an aggressor net i to the capacitance
of the wire segment e, and µi is the slope (i.e., power supply voltage over input rise
time) of the signal of an aggressor net i. Since the exact information about aggressor
nets is not available before routing, we assume that µi is equal to µ for all aggressor
nets i’s. Thus, we have

Ie = CeΛµ,

where Λ =
∑t

i=1
λi, and the amount of the additional noise of wire segment e is

χ(e) = Re

(
Ie

2
+ IT (v)

)
, (3)

where IT (v) represents the total downstream current seen at node v.

2.3 Problem Formulation
The problem of unified buffer planning and floorplanning with simultaneous delay,
noise, area, and congestion consideration (UBF for short) can be formally defined as
follows: Given a set of modules and netlist, our objective is to find a feasible floorplan
and the buffer plan to meet both timing and noise constraints and optimize area and
wiring congestion at the same time.

3 Buffer Planning
First, we introduce the concept of buffer blocks and then show our theoretical results on
the feasible region for each buffer under both noise and delay constraints.

3.1 Buffer Block
To place a buffer on the circuit, we use the concept of buffer block mentioned in [6].
In the following, we first define the buffer block. Then, we present a methodology to
retrieve all existing buffer blocks efficiently.

3.1.1 Definition
Because buffers are made of transistors, the areas occupied by existing modules are
considered obstacles during buffer allocation. The empty area in a floorplan is called
deadspace which can be used to place buffers. In addition to deadspace, there are chan-
nels between adjacent modules. Using channels to place buffers must pay additional
penalty since the channel needs to be expanded for inserting buffers, and thus the entire
circuit area will increase. Both deadspace and channels are proper locations for buffer
insertion. We use the term buffer blocks to represent those deadspace and channels that
are occupied by buffers.

3.1.2 L-shaped Contour

c

c

a

b

e

x

y b

f
h

i
j

k

l

m
n

o

p q r
d

a d eb

d

e

a

c

ce

e

l
dk i

h

j
j

a

o

p q

m

n

b
f

a

b

r

i

d

HG

VGHG

VG(a)

(b)

c

L−Shape Contour

L−Shape Contour

a

b c

e

y

x

d

Figure 4: An example of buffer block retrieval with the L-shaped contour. (a) Initial
contour in thick lines, and its corresponding GH and GV . {a, b, c, d, e} represent hard
modules. (b) The L-shaped contour, GH and GV after examining the 5 modules. {i, j}
are deadspace, {n, h, k, f, l} are vertical channels, and {m, o, p, q, r} are horizontal
channels.

We develop a data structure called L-shaped contour, which not only can retrieve
all information of deadspace and channels precisely, but also can rebuild the horizontal
(vertical) constraint graph GH (GV) for both modules and buffer blocks at the same
time. (GH and GV are used to model the relative positions of only modules in previous
works.). Nevertheless, we need the constraint information of buffer blocks to refine the
circuit area at the final stage. The L-shaped contour consists of a sequence of L-shaped
segments. Initially the contour is just a big L representing the bottom-left boundary of
the circuit, as shown in Figure 4(a). Then we examine all modules one by one according
to the coordinates of their bottom-left corner. By examining each module, we can catch
all the deadspaces on the left side of the module and locate all the channels along the
boundaries of the module. See Figure 4(b) for an illustration. For example, the sorted
order of those modules in the figure is < a, b, c, d, e >. While we are examining the
last module e, we can retrieve the deadspace {i, j}, the vertical channel {l}, and the
horizontal channel {m, r}. Meanwhile, the corresponding constraint graphs Gh and
Gv are also updated during processing each module.

3.2 Feasible Region
Suppose that a net has met both the noise and delay constraints with k buffers inserted.
Let bi be the position of the i-th buffer (1 ≤ i ≤ k) on the net. With the buffer
allocated in the Manhattan distance from the source of the net, we need to find how far
the buffer can move away without violating any constraints while other buffers remain
their positions. We call this range as feasible region of the buffer in which the buffer
can move without violating any constraints.

kb0 ib

d i

bi−1 b i bi+1

i−1d
i

Source Sink

Figure 5: An illustration of moving the i-th buffer away by the distance ∆i.

Because the position of a buffer can affect net delay significantly, we first use the
following theorem to capture the effect of moving a buffer away from its original posi-
tion on delay. Let the delay of a net with k buffers inserted be D.

Theorem 1 If the i-th buffer moves away from its original position by the distance ∆i.
The delay D′ is given by

D′ = D + rwcw∆2
i + rwcw(di−1 − di)∆i.

The new delay also needs to meet the delay constraint. Thus we have the following
corollary.

Corollary 1.1 If the i-th buffer moves away from its original position by the distance
∆i. In order to meet the delay constraint Treq , ∆i must satisfy the following require-
ments:

−
√

4Treq − 4D + ∆2
d

4rwcw
− ∆d

2
≤ ∆i

and √
4Treq − 4D + ∆2

d

4rwcw
− ∆d

2
≥ ∆i,

where
∆d = di−1 − di.

With the above formulae, we can determine the feasible region of a buffer and
update the delay increamentally if any buffer is moved away from its original position.
To satisfy the delay constraints using buffer insertion, we apply those formulae proposed
in [1] to decide how many buffers are needed and where the buffers are inserted. Let
kopt denote the optimal number of buffers needed to be inserted, x denote the range
between the source and the first buffer, y denote the range between two adjacent buffers,
and z denote the range between the last buffer and the sink. The optimal delay Dopt
can be computed by the following equation:

Dopt = rd(cb + cwx) +
rwcwx2

2
+ rwcbx

+

kopt−1∑
i=1

(
Tin + rb(cb + cwy) +

rwcwy2

2
+ rwcby

)

+Tin + rb(cb + cwz) +
rwcwz2

2
+ rwcbz.

As all buffers are placed at equal distance y, we can simplify Corollary 1.1 as
follows:

−
√

Treq − D

rwcw
≤ ∆i ≤

√
Treq − D

rwcw
.

To compute the feasible region under delay constraints, we make the assumption that
the feasible regions of buffers are independent, as [13] did.

If the peak noise voltage at the receiver is greater than the threshold voltage, it may
cause the circuit to malfunction. We define the noise margin to keep the circuit from
noise disturbance. In [2], Alpert et. al. used buffers to reduce the effect of noise due
to wire coupling after the routing topology is decided. From their work, we know that
a buffered net for delay optimization may not satisfy the noise constraint. Consider a
wire e = (u, v), where u and v are two nodes in a buffered tree. Let the length of the
wire segment e be d. The maximum distance from v required for a buffer to satisfy the
noise constraint is define as follows:

le ≤ − rb

rw
− IT (v)

iw
+

√
(

rb

rw
)2 + (

IT (v)

iw
)2 +

2Mv

iwrw
,

where iw = Ie/d denotes the current per unit length on net, and Mv is the noise margin
at the downsteam point v of the wire segment.

Let the endpoints of the wire segment e be the i-th buffer and the i + 1-th buffer.
We can simplify the above inequality as follows:

li ≤ − rb

rw
+

√
(

rb

rw
)2 +

2Mi+1

iwrw
,

where Mi+1 denotes the tolerable noise margin of the downstream i+1-th buffer. The
value of li is calculated from the position of the downstream buffer.

To handle delay and noise constraints simultaneously, we integrate all above for-
mulae to find the feasible region for each buffer under noise and delay constraints. We
present the integrated formula in the following theorem.

Theorem 2 Given a buffered net with k buffers inserted, the feasible region Φi in which
the i-th buffer can move from its original position without violating any timing and noise
constraints is given by

max(bi − ∆i, bi+1 + li) ≤ Φi ≤ min(bi + ∆i, bi+1).

Using Theorem 2, we can easily find the feasible region of each buffer to meet
both delay and noise constraints. So far, we consider only the 1-D feasible distance
from the source of a net for each feasible region and do not consider existing obstacles
on the circuit. To obtain the 2-D feasible region, the feasible region Φ is evaluated as
the Manhattan distance and the 2-D feasible region must be within the intersection of
routing regions. See Figure 6 for an illustration.

Source
i− Bufferth

2−D Feasible Region

Routing Region

Sink

Figure 6: A 2-D feasible region for the i-th buffer

4 Unified Buffer Planning and Floorplan-
ning

Figure 7 gives a main flow of our algorithm. First, we incorporate buffer insertion into
simulated annealing based floorplanning. During simulated annealing, we apply buffer
insertion to satisfy both delay and noise constraints. After expanding the circuit for
the space of inserted buffers, we apply Lagrangian relaxation to refine the area of the
floorplan.

Yes

No

Input BenchMark

Contruct Seguence Pair Representation

Find Longest Path

Insert Buffer

Reshape Buffer Block

Finish

Perturb

Construct G and G H V

Converge ?

Figure 7: The flow of the unified buffer planning and floorplanning.

4.1 Simulated Annealing
Our unified buffer planning and floorplanning is based on simulated annealing and uses
the sequence pair representation [12]. On the other hand, we use simulated annealing
to search in the solution space for the optimal solution by perturbing the current solu-
tion. Perturbing a solution means that we can modify the sequence by exchanging two
modules in either sequence or rotating some modules. The cost function of simulated
annealing is defined as follows:

Cost = αRfail + βRarea + γRcongestion.

The Rfail denotes the percentage of nets that fails to meet either the delay or noise
constraint while the Rarea evaluates the empty space and the expanded area due to
buffer insertion.

Since each net must go through the buffer blocks that contain the buffers of the net,
the locations of buffers will govern the route of each net. To handle the routing conges-
tion earlier at the floorplanning stage, we introduce the third parameter Rcongestion

to prevent the congestion at the routing stage. Let Bi represent the buffer block Bi,
and Ch the set of the routing channels/regions in the chip. The congestion cost can be
defined as follows:

Rcongestion =
∑

i

{ ni

wi + hi
| ∀Bi} +

∑
i∈Ch

δ

2ci−di
, (4)

where wi and hi denote the width and height of Bi respectively, ni denotes the num-
ber of nets whose buffers have been assigned to Bi, ci and di denote the respective
capacity and density of the routing channel/region i, and δ is a user-specified constant.
The first term in Equation (4) considers the congestion through buffer blocks while the
second captures the congestion of routing channels/regions. (Note that the global-route
information can be approximated at this stage since we pre-route the nets for buffer
planning.) For noise and delay constraints, we evaluate the Rfail after buffer insertion
which will be discussed in the next section.

4.2 Buffer Insertion
The main objective of the buffer insertion is using buffers to meet both delay and noise
constraints of nets, and locating those buffers on the circuit. First, we find where the
buffers are available on the circuit plane. Since we use simulated annealing and the

floorplan is updated in each iteration, we use the L-shaped contour mentioned in Sec-
tion 3 to extract all the available space for buffers effectively. With the geometric in-
formation about all buffer blocks in the circuit, we can buffer each net to meet both
constraints.

Before assigning buffers to buffer blocks, we need to know the number of buffers
required, the locations of the buffers, and their feasible regions. For each net, we can
compute the optimal number kopt of buffers, the distance x between the source node
and the first buffer, and the distance y between neighboring buffers by the formulae
from [1]. With the delay formula, we can calculate Dopt from the source to the sink. If
Dopt still cannot meet the delay constraint, we ignore the net and mark it infeasible.

Once the delay constraint is satisfied, we continue to insert buffers for noise con-
straints. From a sink to the source, we compute the maximum range li required for a
buffer to meet the noise constraint for each buffer by the equations derived in Section 3.
If the (i − 1)-th buffer is within the range of li, the noise constraint is satisfied. Oth-
erwise, we insert a new buffer at the position of bi + li to meet the noise constraints.
While new buffers are inserted, we examine whether the delay still holds for the given
delay constraint Treq . If the timing constraint cannot be satisfied due to the insertion of
new buffers, we ignore the net and mark it infeasible.

By the theorems in Section 3, the feasible region of each buffer can be derived
easily. With the feasible region of each buffer and the geometric information of buffer
blocks, we can find a feasible buffer block for buffer insertion. If the buffer cannot find
any feasible buffer block, we ignore the net and mark it failed.

A buffer may have multiple choices for feasible buffer blocks. Each buffer block
within a buffer’s feasible region is a feasible solution to meet both delay and noise
constraints. To minimize the circuit area and channel expansion after buffer insertion,
we choose the buffer block with the largest capacity. If all buffer blocks are full, we
choose the one which results in the minimum expanded area. Once a buffer is assigned
to a buffer block, the width and height of the buffer block should be updated accordingly.
After assigning all buffers, we start to run the longest path algorithm on the constraint
graphs to update the width and the height of the circuit respectively.

4.3 Reshaping Buffer Block
The buffers being inserted into channels or overflowed deadspace may cause the chan-
nels or deadspace to be expanded. Once the buffer block is expanded, the expansion
may create new deadspace, relocate modules, and make the chip larger. To minimize
the chip area, we may treat buffer blocks as soft module and reshape the buffer blocks
based on Lagrangian relaxation [16].

Suppose that we have n modules in the circuit, including both hard modules and
buffer blocks which are treated as soft modules. GH and GV keep the relative locations
of the n modules. Let xi, yi, wi and Ai denote the x-coordinate, y-coordinate, width,
and area of module i respectively. Each module i is given a minimum width Li and a
maximum width Ui. In addition to the n module nodes, let node n + 1 denote the sink
in each constraint graph. After the longest path algorithm is applied on the constraint
graphs, xn+1 (yn+1) give the x-coordinate (y-coordinate) of the rightmost (topmost)
boundary. As a result, the primal problem denoted by PP becomes

Minimize xn+1yn+1
Subject to xi + wi ≤ xj ∀e(i, j) ∈ GH ,

yi + Ai
wi

≤ yj ∀e(i, j) ∈ GV ,
Li ≤ wi ≤ Ui ∀1 ≤ i ≤ n,

where e(i, j) means that there is an edge from node i to node j in the constraint graph.
Applying Lagrangian relaxation, we introduce nonnegative multipliers ρi,j and ξi,j

for each edge. Then we obtain the Lagrangian relaxation subproblem LRS(ρ, ξ) as
follows.

Minimize xn+1yn+1+∑
e(i,j)∈GH

ρi,j(xi + wi − xj)+∑
e(i,j)∈GV

ξi,j(yi + Ai
wi

− yj)

Subject to Li ≤ wi ≤ Ui∀1 ≤ i ≤ n.

By the Kuhn-Tucker conditions, we can obtain the optimal conditions for those
Lagrangian multiplier, ρ and ξ in LRS(ρ, ξ). The optimality conditions are as follows:∑

e(j,i)∈GH

ρj,i =
∑

e(i,j)∈GH

ρi,j , (5)

∑
e(j,i)∈GV

ξj,i =
∑

e(i,j)∈GV

ξi,j , (6)

yn+1 =
∑

e(i,n+1)∈GH

ρi,n+1, (7)

xn+1 =
∑

e(i,n+1)∈GV

ξi,n+1. (8)

If (ρ, ξ) satisfies the above conditions, the objective function F of LRS(ρ, ξ) can be
simplified as

F =
∑

1≤i≤n

⎛
⎝

⎛
⎝ ∑

e(i,j)∈GH

ρi,j

⎞
⎠wi +

⎛
⎝ ∑

e(i,j)∈GV

ξi,j

⎞
⎠ Ai

wi

⎞
⎠

−

⎛
⎝ ∑

e(i,n+1)∈GH

ρi,n+1

⎞
⎠

⎛
⎝ ∑

e(i,n+1)∈GV

ξi,n+1

⎞
⎠ . (9)

To get the optimal value of wi, F is differentiated with respect to wi. Then we

Parameter Description (unit) Value
rw sheet resistance of a net (Ω/µm) 0.075
cw unit-length capacitance of a net (fF/µm) 0.118
Tin intrinsic delay for a buffer (ps) 36.4
cL load capacitance (fF) 23.4
rd driver resistance (Ω) 180.0
cb input capacitance of a buffer (fF) 23.4
rb output resistance of a buffer (Ω) 180.0
Mv the noise margin for a buffer or a sink v (V) 0.8

Table 1: Parameters of the 0.18µm technology in NTRS’97.

Circuit # modules # nets # pads # 2-pin nets
apte 9 97 73 172

xerox 10 203 2 455
hp 11 83 45 226

ami33 33 123 43 363
ami49 49 408 22 545
playout 62 2506 192 2150

Table 2: Statistics of the MCNC benchmark circuits.

have the following equation:

wi =

√
Ai

∑
e(i,j)∈GV

ξi,j∑
e(i,j)∈GH

ρi,j

.

Recall that wi must be within the range [Li, Ui]. Thus, the optimal value of wi becomes

wi = min(Ui, max(Li,

√
Ai

∑
e(i,j)∈GV

ξi,j∑
e(i,j)∈GH

ρi,j

)). (10)

Let Q(ρ, ξ) denote the optimal value of LRS(ρ, ξ). The Lagrangian dual problem
is to find a vector of Lagrangian multipliers such that the optimal solution of LRS is
also the optimal solution of PP . We define the Lagrangian dual problem LDP as
follows.

Maximize Q(ρ, ξ)
Subject to ρ ≥ 0 and ξ ≥ 0.

To find those optimal multipliers, we iteratively adjust multipliers by the subgra-
dient optimization method to find the optimal width of each block. Starting from an
arbitrary (ρ, ξ) under the optimality condition by step k, we move to a new vector
(ρ′, ξ′) by following the subgradient direction:

ρ′i,j = [ρi,j + σk(xi + wi − xj)]
+ (11)

ξ′i,j = [ξi,j + σk(yi +
Ai

wi
− yj)]

+ (12)

where [x]+ = max(0, x) and < σk > is the step size sequence that satisfies
limk→∞ = 0 and

∑∞
k=1

σk = ∞. After the subgradient optimization, Lagrangian
multipliers may be changed. The new multipliers need to be projected back to the near-
est point meeting the optimality conditions.

Because PP is a convex problem, we can know that if (ρ, ξ) is the optimal solu-
tion to LDP, the optimal solution of LRS(ρ, ξ) will also optimize PP . By iteratively
adjusting multipliers and Equation 10, we can obtain the optimal width of each block
and thus minimize the entire chip area.

5 Experimental Results
The UBF algorithm was implemented in the C++ language on a 450 MHz SUN Ultra
60 workstation and experimented on the six MCNC benchmark circuits used in [5, 6,
13, 11]. See Table 2 for the statistics of the circuits. In addition to UBFd&n which
considers both noise and delay constraints, we also implemented UBFd which considers
only delay constraint for fair comparison. We shall focus on the comparisons of delay,
noise, and area.

The parameters for interconnects and buffers were based on the 0.18µm technol-
ogy given in the NTRS’97 roadmap [14] and were used in [5, 6, 11, 13] (see Table 1 for
the parameters). All parameters used are the same as [2, 5, 6, 11]. We adopted the rise
time for an aggressor net as 0.25 ns, the power supply voltage as 1.8 V, and noise margin
as 0.8 V. Same as [5, 6, 11], all nets were 2-pin connections and the power/ground nets
were excluded. Also, we used the same delay constraints provided by the authors of
[5, 6], which were randomly generated in [1.05Topt, 1.20Topt].

We compared our results with the previous works BBP/FR [5, 6] and FBP [11].
(We also list the results of IFR [13] for reader’s reference. However, it should be noted
that the delay constraints used for IFR are slightly different from those used for BBP/FR
and our UBF.) As mentioned earlier, BBP/FR and IFR apply buffer insertion after floor-
planning. After floorplanning, all modules are placed and thus all available rooms for
buffers are also limited. Unlike those works, FBP and our UBF performed buffer inser-
tion during floorplanning to fully utilize deadspace. Besides, our UBF can consider not
only delay but also noise while BBP/FR, IFR, and UBF consider only delay.

Table 3 gives the number and the percentage of nets meeting the given con-
straints, the percentages of areas increased after buffer insertion, computed by
(expanded chip area−original chip area)

original chip area
, and the total numbers of buffers inserted

to satisfy the given constraints. In all experiments, BBP/FR, IFR, FBP, and UBFd

#Net Meet / Meet Ratio (%)
Circuit BBP IFR∗ FBP UBFd UBFd&n

apte 132/76.7 122/70.9 112/65.1 155/90.1 137/79.7
xerox 304/66.8 368/80.9 389/85.5 454/99.8 441/96.9

hp 154/68.1 185/81.9 196/86.7 222/98.2 188/83.2
ami33 302/83.2 326/89.8 325/89.5 345/95.0 329/90.6
ami49 398/73.0 497/91.2 513/94.1 540/99.1 506/92.8

playout 1478/68.7 2020/93.9 2055/95.6 1878/87.4 1618/75.3
Avg. 72.8 84.8 86.1 94.9 86.4

Area Expansion Ratio (%)
Circuit BBP IFR∗ FBP UBFd UBFd&n

apte 1.44 1.44 1.10 0.16 0.35
xerox 1.39 1.24 0.00 0.00 0.31

hp 1.05 1.03 0.00 0.34 0.34
ami33 0.93 1.44 0.00 0.00 0.00
ami49 0.65 1.04 0.00 0.00 0.06

playout 0.71 1.32 0.56 0.12 0.23
Avg. 1.03 1.25 0.28 0.10 0.22

#Buffers Inserted
Circuit BBP IFR∗ FBP UBFd UBFd&n

apte 262 176 23 129 248
xerox 519 354 184 324 527

hp 301 258 37 244 281
ami33 703 243 214 366 314
ami49 949 287 280 410 879

playout 4262 1090 896 1234 3348
Avg. 1242 446 272 451 932

Table 3: Experimental results for the number of nets (#Net Meet) and the percentage

of nets (Meet Ratio) meeting the delay constraint (also noise constraint for UBFd&n)

and the corresponding area expansion ratio and the number of buffers inserted.

consider only delay constraints while UBFd&n considers both delay and noise con-
straints. As shown in these tables, UBFd (UBFd&n) achieves an average success rate
of 94.9%(86.4%) of nets meeting timing (both timing and noise) constraints and con-
sumes an average extra area of only 0.10% (0.22%), compared with the average success
rate of 72.8% (86.1%) meeting timing constraints and extra area of 1.03% (0.28%) re-
sulted from BBP/FR (FBP). As for IFR, it obtains average success rate of 84.8% nets
meeting timing constraints and consumes an average extra area of 1.25%. The exper-
imental results show that UBFd and UBFd&n perform better than BBP/FR, FBP, and
IFR in delay and area.

The overhead of UBFd&n for meeting the additional noise constraints is consum-
ing more area for buffer insertion. Because there are delay and noise constraints with
UBFd&n, the feasible region for each buffer could be smaller than that for delay op-
timization alone. According to the experimental results, nevertheless, UBFd&n even
achieved better delay and area than the previous works in spite of the more stringent con-
straints. Further, even consuming more buffers than IFR and FBP, UBF still achieved a
smaller average percentage of area expansion. The two facts revealed that UBF can uti-
lize the deadspace and routing channels/regions more effectively during floorplanning.
The running time of UBFd (UBFd&n) averages about 8 (11) minutes and ranges from
29 seconds (40 seconds) for the smallest circuit apte to 33 (45) minutes for the largest
circuit playout, compared to the running time of FBP which ranges from 1 minute for
apte to 35 minutes for playout on a 166 MHz SUN Ultra Sparc machine. Both UBF
and FBP required much longer running times than BBP/FR and IFR because UBF and
FBP not only plan buffer locations but also perform floorplanning by using simulated
annealing while BBP/FR and IFR only plan buffer locations.

References
[1] C. J. Alpert and A. Devgan, “Wire Segmenting for Improved buffer insertion,” Proc. of DAC,

pp. 588–593, June 1997.
[2] C. J. Alpert and A. Devgan, S. T. Quay, “Buffer Insertion for Noise and Delay Optimization,”

IEEE Trans. CAD, vol. 18, No. 11, pp. 1633–1645, Nov. 1999.
[3] C. J. Alpert, T. C. Hu, J. H. Huang, A. B. Kahng, and D. Karger, “Prim-Dijkstra Tradeoffs

for Improved Performance-Driven Routing Tree Design”, IEEE Trans. on CAD, vol. 14, pp.
890–896, 1995.

[4] C. J. Alpert, J. Hu, S. S. Sapatnekar, P. G. Villarrubia, “A Practical Methodology for Early
Buffer and Wire Resource Allocation,” Proc. of DAC, pp. 189–194, June 2001.

[5] J. Cong, T. Kong and Z. D. Pan, “Buffer Block Planning for Interconnect-Driven Floorplan-
ning,” Proc. of ICCAD, pp. 358–363, Nov. 1999.

[6] J. Cong, T. Kong and Z. D. Pan, “Buffer Block Planning for Interconnect Planning and
Predicition,” IEEE Trans. VLSI Systems, 2001.

[7] J. Cong, and D. Z. Pan, “Wire Width Planning for Interconnect performance Optimization,”
IEEE Trans. CAD, vol. 21, pp. 319–329, Mar. 2002.

[8] A. Devgan, “Efficient coupled noise estimation for on-chip interconnects,” Proc. of ICCAD,
pp. 147–151, Nov. 1997.

[9] F. Dragan, A. Kahng, I. Mandoiu, S. Muddu, and A. Zelikovsky, “Provably good global
buffering using an available buffer block plan,” Proc. of ICCAD, pp. 104–109, Nov. 2000.

[10] W. C. Elmore, “The transient response of damped linear networks with particular regard to
wide band amplifiers,” J. Appl. Phys., vol. 19, pp. 55–63, 1948.

[11] I. H.-R. Jiang, Y.-W. Chang, J.-Y. Jou, and K.-Y. Chao, “Simultaneous floorplanning and
buffer block planning,” Proc. of ASPDAC, pp. 431–434, January 2003.

[12] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani, “VLSI Module Placement Based on
Rectangle-Packing by the Sequence-Pair” IEEE Trans. CAD, vol. 15, pp. 1518–1524, 1996.

[13] P. Sarkar, V. Sundararaman and C.K. Koh, “Routability-Driven Repeater Block Planning for
Interconnect-Centric Floorplanning,” Proc. of ISPD, pp. 186–191, April 2000.

[14] Semiconductor Industry Association, National Technology Roadmap for Semiconductors,
1997 Edition.

[15] X. Tang and D.F. Wong “Planning Buffer Locations by Network Flows ” Proc. of ISPD, pp.
180–185, April 2000.

[16] F. Y. Young, Chris C. N. Chu, W. S. Luk, and Y. C. Wong “Handling soft modules in general
nonslicing floorplan using Lagrangian relaxation” IEEE Trans. CAD, Vol. 20, pp. 687–692,
2001.

