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ABSTRACT

Droplet-based microfluidic biochips have recently gained much
attention and are expected to revolutionize the biological labora-
tory procedure. As biochips are adopted for the complex proce-
dures in molecular biology, its complexity is expected to increase
due to the need of multiple and concurrent assays on a chip. In
this paper, we formulate the placement problem of digital mi-
crofluidic biochips with a tree-based topological representation,
called T-tree. To the best knowledge of the authors, this is the
first work that adopts a topological representation to solve the
placement problem of digital microfluidic biochips. Experimen-
tal results demonstrate that our approach is much more efficient
and effective, compared with the previous unified synthesis and
placement framework.
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1. INTRODUCTION

Due to the advances in the microfabrication and microelectro-
mechanical systems, the microfluidic technology has gained much
attention recently. The composite microsystems could perform
the conventional biological laboratory procedures on a small and
integrated system. As a result, the microfluidic biochips are used
in several common procedures in molecular biology, such as the
clinic diagnosis and the DNA sequence analysis.

Most recently, the second-generation (digital) microfluidic biochips,

which are based on the manipulation of the discrete liquid par-
ticles (the droplets), have been proposed [1]. Each droplet can
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Figure 1: The schematic view of a digital microflu-
idic biochip.

be independently controlled by the electrohydrodynamic forces
generated by an electric field. The field can be generated by
an individually accessible electrode. Compared with the first-
generation microfluidic biochips that are based on the continuous
fluid flow and contain external pressure sources, the digital mi-
crofluidic biochips have the advantages of scalability and recon-
figurability. The scalability allows biochips to handle large-scale
and complex procedures, and the reconfigurability allows biochips
to be reconfigured for different levels of hierarchy.

Figure 1 shows the schematic view of a digital microfluidic
biochip based on the principle of electrowetting on dielectric [3].
The basic operations (e.g., mix, dilute, etc.) can be performed
anywhere in the 2D microfluidic array because each basic cell
has the same architecture. We refer to this type of operations
as reconfigurable operations in this paper. Besides the 2D mi-
crofluidic array, there are other devices in a biochip, such as the
on-chip reservoirs/dispensing ports and optical detectors. In con-
trast to the 2D array, these devices cannot be reconfigured. The
operations performed on these devices are referred to as non-
reconfigurable opertaions.

Due to the reconfigurability, the placement problem of digital
microfluidic biochips includes architectural-level synthesis (i.e.,
scheduling and resource binding) and physical placement. How to
simultaneously perform architectural-level synthesis and physical
placement is the most challenging issue in this placement problem.

Architectural-level synthesis and physical placement of digital
microfluidic biochips have been addressed in the recent literature.
For the architectural-level synthesis, Su et al. [7] used the sequenc-
ing graph to represent the bioassay protocol and proposed an in-
teger linear programming based formulation and two heuristics to
solve this problem. Su et al. [8] proposed a simulated annealing
based algorithm for the physical placement with given scheduled
operations. Recently, [9] presented a unified synthesis and place-
ment flow based on parallel recombinative simulated annealing.
The synthesis and placement of digital microfluidic biochips are
closely related to the operations of dynamically reconfigurable
FPGAs (DRFPGASs), which have received much attention re-
cently [2]. Many approaches, such as the graph-theoretic ap-
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Figure 2: A compacted placement and its corre-
sponding T-tree.

proach [4] and the topological representation based approach [10,
11], have been proposed. Among these approaches, the T-tree [10]
representation is the state-of-the-art method for DRFPGAs.

In this paper, we adopt the T-tree topological representation

[10] to solve the placement problem of digital microfluidic biochips.

Due to the reconfigurability of DRFPGASs, the placement of dig-
ital microfluidic biochips is similar to the simultaneous schedul-
ing and placement of DRFPGAs. However, the placement of
biochips is more complicated than that of DRFPGAs for two rea-
sons. First, besides reconfigurable operations, biochips also need
non-reconfigurable operations. Second, a storage unit is required
for two data-dependent operations if they are not scheduled at
consecutive time steps. To the best knowledge of the authors, our
work is the first to apply a topological representation to solve the
placement problem of digital microfluidic biochips. Experimental
results show that our algorithm is much more effective and effi-
cient than the previous unified synthesis and placement approach
in [9] for in-virto diagnostics and colorimetric protein bioassay.
For the protein bioassay, our method achieves 19% smaller vol-
ume (area times assay completion time) in less CPU time. For the
in-virto diagnostics, we can meet all design specifications while
the previous work cannot.

The remainder of this paper is organized as follows. Section 2
formulates the placement problem of digital microfluidic biochips.
Section 3 reviews the T-tree formulation. Section 4 presents the
T-tree based formulation for the placement problem. Section 5
describes our algorithm. Section 6 reports the experimental re-
sults. Finally, conclusions are given in Section 7.

2. PROBLEM FORMULATION

We give a formal definition for the placement problem of digi-
tal microfluidic biochips. There are three inputs to the placement
problem. The first one is the sequencing graph G = {V, E} that
represents the protocol of a bioassay [7], where V' = {v1, v2, ..
represents a set of m assay operations and E = {(v;,v;),1 <
1,7 < m} denotes the data dependencies between two assay op-
erations; i.e., the precedence constraints. We may need a storage
unit for each edge in G to store the intermediate data between
two operations. Throughout this paper, we use operation and
task interchangeably. The second one is the microfluidic module
library that contains the basic modules for biochips. Each basic
module is characterized by its functionality (i.e., mixing, dilution)
and parameters (i.e., width, height, and operation duration). The
third one is the design specification, including: (1) the maximum
available area and assay completion time and (2) the maximum
number of instances for each type of non-reconfigurable resources;
i.e., the resource constraints.

The goal of our algorithm is to simultaneously perform resource
binding, scheduling, and placement with area and assay comple-
tion time optimization under the design specification. In this
paper, we ignore the time for transporting droplets between dif-
ferent tasks because the movement of droplets is very fast com-
pared with the duration of each task [3, 6]. We also follow [9]
to use the segregation cells to wrap each reconfigurable operation
and storage unit for the isolation purpose.
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Figure 3: (a) Two operations are executed at time
tl. (b) At time {2, operation 3 starts to execute at
the same physical location as operation 2. (c) The
3D modelling of the three operations.
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Figure 4: An example of finding the feasible loca-
tions for a storage unit in a T-tree. Suppose that v,
and v, need a storage unit.

3. REVIEW OF THE T-TREE

T-trees [10] are a 3-ary tree, where each node corresponds to
a unique task and has at most three children to represent the
dimensional relationship among tasks. The T-tree is designed to
represent a compacted placements where each task cannot move
toward the origin. Figure 2 shows a compacted placement and
its corresponding T-tree. The T-tree represents the geometric
relationship between two tasks as follows. If node n; is the left
child of node n;, task v; is placed adjacently to task v; on the
T+ direction. If node ny, is the middle child of node n;, task vy,
is placed in the Y1 direction of task v;, with the t-coordinate of
v being equal to that of v;. If node n; is the right child of node
n;, task v; is placed in the X1 direction of task v;, with the t-
and y-coordinates being equal to those of v;.

4. T-TREE BASED BIOCHIP PLACEMENT

In this section we first demonstrate that the placement of tasks
on a biochip can be treated as the temporal floorplanning prob-
lem. Then we describe how we model each type of tasks with the
T-tree. Finally we present how to handle the design specification
in our algorithm.

Due to the reconfigurability of biochips, the execution of a set
of tasks can be viewed as the temporal floorplanning problem as
shown in Figure 3. The X and Y dimensions give the area of a
biochip, and the T dimension represents the duration of a task.
Suppose that both operations 1 and 2 are executed at time t1,
as shown in Figure 3 (a). Figure 3 (b) shows that at time ¢2, we
can perform operation 3 at the same physical location as opera-
tion 2 after completing operation 2. The execution of the three
operations can be modelled as a set of 3D modules with their
widths and heights (X and Y dimensions) representing the phys-
ical dimensions occupied by the operations, and its duration (7'
dimension) being the execution time required for each operation,
as shown in Figure 3 (c).

For each task in a sequencing graph, we create a unique node
in the T-tree. Recall that there are both reconfigurable and non-



Algorithm: Feasibility Detection (H)

H: a T-tree;

1 Set the durations of all storage units ns to be zero;

2 repeat

3 if ng is not in its feasible position

4 Move ngs to one of its feasible positions;

5 else if ng has its left child

6 Move ns as the middle or right child of ng,

7 where ny is one of ng’s children;

9 else

10 Traverse H to obtain the starting time of each task;
11 Determine the duration of all storage units;

12 Check the precedence constraints and reconstruct H;
13 if all precedence constraints are satisfied

14 Adjust the number of storage units;

15 until the topology of H is fixed
17 Output: H with the feasible topology.

Figure 5: Feasibility detection and tree reconstruction.

reconfigurable tasks. For reconfigurable tasks and the detection
tasks, since we need to perform this type of tasks in the 2D mi-
crofluidic array, we model it as a 3D box. For non-reconfigurable
tasks except the detection tasks, since the reservoirs and dispens-
ing ports are outside the 2D microfluidic array as shown in Fig-
ure 1, we only need to consider the time aspect for this type of
tasks. Therefore, we model it as a 3D line with both its width
and height being zero.

‘We describe how we model the storage units. We create a node
ns for each storage unit vs. Since vs holds the intermediate data
between tasks v; and vj, vs must satisfy the storage constraint.
The storage constraint states that the starting time of vs must
be equal to the ending time of v;, and the ending time of vs must
be equal to the starting time of v;. Figure 4 illustrates how to
find the feasible locations for ns in a T-tree while satisfying the
storage constraint. Suppose we want to find the feasible locations
for ns. Recall that if n; is the left child of n;, the starting time of
v; is the ending time of v;. Otherwise, the starting time of v; is
the same as the starting time of v;. Thus, based on the structure
of T-tree, the starting time of v. in Figure 4 is the same as the
ending time of v,, and the starting times of vy, ve, and vy are
the same. Based on above observation, the feasible locations of
ns are the middle or the right child of nodes ny, nc, or ng, as the
black boxes shown in Figure 4. After placing ns in its feasible
location, we set the ending time of vs as the starting time of vy.
Note that the duration of vs is not fixed; it varies based on the
starting time of vp.

The design specification describes the maximum available area
and the assay completion time as well as the resource constraints.
We model the limit on the maximum available area and assay
completion time as the fized-cube constraint. The fixed-cube con-
straint states that a 3D floorplan must be within a 3D cube. To
handle the resource constraints, we introduce the concept of the
virtual precedence constraints. If two tasks are bound to the
same resource, such as the same dispensing port, these two tasks
cannot be executed at the same time. Therefore, we add an ad-
ditional edge between these two tasks in the sequencing graph to
satisfy the resource constraint. Note that there is no storage unit
requirement in these additional edges.

S. THE FLOORPLANNING ALGORITHM

In this section, We describe our T-tree based floorplanning al-
gorithm for digital microfluidic biochips. Our algorithm is based
on the simulated annealing (SA) method [5]. Given a feasible T-
tree, we perturb it to obtain another feasible T-tree through a set
of pre-defined SA operations. After perturbation, we perform the
feasibility detection and tree reconstruction to obtain a feasible
topology with respect to the precedence constraints and storage
constraints. Finally, a packing procedure is invoked to evaluate
the solution quality.
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5.1 Cost Function

Our goal is to optimize the biochip area and assay completion
time under the design specification. Therefore, the cost function
® used in our algorithm is given by

b = GfV/Vnorm + ,BS/SnOTm + ’YM7 (1)
where V' is the volume of the 3D floorplan, S is the total number of
storage units required, Vyorm is the normalized volume, Syorm
is the normalized total number of storage units, and M is the
penalty term for fixed-cube constraint. «, (3, and ~ are user-
specified constants. M is defined as

max(Wy — Wp,0) x Wy
N2 +
w
maz(Ty —Tp,0)
NE

max(Hy — Hp,0) X Hy N

M
2
N;

X Tf 7 (2)

where Ny, (Np, N¢) is the normalized width (height, assay com-
pletion time), Wy (Hp,Tp) and Wy (Hy,Ty) denote the width
(height, assay completion time) of the design specification and a
3D floorplan, respectively. Since we must pack all modules into
a pre-defined 3D cube, we penalize the excessive width, height,
and completion time in the cost function. The rationale behind
M is that when SA minimizes the cost function, it automatically
minimizes the penalty term. Thus, we can automatically satisfy
the fixed-cube constraint.

5.2 Perturbation

The original SA operations defined in [10] contain Move, Swap,
and Rotation. For the placement of digital microfluidic biochips,
we introduce a new type of SA operations, called Rebind. Rebind
is to bind a task to another functional resource. Note that we
need to change the virtual precedence constraints after rebinding
a non-reconfigurable task.

Besides adding the penalty term in the cost function, we bias
the Move operation based on the probability of violating the fixed-
cube constraint in each dimension. Let kw (kp, kt) be the number
of floorplans whose width (height, completion time) exceeds the
user-specified width (height, completion time) in the last n itera-
tions. In this paper, we set n equal 500. We bias the selection of
the destination of the Move operation based on the values ki, /n,
kp/n, and k¢/n. For example, a larger k. /n implies that it is
more difficult to fit the floorplans to the 3D cube in the X direc-
tion. Therefore, we should try to place tasks along the Y or T
direction to satisfy the fixed-cube constraint.

5.3 Feasibility Detection and Tree
Reconstruction

After perturbation, we perform feasibility detection and tree
reconstruction to satisfy all precedence constraints and storage
constraints. We enhance the feasibility detection and the iterative
tree reconstruction process in [10] with the consideration of the
storage constraints. After obtaining a feasible topology of a T-
tree, we invoke the packing procedure to determine the physical
locations for all tasks.

Given a T-tree H, we first check if every storage unit is in
its feasible position. If a storage unit ns is not in its feasible
position, we move ns to one of its feasible positions. Note that
since we modify the topology of H during the tree reconstruction,
the duration of each storage unit may change. To simplify our
algorithm, we thus restrict every storage unit not to have its left
child. By doing so, the starting time of a task will not be affected
by any storage unit during the tree reconstruction. If ns has a
left child, we shall move ns as the middle or the right child of ny,
where ny is one of ng’s children.

Once all storage units are in their feasible positions, we tra-
verse H to obtain the starting time for each task. Next, we check
the precedence constraints and reconstruct H if necessary, based
on the method proposed in [10]. If all precedence constraints are
satisfied, we adjust the number of storage units by deleting an
unused one or inserting a new one. The reason why we choose to
adjust the number of storage units during the tree reconstruction



is that deleting or inserting a storage unit will change the topol-
ogy of H, and the resulting topology may not be feasible. Thus,
we choose to adjust the number of storage units during (instead
after) the feasibility detection and tree reconstruction. When the
topology of H is not changed, which means that all precedence
constraints and storage constraints are satisfied, the process ter-

minates.

[ Operation Area [ Duration (s) |
Generation on-chip 2
Mix (plasma) 2z4-array 3
2x3-array 6
2x2-array 10
lz4-linear array 5
Mix (Serum) 2x4-array 2
2x3-array 4
2x2-array 6
x4-linear array 3
Mix (Urine) 2z4-array 3
2x3-array 5
2x2-array 8
lz4-linear array 4
Mix (Saliva) 2x4-array 4
2x3-array 8
2x2-array 12
lz4-linear array 6
Opt (glucose) LED+Photodiode 10
Opt (lactate) LED+Photodiode 8
Opt (pyruvate) LED+Photodiode 12
Opt (glutamate) | LED+Photodiode 10

Storage 1x1 cell N/A

Figure 5 summaries the feasibility detection and tree
reconstruction process.

Table 1: The microfluidic module library for the in-
vitro diagnostics.

Bioassay

Design
Spec.

[9]

T-tree

Volume

CPU
time

Volume

Protein

102102400

92102400

300

102102270

Duration

Height

Figure 6: A 3D view of the placement result.

while the work [9] cannot. More importantly, [9] required on
average 19% larger volume and 2.67X more CPU time than our
algorithm. For the second bioassay, our algorithm can still satisfy
all design specifications while the work [9] cannot. For the first
design specification that [9] can satisfy, we can obtain a solution
with smaller volume (928266 vs. 9211299) in less CPU time (6
sec vs. 64 sec). The results show the efficiency and effectiveness of
our algorithm with different bioassays and design specifications.
Figure 6 shows the placement result of the colorimetric protein
assay with the 102102400 design specification. For simplicity, we
only show the reconfigurable and detection operations.

7. CONCLUSION

‘We have applied the T-tree representation to the placement
problem of digital microfluidic biochips. To our best knowledge,
this is the first work that adopts a topological representation for
the placement problem of digital microfluidic biochips. We have
also presented our placement algorithm based on the T-tree rep-
resentation. We have shown the efficiency and the effectiveness
of our algorithm. The future work includes more sophisticated
method for handling the storage units and the issues of fault tol-

102102360
112112320

102102342
(82132269)* 208

225 102102262

112112238 66

Avg. 1.19 2.67 1.0

102102100
8x8x120
TxT7x140

9711299 64
(9z92130)* | 104
(92102105)* | 92

928166 6
8xTx68 12
62789 15

in_vitro

8
[2]

Avg. 2.42 7.88 1.0

Table 2: The experimental result. ()*: the result

cannot meet the design specification.

6. EXPERIMENTAL RESULTS

Our algorithm was implemented in the C++ programming lan-
guage and ran on a 1.2 GHz SUN Blade 2000 with 8 GB memory.
We also implemented the unified synthesis and placement algo-
rithm proposed in [9]. For all experiments, we set o = 1/16.5,
B =0.5/16.5, and v = 15/16.5.

We evaluated our placement algorithm with two bioassays: the
colorimetric protein assay [6] and the multiplexed in-vitro diag-
nostics [7]. For the colorimetric protein assay, we applied the
same design specification and used the same microfluidic module
library as [9]. For the multiplexed in-vitro diagnostics, we used
the same design specification as [7]. However, since [7] did not
specify the width and height of each operation, we randomly gen-
erated them. Table 1 shows the microfluidic module library used
for the multiplexed in-vitro diagnostics.

Table 2 summaries the result of the two bioassays. Column 2
lists the design specifications. For each bioassay, we applied three
different design specifications. We reported the resulting volume
(area times assay completion time) and CPU time. For the first
bioassay, our algorithm can meet all three design specifications

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]
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erance and defect tolerance.
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