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Abstract

For deep-submicron, high-performance circuits, the inductive effect
plays a very important role in determining the circuit delay. In this paper,
we derive accurate formulae for modeling the delays of buffered RLY/RLC
wires and trees. Our formulae can handle balanced and un-balanced trees
and consider buffer insertion. Extensive simulations with HSPICE show
that the formulae have high fidelity, with an average error of within 5.51%
based on the 180 nm technology. The simulations show that our formulae
are more accurate than previous works.

1 Introduction

As technology advances into the very deep-submicron era, interconnect
delay dominates overall circuit performance. Therefore, accurately model-
ing the interconnect delay becomes a major challenge in high performance
I1C design. For deep-submicron, high-performance circuits, ignoring induc-
tance effects may incur a large amount of error, since an RC model as
compared to an RLC model may create errors of up to 30% in the total
propagation delay of arepeater system [9]. Astechnology improvesand die
sizeincreases, short rise/fall times of signals and long wires make inductive
effects more significant than before [15]. Therefore, it is very important to
consider the effects of inductance.

Timing is a crucial concern in the design of high-performance circuits.
Arunachalam et a. in [3] proposed accurate CMOS gate delay models
for general RLC loads. The waveform resulted from their delay model
excellently agrees with SPICE results; however, they do not present any
formula for propagation delay. Many delay models have been proposed
to calculate delay (e.g., [4, 5, 9, 14, 18]); however, these models cannot
apply to tree structures. Modeling and analysis techniques for timing cal-
culation under tree structures have been studied extensively in the litera-
ture[1, 2,7, 8, 10, 11, 12]. Previous work in [1] proposed a method (Fitted
Elmore Delay) for delay estimation by using the curve fitting technique.
However, their work does not consider inductance. The work in [2] only
considered the RC' delay model, and did not include the inductance effect.
The works in [7, 8] extended the Elmore delay to include the inductance
effect, but they did not consider buffer insertion/sizing. Ismail and Fried-
man in [10] proposed an algorithm for buffer insertion/sizing in an RLC
tree. However, if the tree is unbalanced, as pointed out in the paper, the de-
lay estimation may incur significantly larger errors. The worksin [11, 12]
adopted two-pole simulation of interconnect trees via the moment match-
ing technique, and used non-uniform lumped segments to model the dis-
tributed lines. However, they did not apply buffer insertion/sizing to reduce
the delay. Kahng and Muddu in [13] provided an analytic delay model for
interconnection lines under the step input, and extended their model to es-
timate the delay in arbitrary interconnect trees. However, their model does
not consider buffer insertion/sizing, and cannot cal culate for any percentage
of delay time. Ismail and Friedman in [10] presented an algorithm to insert
and size buffersin an RLC tree for minimizing the delay. However, their
empirical formulae obtained by curve-fitting with circuit simulation were
only for the 50% propagation delay and the 10%—90% risetime. Therefore,
their works cannot treat any percentage of delay time. Banerjee in [4] con-
sidered buffer insertion/sizing for an RLC interconnection line and did not
handle the problem with the tree structure. Table 1 compares the features of
important related works.

Buffer Interconnection Calculation for
Insertion/Sizing Trees any percentage delay
4 v v
(10 v v
13 v
Our Work V4 V4 IV

Table 1: Comparison of features with the related previous works.

In this paper, we derive accurate formulae for modeling the delays of
buffered RLY/RLC wires and trees. The RLY model not only can model
RLC interconnect, but also can consider off-path subtree effects. Our for-
mulae can handle balanced and un-balanced trees and consider buffer in-
sertion. Extensive simulations with HSPICE show that the formulae have
high fidelity, with an average error of within 5.51% based on the 180 nm
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technology. The simulations show that our formul ae are more accurate than
related previous works.

The remainder of thispaper isorganized asfollows. Section 2 introduces
some notations. Section 3 gives the delay models for RLY/RLC wires
and trees. Section 4 shows the experimental results, and finally concluding
remarks are given in Section 5.

2 Preliminaries

We use the following notations throughout this paper.
hi: the length of wire .
r: the unit-length resistance of awire.
[: the unit-length inductance of awire.
c: the unit-length capacitance of awire.
cp: theinput capacitance of a minimum sized buffer.
7. the output resistance of a minimum sized buffer.
¢p: the output parasitic capacitance of a minimum sized buffer.
k: the size of a buffer.
Rg: the resistance of the driver.
C'.: the capacitance of the load.

3 Accurate Delay Model
3.1 Delay Model for RLY Wires

S RN LN R] L] T
Y\ =AstBs Y,=A,s+B s

Figure 1: Anequivalent single”RLY” linefor an RLC tree.

Sriram and Kang in [16] developed an equivalent single RLY line (see
Figure 1) for an RLC tree, where N is the number of RLY sectionsin an
RLC tree. Asshown in Figure 2, we can model a distributed RLC' line of
length h; asasingle RLY segment. The transfer function for the structure

R=rh; L=lh,
— >

<— h —> Y=sch;
Figure 2: Aninterconnect wire can be modeled asa RLY segment.

of Figure 1 isgiven by
Vo (s) _ 1
Vi(s) T 14 b1s+bas2+ ...

By the approximation method proposed by Gao et al.
proximate Equation (1) asfollows:

H(s) (€
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Thefirst and second moments of the transfer function from Equation (1) can
be obtained by the coefficientsb; and bs, i.e., My = by and My = b1 2 —by.
The two poles s; and s2 of the transfer function could be real or complex
depending onthe sign of (b1 2 —4bs). Thus, we separately discussthe results
from two poles response for each of these cases classified in [13].



Casel. Real Poles: The condition for this caseis (b;2 — 4b2) > 0. The
step response, which is the inverse Laplace transform of %H(s), is

given by
v(t) = Vo(l-— 52 et 4 S—lesﬂ)7 +
So — 81 So — 81 Vv
mn
where -
. b0 —dbs Figure 4: A CMOS inverter drives an RLC load.
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For astep input, the f x 100%, (where0 < f < 1) delay, 7, (ie, 3.2 Delay Model for Buffered RLC Load

v(1) = fVo) isthe solution of the following equation [4]: A CMOS inverter driving an RLC load is shown in Figure 4. For an
i ] interconnect wire of length h;, its total resistance is R = rh;, total induc-

1—f——22 g7y S1 27 g (@ tanceisL = lh;, and total capacitanceis C' = ch;, wherer, [, and c arethe

S2 = 91 s2 =91 resistance, inductance, and capacitance per unit length of the interconnect,

. respectively. To consider the velocity saturation effectsin short-channel de-
Traetthorg,elwe f[:ﬁn use tggl Nelwt:danaé)hsor] met;od tonumericaly  \ices 'a CMOS inverter is modeled by using the alpha power law [17]. V,
solve the delay that was calculated by Equation (2). and V; are the output voltage of the CMOS inverter and the output voltage

Casell. Complex Poles: The condition for this case is (b2 — 4b,) < 0. @ theend of the interconnect wire, respectively. The input voltage V;» isa

The time-domain response for this case s given by fast ramp signal that can be approximated by a step signal:
Vin(t) = +£Vag foro <t <7,
_ _ E —at .
v®) = Voll—y /14 (g)%e ™ sin(Bt + ), where 7,. is the input transition time.
Because V,, and V; depend on V;,, and the operation region of NMOS
where transistor, we separately discuss three different conditions in the follow-
ing [18]:
a = * Casel. 7, <t < 7.: The NMOS transistor is ON and operates in the sat-
2(My? — Ma) uration region. We have the following equations:
\/3M;12 — 4M> dlps
T v VA R Vit = L+ Rlps +Vo(0),
- dv;
p = tan 1(g). C ;t(t) = —Ips :_Bn(%vdd_VT)~
We consider a step input. Thus, v(7) = fVo is the solution of the Therefore, the solution of V, (t) is
following equation. Vo(t) = Vaa — Ve(t) — Vi(t) — Vi(2),
t
1—f—4/1+ (%)ze*“t sin (Bt +p) = O ©) Ve® = RBu(Z-Vaa = V),
Vi) = LB,
Similarly, we aso use the Newton-Raphson method to solve the "
delay that was calculated by Equation (3). Vo) = 2?;; (TLVM — V)2,

Caselll. Double Poles: The condition for this case is (b1% — 4b2) = 0. i . . .
The time-domain response is given by ‘\}vhere Vr rl] s ‘}he switching threshold voltage and 7,, is the time for
n tOreac T.

2t Casell. 7 <t < Tpsat: Vin isfixed at Vg and the NMOS transistor con-

vt) = Vo(l—e™t - imetth, @ tinues to operate in the saturation region. The discharge current is
equal to the saturated drain-to-source current of the NMOS transis-
where tor:
b1 Ips = Insat = Bn(Vaa — Vr) = constant.
T Therefore,
Similarly, the Newton-Raphson method can be applied to calculate Vo(t) = Vi(rr) = RBn(Vaa — Vr)

the delay that was calculated by Equation (4). 7%(‘% VYt — ), ®

where
i rh h j
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B,y
: ; VWA—TT D; Vi(rr) = Vaa— 2C‘:.;M(Vdd—VT)Q,
Y. y Tnsat 1S the time when the NMOS transistor |eaves the saturation

! region, V,,s.: IS the drain saturation voltage and is usualy around

Figure 3: Computation of Subtree Admittance 0.7V4a in short-channel devices [14]. AsV, = Visat, t = Tnsat,
9 P where 7,54+ IS determined from Equation (6). Therefore, we have

For a series section of RLC segments, Kahng and Muddu in [12] pre- Tnsat = Tr
sented an expression for the coefficient of s and s of admittance. As shown TrIpo

c
in Figure 3, the admittance at node ¢ can be expressed in terms of the ad- + Tpo (Vdd ~ Vnsae =

(Vaa — Vr) — RIDO) .
mittance at node j.

Caselll.t > Ty4q:: After V, dropsbelow V,,sq¢, the NMOS transistor en-

1 tersthe linear region:

Yi = —————— =Y, = Yrhi —slY] + ... 5

’ rhi + slh; + 3 J g Thi i Y (5)
J dVl(t)
& = —mwmVbs = —"Vo,

Using the above recursive equation, the admittance of the off-path subtrees dlps
can be computed. Vi(t) L

+ RIps + Vo,

dt



where v, isthe effective output conductance.
Therefore,

t
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K, and K, can be determined from V, (7nsat) an Vi (Tnsat). Be-
cause a; istypicaly much greater than a2, we have

—ag(t—Tns
Ve, = Visate 2(t=Tnsat)

Therefore, the propagation delay time (50%) of aCMOS inverter is

1 2Vnsat T
to.s = ZlnﬁJrTnsat*;

3.3 Delay Model for Buffered RLC Trees

In this section, we extend our delay model to handle arbitrary balanced
and un-balanced buffered RLC trees. For instance, consider an un-balanced
buffered RLC tree with a root (or a source) and a set of leaves (or sinks)
as shown in Figure 5. The buffer is inserted in an arbitrary location of the
tree. Our delay model not only can handle different wire lengths but also
can compute any percentage of delay time. Suppose we are to compute
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Figure 5: An un-balanced buffered RLC tree.

Level 3 |

the delay from the source S to node 7 (critical path) in Figure 5. Buffer
insertion divides the path into three stages. The path can be represented by
the equivalent circuit shown in Figure 6. In order to calculate the delay time
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Figure 6. Representation of the path between the source S and node 7. (a) Stage 1
of the path; (b) Stage 2 of the path; (c) Stage 3 of the path.

of stage 2, we show the equivalent circuits of Figure 6 (b) in Figure 7. We
apply the method presented in Sections 3.1 and 3.2. Assume that the delay
times of stage 1, stage 2, and stage 3 are 71, 72, and 73, respectively. The
total delay between the source S and node 7 is

3
Tt = E Ti-
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Figure 7: Theequivalent circuits of Figure 6(b). (&) The equivalent RLY circuit for
calculating gate delay; (b) The equivalent RLY circuit for calculating wire delay.

4 Simulations

To test the accuracy of our model, we used a set of parameters based
on the 180 nm technology in the ITRS 99 roadmap [15]. The parameters
were also used in [5]. We list the technology parametersin Table 2. Level
49 HSPICE models were used for the buffer drivers that are 1.27x larger
than a minimum sized buffer. Our delay model can deal with different wire
lengths of atree, and can also compute any percentage of delay time.

We applied our delay model for abalanced buffered RLC tree with aroot
and a set of leaves (see Figure 8). The topology was used in [8, 10]. Each
edge of thetreeismodeled by abuffer driving an interconnect wire segment.
Meanwhile, buffer insertion was also used to reduce the delay between the
source and node 6 (critical path) in this experiment. For this experiment,
we computed the 50% delay time. In Table 3, columns 1-3 (Levels 1-3)
list several different lengths of awire in the buffered trees. Column 4 gives
the capacitances of the load. Columns 5-8 show the delay times calculated
by the HSPICE simulation, the Elmore delay model [6] (with the 7-model
to model a wire segment), the delay model in [10], and our delay model,
respectively. Columns 9-11 give the respective percentages of errors com-
pared with HSPICE.

The simulations show that our formulae are more accurate than related
previous works. Compared to HSPICE, the maximum error calculated by
the EImore delay model is 32.35% and the absol ute average error is 22.47%,
the maximum error calculated by the [10] is-21.28% and the absolute aver-
age error is 15.51%, and the maximum error calculated by our delay model
isonly -6.87% and the absolute average error is only 4.19%. Asshown in
Figure 9, the delays are plotted as a function of the total path length.

Finally, we applied our delay model for an un-balanced buffered RLC
tree with aroot and a set of leaves (see Figure 5). The buffer isinserted in
an arbitrary location of thetree. Buffer insertion was also used to reduce the
delay between the source and node 7 (critical path) in this experiment. For
this experiment, we computed the 50% delay time. In Table 4, columns 1-
11 (Levels 1-3) list severa different lengths of awire in the buffered trees.
Column 12 gives the capacitances of the load. Columns 13-15 show the
delay times calculated by the HSPICE simulation, the delay model in [10],
and our delay model, respectively. Columns 16-17 give the respective per-
centages of errors compared with HSPICE.

The simulations show that our formulae are more accurate than related
previous works. Compared to HSPICE, the maximum error calculated by
the [10] is-26.91% and the absolute average error is 25.16%, and the max-
imum error calculated by our delay model is only -8.77% and the absolute
average error is only 6.83%.

According to the above two experiments, the average error of our de-
lay model is 5.51%. Therefore, our delay model is more accurate than the
Elmore delay model and that proposed by [10]. The Elmore delay model
always overestimates the delay [6]. The delay model proposed by [10] may
incur larger errors when the tree is unbalanced. Its error may exceed 20%
for unbalanced trees [8]. HSPICE is very accurate but computationally very
expensive. For abuffered RLC tree shown in Figure 5 (Figure 8), the CPU
run time of HSPICE is about 20 minutes. On the contrary, the CPU run time
of our method islessthan 1 second, which is close to that under Elmore de-
lay model and the delay model proposed by [10]. Therefore, our method is
very efficient.

I& Level 1 +Leve] Z*Level 39'
Figure 8: A balanced buffered RLC tree used in [8, 10].
5 Conclusion

We have presented accurate formulae for modeling the delays of buffered
RLY/RLC wires and trees. Our formulae can handle balanced and un-



Tech. node width

height tins € r c l T cp Cp
(nm) (nm) | (nm) | (nm) (kQ/m) | (pF/m) | (nH/mm) | (kQ) | (fF) | (fF)
180 525 1155 7699 3.75 36.3 269 4.6 8 1.9 4.8
Table 2: Technology parametersin ITRS 99.
Level1 | Level2 | Level 3 | Load Cap. 50% Delay Time (ps) Error (%)
(um) (um) (um) (pF) HSPICE | Elmore | 1&F | Ours Elmore 1&F Ours
0.1 1060 1262 882 990 19.06 -16.76 -6.60
300 200 100 0.5 2920 3784 2635 2830 29.59 -9.77 -3.08
1 5240 6935 4825 | 5125 32.35 -7.91 -2.19
0.1 2010 2298 1609 1879 14.33 -19.97 -6.52
600 500 400 0.5 3840 4824 3364 | 3723 25.63 -12.40 | -3.05
1 6130 7981 5558 | 6022 30.20 -9.32 -1.76
0.1 2970 3336 2338 | 2766 12.32 -21.28 | -6.87
900 800 700 0.5 4810 5866 4096 | 4610 21.95 -1483 | -4.16
1 7100 9029 6295 6910 2717 -11.34 | -2.68
0.1 3728 4195 2939 | 3481 12.53 -21.15 | -6.63
1000 1000 1000 0.5 5568 6729 4701 5326 20.85 -15.57 -4.35
1 7862 9897 6903 7626 25.88 -12.20 | -3.00
0.1 3326 3831 2678 | 3144 15.18 -19.47 -5.47
600 800 1000 0.5 5180 6366 4440 | 4988 22.90 -1428 | -3.71
1 7498 9534 6642 7288 27.15 -11.42 -2.80
[ Absolute average I [[ 2247 ] 1551 | 419 |

Table 3: Experimental results for the accuracy of related delay models; balanced tree, technology node = 180 nm, R g = 180 .

Level 1 Level 2 Level 3 Load 50% Delay Time (ps) Error (%)

hl h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 Cap. HSPICE 1&F Ours 1&F Ours
0.1 19730 14682 | 18281 -2559 | -7.34
1500 2000 2000 2200 1200 4000 4000 5000 4000 4000 1400 05 24530 18245 | 22579 -25.62 | -7.95
1 29980 22699 | 27943 -2428 | -6.79
0.1 14830 11292 | 14151 -23.86 | -456
1000 1500 1500 3000 1000 3000 3000 4000 3500 3500 1300 05 19490 14840 | 18453 -23.86 | -5.32
1 25320 19276 | 23819 -23.87 | -5.93
0.1 11960 9055 11417 -24.29 | -4.54
600 1200 1200 2400 900 2300 2300 3500 3000 3000 1100 0.5 16680 12594 | 15718 -2450 | -5.77
1 22570 17017 | 21087 -2461 | -6.57
0.1 5455 3987 5093 -26.91 | -6.64
1000 500 500 1000 1000 500 500 1000 500 500 1000 05 10200 7500 9399 -2647 | -7.85
1 16030 11891 | 14770 -2582 | -7.86
0.1 5819 4315 5360 -25.85 | -7.89
2000 800 800 1600 500 700 700 1500 700 700 400 05 10600 7833 9670 -26.11 | -8.77
1 16480 12230 | 15045 -2579 | -871

[ Absolute average I [ 2516 [ 683 ]

Table 4: Experimental results for the accuracy of related delay models;

Delay (ns)

— HSPICE
—— Elmore
—— |&F
—#— Ours

25

3 6 9 12 15

Total Path Length (mm)

Figure 9: Comparison of the delays calculated by HSPICE, [6] (denoted by El-
more), [10] (denoted by I&F), and our delay model for a balanced buffered RLC

tree.

balanced trees and consider buffer insertion. Extensive simulations with
HSPICE have shown that our formulae achieve the best accuracy than re-
lated previousworks. Futurework liesin the delay optimization for buffered
RLY/RLC trees based on the formul ae.
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