43.2

Novel Full-Chip Gridless Routing Considering
Double-Via Insertion -

Huang-Yu Chen', Mei-Fang Chiang?, Yao-Wen Chang'?,
Lumdo Chen?, and Brian Han?
!Graduate Institute of Electronics Engineering, National Taiwan University, Taipei 106, Taiwan
2Department of Electrical Engineering, National Taiwan University, Taipei 106, Taiwan
3United Microelectronics Corporation, Hsinchu 300, Taiwan

ABSTRACT

As the technology node advances into the nanometer era, via-open
defects are one of the dominant failures. To improve via yield
and reliability, redundant-via insertion is a highly recommended
technique proposed by foundries. Traditionally, double-via inser-
tion is performed at the post-layout stage. The increasing design
complexity, however, leaves very limited space for post-layout op-
timization. It is thus desirable to consider the double-via inser-
tion at both routing and post-routing stages. In this paper, we
present a new full-chip gridless routing system considering double-
via insertion for yield enhancement. To fully consider double vias,
the router applies a novel two-pass, bottom-up routability-driven
routing framework. We also propose a new post-layout double-
via insertion algorithm to achieve a higher insertion rate. Based
on a bipartite graph matching formulation, we develop an opti-
mal double-via insertion algorithm for the cases with up to three
routing layers and the stack-via structure, and then extend the
algorithm to handle the general cases. Experiments show that
our methods significantly improve the via count, the number of
dead vias, double-via insertion rates, and running times.

Categories and Subject Descriptors: B.7.2 [Integrated Cir-
cuits]: Design Aids - Layout, Placement and Routing

General Terms: Algorithms, Designs, Reliability
Keywords: Manufacturability, redundant via insertion, routing

1. INTRODUCTION

As IC process geometries shrink to 90nm and below, yield and
reliability become first-order cost metrics. Via-open defects are
one of the important failures. A via may fail due to various rea-
sons such as random defects, electromigration, cut misalignment,
and/or thermal stress induced voiding effects. The failure signif-
icantly reduces the manufacturing yield and chip performance.

To improve via yield and reliability, redundant-via insertion is
a highly recommended technique proposed by foundries. If one
via fails, a redundant via can serve as a fault-tolerant substitute
for the failing one. As reported in [15], double vias lead to 10X—
100X smaller failure rates than single vias. Existing approaches
are often for post-layout optimization by replacing a single via
with a double-via structure as long as it does not create any
design-rule violations [1, 11]. The increasing design complexity,

*This work was supported in part by NSC of Taiwan under Grant
No’s. NSC 94-2215-E-002-005 and NSC 94-2752-E-002-008-PAE,
TSMC, and UMC.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

DAC 2006, July 24-28, 2006, San Francisco, California, USA.

Copyright 2006 ACM 1-59593-381-6/06/0007 ...$5.00.

755

however, leaves very limited space for post-layout optimization.
It has been reported that inserting redundant vias during routing
can improve the double-via insertion rates by 15-25% than the
post-layout optimization, at the cost of routability degradation.
Therefore, it is desired to consider the double-via insertion at both
routing and post-routing stages for better trade-off in routability
and double-via insertion rates.

Xu et al. [17] proposed a pioneering work to consider double-
via insertion during maze routing. By assigning double-via costs
to the routing graph, they formulated the problem as a multi-
objective maze routing problem and applied Lagrangian relax-
ation to solve it. However, they only consider the redundant via
at the detailed routing stage, their cost modeling for the num-
ber of vias is not accurate enough, and the high time complexity
of Lagrangian relaxation limits the feasible problem size to be
within hundreds of nets. Yao et al. [18] developed a grid-based
router which features via-minimization global routing followed
by double-via aware detailed routing; the work claimed that the
post-layout double-via insertion problem can be solved by a max-
imum bipartite matching formulation, which was recently shown
to be incorrect for some cases in [11]. Lee and Wang [11] instead
formulated the double-via insertion problem as a maximum inde-
pendent set (MIS) problem. Since the MIS problem for a general
graph is NP-complete, they resorted to heuristics to handle the
problem.

The continuously increasing design complexity imposes severe
challenges for modern routers. Researchers have proposed vari-
ous multilevel frameworks to handle large-scale routing problems.
The traditional A-shaped multilevel routing framework consists of
bottom-up coarsening followed by top-down uncoarsening (e.g.,
MARS [6, 7], MR [3], CMR [8], and MGR [4]) while the V-shaped
one consists of top-down wuncoarsening followed by bottom-up
coarsening (e.g., VMGR [5]). The coarsening stage is a bottom-
up approach that iteratively groups a set of circuit components
(e.g., routing tiles) based on a predefined cost metric. In contrast,
the uncoarsening stage iteratively ungroups a set of previously
clustered circuit components in a top-down manner. The multi-
level frameworks demonstrate the superior capability of handling
large-scale routing problems and the versatility of tackling mod-
ern nanometer electrical effects, such as crosstalk [8] and optical
proximity correction (OPC) [4]. It is also observed that the A-
shaped multilevel framework can handle local circuit effects (such
as routability, congestion, and via minimization) better since it
works in a bottom-up manner and deals with local routing regions
first (i.e., route shorter local nets and then longer global nets) [3,
10]. In contrast, the V-shaped multilevel framework is more suit-
able for handling global electrical effects (such as crosstalk and
critical-path delay) since it works in a top-down manner and copes
with global routing regions first [5].

In this paper, we present a new full-chip gridless routing sys-
tem, named TBR (Two-pass Bottom-up gridless Router), con-
sidering redundant-via insertion for yield enhancement. To fully
consider redundant vias, the router is based on a novel two-pass,
bottom-up routability-driven routing framework. Different from
the previous routing frameworks, TBR adopts a three-stage tech-
nique of a prerouting stage, followed by a bottom-up global rout-

ing stage, and then followed by a bottom-up detailed routing
stage. See Figure 1 for an illustration of the new framework. The
motivation for the two-pass bottom-up approach lies in the obser-
vation that it is more effective to route shorter local nets first for
routability and via optimization [3, 10]. Although the A-shaped
multilevel framework also performs bottom-up coarsening first, it
refines the solution top-down during the following uncoarsening
stage. By using the two-pass bottom-up approach, we can take
full advantage of processing local nets first at the two routing
passes for routability and via optimization.

To-be-routed net

Already-routed net

low

Congestion Prediction

Prerouting Stage
Identify the potential
congested areas based on
the routing topology of
each net to guide the
following global routing.

First Pass Stage
Perform prerouting-guided
congestion-driven global
pattern routing for local
nets and iteratively refine
the solution.

Second Pass Stage
Use path-to-path detailed
maze routing for local nets,
reroute failed nets, and
then estimate the routing
resource level by level.

Figure 1: The new two-pass, bottom-up routing framework.

We also propose a new post-layout double-via insertion algo-
rithm to achieve a higher insertion rate. Based on a bipartite
graph matching formulation, we develop an optimal double-via
insertion algorithm for the cases with up to three routing layers
and the stack-via structure. With the optimal algorithm for the
restricted problem, we then extend it to handle the general case
of any routing layer and via structure.

Experimental results show that our routing system reduces the
via count by 1.20X compared with the state-of-the-art gridless
router [4, 5, 6], and our redundant-via aware detailed router can
effectively obtain fewer dead vias by 1.41X. Additionally, com-
pared with the state-of-the-art double-via insertion algorithm [11],
our post-layout double-via insertion algorithm can achieve 98.6%
double-via insertion rate with at least 70.8X runtime speedup.

The rest of this paper is organized as follows. Section 2 de-
scribes the routing model and the post-layout redundant-via in-
sertion problem. Section 3 presents our novel two-pass, bottom-
up routing framework considering redundant-via insertion. Sec-
tion 4 presents our post-layout double-via insertion algorithm.
Experimental results are reported in Section 5, and conclusions
are given in Section 6.

2. PRELIMINARIES
2.1 Global Routing Model

‘We model the routing resource as a routing graph. For the mod-
eling, we first partition a chip into an array of rectangular global
cells (GCs), each of which may accommodate tens of routing
tracks in each dimension. A node in the routing graph represents
a GC in the chip, whereas an edge denotes the boundary between
two adjacent GC's. Each edge is assigned a capacity according to
the physical area or the size of a GC. A global router finds GC-
to-GC paths for all nets to guide the detailed router. The goal
of global routing is to route as many nets as possible without
violating any capacity constraint of each edge and to meet any
other specified optimization constraints.

2.2 Detailed Gridless Routing Model

The goal of detailed routing is to find a design-rule-correct path
for each connection while meeting every specified constraint. Our
gridless detailed routing applies a graph-search technique based
on an implicit connection graph used in [6], with a modification

756

to guarantee the correctness of the searched path. Figure 2 (a)
gives a detailed routing instance with the source s and target ¢,
and Figure 2 (b) is the corresponding implicit connection graph
constructed based on s, t, and the obstacle zones. An obstacle
zone is a minimum expansion of an existing obstacle (e.g., an
already-routed wire) such that any new routing wire lying on the
boundaries of this obstacle zone would not violate any design rule.
A node in the implicit connection graph is an unroutable node if
it is inside an obstacle zone; it is a routable node, otherwise. The
black and white circles in Figure 2 (b) represent the routable and
unroutable nodes, respectively.

e oy
14

14

ey T oo
b o o [
| violation i
mm s ==—parimiie -
(@)

) (©
[0 Metal 2 [JPin B Via

(d

I Metal 1 E=== Obstacle

Figure 2: The gridless detailed routing model. (a) A de-

tailed routing instance. (b) The implicit connection graph.

(c) An infeasible detailed routing path. (d) A design-rule-

correct detailed routing path.

It should be noted that if there exists a path formed by two
successive routable nodes belonging to the same obstacle zone,
it might be considered a feasible route in [6]. As shown in Fig-
ure 2 (c), nevertheless, a path might illegally cut across one ob-
stacle zone through two routable nodes lying on the boundaries of
this obstacle zone. To guarantee the correctness of the searched
path, Chen et al. [4, 5] added a horizontal and a vertical middle
lines for each obstacle zone. However, this approach would sig-
nificantly increase the search space and thus the running time.
To remedy this deficiency, we search the path by an additional
check to see if the midpoint of the two routable nodes belonging
to the same obstacle zone is an interior point of this obstacle zone.
Figure 2 (d) shows the triangular points representing these addi-
tional checks. Note that each check operation takes only constant
time. In this way, a design-rule-correct detailed routing path can
be efficiently guaranteed.

2.3 Two-Pass Routing Framework Model

As illustrated in Figure 1, G} corresponds to the routing graph
of the level k. The first bottom-up routing pass is the global rout-
ing stage, which starts from coarsening the finest level (level 0) to
the coarsest level. At each level k, our global router finds routing
paths for the local connections (those connections that entirely
sit inside GCl41, where GCj, is the GC of the level k). After
global routing of level k is performed, we merge four GCy’s into a
larger GCk4+1 and at the same time perform resource estimation
for use at next level k+ 1. Coarsening continues until the number
of GC's at a level is below a threshold.

The second bottom-up routing pass is the detailed routing
stage. As the first pass, it processes from coarsening the finest
level to the coarsest level. At each level, a path-to-path detailed
maze routing is performed and rip-up/re-route procedures are
applied for failed nets. The process continues until we reach the
coarsest level when the final routing solution is obtained.

2.4 Post-Layout Double-Via Insertion

After the detailed routing, we have a resulting layout with var-
ious types of vias. For a via, a redundant-via candidate is a can-
didate position where a redundant via can be inserted for this via
without violating any design rule. A via is an alive via if it has
at least one redundant-via candidate for insertion; otherwise, it
is a dead via. A critical via refers to an alive via with exactly one
redundant-via candidate. A via is either a single (conventional)
via or a stack via. A stack via is the via consisting of at least two
vertically stacked single vias.

We treat both the stack via and the single via as one unit via,
since if any one single via contained in a stack via is not paired

with a redundant via, this stack via is still not protected. The
formulation of the post-layout redundant-via insertion problem is
defined as follows:

e Problem PDVI (Post-layout Double-Via Insertion): Given
a post-routing layout, pair each alive via with a redundant
via as many as possible such that no design rule is violated
after the double-via insertion.

3. REDUNDANT-VIA AWARE ROUTING

For via yield enhancement during routing, we shall try to (1)
minimize the via count to reduce the failure probability, and (2)
plan the double-via positions for each via to ensure that a dou-
ble via can be inserted wherever needed in the later post-layout
double-via insertion process.

To deal with the simultaneous optimization, we propose a novel
two-pass, bottom-up routing framework which adopts a three-
stage technique of a prerouting stage, followed by a bottom-up
global routing stage and a bottom-up detailed routing stage (See
Figure 1). The prerouting stage identifies the potentially con-
gested areas to guide the following routing for congestion op-
timization. The two bottom-up routing passes tend to route
shorter nets first level by level, which directly contributes to the
routability enhancements and via-count minimization. Based on
this routability- and via-aware framework, we develop a Two-pass
Bottom-up full-chip gridless Routing system, named TBR. Specif-
ically, TBR consists of (1) a congestion-driven prerouting stage,
(2) a via-minimization global routing stage, and (3) a redundant-
via planning detailed routing stage. We detail the three stages in
the following subsections.

3.1 Congestion-Driven Prerouting Stage

To improve routability, the works [3, 4, 5] integrated global
routing, detailed routing, and resource estimation together at
each level of the framework, leading to more accurate routing
resource estimation. However, this approach might confine the
optimization freedom since global routing and detailed routing
are intertwined with each other.

In order to consider more objectives for congestion minimiza-
tion, TBR features a prerouting stage that identifies the poten-
tially congested areas based on the routing topology of each net.
With the prerouting, TBR can perform global routing and de-
tailed routing separately and leave more flexibility in dealing with
the redundant-via related objectives.

Given a netlist, we first construct a minimum spanning tree
(MST) for each net, and then decompose each net into 2-pin
connections, with each connection corresponding to an edge of the
MST. TBR then pre-estimates the congestion in the routing graph
for all 2-pin connections using the probabilistic congestion model
which has recently been successfully applied to placement [2],
floorplanning [9], and routing [12, 16] and is generally believed to
have the ability to alleviate the net-ordering problem in sequential
routing. TBR pre-evaluates the congestion as the average number
of global 1-bend and 2-bend routes that might pass through the
boundary of adjacent GCs. For a 2-pin connection ¢, we first
explore all possible 1- and 2-bend global routes from its source s
to its target ¢, denoted by the set P.. All routes in P, are the
candidates of global routing solutions for c¢. For a boundary b;
between two GCs, let N.(i) = {r € P. | r is the route passing
through b;}, then the estimated congestion of b; with respect to
c equals |N¢(2)|/|Pc|. For example, as shown in Figure 3 (a), the
connection c has five possible 1- and 2-bend routes from the source
s to target t. Figure 3 (b) gives the number of routes passing
through each global cell boundary b;, |Nc(4)|, and Figure 3 (c)
shows the congestion estimation of ¢ in the routing graph.

3.2 Via-Minimization Global Routing Stage
The first bottom-up global-routing pass is a coarsening process
starting from the finest level to the coarsest level. Our global
routing is based on the approach used for pattern routing [10].
Let the routing graph of level 0 be Go = (Vp, Ep) and the global
routing result for a local connection ¢ be R. = {e € Eq | e is the

to 3 A 305 (205~ 115
2/5| 1/5| 1/5] 115]

:> 1 1 1 :> O 1/5 1/5 1/5
us| sl us| 25
! ! ! 2

S | 2 3
o
(a) (b) (©)

Figure 3: Probabilistic congestion estimation. (a) Two 1-
bend and three 2-bend routes from s to ¢. (b) The number of
routes through each boundary. (c) The pre-estimation con-

gestion in the routing graph.

edge chosen for routing}. For the congestion control, we define
the cost function of the global routing result R. as follows:

cost(Re) = « max (c8
ecR

\RC 2 ce W

eCRc

where «, 3 are user-defined parameters and c. denotes the con-
gestion of edge e which is defined by

Ce = de/p& (2)

where de and pe. are the density and capacity associated with
e, respectively. By dynamic density, pattern routing uses an L-
shaped (1-bend) or Z-shaped (2-bend) route to make the connec-
tion, which gives the shortest path length between two points.
Therefore, the wire length is minimum, and thus we do not in-
clude it in the cost function at this stage. This cost function can
guide our global router to select a path with smaller maximum
and average congestion. Note that the density de in Equation (2)
comes from both the predicted congestion obtained at the pre-
routing stage and real routing. Its value is dynamically updated
as the routing proceeds.

3.3 Redundant-Via Aware Detailed Routing
Stage

Same as the global-routing stage, the second bottom-up detail-
routing pass is a coarsening process starting from the finest level
to the coarsest level. In addition to the routability consideration,
we shall also maximize the possibility for post-layout redundant-
via insertion in this stage. To do so, Xu et al. [17] considered via
minimization and redundant-via planning during detailed rout-
ing. They assigned redundant-via costs to edges of the detailed
routing graph to estimate the number of dead vias induced by
the route and applied Lagrangian relaxation to solve the prob-
lem. However, their cost assignment is not suitable for gridless
routing because there exists no uniform grid for gridless rout-
ing, and the high time complexity of Lagrangian relaxation limits
their applications to only hundreds of nets.

To consider redundant-via planning and via minimization si-
multaneously, we define the following cost function for a net n to
guide the maze routing:

cost(n) = vV + 6Py, 3)

where v and § are user-defined parameters, V;, is the number of
vias in n, and P, is a redundant-via related penalty function for
n.

We explain the determination of P,. We call a redundant-via
candidate as a safe neighbor if it is always available (e.g., it has a
special position such that it never vanishes due to other nets pass-
ing through it) and is not shared with any other via. A via with
at least one safe neighbor is called a safe via (see Figure 4 (a)).
Since a safe via can always be protected by its safe neighbor, we
set the cost 0 to all its redundant-via candidates. The degree
of freedom of a via v, denoted by DoF, is the total number of
redundant-via candidates of v, as defined in [17]. If via v is not
a safe via, we assign the cost 1/DoF, to its redundant-via candi-
dates. The rational is that if via v becomes a dead via due to the

route n (i.e., n passes all the redundant-via candidates of v), the
cost for routing n would be increased by DoF, X ﬁl«‘“ =1, which
exactly equals the number of the induced dead via. Note that a
redundant-via candidate r, may be shared by more than one via.
In this case, we set the cost of r, as {max{1/DoF,,} | v; is the
via that shares 7, }. Figure 4 (b) shows the redundant-via can-
didates and their cost assignments. Finally, the penalty function
Py, of net n is the summation of the costs of the redundant-via
candidates that are passed through by n. The P, of the route n
in Figure 4 (c) is calculated as 1/34+1/2+1/3 =7/6.

Safe Vias
&
\A— Safe Neighbors \— DoF =2
(a) (b) (c)
B Vet [00] Metl2 f% via N Redundant-Via Candidate

Figure 4:

(a) Safe neighbors and safe vias.

Redundant-via related penalty assignment.
(b) Cost assignments.

(c) The penalty function of the route n equals 7/6.

Let the number of dead vias induced by a net n be ®(n). We
have the following theorem for the redundant-via related penalty
function.

THEOREM 1. ®(n) < Pp.

4. POST-LAYOUT DOUBLE-VIA INSERTION

For the PDVI (Post-layout Double-Via Insertion) problem, we
develop a polynomial-time optimal double-via insertion algorithm
for the case with up to three routing layers (i.e., two via lay-
ers) and the stack-via structure (i.e., two or more vias vertically
stacked are treated as one stack via; see Figure 5 (a)), based on
a bipartite graph matching formulation. With the optimal algo-
rithm for the restricted problem, we then extend it to handle the
general case of any number of routing layers and via structure.
With our method, the counterexample shown in [11] that can-
not be solved by the method presented in [18] can be formulated
exactly as shown in Figure 5 (b).

Alive Redundant-Via
Vias Candidates

Cross-Section View

Aerial View

(a) (b)
B Metal | [0 Metal 2 [0 Metal 3 Metal 4 FEg Via I\ Redundant-Via Candidate

Figure 5:
(a).

(a) Stack-via structure. (b) Bipartite graph of

4.1 Optimal Algorithm for up to Three Rout-
ing Layers

Our bipartite graph construction is as follows. Given a re-

sulting routing layout, we first construct an undirected bipartite

graph, G(V, E), with two disjoint vertex partitions V4 and Vg

such that V' = V4 U V. Here, V4 is the set of alive vias, and Vg

is the set of redundant-via candidates. For v € V4 and r € V¢,

758

an edge (v,r) € E exists if r is a redundant-via candidate of
v. Next, we merge two nodes r;,7; € V¢ into one node r; ; if
there is a vertical or horizontal design-rule conflict between the
redundant-via candidates r; and r; (i.e., 7; and r; cannot be si-
multaneously inserted). For example, Figure 6 (a) is a resulting
gridless routing layout, where a horizontal conflict exists between
rq4 and r5 and a vertical conflict exists between r7 and rg. See
Figure 6 (b) for the cross-section view of the vertical design-rule
conflict between r7 and rs. Figure 6 (c) gives the initial bipartite
graph construction, and Figure 6 (d) presents the final bipartite
graph after merging r4 and r5 into r4,5 and merging r7 and rg
into 77,8. For this modeling, a matching (v,r) € E in the bipar-
tite graph will represent that an alive via v € V) is paired with
a redundant via r € V¢ in the resulting routing layout. Notice
that this approach readily extends to more general cases, since
the bipartite graph construction can be applied to both gridless
and grid-based layouts.

Redundant-Via
Candidates

Redundant-Via
Candidates

Alive
Vias

Alive
Vias

©
OO

I
@) Q

9,
9l

(©)
N Metal | [0 Metal 2 [Via
] Metal 3 Metal 4] Redundant-Via Candidate

Figure 6: Bipartite graph construction. (a) A gridless rout-
ing layout. (b) A cross-section view for the vertical design-
rule conflict between r7 and rg. (c) The initial bipartite graph
without considering conflicts. (d) The final bipartite graph

after merging r4, rs and r7, rs.

We have the following lemmas and theorem for the optimality
of our bipartite graph formulation.

LEMMA 1. The line graph [14] of a bipartite graph formulating
the PDVI problem is isomorphic to the conflict graph [14] under
the stack-via structure constraint.

LEMMA 2. A mazimum matching in the formulated bipartite
graph corresponds to a maximum independent set in the conflict
graph.

THEOREM 2. The mazimum bipartite matching algorithm op-
timally solves the PDVI problem (i.e. the number of double via
inserted is mazimum) with up to three routing layers (i.e., two
via layers) and the stack-via structure in O(vV'V E) time, where
V' is the number of vertices and E is the number of edges in the
bipartite graph.

4.2 On-Track/Stack Redundant Via Enhance-
ment

In the redundant-via insertion process, redundant vias can be
placed on-track or off-track. A redundant via r of a via v is
on-track if r is placed on the wire segment of v; it is off-track,
otherwise. In Figure 6, redundant-via candidates r2 and r3 are
on-track, whereas r; and r4 are off-track. Since on-track redun-
dant vias consume fewer routing resources than off-track ones, we
prefer selecting on-track redundant-via candidates for insertion.
Further, we can also give higher priority to the redundant-via
candidates of stack vias to improve the reliability since stack vias

are more defect-prone and thus more desired for protection than
single vias.

We formulate the PDVI problem considering on-/off-track re-
dundant vias and stack vias as a minimum weighted bipartite
matching problem. The construction of vertices and edges are
the same as Section 4.1, while the edge weight w(v,) of an edge
(v,7) € E is given by

Ir ©jf v is a stack via containing ns single vias;
w(v,r) =1q n= :
tr, otherwise.

1, if r is on-track;
2, if r is off-track.

1 ={

With this weighting policy, the minimum weighted bipartite
matching will give us a solution which prefers more on-track re-
dundant vias and provides more protection for stack vias.

4.3 Two-Stage Double-Via Insertion Algorithm

For the general case with any number of routing layers, we
propose a Two-stage Double-Via Insertion (TDVI) algorithm by
extending the algorithm for up to three routing layers and the
stack-via structure.

First, we partition the original layout into sublayouts composed
of up to three routing layers each, with the objective to minimize
the number of vertical design-rule conflicts between sublayouts.
Every redundant-via candidate r is associated with a criticality
cr. If r has a vertical design-rule conflict with some redundant-
via candidates lying in the different sublayouts, then ¢, equals
the number of induced dead vias if r is inserted; ¢, equals 0, oth-
erwise. The criticality value of a sublayout is the summation of
the criticalities of redundant-via candidates inside it. We then
find solutions for the sublayouts one by one in the non-decreasing
order of the criticality value. The sublayout with a lower crit-
icality value has higher priority for processing since it contains
more critical vias adjacent to the cut lines. During the subprob-
lem solving stage, if we prefer selecting on-track/stack redundant
vias, the subproblem is formulated as a minimum weighted bi-
partite matching problem as in Section 4.2; otherwise, it is solved
by maximum bipartite matching as in Section 4.1 to maximize
the insertion rate. After solving one sublayout L;, all sublayouts
adjacent to L; need to be updated by removing the infeasible
redundant-via candidates. Continuing with the process, we can
obtain the final solution for the original layout.

For the example shown in Figure 7, the 4-layer layout is parti-
tioned into 2 sublayouts L; and L; with a vertical conflict between
them. The criticalities of 1 and 7 are equal to 1 and 2, respec-
tively. Then the 2-layer sublayout L; is processed before the 3-
layer sublayout Lj since L; has lower criticality value than L;. Af-
ter getting the solution {(v1,71), (v2,r2)} for L¢, Ly, is updated by
removing the infeasible redundant-via candidate r¢. After getting
the solution {(v3,r3), (va,r4), (ve,r8)} for Ly, the final solution
for the whole layout is {(v1,71), (v2,72), (v3,73), (v4,74), (v6,78)}
The TDVI algorithm is summarized in Figure 8.

Note that for the maximization of the redundant-via insertion
rate, the TDVT algorithm is optimal if no conflicts exist between
the partitioned sublayouts, since each sublayout can be solved
optimally with maximum bipartite matching.

S. EXPERIMENTAL RESULTS

The TBR algorithm has been implemented using the C++ pro-
gramming language on a 1.2 GHz SUN Blade-2000 workstation
with 8 GB memory. The 11 experimental routing benchmarks
are provided by the authors of [6] and are commonly used in this
community.

We compared TBR with three state-of-the-art gridless routers:
the A-shaped multilevel router MGR [4], the multilevel global
routing+flat gridless detailed routing system (MARS) [6], and
the V-shaped multilevel router (VMGR) [5]. MGR and VMGR
were provided by the authors of [4, 5]. The experimental results
on the single via count, routing completion rate, and runtime are
listed in Table 1. Here the four routers were all performed in

759

L; | Criticality Value: 1

(a)
B Vel | [0 Metal2 B3 Via L, | Criticality Value: 2
[Metal 3 Metal 4 [\ Redundant-Via Candidate (b)

Figure 7: An illustration of TDVI algorithm. (a) The cross-
section view of the whole layout. (b) Bipartite graphs of the

subproblems.

Algorithm: TDVI(L, Vo, on-track-stack-enh)
Input : L - a resulting routing layout;
Ve - a set of redundant-via candidates in L;
on_track_stack_enh - a flag indexing if
preferring on-track/stack redundant vias.
Output : S - a solution for double-via insertion.

begin

1 S0

2 if metal-layer(L) < 3

3 if (on_track_stack_enh)

4 S «— MinimumW eightedBipartite Matching(L);

5 else

6 S «— MazimumBipartiteMatching(L);

7 else

8 E¢ is the set of vertical design-rule conflicts, Ec « 0;

9 for each pair r;,7; € Vo with any vertical design-rule conflict

0 Eo— BoU () s
/* Partitioning Stage */

11 Partition L into sublayouts {L1, L2, ..., Ly} by Ec such that
metal_layer(L;) < 3 and # of conflicts between sublayouts
is minimized;

/* Calculating Criticality */

12 for each {(r;,r;) € Ec | i and r; lie in the different sublayouts}

13 Criticality ¢,; « # of induced dead vias if r; is inserted;

14 Criticality Crj — # of induced dead vias if r; is inserted;

15 for each sublayout L; € L

16 CVLi is the criticality value of L;, CVL1 — EreLi Cr;
/* Subproblem Solving Stage */

17 < L', L},...,L), >« sorted by non-decreasing CVi,;

18 for L) = L' to L/,

19 if (on_track_stack_enh)

20 Sy« MinimumW eightedBipartiteMatching(L’,);

21 else

22 Sy — MazimumBipartiteMatching(L});

23 S—SuUS,;

24 Remove the Linfeasible redundant-via candidates;

25 return S;

end

Figure 8: TDVI Algorithm.

the routability-driven mode. MGR, VMGR, and TBR were run
on the same machine while the results of MARS were directly
taken from [6]. (Note that [6] does not report the via count
for MARS, and MARS was run on a 440 MHz SUN Ultra-10
workstation. We tried our best to make a fair comparison by
normalizing its runtime by the factor 440/1200 based on the clock
rates and reported the normalized results in Table 1.) As shown
in the table, all the four routers obtain 100% routing completion,
while TBR achieves about 7.2X, 2.6X, and 1.4X runtime speedups
compared with MGR, MARS, and VMGR, respectively. Further,
TBR reduces the single-via count by respective 20% and 24% over
MGR and VMGR.

We also performed experiments on double-via aware gridless
detailed routing. Table 2 shows the routing results of TBR with
and without double-via planning during detailed routing. In the
table, “#Total Via” gives the total number of vias in the routing

result, “#Dead Via” gives the number of dead vias and “#Critical
Via” denotes the number of critical vias. The experimental results
show that the redundant-via aware detailed routing results in
fewer dead vias and critical vias by the respective factors 1.41X
and 1.14X using similar running times. The slight increase in the
via count (2%) is as expected because the detailed router has to
make detours not to incur more critical and dead vias. The small
overhead on the via count also reflects the effectiveness of the via
control by Equation (3).

We compared our TDVI algorithm with H2K and H3K algo-
rithms proposed in [11] for post-layout double-via insertion. Both
H2K and H3K divide the original graph into subgraphs and use
an MIS solver to solve each subgraph. H2K can achieve higher
insertion rate than H3K while H3K is a modified heuristic of H2K
and can increase the number of on-track redundant vias. Since
H2K and H3K use gualez-ms [13] as their MIS solver, which is
a Linux-based package, we performed the experiment on a Linux
PC with an Intel Pentium 4 3.2 GHz CPU and 3 GB memory. The
settings for the subgraph size (set to 1500) and the priority queue
are the same as [11]. We ran TBR on the benchmarks to generate
routing results, which were then fed into H2K, H3K, and TDVI
for post-layout double-via insertion. Our routing and double-via
insertion results are both passed the Design Rule Check (DRC)
verification by the Cadence SOC Encounter.

Table 3 shows the double-via insertion comparison between
TDVI and H2K. In the table, “Via Info.” gives the total number
of vias “#Total Via” and alive vias “#Alive Via” for the routing
results, “#Ins. Rvia” shows the number of inserted double vias
after the insertion process, “Ins. Rate” is equal to “#Ins. Rvia”
divided by “#Alive Via”, “4#On-Track Rvia” represents the num-
ber of on-track double vias, and “On-Track Rate” equals “#On-
Track Rvia” divided by “#Ins. Rvia”. Compared with H2K, on
average TDVI obtains 299.3X runtime speedup and achieves a
higher insertion rate at 98.6%.

With the on-track/stack redundant via enhancement, we com-
pared TDVI with H3K. Table 4 shows the results. Compared
with H3K, on average TDVI obtains 70.8X runtime speedup and
achieves a higher insertion rate at 98.6% with the on-track inser-
tion rate at 79.2%. The runtime improvement is as we expected
because the bipartite matching enjoys polynomial-time complex-
ity, whereas the MIS problem is NP-complete. Thus H2K and
H3K need more running times for achieving high solution quality.

Notice that in Table 3, the insertion rates obtained by TDVI
for all circuits except “Mccl” and “Mcc2” are optimal because
these designs contain only three routing layers. For “Mccl”, it is
also reasonable that the number “#Ins. Rvia” in Table 4 is more
than that in Table 3 because the insertion process is not optimal
for designs with more than three routing layers.

Table 1: Comparison for gridless routers.

MGR [4] MARS [6] VMGR [5] TBR (Ours)

Circuit ||#Single] Cmp.| Time || Cmp.| Time |[#Single] Cmp.| Time ||#Single| Cmp.| Time

Via | Rate | (s) Rate | (s) Via | Rate | (s) Via | Rate | (s)
Mccl | 5791 [100%]| 171.2 |[100%| 38.8 || 5765 [100%| 51.5 || 5687 [100%| 25.7
Mcc2 [|33093 |100%]3339.9 || 100%(702.9 ([34387 [100%|1149.1 [|33153 [100%]783.0
Struct |[10055 [100%]| 5.9 [|100%| 11.6 || 9969 [100%| 3.5 7248 |100%| 2.8
Primaryl|[6374 [100%| 4.6 ||100%]| 12.3 || 6169 |100%| 4.2 5347 |100%| 2.7
Primary2|[25955 [100%]| 42.0 [|100%| 59.7 [[24977 [100%| 23.7 {22365 [100%| 17.7
S5378 | 8296 [100%| 41.0 |[100%]| 11.0 || 8520 |100%| 4.6 6784 |100%| 4.0
$9234 | 6833 [100%| 22.6 |[100%]| 8.4 || 6690 |100%| 3.4 5350 [100%]| 2.9
S13207 |[17127 [100%]| 122.6 [|100%| 31.2 [[18263 |100%| 15.7 || 13767 [100%] 11.6
S15850 |[19875 [100%| 326.0 [|100%]| 39.3 ||23405 |100%| 20.0 || 16633 [100%| 16.4
S38417 (50304 [100%| 362.8 (| 100%]| 92.0 ||52798 |100%| 55.9 || 40655 |100% | 43.7
S38584 (67026 [100%]| 688.6 [|100%[170.9 [[74054 [100%]| 191.6 || 54483 |100%]148.5
Comp. || 1.20 |100%| 7.2 |[100%] 2.6 1.24 [100%| 1.4 1 [100%] 1

6. CONCLUSION

We have presented a new two-pass bottom-up full-chip gridless
router, named TBR, considering double-via insertion for yield en-
hancement. We have also proposed an optimal polynomial-time
post-layout double-via insertion algorithm for the cases with up
to three routing layers and the stack-via structure, and have ex-
tended the algorithm to handle the general problem. Experi-
mental results have shown the effectiveness and efficiency of the
proposed methods.

760

Table 2: Redundant-via aware gridless detailed routing.

Without Redundant Via Consideration With Redundant Via Consideration
Circuit | Comp. | #Total | #Dead |#Critical| Time || Comp. | #Total | #Dead |#Critical| Time
Rate Via Via Via (s) Rate Via Via Via (s)
Meccl 100% | 5385 616 1546 | 25.7 || 100% | 5508 | 388 1313 29.8
Mcce2 | 100% | 31237 | 4179 | 8741 |783.0 || 100% | 32153 | 2617 | 7518 |997.3
Struct || 100% [6763 58 664 2.8 100% | 7097 | 42 531 3.1
Primaryl{[100% | 5176 100 950 2.7 || 100% | 5325 | 63 800 3.0
Primary2|f 100% | 21788 | 586 | 4298 | 17.7 | 100% | 22338 [435 | 3789 | 20.0
S5378 || 100% | 6448 619 1656 4.0 100% | 6411 | 445 1498 5.0
$9234 | 100% | 5144 | 434 1284 | 2.9 100% | 5158 | 338 1140 34
S13207 || 100% | 13263 | 1037 | 3248 11.6 || 100% | 13443 | 786 2913 14.2
S15850 |[100% [15969 | 1396 | 3950 | 16.4 | 100% | 16179 [1077 | 3695 | 20.6
S38417 |[100% [39289 | 3287 | 9702 | 43.7 | 100% | 39489 | 2477 | 8804 | 53.0
S38584 || 100% | 52295 | 4509 | 13358 |148.5 || 100% | 53057 | 3330 | 12185 [175.3
Comp. 1.00 0.98 1.41 1.14 0.84 1 1 1 1 1

Table 3: Comparison for double-via insertion with H2K.

Via Info. H2K [11 TDVI (Ours)
Circuit #Total | #Alive || #Ins. Ins. | #0On- | On Time || #Ins Ins. #0n- | On- [Time
Via Via Rvia Rate | Track | Track (s) Rvia Rate | Track | Track | (s)
Rvia | Rate Rvia | Rate
Mccl | 5508 | 5120 |[4932 [96.3% | 2318 | 47.0% | 45.6 5027 | 98.2% | 2172 | 43.2% | 0.26
Mce2 | 32153 | 29536 || 28670 | 97.1% | 12982 | 45.3% | 395.9 || 29124 | 98.6% | 12524 | 43.0% | 1.74
Struct [7097 | 7055 7019 | 99.5% | 3001 | 42.8% | 104.4 7053 | 99.9% | 3444 | 48.8% | 0.23
Primaryl| 5325 | 5262 |[5207 [99.0% | 2405 | 46.2% | 73.1 5258 | 99.9% | 2630 | 50.0% | 0.16
Primary2| 22338 | 21903 || 21713 [99.1% | 10242 | 47.2% | 305.6 | 21872 | 99.9% | 11275 | 51.5% | 0.75
S5378 | 6411 | 5966 || 5611 | 94.0% | 2724 | 48.5% | 59.5 5830 | 97.7% | 2664 | 45.7% | 0.20
S9234 | 5158 | 4820 || 4543 | 94.3% | 2271 | 50.0% | 50.8 4741 | 98.4% | 2119 |44.7% | 0.16
S13207 | 13443 | 12657 || 11983 | 94.7% | 5970 | 49.8% | 97.6 12403 | 98.0% | 5541 | 44.7% | 0.43
S15850 | 16179 | 15102 || 14272 | 94.5% | 7033 | 49.3% | 132.3 || 14773 | 97.8% | 6734 | 45.6% | 0.52
S38417 | 39489 | 37012 || 35093 | 94.8% | 17469 | 49.8% | 354.0 || 36319 | 98.1% | 16198 | 44.6% | 1.37
S38584 | 53057 | 49727 || 46823 | 94.2% | 23044 | 49.2% | 427.9 || 48632 | 97.8% | 21967 | 45.2% | 1.98
Comp. 098 |96.1% - 47.7% | 299.3 1 98.6% - 46.1% 1
Table 4: Comparison for double-via insertion with H3K
(TDVI runs with on-track/stack redundant via enhance-
ment).
Via Info. H3K (11 TDVI (Ours)
Circuit #Total| #Alive || #Ins. Ins. #0n- | On- | Time || #Ins. Ins. #0n- [On- | Time
Via Via Rvia | Rate | Track | Track | (s) Rvia Rate | Track | Track (s)
Rvia | Rate Rvia | Rate
Mccl [5508 [5120 |f 4908 [95.9% | 3494 | 71.2% | 14.6 || 5028 [98.2% | 3802 [75.6% | 0.27
Mcc2 [32153] 29536 || 28650 | 97.0% | 21698 | 75.7% | 17.9 || 29118 | 98.6% | 22056 | 75.7% | 1.80
Struct | 7097 [7055 || 7029 | 99.6% | 5552 | 79.0% | 27.5 || 7053 [99.9% | 5929 | 84.1% | 0.24
Primaryl| 5325 | 5262 || 5201 | 98.8% | 3853 | 74.1% | 37.8 || 5258 | 99.9% | 4309 | 82.0% | 0.16
Primary2| 22338 21903 || 21677 | 99.0% | 17370 | 80.1% | 32.8 || 21872 | 99.9% | 17831 | 81.5% | 0.76
S5378 | 6411 | 5966 || 5571 | 93.4% | 4181 | 75.0% | 1.6 5830 | 97.7% | 4485 | 76.9% | 0.20
S9234 | 5158 | 4820 || 4559 | 94.6% | 3228 | 70.8% | 32.2 || 4741 | 98.4% | 3749 | 79.1% | 0.15
S13207 |13443| 12657 (| 11944 | 94.4% | 9258 | 77.5% [12.5 || 12403 | 98.0% | 9878 | 79.6% | 0.44
S15850 | 16179| 15102 || 14214 | 94.1% | 11072 | 77.9% | 26.2 || 14773 | 97.8% | 11594 | 78.5% | 0.53
S38417 |39489| 37012 || 35091 | 94.8% | 27621 | 78.7% | 8.4 || 36319 | 98.1% | 28858 | 79.5% | 1.41
S38584 [53057] 49727 || 46817 | 94.1% | 36314 | 77.6% | 28.8 || 48632 | 97.8% | 38322 | 78.8% | 2.02
Comp. 0.97 | 96.0% - 76.2% | 70.8 1 98.6% - 79.2% 1

7. REFERENCES

[1] G. A. Allan, “Targeted Layout Modifications for Semiconductor
Yield/Reliability Enhancement,” IEEE TSM, vol. 17, Nov. 2004.

U. Brenner and A. Rohe, “An Effective Congestion-Driven Placement
Framework,” IEEE TCAD, vol. 22, No. 4, pp. 387-394, Apr. 2003.

Y.-W. Chang and S.-P. Lin, “MR: A New Framework for Multilevel
Full-Chip Routing,” IEEE TCAD, vol. 23, no. 5, pp. 793-800, May 2004.
T.-C. Chen and Y.-W. Chang, “Multilevel Gridless Routing Considering
Optical Proximity Correction,” Proc. ASP-DAC, pp. 1160-1163, Jan. 2005.
T.-C. Chen, Y.-W. Chang, and S.-C. Lin, “A Novel Framework for
Multilevel Full-Chip Gridless Routing,” Proc. ASP-DAC, pp. 636—641, Jan.
2006.

J. Cong, J. Fang, M. Xie, and Y. Zhang, “MARS—-A Multilevel Full-Chip
Gridless Routing System,” IEEE TCAD, vol. 24, no. 3, pp. 382-394, Mar.
2005.

J. Cong, J. Fang, and Y. Zhang, “Multilevel Approach to Full-Chip
Gridless Routing,” Proc. ICCAD, pp. 396-403, Nov. 2001.

T.-Y. Ho, Y.-W. Chang, S.-J. Chen, and D.-T. Lee, “Crosstalk- and
Performance-Driven Multilevel Full-Chip Routing,” IEEE TCAD, vol. 24,
no. 6, pp. 869-878, Jun. 2005.

Y.-L. Hsieh and T.-M. Hsieh, “A New Effective Congestion Model in
Floorplan Design,” Proc. DATE, vol. 2, pp. 1204-1209, Feb. 2004.

R. Kastner, E. Bozorgzadeh, and M. Sarrafzadeh, “Pattern Routing: Use
and Theory for Increasing Predictability and Avoiding Coupling,” IEEE
TCAD, pp. 777-790, Nov. 2002.

K.-Y. Lee and T.-C. Wang, “Post-Routing Redundant Via Insertion for
Yield/Reliability Improvement,” Proc. ASP-DAC, pp. 303-308, Jan. 2006.
J. Lou, S. Thakur, S. Krishnamoorthy, and H. S. Sheng, “Estimating
Routing Congestion Using Probabilistic Analysis,” IEEE TCAD, vol. 21,
no. 1, pp. 32-41, Jan. 2002.

QUALEX package, http://www.busygin.dp.ua/npc.html

D. B. West, Introduction to Graph Theory, Prentice Hall, 2nd Ed., 2001.

J. G. Xi, “Improving Yield in RTL-to-GDSII Flows,” EE Times, Jul. 11,
2005.

J. Xiong and L. He, “Probabilistic Congestion Model Considering
Shielding for Crosstalk Reduction,” Proc. ASP-DAC, pp. 739-742, Jan.
2005.

G. Xu, L.-D. Huang, D. Z. Pan, and M. D. Wong, “Redundant-Via
Enhanced Maze Routing for Yield Improvement,” Proc. ASP-DAC,

pp. 11481151, Jan. 2005.

H. Yao, Y. Cai, X. Hong, and Q. Zhou, “Improved Multilevel Routing
with Redundant Via Placement for Yield and Reliability,” Proc. GLSVLSI,
pp. 143-146, 2005.

[11]

[12]

(18]
[14]
[15]

[16]

(17]

(18]

