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Abstract
For deep-submicron, high-performance circuits, the inductive effect

plays a very important role in determining the circuit delay. In this paper,
we derive accurate formulae for modeling the delays of buffered RLY/RLC
wires and trees. Our formulae can handle balanced and un-balanced trees
and consider buffer insertion. Extensive simulations with HSPICE show
that the formulae have high fidelity, with an average error of within 5.51%
based on the 180 nm technology. The simulations show that our formulae
are more accurate than previous works.

1 Introduction
As technology advances into the very deep-submicron era, interconnect

delay dominates overall circuit performance. Therefore, accurately model-
ing the interconnect delay becomes a major challenge in high performance
IC design. For deep-submicron, high-performance circuits, ignoring induc-
tance effects may incur a large amount of error, since an RC model as
compared to an RLC model may create errors of up to 30% in the total
propagation delay of a repeater system [9]. As technology improves and die
size increases, short rise/fall times of signals and long wires make inductive
effects more significant than before [15]. Therefore, it is very important to
consider the effects of inductance.

Timing is a crucial concern in the design of high-performance circuits.
Arunachalam et al. in [3] proposed accurate CMOS gate delay models
for general RLC loads. The waveform resulted from their delay model
excellently agrees with SPICE results; however, they do not present any
formula for propagation delay. Many delay models have been proposed
to calculate delay (e.g., [4, 5, 9, 14, 18]); however, these models cannot
apply to tree structures. Modeling and analysis techniques for timing cal-
culation under tree structures have been studied extensively in the litera-
ture [1, 2, 7, 8, 10, 11, 12]. Previous work in [1] proposed a method (Fitted
Elmore Delay) for delay estimation by using the curve fitting technique.
However, their work does not consider inductance. The work in [2] only
considered the RC delay model, and did not include the inductance effect.
The works in [7, 8] extended the Elmore delay to include the inductance
effect, but they did not consider buffer insertion/sizing. Ismail and Fried-
man in [10] proposed an algorithm for buffer insertion/sizing in an RLC
tree. However, if the tree is unbalanced, as pointed out in the paper, the de-
lay estimation may incur significantly larger errors. The works in [11, 12]
adopted two-pole simulation of interconnect trees via the moment match-
ing technique, and used non-uniform lumped segments to model the dis-
tributed lines. However, they did not apply buffer insertion/sizing to reduce
the delay. Kahng and Muddu in [13] provided an analytic delay model for
interconnection lines under the step input, and extended their model to es-
timate the delay in arbitrary interconnect trees. However, their model does
not consider buffer insertion/sizing, and cannot calculate for any percentage
of delay time. Ismail and Friedman in [10] presented an algorithm to insert
and size buffers in an RLC tree for minimizing the delay. However, their
empirical formulae obtained by curve-fitting with circuit simulation were
only for the 50% propagation delay and the 10%–90% rise time. Therefore,
their works cannot treat any percentage of delay time. Banerjee in [4] con-
sidered buffer insertion/sizing for an RLC interconnection line and did not
handle the problem with the tree structure. Table 1 compares the features of
important related works.

Buffer Interconnection Calculation for
Insertion/Sizing Trees any percentage delay

[4]
√ √

[10]
√ √

[13]
√

Our Work
√ √ √

Table 1: Comparison of features with the related previous works.

In this paper, we derive accurate formulae for modeling the delays of
buffered RLY/RLC wires and trees. The RLY model not only can model
RLC interconnect, but also can consider off-path subtree effects. Our for-
mulae can handle balanced and un-balanced trees and consider buffer in-
sertion. Extensive simulations with HSPICE show that the formulae have
high fidelity, with an average error of within 5.51% based on the 180 nm
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technology. The simulations show that our formulae are more accurate than
related previous works.

The remainder of this paper is organized as follows. Section 2 introduces
some notations. Section 3 gives the delay models for RLY/RLC wires
and trees. Section 4 shows the experimental results, and finally concluding
remarks are given in Section 5.

2 Preliminaries
We use the following notations throughout this paper.
• hi: the length of wire i.
• r: the unit-length resistance of a wire.
• l: the unit-length inductance of a wire.
• c: the unit-length capacitance of a wire.
• cb: the input capacitance of a minimum sized buffer.
• rb: the output resistance of a minimum sized buffer.
• cp: the output parasitic capacitance of a minimum sized buffer.
• k: the size of a buffer.
• RS : the resistance of the driver.
• CL: the capacitance of the load.

3 Accurate Delay Model
3.1 Delay Model for RLY Wires
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Figure 1: An equivalent single ”RLY” line for an RLC tree.

Sriram and Kang in [16] developed an equivalent single RLY line (see
Figure 1) for an RLC tree, where N is the number of RLY sections in an
RLC tree. As shown in Figure 2, we can model a distributed RLC line of
length hi as a single RLY segment. The transfer function for the structure

hi
Y=schi

R=rhi L=lhi

Figure 2: An interconnect wire can be modeled as a RLY segment.

of Figure 1 is given by

H(s) =
VO(s)

VI(s)
=

1

1 + b1s + b2s2 + . . .
. (1)

By the approximation method proposed by Gao et al. in [7], we can ap-
proximate Equation (1) as follows:

H(s) ≈ 1

1 + b1s + b2s2
,

where

b1 =

N∑
j=1

Aj

N∑
i=j

Ri,
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N∑
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N∑
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Ll +
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N∑
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Rl

+

N∑
j=2

Aj

N∑
l=j

Rl

j−1∑
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d=i

Rd.

The first and second moments of the transfer function from Equation (1) can
be obtained by the coefficients b1 and b2, i.e., M1 = b1 and M2 = b1

2−b2.
The two poles s1 and s2 of the transfer function could be real or complex
depending on the sign of (b1

2−4b2). Thus, we separately discuss the results
from two poles response for each of these cases classified in [13].



Case I. Real Poles: The condition for this case is (b1
2 − 4b2) > 0. The

step response, which is the inverse Laplace transform of 1
s
H(s), is

given by

v(t) = VO(1 − s2

s2 − s1
e

s1t
+

s1

s2 − s1
e

s2t
),

where

s1,2 =
−b1 ±

√
b12 − 4b2

2b2
.

For a step input, the f × 100%, (where 0 ≤ f < 1) delay, τ , (i.e.,
v(τ) = fVO) is the solution of the following equation [4]:

1 − f − s2

s2 − s1
e

s1τ
+

s1

s2 − s1
e

s2τ
= 0. (2)

Therefore, we can use the Newton-Raphson method to numerically
solve the delay that was calculated by Equation (2).

Case II. Complex Poles: The condition for this case is (b1
2 − 4b2) < 0.

The time-domain response for this case is given by

v(t) = VO(1 −
√

1 + (
α

β
)2e

−αt
sin(βt + ρ)),

where

α =
M1

2(M1
2 − M2)

,

β =

√
3M1

2 − 4M2

2(M1
2 − M2)

,

ρ = tan
−1

(
β

α
).

We consider a step input. Thus, v(τ) = fVO is the solution of the
following equation.

1 − f −
√

1 + (
α

β
)2e

−αt
sin (βt + ρ) = 0. (3)

Similarly, we also use the Newton-Raphson method to solve the
delay that was calculated by Equation (3).

Case III. Double Poles: The condition for this case is (b1
2 − 4b2) = 0.

The time-domain response is given by

v(t) = VO(1 − e
s1t − 2t

b1
e

s1t
), (4)

where

s1 = − b1

2b2
.

Similarly, the Newton-Raphson method can be applied to calculate
the delay that was calculated by Equation (4).
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Figure 3: Computation of Subtree Admittance

For a series section of RLC segments, Kahng and Muddu in [12] pre-
sented an expression for the coefficient of s and s2 of admittance. As shown
in Figure 3, the admittance at node i can be expressed in terms of the ad-
mittance at node j.

Yi =
1

rhi + slhi + 1
Yj

= Yj − Y
2

j rhi − slhiY
2

j + . . . (5)

Using the above recursive equation, the admittance of the off-path subtrees
can be computed.
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Figure 4: A CMOS inverter drives an RLC load.

3.2 Delay Model for Buffered RLC Load
A CMOS inverter driving an RLC load is shown in Figure 4. For an

interconnect wire of length hi, its total resistance is R = rhi, total induc-
tance is L = lhi, and total capacitance is C = chi, where r, l, and c are the
resistance, inductance, and capacitance per unit length of the interconnect,
respectively. To consider the velocity saturation effects in short-channel de-
vices, a CMOS inverter is modeled by using the alpha power law [17]. Vo

and V1 are the output voltage of the CMOS inverter and the output voltage
at the end of the interconnect wire, respectively. The input voltage Vin is a
fast ramp signal that can be approximated by a step signal:

Vin(t) = t
τr

Vdd for 0 ≤ t ≤ τr,

where τr is the input transition time.
Because Vo and V1 depend on Vin and the operation region of NMOS

transistor, we separately discuss three different conditions in the follow-
ing [18]:
Case I. τn ≤ t ≤ τr: The NMOS transistor is ON and operates in the sat-

uration region. We have the following equations:

V1(t) = L
dIDS

dt
+ RIDS + Vo(t),

C
dV1(t)

dt
= −IDS = −Bn(

t

τr

Vdd − VT ).

Therefore, the solution of Vo(t) is

Vo(t) = Vdd − Vc(t) − Vr(t) − Vl(t),

Vr(t) = RBn(
t

τr

Vdd − VT ),

Vl(t) = LBn
Vdd

τr

,

Vc(t) =
Bnτr

2CVdd

(
t

τr

Vdd − VT )
2
,

where VT is the switching threshold voltage and τn is the time for
Vin to reach VT .

Case II. τr ≤ t ≤ τnsat: Vin is fixed at Vdd and the NMOS transistor con-
tinues to operate in the saturation region. The discharge current is
equal to the saturated drain-to-source current of the NMOS transis-
tor:

IDS = Insat = Bn(Vdd − VT ) = constant.

Therefore,

Vo(t) = V1(τr) − RBn(Vdd − VT )

−Bn

C
(Vdd − VT )(t − τr), (6)

where

V1(τr) = Vdd − Bnτr

2CVdd

(Vdd − VT )
2
,

τnsat is the time when the NMOS transistor leaves the saturation
region, Vnsat is the drain saturation voltage and is usually around
0.7Vdd in short-channel devices [14]. As Vo = Vnsat, t = τnsat,
where τnsat is determined from Equation (6). Therefore, we have

τnsat = τr

+
C

ID0

(
Vdd − Vnsat − τrID0

2CVdd

(Vdd − VT ) − RID0

)
.

Case III. t ≥ τnsat: After Vo drops below Vnsat, the NMOS transistor en-
ters the linear region:

C
dV1(t)

dt
= −γnVDS = −γnVo,

V1(t) = L
dIDS

dt
+ RIDS + Vo,



where γn is the effective output conductance.
Therefore,

Vo = K1e
−α1t

+ K2e
−α2t

,

where

α1,2 =

1+Rγn
Lrn

±
√

( 1+Rγn
Lγn

)2 − 4
LC

2
,

K1 and K2 can be determined from Vo(τnsat) an V
′

o (τnsat). Be-
cause α1 is typically much greater than α2, we have

Vo = Vnsate
−α2(t−τnsat).

Therefore, the propagation delay time (50%) of a CMOS inverter is

t0.5 =
1

α2
ln

2Vnsat

Vdd

+ τnsat − τr

2
.

3.3 Delay Model for Buffered RLC Trees
In this section, we extend our delay model to handle arbitrary balanced

and un-balanced buffered RLC trees. For instance, consider an un-balanced
buffered RLC tree with a root (or a source) and a set of leaves (or sinks)
as shown in Figure 5. The buffer is inserted in an arbitrary location of the
tree. Our delay model not only can handle different wire lengths but also
can compute any percentage of delay time. Suppose we are to compute
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Figure 5: An un-balanced buffered RLC tree.

the delay from the source S to node 7 (critical path) in Figure 5. Buffer
insertion divides the path into three stages. The path can be represented by
the equivalent circuit shown in Figure 6. In order to calculate the delay time
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Figure 6: Representation of the path between the source S and node 7. (a) Stage 1
of the path; (b) Stage 2 of the path; (c) Stage 3 of the path.

of stage 2, we show the equivalent circuits of Figure 6 (b) in Figure 7. We
apply the method presented in Sections 3.1 and 3.2. Assume that the delay
times of stage 1, stage 2, and stage 3 are τ1, τ2, and τ3, respectively. The
total delay between the source S and node 7 is

τt =

3∑
i=1

τi. (7)

s(ch3+kcb)+Y1

lh3rh3

s(ch6+kcb)
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(b)

s(ch3+kcb)+Y1+Y2
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Figure 7: The equivalent circuits of Figure 6(b). (a) The equivalent RLY circuit for
calculating gate delay; (b) The equivalent RLY circuit for calculating wire delay.

4 Simulations
To test the accuracy of our model, we used a set of parameters based

on the 180 nm technology in the ITRS’99 roadmap [15]. The parameters
were also used in [5]. We list the technology parameters in Table 2. Level
49 HSPICE models were used for the buffer drivers that are 1.27x larger
than a minimum sized buffer. Our delay model can deal with different wire
lengths of a tree, and can also compute any percentage of delay time.

We applied our delay model for a balanced buffered RLC tree with a root
and a set of leaves (see Figure 8). The topology was used in [8, 10]. Each
edge of the tree is modeled by a buffer driving an interconnect wire segment.
Meanwhile, buffer insertion was also used to reduce the delay between the
source and node 6 (critical path) in this experiment. For this experiment,
we computed the 50% delay time. In Table 3, columns 1-3 (Levels 1-3)
list several different lengths of a wire in the buffered trees. Column 4 gives
the capacitances of the load. Columns 5-8 show the delay times calculated
by the HSPICE simulation, the Elmore delay model [6] (with the π-model
to model a wire segment), the delay model in [10], and our delay model,
respectively. Columns 9-11 give the respective percentages of errors com-
pared with HSPICE.

The simulations show that our formulae are more accurate than related
previous works. Compared to HSPICE, the maximum error calculated by
the Elmore delay model is 32.35% and the absolute average error is 22.47%,
the maximum error calculated by the [10] is -21.28% and the absolute aver-
age error is 15.51%, and the maximum error calculated by our delay model
is only -6.87% and the absolute average error is only 4.19%. As shown in
Figure 9, the delays are plotted as a function of the total path length.

Finally, we applied our delay model for an un-balanced buffered RLC
tree with a root and a set of leaves (see Figure 5). The buffer is inserted in
an arbitrary location of the tree. Buffer insertion was also used to reduce the
delay between the source and node 7 (critical path) in this experiment. For
this experiment, we computed the 50% delay time. In Table 4, columns 1-
11 (Levels 1-3) list several different lengths of a wire in the buffered trees.
Column 12 gives the capacitances of the load. Columns 13-15 show the
delay times calculated by the HSPICE simulation, the delay model in [10],
and our delay model, respectively. Columns 16-17 give the respective per-
centages of errors compared with HSPICE.

The simulations show that our formulae are more accurate than related
previous works. Compared to HSPICE, the maximum error calculated by
the [10] is -26.91% and the absolute average error is 25.16%, and the max-
imum error calculated by our delay model is only -8.77% and the absolute
average error is only 6.83%.

According to the above two experiments, the average error of our de-
lay model is 5.51%. Therefore, our delay model is more accurate than the
Elmore delay model and that proposed by [10]. The Elmore delay model
always overestimates the delay [6]. The delay model proposed by [10] may
incur larger errors when the tree is unbalanced. Its error may exceed 20%
for unbalanced trees [8]. HSPICE is very accurate but computationally very
expensive. For a buffered RLC tree shown in Figure 5 (Figure 8), the CPU
run time of HSPICE is about 20 minutes. On the contrary, the CPU run time
of our method is less than 1 second, which is close to that under Elmore de-
lay model and the delay model proposed by [10]. Therefore, our method is
very efficient.

RS

h1

0 1
h2

3

h7

7
CL

S

Level 1 Level 2 Level 3

2

h3

h6

6
CL

h5

5
CL

h4

4
CL

Figure 8: A balanced buffered RLC tree used in [8, 10].

5 Conclusion
We have presented accurate formulae for modeling the delays of buffered

RLY/RLC wires and trees. Our formulae can handle balanced and un-



Tech. node width height tins εr r c l rb cb cp

(nm) (nm) (nm) (nm) (kΩ/m) (pF/m) (nH/mm) (kΩ) (fF ) (fF )
180 525 1155 7699 3.75 36.3 269 4.6 8 1.9 4.8

Table 2: Technology parameters in ITRS’99.

Level 1 Level 2 Level 3 Load Cap. 50% Delay Time (ps) Error (%)
(um) (um) (um) (pF ) HSPICE Elmore I&F Ours Elmore I&F Ours

0.1 1060 1262 882 990 19.06 -16.76 -6.60
300 200 100 0.5 2920 3784 2635 2830 29.59 -9.77 -3.08

1 5240 6935 4825 5125 32.35 -7.91 -2.19
0.1 2010 2298 1609 1879 14.33 -19.97 -6.52

600 500 400 0.5 3840 4824 3364 3723 25.63 -12.40 -3.05
1 6130 7981 5558 6022 30.20 -9.32 -1.76

0.1 2970 3336 2338 2766 12.32 -21.28 -6.87
900 800 700 0.5 4810 5866 4096 4610 21.95 -14.83 -4.16

1 7100 9029 6295 6910 27.17 -11.34 -2.68
0.1 3728 4195 2939 3481 12.53 -21.15 -6.63

1000 1000 1000 0.5 5568 6729 4701 5326 20.85 -15.57 -4.35
1 7862 9897 6903 7626 25.88 -12.20 -3.00

0.1 3326 3831 2678 3144 15.18 -19.47 -5.47
600 800 1000 0.5 5180 6366 4440 4988 22.90 -14.28 -3.71

1 7498 9534 6642 7288 27.15 -11.42 -2.80

Absolute average 22.47 15.51 4.19

Table 3: Experimental results for the accuracy of related delay models; balanced tree, technology node = 180 nm, R S = 180 Ω.

Level 1 Level 2 Level 3 Load 50% Delay Time (ps) Error (%)
h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 Cap. HSPICE I&F Ours I&F Ours

(um) (um) (um) (um) (um) (um) (um) (um) (um) (um) (um) (pF )
0.1 19730 14682 18281 -25.59 -7.34

1500 2000 2000 2200 1200 4000 4000 5000 4000 4000 1400 0.5 24530 18245 22579 -25.62 -7.95
1 29980 22699 27943 -24.28 -6.79

0.1 14830 11292 14151 -23.86 -4.56
1000 1500 1500 3000 1000 3000 3000 4000 3500 3500 1300 0.5 19490 14840 18453 -23.86 -5.32

1 25320 19276 23819 -23.87 -5.93
0.1 11960 9055 11417 -24.29 -4.54

600 1200 1200 2400 900 2300 2300 3500 3000 3000 1100 0.5 16680 12594 15718 -24.50 -5.77
1 22570 17017 21087 -24.61 -6.57

0.1 5455 3987 5093 -26.91 -6.64
1000 500 500 1000 1000 500 500 1000 500 500 1000 0.5 10200 7500 9399 -26.47 -7.85

1 16030 11891 14770 -25.82 -7.86
0.1 5819 4315 5360 -25.85 -7.89

2000 800 800 1600 500 700 700 1500 700 700 400 0.5 10600 7833 9670 -26.11 -8.77
1 16480 12230 15045 -25.79 -8.71

Absolute average 25.16 6.83

Table 4: Experimental results for the accuracy of related delay models; un-balanced tree, technology node = 180 nm, R S = 180 Ω.
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Figure 9: Comparison of the delays calculated by HSPICE, [6] (denoted by El-

more), [10] (denoted by I&F), and our delay model for a balanced buffered RLC

tree.

balanced trees and consider buffer insertion. Extensive simulations with
HSPICE have shown that our formulae achieve the best accuracy than re-
lated previous works. Future work lies in the delay optimization for buffered
RLY/RLC trees based on the formulae.
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