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Abstract
In order to handle device matching for analog circuits, some pairs of mod-

ules need to be placed symmetrically with respect to a common axis. In this pa-
per, we deal with the module placement with symmetry constraints for analog
design using the Transitive Closure Graph-Sequence (TCG-S) representation.
Since the geometric relationships of modules are transparent to TCG-S and its
induced operations, TCG-S has better flexibility than previous works in deal-
ing with symmetry constraints. We first propose the necessary and sufficient
conditions of TCG-S for symmetry modules. Then, we propose a polynomial-
time packing algorithm for a TCG-S with symmetry constraints. Experimental
results show that the TCG-S based algorithm results in the best area utilization.

1 Introduction
In the design of analog circuits, it is often required that modules (devices)

be placed symmetrically with respect to one or several common axes. If the
parasitics in differential analog circuits do not match, it may lead to higher
offset voltages and degraded power-supply rejection ratio [5]. Placing devices
symmetrically can also reduce the circuit sensitivity to thermal gradients; failure
to balance thermal couplings in a differential circuit may introduce unwanted
oscillations [4]. Therefore, it is desirable to develop an efficient and effective
approach to place symmetry modules for analog circuit designs.

The problem of placement with symmetry modules has been extensively
studied in the literature [2, 3, 4, 5, 9, 12, 14]. Most of these works used the
simulated annealing algorithm in combination with floorplan representations to
handle symmetry constraints. We can classify these representations into two
categories: (1) the absolute representation and (2) the topological representa-
tions.

The absolute representation was proposed by Jepsen and Gellat [7]. For
this representation, each module is associated with an absolute coordinate on a
gridless plane. We can operate on a module by changing its coordinate directly.
The KOAN/ANAGRAM II [5], PUPPY-A [12], and LAYLA [9] systems all
adopted the absolute representation to handle the placement of analog modules.
The main weakness of the absolute method lies in the fact that it may generate
an infeasible placement with overlapped modules. Therefore, a post-processing
step must be performed to eliminate this condition, implying a longer computa-
tion time and lower solution quality.

Unlike the absolute representation that operates on modules’ absolute co-
ordinates, the topological representations describes a placement by keeping the
relative positions between modules. Therefore, it is often harder, but more
flexible to model the symmetry constraints using the topological representa-
tions. For the topological representations, recently, several representations that
can model non-slicing foorplans including sequence pairs [13], O-tree [6], and
binary trees [3, 4] were used to handle the symmetry constraints. Murata et
al. in [13] used two sequences of module names, namely sequence pairs, to
represent the geometric relations of modules for general floorplan design. Bal-
asa [2] then applied the sequence pairs to deal with the symmetry constraint.
Guo et al. in [6] proposed the O-tree representation for a left and bottom com-
pacted placement. Pang et al. [14] used the O-tree representation to deal with
the symmetry constraints. The feasibility of the O-tree solutions can only be de-
tected after packing; therefore, they have to explore the whole solution space to
find feasible solutions with the symmetry constraints, implying a longer running
time. Balasa [3] transformed an O-tree representation into a binary tree repre-
sentation for non-slicing floorplans. Unlike O-tree that does not restrict the ex-
ploration space, they propose a feasibility condition for the binary tree represen-
tation with symmetry constraints, and thus only feasible solutions are searched.
Chang et al. in [1] presented a B*-tree representation for non-slicing floorplans.
Balasa et al. recently augmented the B*-tree, called the segment tree [4], to
handle the symmetry constraints efficiently. Although the tree-based represen-
tations have relatively smaller solution space and a faster packing scheme than
sequence pairs, they can only represent the compacted floorplan—a proper sub-
set of the general floorplan, which implies that the optimal solution may be lost.

In this paper, we deal with the symmetry constraints using the Transitive
Closure Graph-Sequence (TCG-S) representation. One major strength of TCG-
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S lies in the property that the geometric relationship of modules is transparent
to TCG-S and its induced operations, implying that any violation of the sym-
metry constraints during perturbation can easily be detected and thus infeasible
solutions can be discarded earlier. Therefore, TCG-S has better flexibility than
previous works in dealing with symmetry constraints. We first develop the nec-
essary and sufficient conditions of TCG-S for symmetry modules. Then, we
propose an O(m2)-time packing algorithm for a TCG-S with symmetry con-
straints, where m is the number of modules. Experimental results show that the
TCG-S based algorithm results in the best area utilization.

It should be noted that the packing times for the previous works with sym-
metry constraints are O(m2) for sequence pair [2], O(m2) for the O-tree [14],
and O(m lg m) for the B*-tree (the segment tree) [4]. The B*-tree based
method has lower packing time complexity, but, like the O-tree, it is not P*-
admissible [11] and can handle only compacted floorplan (which is a proper
subset of the general floorplan).

The remainder of this paper is organized as follows. Section 2 formulates
the placement problem with symmetry constraints. Section 3 reviews the TCG-
S representation. Section 4 presents the feasibility conditions of TCG-S and
a packing algorithm for placement with symmetry constraints. Section 5 in-
troduces the perturbations for symmetry constraints. Experimental results are
reported in Section 6, and concluding remarks are given in Section 7.

2 Preliminaries
Let B = {b1, b2, ..., bm} be a set of m rectangular modules whose width,

height, and area are denoted by Wi, Hi, and Ai, 1 ≤ i ≤ m. Let (Xi, Yi)
((X′

i, Y
′
i )) denote the coordinate of the bottom-left (top-right) corner of mod-

ule bi, 1 ≤ i ≤ m, on a chip. Symmetry constraints can be formulated in terms
of symmetry pairs and symmetry groups. A symmetry pair (biB

, biT
) is a pair

of modules with the same dimensions that have to be placed symmetrically with
respect to an axis, where biB

(biT
) denotes the symmetry module in the bot-

tom (top) side. A symmetry group {(b1B , b1T ), (b2B , b2T ), . . . , (bkB
, bkT

)}
consists of a set of symmetry pairs. For easier presentation, we consider the
common axes horizontal of symmetry groups; however, similar method can be
applied if the axes are in the x axis. Let YiM

denote the middle axis for a sym-
metry pair (biB

, biT
) (i.e., 2YiM

= Y ′
iB

+YiT
). Given a symmetry group, the

x coordinates of the modules in each symmetry pair must be the same. Besides,
they have to be placed symmetrically with respect to a common axis in the final
placement, which implies the following equations:

XiB
= XiT

∀i = 1, . . . , k, (1)

Yg = YiM
∀i = 1, . . . , k, (2)

where Yg is the coordinate of the common axis for the symmetry group. A
placement P is an assignment of (Xi, Yi), i = 1, . . . , m, for each bi such
that no two modules overlap and the symmetry constraints are satisfied as well.
The goal of placement with symmetry modules is to optimize a predefined cost
metric such as the resulting area (i.e., the minimum bounding rectangle of P )
induced by a placement.
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Figure 1: A feasible placement with a symmetry group
{(baB , baT ), (beB , beT )}.

Figure 1 shows a feasible placement with symmetry modules. There are
eight modules baB , baT , bb, bc, bd, beB , beT , and bf in the placement, where
(baB , baT ) and (beB , beT ) are symmetry pairs in a symmetry group.



3 Review of TCG-S
We first review the TCG-S representation presented in [11]. TCG-S de-

scribes the geometric relations among modules based on two graphs, namely a
horizontal transitive closure graph Ch and a vertical transitive closure graph
Cv , and a packing sequence Γ−. A node ni in Ch (Cv) represents a module
bi and an edge (ni, nj) denotes that module bi is left to (below) module bj .
TCG-S has the following feasibility properties:

1. Ch and Cv are acyclic.
2. Each pair of nodes must be connected by exactly one edge either in Ch

or in Cv .
3. The transitive closure of Ch (Cv) is equal to Ch (Cv) itself.1

4. The packing sequence Γ− is the topological ordering of Ch and Cv .
Figure 2(a) shows a placement with eight modules aB , aT , b, c, d, eB ,

eT , and f whose widths and heights are (5, 5), (5, 5), (2, 3), (4, 2), (5, 6), (6, 2),
(6, 2), and (3, 4), respectively. Figure 2(b) shows the TCG-S = (Ch, Cv , Γ−)
corresponding to the placement of Figure 2(a). The value associated with a
node in Ch (Cv) gives the width (height) of the corresponding module, and the
edge (ni, nj) in Ch (Cv) denotes the horizontal (vertical) relation of bi and bj .
Since there exists an edge (naB , nd) in Ch, module aB is left to module d.
Similarly, module aB is below module b since there exists an edge (naB , nb)
in Cv . The packing sequence Γ− = {aB , b, d, eB , c, eT , aT , f} corresponds
to the topological ordering of Ch and Cv .
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Figure 2: (a) A placement. (b) TCG-S. (c) Augmented Ch and Cv .

Given a TCG-S, a placement can be obtained in O(m2) time by perform-
ing a well-known longest path algorithm [10] on the TCG-S, where m is the
number of modules. To facilitate the implementation of the longest path algo-
rithm, the two closure graphs can be augmented as follows. For each closure
graph, we introduce two special nodes, the source ns and the sink nt, both with
zero weights, and construct edges from ns to each node with in-degree equal
to zero as well as from each node with out-degree equal to zero to nt. (Note
that the augmentation is performed only for packing.) Figure 2(c) shows the
augmented Ch and Cv for the Ch and Cv shown in Figure 2(b). The longest
path algorithm executes as follows: we process modules according to their topo-
logical ordering in the augmented Ch (Cv). The x (y) coordinate of dummy
module bs is zero (i.e., Xs = 0 (Ys = 0)). For each module bi in the topo-
logical ordering, we serially relax it as follows: Xj = max{Xj , Xi + Wi}
(Yj = max{Yj , Yi + Hi}) if nj ∈ Fout(ni). Let Lh(ni) (Lv(ni)) denote
the weight of the longest path from ns to ni in the augmented Ch (Cv). The
coordinate (Xi, Yi) of a module bi is given by (Lh(ni), Lv(ni)). Since the
respective width and height of the placement for the given TCG-S are Lh(nt)
and Lv(nt), the area of the placement is given by Lh(nt)Lv(nt). Since each
module has a unique coordinate after packing, there exists a unique placement
corresponding to any TCG-S.

4 TCG-S for Symmetry Constraints
In this section, we first introduce necessary and sufficient conditions of

feasible TCG-S for the symmetry constraints.

1The transitive closure of a directed acyclic graph G is defined as the graph
G′ = (V, E′), where E′ ={(ni, nj ): there is a path from node ni to node nj

in G}.

4.1 Feasible TCG-S
In [11], we had shown that there always exists a unique feasible placement

corresponding to a TCG-S for rectangular modules. However, for a TCG-S
with symmetry modules, we must satisfy Equations (1) and (2) mentioned in
Section 2 in the final placement. Therefore, we shall add two additional feasi-
bility constraints for a TCG-S with symmetry constraints as follows:

5. Essence constraint: for modules biB
and biT

in each symmetry pair,
the corresponding edge (niB

, niT
) must be in Cv .

6. Homology constraint: for two arbitrary symmetry pairs (biB
, biT

) and
(bjB

, bjT
) in a symmetry group, one of the following conditions is sat-

isfied: (1) edges (niB
, njB

) and (niT
, njT

) are both in Ch, (2) edges
(njB

, niB
) and (njT

, niT
) are both in Ch, (3) edges (niB

, njB
) and

(njT
, niT

) are both in Cv , and (4) edges (njB
, niB

) and (niT
, njT

)
are both in Cv .

A TCG-S is called symmetric feasible iff Conditions 1–6 are satisfied. For
the essence constraint, if biB

and biT
are the modules in a symmetry pair, biB

must be directly below biT
in order to have the same x coordinates. There

must exist an edge (niB
, niT

) in Cv according to the definition of TCG-S. In
contrast, if edge (niB

, niT
) (or (niT

, niB
)) is in Ch, the x coordinates of biB

and biT
cannot be the same since biB

(biT
) is in the left side of biT

(biB
). For

the homology constraint, if biB
is left to bjB

, biT
must be left to bjT

such that
the x coordinates of biB

and biT
(bjB

and bjT
) are the same. This implies that

the edges (niB
, njB

) and (niT
, njT

) are in Ch. The x coordinates of biB
and biT

(bjB
and bjT

) are not the same if biB
is left to bjB

but biT
is right to

bjT
. Also, if biT

is above bjT
, bjB

must be above biB
such that the middle

axes of the two symmetry pairs can be between bjB
and bjT

. This implies that
edges (njT

, niT
) and (niB

, njB
) are in Cv . In contrast, the middle axis of

(biB
, biT

) is always above that of (bjB
, bjT

) if biT
is above bjT

and biB
is

above bjB
.

Figures 3(a) and (b) show a TCG-S with the symmetry group {(baB , baT ),
(beB , beT )} and the corresponding placement. The TCG-S shown in Fig-
ure 3(a) is feasible for the symmetry modules since the essence constraint (i.e.,
edges (naB , naT ) and (neB , neT ) are in Cv) and the homology constraint
(i.e., edges (naB , neB ) and (neT , naT ) are in Cv) are satisfied. (Note that
the modules beB and beT shown in Figure 3(b) are not symmetric. We will dis-
cuss how to make them symmetric later.) For the TCG-S shown in Figures 3(c),
Condition (1) of the homology constraint is violated since edge (naT , neT ) is
in Ch but (naB , neB ) is not. This makes baT in the left side of beT and baB
in the right side of beB in the resulting placement shown in Figures 3(d), and
thus baB and baT (beB and beT ) cannot have the same x coordinate. Similarly,
Condition (3) of the homology constraint is violated for the TCG-S shown in
Figure 3(e) because edge (naT , neT ) is in Cv while edge (neB , naB ) is not.
Since the middle axis of (beB , beT ) is always higher than that of (baB , baT )
in the resulting placement shown in Figure 3(f), the two symmetry pairs cannot
have the same middle axis.

4.2 Packing
As mentioned in Section 3, the packing of regular modules can be ob-

tained by applying the longest path algorithm on the augmented transitive clo-
sure graph. To guarantee a feasible placement with symmetry constraints, how-
ever, we need to modify the packing algorithm. Figure 4 illustrates the differ-
ence between the packings with and without symmetry modules. Figures 4(a)
and (b) give a TCG-S with a symmetry group {(baB , baT ), (beB , beT )} and
its corresponding placement. The placement is not correct for the symmetry
modules because XeB �= XeT and YeM �= YaM . The correct one is shown in
Figure 4(d).

For each symmetry pair (biB
, biT

), the x coordinates of biB
and biT

must
be the same. To make XiB

= XiT
, in addition to the longest path from

the source to biB
(biT

) in the augmented Ch, we also have to consider the
x coordinate of biT

(biB
). For the placement shown in Figure 4(b), the x

coordinates of beB and beT are different since beT are in the right side of both
bb and bc while beB is in the right side of only bb according to the TCG-S of
Figure 4(a). If we make beB and beT both in the right side of bb and bc, their
x coordinates will be the same (see Figure 4(c) for the resulting placement).
Let the fan-in (fan-out) of a node ni, denoted by Fin(ni) (Fout(ni)), be the
nodes nj ’s with edges (nj , ni) ((ni, nj)). For the modules in each symmetry
pair (biB

, biT
), we have to add dummy edge (nj , niB

) ((nj , niT
)) to Ch if

nj ∈ Fin(niT
) and nj �∈ Fin(niB

) (nj ∈ Fin(niB
) and nj �∈ Fin(niT

))
before applying the longest path algorithm on the graph. After the x coordinate
of each module is determined, those newly added edges are removed from Ch
to guarantee the correctness of TCG-S during perturbation.

For each symmetry pair (biB
, biT

) in a symmetry group, the distance be-
tween biB

and Yg must equal to that between biT
and Yg , where Yg is the

common axis of the group. Let ∆(iT ) (∆(iB)) denote the distance between
the bottom (top) boundary of module biT

(biB
) and Yg (i.e ∆(iT )= YiT

−Yg

(∆(iB)= Yg − Y ′
iB

)). For the placement shown in Figure 4(c), two symme-
try pairs (baB , baT ) and (beB , beT ) are not placed symmetrically with respect
to the same axis since the original packing algorithm relaxes modules accord-
ing to the sequence defined in Γ− without considering ∆(aB) and ∆(aT )
(∆(eB) and ∆(eT )) as their values. (See the last photography of Section 3
for the relax process.) If we first relax the symmetry pair (beB , beT ), and
then the other (baB , baT ), we can make ∆(eB) (∆(aB)) equal to ∆(eT )
(∆(aT )) by choosing the larger one of the two values as their values. We
first assume that the common axis of a symmetry group is the highest middle
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Figure 3: (a) A symmetric feasible TCG-S, (b) the placement corresponding
to the TCG-S in (a), (c) a symmetric infeasible TCG-S (violation of Condition
(1) of the homology constraint), (d) the placement corresponding to the TCG-
S in (c), (e) a symmetric infeasible TCG-S (violation of Condition (3) of the
homology constraint), (f) the placement corresponding to the TCG-S in (e).

axis YjM
for all symmetry pairs in the group. Therefore, for each symme-

try pair (biB
, biT

) in a symmetry group, the initial value for the distance be-
tween bottom (top) symmetry module and the common axis is YjM

−Y ′
iB

(i.e.,

∆(iB) = ∆(iT ) = YjM
− Y ′

iB
). Also, the distance between other module

bw and the common axis is Yw − YjM
( YjM

− Y ′
w) if bw is above (below)

the common axis. Different from the original longest path algorithm that re-
laxes modules according to the sequence defined in Γ−, we first relax modules
blB and blT if blB is the last bottom symmetry module in Γ− since there can-
not exist any symmetry modules between blB and blT . Note that a module is
deleted from Γ− if it is relaxed in this algorithm. We then relax the modules
from blB to bkB

and from bkB
to bkT

if bkB
is the nearest bottom symmetry

module in the left side of blB in Γ−. The process is repeated until all modules
in Γ− are traversed. A module is said to be above-marked (below-marked) if
it is a fan-out (fan-in) module of a relaxed module. During traversing mod-
ules from blB to bkB

, those below-marked modules bu’s are relaxed for those
modules belonging to fan-in’s of bu’s. Then, we start to relax the above-marked
modules bv’s for those modules belonging to fan-out’s of bv’s until the top sym-
metry module bkT

is met. (Note that we only relax the marked modules since
only those modules belonging to fan-in’s (fan-out’s) of symmetry modules are
changed during our algorithm.) Then, we can make ∆(kB) equal to ∆(kT )
by assigning ∆(kB) = ∆(kT ) = max{∆(kB), ∆(kT )}. After ∆(kB) and
∆(kT ) are obtained, bkB

and bkT
are relaxed and the same process repeats

until the last module in Γ− is met. After these processes, ∆(iB) = ∆(iT ) for
each symmetry pair (biB

, biT
) in the group. If the y coordinate of the common

axis is zero, the coordinates for those below-marked (above-marked) or bottom
(top) symmetry modules bp’s (bq’s) are −∆(p) (∆(q)). To make the coordi-
nates of all modules larger than zero, we have to pull all modules upward by
∆(s) distance, and thus Y ′

p = −∆(p) + ∆(s) (Yq = ∆(q) + ∆(s)), where
∆(s) is distance between the dummy module bs and the common axis. Finally,
for those unprocessed modules bx’s, their new coordinates Yx = max{Y ′

r} if
nr ∈ Fin(nx) in Cv .

Theorem 1 Given a symmetric feasible TCG-S, the packing scheme gives a
feasible placement of the minimum area in O(m2) time, where m is the number
of modules.
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Figure 4: (a) and (b) A TCG-S and its corresponding placement without
considering the symmetry pair {(beB , beT )}. (c) The resulting placement after
modules beB and beT are aligned at the same x coordinate. (d) The resulting
placement after two symmetry pairs (baB , baT ) and (beB , beT ) are placed
symmetrically with respect to the same axis Yem .

Theorem 2 There exists a correspondence between a minimum area rectangle
packing with symmetry constraints and a symmetric feasible TCG-S.

Note that the packing times for the previous works with symmetry
constraints are O(m2) for sequence pair [2], O(m2) for the O-tree [14],
and O(m lg m) for the B*-tree (the segment tree) [4]. The B*-tree based
method has lower packing time complexity, but, like the O-tree, it is not P*-
admissible [11] and can handle only compacted floorplan (which is a proper
subset of the general floorplan).

5 Algorithm
Our algorithm is based on simulated annealing [8]. Given an initial solu-

tion represented by a TCG-S, we perturb the TCG-S to obtain a new TCG-S.
The perturbation continues to search for a “good” configuration until a prede-
fined termination condition is satisfied. To ensure the correctness of a packing
with symmetry modules, the new TCG-S must satisfy the TCG-S feasibility
conditions described in Section 3 and the essence and the homology constraints
presented in Section 4.1. The following five operations are introduced in [11]
to perturb a TCG-S:

• Rotation: Rotate a rectangular module.
• Swap: Swap two nodes associated with two rectangular modules in both

Ch and Cv .
• Reverse: Reverse a reduction edge in Ch or Cv .
• Move: Move a reduction edge from one transitive closure graph (Ch or

Cv) to the other.
• Transpositional Move: Move a reduction edge from one transitive clo-

sure graph (Ch or Cv) to the other, and then transpose the two nodes
associated with the edge.

We introduce the five operations that can perturb an arbitrary edge, and we show
how to maintain the feasibility of symmetric feasible TCG-S in each perturba-
tion as follows.

5.1 Rotation
We cannot rotate node ni if bi denotes a symmetry module except the other

symmetry module bj is rotated.

5.2 Swap
We cannot swap two nodes ni and nj if bi or bj denotes a symmetry

module except the following two conditions:
• ni and nj denote modules in a symmetry pair.
• ni and nj denote two bottom (top) symmetry modules. Then, we have

to swap the corresponding top (bottom) symmetry modules.
For the first condition, bi (bj ) is considered as top (bottom) symmetry module
if it is a bottom (top) symmetry module originally.

5.3 Reverse
If we reverse a reduction edge (ni, nj) (there does not exist another path

from ni to nj , except the edge (ni, nj) itself) in a transitive closure graph G,
the feasibility of TCG-S is violated under the following two conditions:

• G = Ch: one fan-in of nj or nj denotes a bottom (top) symmetry
module bpB (bpT ), and one fan-out of ni or ni denotes the other top
(bottom) symmetry module bpT (bpB ).



# of symmetry Total Sequence pairs Segment tree TCG-S
Circuit mod. modules area Area Time (sec) Area Time (sec) Area (%dead space) Time (sec)
apte 9 8 46.56 48.12 25 47.52 11 47.52 (2.1%) 3
hp 11 8 8.830 9.84 138 9.714 62 9.714 (10.0%) 50

ami33 33 6 1.156 1.24 684 1.23 307 1.21 (4.7%) 423
ami49 49 4 35.45 37.82 2038 37.31 983 37.04 (4.5%) 1247

Table 1: Experimental results for the benchmark circuits.

• G = Cv: one fan-in of nj or nj denotes a top symmetry module bpT ,
and one fan-out of ni or ni denotes another bottom symmetry module
bqB .

If we reverse a reduction edge (niB
, njB

) (or (niT
, njT

)) in Ch, the
edge (niT

, njT
) ((niB

, njB
)) must also be reversed to maintain the ho-

mology constraint. Besides, if a new edge (nlB , nkB
) (or (nlT , nkT

)) is
added to a Ch during the operation, we must also move the edge (nlT , nkT

)
((nlB , nkB

)) from Cv to Ch if there exists an edge (nlT , nkT
) ((nlB , nkB

))
is in Cv ; otherwise, we should transpositionally move edge (nkT

, nlT )
((nkB

, nlB )) from Cv to Ch if the edge is in Cv . Similarly, if we reverse
a reduction edge (niB

, njB
) (or (niT

, njT
)) in CV , the edge (njT

, niT
)

((njB
, niB

)) must also be reversed. Besides, if a new edge (nlB , nkB
)

((nlT , nkT
)) is added to a Cv during this operation, we must also move the

edge (nkT
, nlT ) ((nkB

, nlB )) to Cv if there exists an edge (nkT
, nlT )

((nkB
, nlB )) in Ch; otherwise, we should transpositionally move an edge

(nlT , nkT
) ((nlB , nkB

)) from Ch to Cv if the edge is in Ch.

5.4 Move
If we move a reduction edge (ni, nj) from a transitive closure graph G to

the other G′, the feasibility of TCG-S with symmetry modules is violated in the
following conditions:

• G′ = Ch: one fan-in of ni or ni denotes a bottom (top) symmetry
module bpB (bpT ), and one fan-out of nj or nj denotes the other top
(bottom) symmetry module bpT (bpB ).

• G = Cv: one fan-in of ni or ni denotes a top symmetry module bpT ,
and one fan-out of nj or nj denotes another bottom symmetry module
bqB .

It takes O(m) time to detect the violation by checking the modules bq’s before
bi and after bj according the sequence defined in Γ−, where m is number of
modules.

If we move edge a reduction edge (niB
, njB

) (or (niT
, njT

)) from
Cv to Ch, the edge (njT

, niT
) ((njB

, niB
)) in Cv must be transposition-

ally moved to Ch to maintain the homology constraint. Besides, if a new
edge (nlB , nkB

) (or (nlT , nkT
)) is added to a Ch during the operation, we

must move the edge (nlT , nkT
) ((nlB , nkB

)) to Ch if there exists an edge
(nlT , nkT

) ((nlB , nkB
)) in Cv ; otherwise, we should transpositionally move

edge (nkT
, nlT ) ((nkB

, nlB )) from Cv to Ch if the edge is in Cv . Similarly,
if we move a reduction edge (niB

, njB
) (or (niT

, njT
)) from Ch to Cv , the

edge (niT
, njT

) ((niB
, njB

)) in Ch must be transpositionally moved to Cv .
Besides, if a new edge (nlB , nkB

) ((nlT , nkT
)) is added to a Cv during this

operation, we must move the edge (nkT
, nlT ) ((nkB

, nlB )) to Cv if there
exists an edge (nkT

, nlT ) ((nkB
, nlB )) in Ch; otherwise, we should transpo-

sitionally move edge (nlT , nkT
) ((nlB , nkB

)) from Ch to Cv if the edge is
in Ch.

5.5 Transpositional Move
If we transpositionally move a reduction edge (ni, nj) from a transitive

closure graph G to the other G′, the feasibility of TCG-S with symmetry mod-
ules is violated in the following conditions:

• G′ = Ch: one fan-in of nj or nj denotes a bottom (top) symmetry
module bpB (bpT ), and one fan-out of ni or ni denotes the other top
(bottom) symmetry module bpT (bpB ).

• G′ = Cv: one fan-in of nj or nj denotes a top symmetry module bpT ,
and one fan-out of ni or ni denotes another bottom symmetry module
bqB .

If we transpositionally move a reduction edge (niB
, njB

) (or (niT
, njT

))
from Cv to Ch, the edge (njT

, niT
) ((njB

, niB
)) in Cv must be also moved

to Ch. Besides, if a new edge (nlB , nkB
) (or (nlT , nkT

)) is added to a Ch

during the operation, we must move the edge (nlT , nkT
) ((nlB , nkB

)) to Ch

if there exists an edge is (nlT , nkT
) ((nlB , nkB

)) in Cv ; otherwise, we should
transpositionally move edge (nkT

, nlT ) ((nkB
, nlB )) to Ch if the edge is in

Cv . Similarly, if we transpositionally move a reduction edge (niB
, njB

) (or
(niT

, njT
)) from Ch to Cv , the edge (niT

, njT
) ((niB

, njB
)) in Ch is also

moved to Cv . Besides, if a new edge (nlB , nkB
) ((nlT , nkT

)) is added to a
Cv during this operation, we must move the edge (nkT

, nlT ) ((nkB
, nlB )) to

Cv if there exists an edge is (nkT
, nlT ) ((nkB

, nlB )) in Ch; otherwise, we
should transpositionally move an edge (nlT , nkT

) ((nlB , nkB
)) to Cv if the

edge is in Cv .

6 Experimental Results
Based on the simulated annealing method [8], we implemented the place-

ment algorithm using TCG-S in the C++ programming language on a 433 MHz
SUN Sparc Ultra-60 workstation with 1 GB memory. The benchmarks (apte,
hp, ami33, and ami49) in Table 1, we impose the symmetry constraints to the
modules with the same dimensions in a set of commonly used MCNC bench-
marks. As shown in Table 1, Columns 2 lists the number of modules of four
benchmarks. Columns 3 lists the number of modules in symmetric group.

The total area of modules in each circuit are shown in Column 4. Columns
5, 7, and 9 list the respective resulting areas obtained by the sequence pairs
(SP) method proposed in [2], the segment-tree method presented in [4], and
our program, based on the same simulated annealing engine; Columns 6, 8,
and 10 list their respective running times. As shown in the table, our method re-
sulted in much more effective area utilization than the SP-based and the segment
tree-based methods. Further, our method is also much more efficient than the
SP-based method and comparable to the segment tree-based method. Figure 5
shows the resulting placement for ami33 (the shaded modules denote symmetry
modules). The experimental results show that our TCG-based algorithm con-
sistently obtained good results.

Figure 5: The resulting placement of ami33 with three symmetry pairs
(area = 1.219mm2).

7 Concluding Remarks
We have presented a TCG-S based algorithm to deal with the placement

with symmetry constraints. TCG-S is the first general graph representation with
the feasibility guarantee for each perturbation. We have derived necessary and
sufficient conditions of TCG-S for symmetry modules, and proposed a packing
algorithm for TCG-S. Experimental results have shown that our method is very
efficient and effective.

References
[1] Y.-C. Chang, et al, “B*-trees: A New Representation for Non-Slicing Floorplans,”

Proc. DAC, pp. 458–463, 2000.
[2] F. Balasa and K. Lampaert, ”Symmetry Within the Sequence-Pair Representation in

the Context of Placement for Analog Design,” IEEE TCAD, vol. 19, no. 7, 721–731,
July 2000.

[3] F. Balasa, ”Modeling Non-Slicing Floorplans with Binary Trees,” ICCAD, 2000.
[4] F. Balasa, et al, ”Efficient solution space exploration based on segment trees in ana-

log placement for analog placement with sysmetry constraints,” ICCAD, pp. 497–
502, 2002.

[5] J. Cohn, et al, “KOAN/ANAGRAMII: New Tools for Device-Level Analog Layout,”
IEEE J. Solid-State Circuits, vol 26., PP. 330-342, Mar. 1991.

[6] P.-N. Guo, et al, “An O-Tree Representation of Non-Slicing Floorplan and Its Ap-
plications,”Proc. DAC, pp. 268–273, 1999.

[7] D. W. Jepsen and C. D. Gellat Jr., “Macro Placement by Monte Carlo Annealing,”
Proc. ICCD, pp. 495-485, Nov. 1983.

[8] S. Kirkpatrick, et al, “Optimization by Simulated Annealing,” Science, vol. 220, no.
4598, May 13, 1983, pp.671–680.

[9] K. Lampaert, et al, “A Performance-Driven Placement Tool for Analog Integrated
Circuits,” IEEE J. Solid-State Circuits, vol. 30, pp. 773-780, July 1995.

[10] E. Lawler, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart,
and Winston, 1976.

[11] J.-M. Lin and Y.-W. Chang, “TCG-S: Orthogonal Coupling of P*-admissible Rep-
resentations for General Floorplans,” IEEE Trans. Computer-Aided Design, Vol. 24,
No. 6, June 2004.

[12] E. Malavasi, et al, “Automation of IC Layout with Analog Constraints,” IEEE
TCAD, vol. 15, pp. 923-942, Aug. 1996.

[13] H. Murata, et al, “Rectangle-Packing Based Module Placement,” Proc. ICCAD, pp.
472–479, 1995.

[14] Y. Pang, et al, “Block Placement with Symmetry Constraints based on thee O-tree
Non-Slicing Representation,” Proc. DAC, pp. 464-467, 2000.


