
IMF: Interconnect-Driven Multilevel Floorplanning for
Large-Scale Building-Module Designs

Tung-Chieh Chen
Graduate Institute of Electronics Engineering

National Taiwan University
Taipei 106, Taiwan

Email: tungchieh@ntu.edu.tw

Yao-Wen Chang
Graduate Institute of Electronics Engineering and

Department of Electrical Engineering
National Taiwan University

Taipei 106, Taiwan
Email: ywchang@cc.ee.ntu.edu.tw

Shyh-Chang Lin
SpringSoft, Inc.

Hsin-Chu 300, Taiwan
Email: chris@springsoft.com.tw

Abstract— We present in this paper a new interconnect-driven multi-
level floorplanning, called IMF, to handle large-scale building-module
designs. Unlike the traditional multilevel framework that adopts the
“V-cycle” framework: bottom-up coarsening followed by top-down un-
coarsening, in contrast, IMF works in the “Λ-cycle” manner: top-down
uncoarsening (partitioning) followed by bottom-up coarsening (merging).
The top-down partitioning stage iteratively partitions the floorplan region
based on min-cut bipartitioning with exact net-weight modelingto reduce
the number of global interconnections and thus the total wirelength.
Then, the bottom-up merging stage iteratively applies fixed-outline
floorplanning using simulated annealing for all regions and merges two
neighboring regions recursively. We also propose an accelerative fixed-
outline floorplanning (AFF) to speed up wirelength minimization under
the outline constraint. Experimental results show that IMF consistently
obtains the best floorplanning results with the smallest wirelength for
large-scale building-module designs, compared with all publicly available
floorplanners. In particular, IMF scales very well as the circuit size
increases.

The Λ-cycle multilevel framework outperforms the V-cycle one in
the optimization of global circuit effects, such as interconnection and
crosstalk optimization, since theΛ-cycle framework considers the global
configuration first and then processes down to local ones level by level
and thus the global effects can be handled at earlier stages. TheΛ-cycle
multilevel framework is general and thus can be readily applied to other
problems.

I. I NTRODUCTION

As nanometer IC technologies advance, design complexity is growing
at a dramatic speed. Modern chip designs often consist of millions of
transistors and designs with billions of transistors are already in pro-
duction. To cope with the increasing design complexity, IP modules are
widely reused for large-scale designs. Therefore, efficient and effective
design methodology and tools capable of placing and optimizing large-
scale modules are essential for modern chip designs.

A. Framework Evolution
The floorplanning frameworks are evolving to tackle the challenges

with constantly increasing design complexity. Three major frameworks
have been extensively studied in the literature: the flat, hierarchical, and
multilevel frameworks. Many flat algorithms based on various floorplan
representations have been proposed in the literature [14], [20], [23], [29]–
[31], [33], [34], [37]. However, these algorithms does not scale well as the
design size increases. To cope with the scalability problem, hierarchical
approaches are proposed. The hierarchical approaches recursively divide
a floorplanning region into a set of sub-regions and solve those sub-
problems independently. Adya et al. [9] propose a “floorplacement”
framework (used in their program Capo 9) that combines partitioning
and floorplanning techniques to handle both floorplanning and placement
problems. It first partitions a floorplan and then finds legal sub-floorplans.
Cong et al. [18] present a fast floorplanner called PATOMA using
look-ahead enabled recursive bipartitioning. It partitions a floorplan and
uses row-oriented block (ROB) packing and zero-dead space (ZDS)
floorplanning to find legal sub-floorplans. Both the floorplacement and
PATOMA are based on the hierarchical framework in which the floor-
planning stage is only used for legalization and overlap removal. The top-
down hierarchical technique is efficient in handling large-scale problems.

Nevertheless, a drawback of the hierarchical approaches is that they
might lack the global information for the floorplanning interaction among
different sub-regions.

To remedy the deficiency, the multilevel framework is proposed to
solve the floorplanning problems (e.g., MB*-tree [28] and MLGFA [24])
as well as graph/circuit partitioning (e.g., Chaco [21], hMetis [27],
ML [10]), placement (e.g., mPL [12]), and routing (e.g., MRS [17],
MR [32], MARS [19], CMR [22]). All of the existing multilevel frame-
works adopt a two-stage technique, bottom-up coarsening followed by
top-down uncoarsening, which is known as the “V-cycle” framework.
Lee et al. [28] first proposed a V-cycle multilevel floorplanning algorithm
based on the B*-tree representation [14], called MB*-tree. It adopts a
two-stage technique, clustering followed by declustering, based on the
cost metric of area and connectivity. Hu et al. [24] proposed a V-cycle
multilevel genetic floorplanning algorithm, called MLGFA. However, the
algorithm only optimizes the chip area without considering the wire-
length. Further, both of the multilevel floorplanning algorithms consider
only variable-die floorplanning.

As pointed out by Kahng in [25], modern VLSI design is based on
a fixed-die (fixed-outline) floorplan, rather than a variable-die one. A
floorplan with pure area minimization without any fixed-outline constraint
may be completely useless because it cannot fit into the given outline.
Unlike classical floorplanning that usually handles only module packing
to minimize silicon area, modern floorplanning should be formulated as a
fixed-outline floorplanning with wirelength (interconnection) minimiza-
tion. Since the chip area is given, we should optimize the wirelength
and timing for fixed-die floorplanning to facilitate routing. Very few
existing floorplanners can handle the fixed-die constraint with wirelength
optimization. Among them, the floorplacer Capo 9 [9] and Parquet [6]–
[8] (based on the sequence pair representation [33]) are probably the most
popular fixed-die floorplanners with wirelength optimization mode. (Note
that although most existing standard-cell/mixed-size placers can handle
the large-scale circuit placement problem. They usually focus more on the
standard-cells of the same heights. Therefore, the standard-cell/mixed-size
placers cannot handle large-scale building-module floorplanning well.
We have tried well-known publicly available placers such as Feng Shui
2.6/5.0 [1] and mGP [4], [13]. They all cannot obtain feasible or desirable
building-module floorplans.)

The existing V-cycle multilevel framework handles the target problems
first bottom-up from local configurations to global ones and then refines
the solutions top-down from global to local. It is obvious that there are
significant limitations for the V-cycle framework to handle the global
circuit effect, such as interconnection and crosstalk optimization, since
only local information is available at the beginning stages. A wrong
choice made in such early stages may make the solution very hard to
be refined during the top-down stage.

B. Our Contributions

In this paper, we present the first “Λ-cycle” (pronounced as the
“lambda” cycle) multilevel framework. Unlike the traditional V-cycle
multilevel frameworks that apply the bottom-up coarsening followed by
the top-down un-coarsening, ourΛ-cycle multilevel framework adopts
the two-stage technique of top-down uncoarsening followed by bottom-
up coarsening. TheΛ-cycle multilevel framework outperforms the V-
cycle one in the optimization of global circuit effects, since theΛ-cycle
framework first considers the global configuration and then processes

down to local ones level by level and thus the global effects can be
handled at earlier stages.

Based on the new framework, we develop the firstΛ-cycle multilevel
floorplanning algorithm to handle the interconnect-driven, large-scale
floorplan designs. (It shall be noted that theΛ-cycle multilevel framework
is general and thus can be readily applied to other problems as well.) Our
Λ-cycle interconnect-driven multilevel floorplanning framework (IMF for
short) adopts the two-stage technique, top-down partitioning followed by
bottom-up merging. The top-down partitioning stage iteratively partitions
the floorplan region based on min-cut bipartitioning with exact net-weight
modeling to reduce the number of global interconnections and thus the
total wirelength. Then, the bottom-up merging stage iteratively applies
fixed-outline floorplanning using simulated annealing for all regions
and merges two neighboring regions recursively. We also propose an
accelerative fixed-outline floorplanning (AFF) to speed up wirelength
minimization under the outline constraint. Experimental results show
that IMF consistently obtains the best fixed-outline floorplanning results
with the smallest wirelength for large-scale building-module designs,
compared with all publicly available floorplanners B*-tree, MB*-tree,
Parquet 3.1/4.0, and Capo 9. In particular, IMF scales very well as the
circuit size increases.

The remainder of this paper is organized as follows. Section II
compares ourΛ-cycle multilevel framework with the V-cycle and the
hierarchical ones. Section III presents our floorplanning algorithms.
Section IV shows the experimental results, and finally the conclusions
are given in Section V.

II. M ULTILEVEL FRAMEWORK

The traditional V-cycle multilevel frameworks apply a two-stage tech-
nique, bottom-up coarsening followed by top-down uncoarsening. We
take MB*-tree [28] for an example. Figure 1(a) shows the MB*-tree
multilevel framework. It is based on a two-stage technique of bottom-
up clustering followed by top-down declustering. The clustering stage
iteratively groups a set of modules based on a cost metric of area and
module connectivity. The declustering stage iteratively ungroups a set
of the previously clustered modules and uses simulated annealing to
refine the solution. Experimental results showed that MB*-tree obtains
solutions of very small dead space. For modern floorplanning, however,
the interconnections among modules are a very important cost metric for
routability and performance optimization and thus should be carefully
considered. Since MB*-tree first works in a bottom-up manner by
clustering local modules based on area and local connectivity, it does not
have the view for the global configuration at the earlier stages. Therefore,
it is very likely that MB*-tree can only obtain a sub-optimal solution
since it may make a wrong choice during the clustering stage, and it
may become very hard to further refine the floorplan solution during the
declustering stage.

Figure 1(b) illustrates ourΛ-cycle interconnect-driven multilevel floor-
planning framework (IMF). Unlike MB*-tree that adopts a V-cycle frame-
work, our IMF uses theΛ-cycle of top-down partitioning followed by
bottom-up merging (refinement). Section III presents our IMF algorithm.

Table I lists the characteristics of our IMF multilevel framework, the
MB*-tree multilevel framework [28], the Capo floorplacemnet framework
[9], and the PATOMA framework [18]. Our IMF framework and the MB*-
tree framework are based on the multilevel framework while the Capo
framework and the PATOMA framework are based on the hierarchical
framework. Although Capo and PATOMA use partitioning, unlike IMF,
they do not have the refinement stage to further improve their results.

III. A LGORITHM

The IMF algorithm consists of three steps: (1) chip dimension deter-
mination, (2) the partitioning stage, and (3) the merging stage.

A. Chip Dimension Determination
Given a set of modules with the total areaA and themaximum white-

space fractionγ, we can construct a fixed outline with the aspect ratio
(height/width)α. The chip dimension(H∗, W ∗) can be computed by the
following equations [8]:

H∗ =
√

(1 + γ)Aα, W ∗ =
√

(1 + γ)A/α. (1)

If max(Hi, Wi) of a modulemi is larger thanmax(H∗, W ∗), the module
mi can never fit into the chip boundary. In this case, the chip dimension
can be computed by the following equations:

H∗ = max(Wi, Hi), W ∗ =
(1 + γ)A

H∗ . (2)

single clustered module

clustering

clustering
declustering

declustering

clustered block

chip boundary

Perform clustering to the

modules and create clustered

modules for the next level.

Recursively decluster the clusters

and use simulated annealing to

refine the floorplan.

(a)

initial floorplan

partitioning

partitioning

merging/refinement

partitioned floorplanPerform partitioning to the circuit and

determine the global locations of

modules for the next level.

Use the flat floorplanner to pack the

modules in the partitions and

legalize/refine the solution.

floorplan region

packed modules

floating modules

final floorplan

merging/refinement

overlap area

(b)

Fig. 1. (a) The V-cycle multilevel framework of MB*-tree. (b) TheΛ-cycle multilevel
framework of IMF.

TABLE I
FRAMEWORK COMPARISONS.

Framework Characteristics

Our IMF • Use theΛ-cycle multilevel framework.
multilevel • Use top-down partitioning followed by bottom-up merging.
framework • Handle fixed-die constraints.

• Minimize the wirelength under the given area constraint.
The MB*-tree • Use the V-cycle multilevel framework.

multilevel • Use bottom-up clustering followed by top-down declustering.
framework • Deal with variable dies and cannot guarantee to satisfy an outline

in [28] constraint.
• Need to specify the weights for area and wirelength by the user.

The Capo 9 • Use the top-down hierarchical framework.
floorplacement • Use partitioning and fixed-outline floorplanning.

framework • Minimize the wirelength under the given chip-outline.
in [9] • Do not have a refinement stage.

The PATOMA • Use the top-down hierarchical framework.
framework • Use partitioning and ZDS/ROB fast look-ahead floorplanning.

in [18] • Minimize the wirelength under the given chip-outline.
• Do not have a refinement stage.

The new dimension of the chip can ensure that every module fit into the
chip boundary. Note that the chip areaA∗ = H∗W ∗ = (1+γ)A remains
the same as the original formulation.

B. The Partitioning Stage
At the initial level, the locations of all modules are set to the center of

the chip region. To prevent from generating sub-regions of large aspect
ratios, we choose the longer side to divide the region into two sub-regions.
After the shapes of two sub-regions are determined, we move the modules
to the two centers of the two sub-regions to minimize the half-perimeter
wirelength (HPWL).

The module-location determination problem can be formulated as a
hypergraph partitioning problem. We first derive an exact net-weight
modeling to map the HPWL cost exactly to the min-cut cost. With
the exact modeling, in other words, minimizing HPWL is equivalent to
finding the min-cut cost. Therefore, the given hypergraph is partitioned
using a min-cut bipartitioner to obtain the minimum HPWL. The new
locations of the modules are thus determined by the partitioner, and each
sub-partition corresponds to a sub-region.

1) Exact Net-Weight Modeling:Since the net weight in the tradi-
tional terminal propagation for the min-cut based placement is a constant
value, the weight with the change in HPWL cannot be exactly modelled,
whether a net is cut or not. The underlying idea for our exact net-weight
modeling (terminal propagation) is that we want to map the min-cut cost
exactly to the HPWL change, which is similar to the “bounding-box aware
terminal propagation (BBTP)” proposed by Selvakkumaran and Karypis

in [35], [36]. They first proposed BBTP in [35] and later discussed
the BBTP in detail under seven cases in [36]. Another net-weighting
method was proposed in [16], they discussed the net-weighting method
for partitioning based on four cases. However, they can obtain exact
modeling only for two-terminal nets, i.e., they can only obtain suboptimal
results for multi-terminal nets. Unlike the previous work that exhaustively
enumerates of potential cases, we derive a unified model to assign the
net weights to map the HPWL value exactly. Our HPWL modeling not
only can be applied to vertical-cut or horizontal-cut partitioning, but can
also be applied to placement feedback (repartitioning) [26]. Further, our
unified HPWL model can even apply to the partitioning associated with
two non-adjacent regions, for which the method presented in [36] would
need to enumerate tens of cases for the HPWL modeling and thus is
obviously much more complex and harder for implementation.

We give our unified HPWL modeling as follows. A circuit is modelled
as a hypergraph. Each node in the hypergraph corresponds to a module
inside the target region, with the node weight being set to the area of
the corresponding module. Each hyperedge denotes a multi-terminal net
in the circuit, with the hyperedge weight being set to the value of the
HPWL contribution if the hyperedge is cut.

The hyperedge weight can be determined as follows. For easier
presentation, we take Figure 2 as an example to explain the unified HPWL
(net-weight) modeling. The discussion readily applies to other cases.
Consider a 4-terminal net with two fixed terminals and two modules. The
x-range of the two terminals (i.e., the span between the two terminals
in the x direction) is within that of the centers of the two partitions,
and the center of the left partition is closer to thex-range. For each net,
we compute three HPWL values. Letw1 be the HPWL when the two
modules are both at the side closer to the span of the terminals. In Figure
2(a), the two modules are at the left side.w1 is equal to the half of the
bounding box shown in Figure 2(a), represented by the dotted lines. Let
w2 be the HPWL when the two modules are at theoppositeside (the
right side for the example shown in Figure 2(b)). Similarly,w12 is the
HPWL when the two modules are at different sides (Figure 2(c)). For
the case shown in Figure 2, it is easy to see thatw12 > w2 > w1.

For each case shown in Figure 2, we introduce a partitioning hyper-
graph with two fixed nodes to represent the two sides and two movable
nodes to represent the two movable modules. We then add two hyperedges
e1 ande2 into the hypergraph. For the case of Figure 2 where the center
of the left partition is closer to thex-range, we introducee1 to connect
the left fixed node and the two movable nodes ande2 to connect between
the two movable nodes. We then assign the weight of the hyperedgee1

with the valuew2 − w1 (here,w2 > w1), and that of the hyperedge
e2 with the valuew12 − w2. Partitioning the resulting hypergraph can
determine to which partition the module belongs. There are three possible
partitioning results, as shown in the Figures 2(d), (e), and (f). The three
partitioning results correspond to the configurations shown in Figures
2(a), (b), and (c), respectively. For the case of Figure 2(d), no hyperedge
in the resulting hypergraph is cut. Therefore, its cutsizencut = 0. In
Figure 2(e),e1 is cut, and the cutsize is given byncut = w2 − w1. In
Figure 2(f), bothe1 ande2 are cut, and thus the cutsizencut = w12−w1.
For all of these three cases, we conclude that the corresponding HPWL
is given byw1 + ncut. In particular, the theoretical result holds for the
general cases with 2- or multi-terminal nets, and we have the following
theorem:

Theorem 1:With the unified net-weight modeling, we have
HPWL = w1 + ncut.

Note that Theorem 1 holds for other cases though not discussed here.
Let w1,i be the HPWL of neti when its modules are all at the side closer
to the span of the terminals (see Figure 2(a)) andncut,i be the cutsize
of net i. By Theorem 1, we have

min(
∑

HPWLi) = min(
∑

(w1,i + ncut,i))

=
∑

w1,i + min(
∑

(ncut,i)),

since
∑

w1,i is a constant. Thus, finding the minimum HPWL is
equivalent to finding the min-cut as long as the external terminals are
given.

Theorem 2:The unified net-weight modeling exactly maps HPWL to
the min-cut cost.

The partitioning stage continues until the number of modules in each
partition is smaller than a threshold. Then, the partitioned floorplan is
obtained.

Two modules are at the right side. HPWL = w2.

Two modules are at the different side.

HPWL = w12.

Two modules are at the left side. HPWL = w1.

ncut = 0

ncut = weight(e1)

= (w2-w1)

ncut = weight(e1) + weight(e2)

= (w12-w2) + (w2-w1)

= (w12-w1)

Fixed terminal

Movable module

(a)

(b)

(c)

(d)

(e)

(f)

e1 e2

e2
e1

Movable node

Fixed node

e1

e2

x-range

x-range

x-range

Fig. 2. An example of determining a net weight. (a), (b), and (c) are three possible
partitioning results. (d), (e), and (f) are corresponding partitioning hypergraphs.

n0

n1

n3

n4

n2

n5 n6

n7

b0 b1

b3 b4

b2

b6

b7

b5

(a) (b)
Fig. 3. (a) An admissible placement. (b) The B*-tree representing the placement.

C. The Merging Stage
In the merging stage, we first use fixed-outline floorplanning to pack

the modules in the partition, and then merge two neighboring regions
into one larger region. The fixed-outline floorplanning is applied again
to legalize/refine the floorplan.

1) Fixed-Outline Floorplanning:Each region has its own height
and width, and all modules in the region must fit into the region to
generate a feasible floorplan. We treat the modules and I/O pads outside
the current region as fixed terminals. We use the B*-tree representation
with simulated annealing to find a feasible floorplan within the region.
The reasons are two-fold: (1) The B*-tree has been shown an efficient
and effective data structure for floorplan design [14], and (2) we intend
to make fair comparison with the state-of-the-art multilevel floorplanning
work MB*-tree [28], which is also based on the B*-tree.

We shall review the B*-tree floorplan representation [14]. Given an
admissible placement in which all modules cannot be move to the left
or to the bottom [20], we can construct a unique B*-tree in linear time
to model the placement. Figure 3 shows an admissible placement and
its corresponding B*-tree. A B*-tree is an ordered binary tree whose
root corresponds to the module on the bottom-left corner. Similar to
the depth-first search (DFS) procedure, we construct a B*-treeT for
an admissible placement in a recursive fashion: Starting from the root,
we first recursively construct the left subtree and then the right subtree.
Let Ri denotes the set of modules located on the right-hand side and
adjacent tobi. The left child of the nodeni corresponds to the lowest
module inRi that is unvisited. The right child ofni represents the lowest
module located above and with itsx-coordinate equal to that ofbi. Given

a B*-tree, thex-coordinates of all modules can be easily determined by
traversing the tree once [14], and we can apply a contour structure [20]
to compute they-coordinates in amortized linear time.

The cost functionΦ for simulated annealing is similar to the one
in [15], and it is defined as follows:

Φ = k1
AF

AF,norm
+ k2

WL

WL,norm
+ k3

(
WF

HF
− WR

HR

)2

, (3)

whereAF is the current floorplan area,AF,norm is the area normaliza-
tion factor, WL is the current wirelength,WL,norm is the wirelength
normalization factor,WF is the current floorplan width,HF is the
current floorplan height,WR is the width of the region,HR is the
height of the region, andk1, k2, k3 are user-specified parameters.
To calculate the area/wirelength normalization factors, several times of
random perturbations are performed before simulated annealing starts,
andAF,norm (WL,norm) is set to the average value ofAF (WL).

2) Accelerative Fixed-Outline Floorplanning:We observe that it
takes much more time for fixed-outline floorplanning than for partition-
ing/merging. Therefore, we propose anaccelerative fixed-outline floor-
planning technique (AFF for short) to speed up the whole framework.
Typically, fixed-outline floorplanning spends most time in computing the
wirelength, as also observed in [11]. Further, many floorplanning results
might not be feasible because the resulting floorplans cannot fit into the
bounding box. To speed up floorplanning, we first setk2 = 0 for the
cost function to perform area-driven fixed-outline floorplanning. Then,we
calculate the wirelength only when the floorplan can fit into the bounding
box with a smaller cost. If the resulting wirelength is better than the
best wirelength, we save the current result as the best result. Since we
can reduce significant running time for computing the wirelength, we
may increase the number of perturbations to search for better floorplan
solutions. It will be clear later that the method can reduce significant
running time in wirelength computation without trading too much solution
quality, especially for large-scale circuits (see Section IV-B).

3) Partition Merging: If the fixed-outline floorplanning cannot find a
feasible floorplan within the bounding box, we still keep the solution. In
the next refinement level, two partitioned regions are merged. To merge
two vertical regions, we make the root of the B*-tree for the upper sub-
floorplan as the right child of the right-most node of the B*-tree for the
bottom sub-floorplan. The width of the merged floorplan is equal to the
maximum width of the sub-floorplans, and the height of the floorplan is
less than or equal to the sum of the two sub-floorplan’s heights due to the
packing. To merge two horizontal regions, we first find the node which
corresponds to the right-most module of the left sub-floorplan. Then, we
make the root of the B*-tree for the right sub-floorplan as the left child
of the node we found. The height of the merged floorplan is equal to the
maximum height of the two sub-floorplans, and the width of the merged
floorplan is equal to the sum of the two sub-floorplan’s widths.

The merging stage iteratively merges two previously partitioned re-
gions and then refines the floorplan solution based on fixed-outline
simulated annealing. The merging stage continues until all regions are
merged into one top-most region, and the final floorplan is obtained.

D. Algorithm
Figure 4 summarizes our algorithm. The inputs are dimensions of

modules, a (multi-terminal) netlist, the location of the I/O pads, and
fixed-die parameters. We first initialize our data structures and determine
the chip boundary. Then, all modules are set to the center of the
floorplaning region. In the partitioning stage, we create a hypergraph
for the current region and apply a state-of-the-art hypergraph/circuit
partitioner, such as hMetis [3], to obtain a min-cut bipartitioning result.
(By using hMetis which is based on the V-cycle multilevel framework, our
implementation applies theΛ-cycle in the whole framework with V-cycles
in the partitioning stage.) The modules are then moved to the centers
of the sub-regions according to the partitioning result. The partitioning
stage continues until every region has fewer thannmax modules, and
the partitioned floorplan is obtained. In the merging stage, the fixed-
outline floorplanning with wirelength minimization is applied to pack
the modules into the regions. Then, two regions are merged into a larger
one. After all regions are merged, we obtain the final floorplan.

IV. EXPERIMENTAL RESULTS

We made the comparisons with the following five state-of-the-art
floorplanning algorithms/packages: our IMF, B*-tree [14], Parquet-3.1/-
4.0 [5], MB*-tree [28], and Capo 9 [9] (version 9.0r4). We used
the MCNC and the GSRC [2] benchmark suites. All programs were

Interconnect-Driven Multilevel Floorplanning (IMF)

Input: Modules, nets, I/O pads, fixed-die parameters.
Output: A feasible floorplan within the fixed-die with

wirelength (HPWL) being minimized.

1. Initialize the data structures and the chip dimension;
2. Set all modules at the center of the floorplan region;
3. The Partitioning Stage:
4. until every region has fewer thannmax modules
5. Choose a partition;
6. Create a hypergraph model;
7. Bipartition the hypergraph;
8. Move modules to the new sub-regions;
9. Generate the partitioned floorplan;
10. The Merging Stage:
11. while there exists more than one region
12. Choose two neighboring regions;
13. Apply fixed-outline floorplanning;
14. Merge two regions;
15. Generate the final floorplan;
16. return the final floorplan;

Fig. 4. The IMF algorithm.

TABLE II
COMPARISONS OF THEHPWL BY USING THE TRADITIONAL TERMINAL

PROPAGATION(TTP) AND THE EXACT NET-WEIGHT MODELING (ENW). IN EACH

ENTRY, BOTH THE minimum/averageVALUES OBTAINED IN TEN RUNS ARE

REPORTED. THE TTP/ENW RATIO IS THE RATIO OF THETTP RESULT AND THE

ENW RESULT.

Circuit TTP ENW TTP/ENW

n100 202713/203685 191199/191382 1.06/1.07
n200 365047/366104 341425/341660 1.07/1.07
n300 478947/479934 450806/453806 1.06/1.06

Average – – 1.06/1.07

compiled with gcc 3.3.2, and all experiments were preformed on a Linux
PC with an Intel Pentium 4 3.2GHz CPU with 3 GB memory. We
convert the benchmarks from the Bookshelf floorplanning format to the
Bookshelf placement format so that Capo can run on them. (We ran
Capo in the default mode. By default, Capo has 3 iterations of placement
feedback [26], which leads to better partitioning results. Our current IMF,
however, does not have placement feedback, and we believe that our
results can be further improved if the placement feedback is applied.)
Note that the PATOMA floorplanner [18] mentioned in Section I is not
available to the public and the poster paper [18] does not report any
results, so we are not able to compare with PATOMA. (We have also
tested publicly available mixed-size placers on the floorplan benchmarks,
including Feng Shui 2.6/5.0 [1] and mGP [4], [13]. Feng Shui generated
the floorplanning results directly using its legalizer without performing
global placement. Thus, its results are far from optimal. For mGP, it
results in many overlaps and places some modules outside the chip
boundary. So we shall not compare with those mixed-size placers.)

For fair comparisons, we first set the maximum white-space fraction
γ to 15%, and chip aspect ratioα to 1 for all circuits. The I/O pads
were scaled to the chip boundary. The wirelength was estimated using
half-perimeter wirelength (HPWL).

A. Exact Net-Weight Modeling

Table II compares the net-weight modeling based on the traditional
terminal propagation (TTP for short) and our exact net-weight modeling
(ENW for short). For TTP, all net-weights are equal to1.0. For ENW,
the weights of the nets are assigned according to the aforementioned
scheme described in Section III-B.1. The experiments were taken on
the three largest GSRC benchmark since they are better for testing the
effectiveness of the partitioning. We used the state-of-the-art V-cycle
multilevel partitioner hMetis [3] (version 1.5.3) for min-cut partitioning.
We performed partitioning on each circuit ten times to get the mini-
mum/average HPWL. We setnmax = 10 (i.e., partition all regions until
each of them contains fewer than 10 modules). From Table II, we observe
that the exact net-weight modeling can reduce the HPWL by 6%–7%.
Note that the runtimes are not reported here for both methods since they
are about the same.

0 100 200 300 400 500 600
0

100

200

300

400

500

600
circuit= n300, block= 300, net= 1893

Fig. 5. The resulting floorplan for the circuit n300.

B. Comparisons of Solution Quality
Table III lists the HPWL’s, dead spaces, and CPU times obtained

by B*-tree, MB*-tree, Parquet, IMF, IMF with accelerative fixed-outline
floorplanning (IMF+AFF), and Capo for the MCNC/GSRC benchmarks.
The number of modules ranges from 9 to 300, and the number of
nets ranges from 83 to 1893. The average HPWL ratio is normalized
to the result of IMF. The total time gives the summation of the CPU
times for all circuits. Since B*-tree and MB*-tree cannot handle fixed-
die constraints, we set their mode towirelength optimization aloneto
make comparisons. By doing so, B*-tree and MB*-tree should gain some
advantages. In contrast, Parquet is a fixed-outline floorplanner (which is
based on the sequence pair (SP) representation). (Note that Parquet can
also use the B*-tree representation. Nevertheless, we still compare with
the SP representation since Parquet obtains better results with the SP
representation mode [11]. For fair comparison, the I/O pads for all circuits
are fixed along the user-specified chip boundaries. Thus, the I/O pad
locations for variable-die floorplanners are the same as those for fixed-die
floorplanners. Further, we reported the best results obtained by Parquet
3.1 and 4.0 since neither version dominated the other.) We used the default
wirelength minimization mode (-minWL), and set the maximum white-
space fractionγ = 0.15 (-maxWS 15) and chip aspect ratio1.0 (-ar
1.0), except that the aspect ratio of the circuithp was set to 1.075 to
allow all modules to fit into its bounding box. The average dead space of
the B*-tree (MB*-tree) variable-die floorplanner is about 24.1% (26.2%),
and none of its resulting floorplans fits into the bounding box. The dead
spaces of the fixed-die floorplanners are all less than 15.0%, and all results
can fit into the bounding boxes. (However, the floorplacer Capo does not
legalize all modules for the benchmark circuithp .)

As shown in Table III, IMF reduces the HPWL by 10% on average
compared to Parquet. Although B*-tree (MB*-tree) minimizes the HPWL
alone, it only reduces the HPWL by 4% (1%) and incurs significantly
larger dead spaces compared to IMF. The CPU times for B*-tree and
Parquet are comparable, while the multilevel floorplanners, MB*-tree and
IMF, and the hierarchical floorplacer Capo, spend much less CPU time,
especially for larger circuits. IMF+AFF achieves 11X speedup at the cost
of 9% HPWL overhead compared to IMF. Based on the results, AFF can
significantly reduce the running time, and it is particularly suitable for
large-scale circuits since it achieves larger speedup (e.g., 16.7X forn300)
with only 1% overhead in the HPWL value. So the AFF option is turned
on when handling large-scale circuits. The runtime of Capo floorplacer is
between that of IMF and IMF+AFF. The solution quality of Capo is 11%
and 2% worse than IMF and IMF+AFF respectively. Note that for the
circuit hp , we have tried several runs, but Capo always reports overlaps
in the floorplan results. Figure 5 shows the resulting floorplan ofn300
using IMF+AFF.

C. Scalability of the Floorplanners
To test the scalability of the five algorithms/floorplanners, we tested

on the large-scale floorplan benchmark circuits used in [28], which are
duplicated from the largest MCNC benchmark circuitami49 to generate
larger test circuits. For [28], they simply duplicated all modules and nets
of the circuitami49 . However, these kinds of synthetic circuits are not
general since there is no interconnection between the duplicated copies
of circuits. The clustering (partitioning) method would take advantage of
these kinds of special structures. To make the comparison more fair, we
also added interconnections among different copies of duplicated circuits.

0

100

200

300

400

500

0 2000 4000 6000 8000 10000

B*-tree

MB*-tree

Parquet

IMF+AFF

Capo

CPU Time (min)

Modules

0.00

0.50

1.00

1.50

2.00

2.50

0 2000 4000 6000 8000 10000

B*-tree / IMF+AFF

MB*-tree / IMF+AFF

Parquet / IMF+AFF

Capo / IMF+AFF

HPWL Ratio

Modules(a) (b)

Fig. 6. (a) Comparison for the CPU time vs. circuit size (# of modules). (b) Comparison
for the HPWL ratio vs. circuit size (# of modules).

For the circuitami49 x , we duplicated each module/netx times. For
each modulemi, we duplicated it asmi,1, mi,2, ..., mi,x and added
x − 1 nets between(mi,1, mi,2), (mi,1, mi,3), ..., (mi,1, mi,x). We
divide block widths/heights by 5 for the benchmarks to avoid overflows
in computing the wirelength for MB*-tree.

Table IV lists the results for the five algorithms/floorplanners on
ami49 x circuits. The average HPWL ratio is normalized to the HPWL
of IMF+AFF. In Figures 6(a) and (b), the resulting CPU times and HPWL
for the five algorithms are plotted as functions of the circuit size (in the
number of modules), respectively. Figure 6(a) reveals that the CPU times
for B*-tree and Parquet grow dramatically as the circuit size increases
while both IMF+AFF and Capo can scale to very large-scale designs. As
shown in Table IV and Figure 6(b), our IMF+AFF consistently obtains
the best HPWL withfeasiblefloorplans and on average outperforms B*-
tree, MB*-tree, Parquet, and Capo by about 20%, 29%, 56%, and 5%,
respectively. The resulting HPWL ratios for Parquet and MB*-tree grow
up to 50% or more as the circuit size increases. The experimental results
show that IMF+AFF has superior scalability and maintains high-quality
results for large-scale designs.

V. CONCLUSION

We have presented a new interconnect-driven multilevel floorplanning
algorithm (IMF) based on the novelΛ-cycle multilevel framework. IMF
adopts a two-stage technique, partitioning followed by merging. The
exact net-weight modeling is used in the partitioning stage, and an
accelerative fixed-outline floorplanning (AFF) is applied in the merging
stage. Experimental results show that IMF+AFF scales very well as
the circuit size and interconnection complexity increase. For large-scale
floorplan designs, IMF outperforms all state-of-the-art floorplanners that
are available to the public in wirelength optimization, including B*-tree,
MB*-tree, and Parquet (and the floorplacer Capo). TheΛ-cycle multilevel
framework proposed in this paper is general and thus can be applied to
other problems.

VI. A CKNOWLEDGMENTS

This work was partially supported by SpringSoft, Inc. and National
Science Council of Taiwan under Grant No’s. NSC 93-2215-E-002-009,
NSC 93-2220-E-002-001, and NSC 93-2752-E-002-008-PAE.

REFERENCES

[1] FengShui Placer. http://vlsicad.cs.binghamton.edu/software.html.
[2] GSRC Floorplan Benchmarks.

http://www.cse.ucsc.edu/research/surf/GSRC/progress.html.
[3] hMetis. http://www-users.cs.umn.edu/∼karypis/metis/hmetis/.
[4] mGP: Multilevel Global Placement. http://ballade.cs.ucla.edu/mGP/.
[5] PARQUET. http://vlsicad.eecs.umich.edu/BK/parquet/.
[6] S. Adya and I. Markov. Fixed-outline floorplanning through better local search.

In Proc. of ICCD, pages 328–333, 2001.
[7] S. Adya and I. Markov. Consistent placement of macro-blocks using floorplanning

and standard-cell placement. InProc. of ISPD, pages 12–17, 2002.
[8] S. Adya and I. Markov. Fixed-outline floorplanning : Enabling hierarchical design.

IEEE Trans. on VLSI Systems, 11(6):1120–1135, December 2003.
[9] S. N. Adya, S. Chaturvedi, J. A. Roy, D. A. Papa, and I. L. Markov. Unification

of partitioning, placement and floorplanning. InProc. of ICCAD, pages 550–557,
2004.

[10] C. J. Alpert, J.-H. Huang, and A. B. Kahng. Multilevel circuit partitioning.IEEE
Trans. on CAD, 17(8):655–667, August 1998.

TABLE III
COMPARISONS FORHPWL, DEAD SPACE(DS), AND CPU TIME AMONG B*- TREE, MB*- TREE, PARQUET, IMF, IMF+AFF, AND CAPO. THE AFF STANDS FOR ACCELERATIVE

FIXED-OUTLINE FLOORPLANNING. *T HE HPWL VALUES WITH PARENTHESES DENOTE THAT THE RESULTS CANNOT FIT INTO THE BOUNDING BOXES(B*- TREE/MB*- TREE),

OR THERE ARE OVERLAPS IN THE RESULT(CAPO 9). THE AVERAGE HPWL RATIO CONSIDERS ONLY THE RESULTS THAT CAN FIT INTO THE BOUNDING BOXES.

Fixed-die
Variable-die floorplanner Fixed-die floorplanner floorplacer

Best of
B*-tree WireOpt MB*-tree WireOpt Parquet 3.1/4.0 IMF (Ours) IMF+AFF (Ours) Capo 9

Circuit #Module HPWL Time HPWL Time HPWL Time HPWL Time HPWL Time HPWL Time
/#Net /DS(%) (sec) /DS(%) (sec) (sec) (sec) (sec) (sec)

apte 9/97 *(409678)/30.4 0.1 *(409678)/15.2 0.2 447958 0.2 425322 0.7 500058 0.1 548972 0.2
xerox 10/203 *(486729)/9.9 0.3 *(491502)/26.1 0.2 524386 0.6 505394 0.9 555752 0.2 530526 1.2

hp 11/83 *(117212)/24.8 0.2 *(118364)/44.5 0.2 130120 0.4 124085 0.7 174559 0.1 *(130177) 1.2
ami33 33/123 *(53282)/32.1 1.3 *(53219)/24.8 2.2 68023 1.7 62033 2.0 65231 0.8 73164 3.4
ami49 49/408 *(763734)/31.7 5.7 *(722894)/30.1 3.9 882537 5.5 867663 5.4 947897 1.2 1001170 3.9

n10 10/118 *(34750)/24.9 0.1 *(34977)/18.7 0.2 38034 0.3 36068 0.5 39167 0.2 41933 0.4
n30 30/349 *(104523)/15.6 1.2 *(105930)/25.8 2.5 114462 2.3 106910 1.7 108435 0.6 109864 0.8
n50 50/485 *(132482)/20.9 3.9 *(136316)/20.0 9.3 146808 4.6 134368 7.0 135828 1.5 141116 2.3
n100 100/885 *(204193)/21.1 21.0 *(214036)/28.0 37.5 242050 17.5 207852 11.5 208772 2.3 224390 4.6
n200 200/1585 *(375912)/25.7 94.9 *(404963)/28.0 66.3 432882 77.2 369888 64.6 372845 4.2 385594 15.0
n300 300/1893 *(519250)/27.9 194.9 *(613444)/26.5 85.5 647452 166.2 489868 91.7 494480 5.5 522968 13.5

Avg. HPWL Ratio *(0.96)/24.1 *(0.99)/26.2 1.10 1.00 1.09 1.11
Total Time 323.7 207.9 276.5 186.7 16.7 45.3

TABLE IV
COMPARISONS FORHPWL, DEAD SPACE(DS), AND CPU TIME AMONG B*- TREE, MB*- TREE, PARQUET, IMF+AFF, AND CAPO FORA M I49 X CIRCUITS. *T HE HPWL

VALUES WITH PARENTHESES DENOTE THAT THE RESULTS CANNOT FIT INTO THE BOUNDING BOXES. NR: NO RESULT OBTAINED WITHIN 12-HR CPU TIME .

Variable-die floorplanner Fixed-die floorplanner Fixed-die floorplacer
Best of

B*-tree WireOpt MB*-tree WireOpt Parquet 3.1/4.0 IMF+AFF (Ours) Capo 9
Circuit #Module HPWL DS Time HPWL DS Time HPWL Time HPWL Time HPWL Time

/#Net (× e6) (%) (min) (× e6) (%) (min) (× e6) (min) (× e6) (min) (× e6) (min)
ami491 49/408 *(0.16) 32.43 0.1 *(0.15) 30.85 0.1 0.19 0.1 0.18 0.0 0.20 0.0
ami492 98/865 *(0.46) 37.44 0.4 *(0.39) 28.75 0.4 0.54 0.3 0.47 0.0 0.54 0.1
ami494 196/1779 *(1.16) 43.65 2.0 *(1.06) 31.20 0.8 1.56 1.3 1.07 0.1 1.14 0.3
ami4910 490/4521 *(4.28) 36.66 16.9 *(3.79) 39.22 2.1 6.03 9.6 3.31 0.2 3.48 0.7
ami4920 980/9091 *(1.18) 39.88 94.1 *(1.02) 44.73 4.8 16.12 44.5 8.13 0.5 8.48 1.5
ami4940 1960/18231 *(3.08) 37.05 609.1 *(2.67) 50.24 12.7 40.39 272.9 2.02 1.3 2.07 3.3
ami4960 2940/27371 NR NR NR *(4.99) 48.64 25.7 74.14 734.4 3.42 2.2 3.54 5.5
ami4980 3920/36511 NR NR NR *(7.48) 55.28 36.7 NR NR 5.05 3.5 5.22 8.8
ami49100 4900/45651 NR NR NR *(10.29) 54.18 66.2 NR NR 6.86 5.1 7.13 10.6
ami49150 7350/68501 NR NR NR *(18.44) 56.08 107.5 NR NR 12.08 11.0 12.40 13.7
ami49200 9800/91351 NR NR NR *(33.39) 67.80 224.8 NR NR 18.00 19.1 18.33 19.8

Avg. HPWL Ratio *(1.20) *(1.29) 1.56 1.00 1.05

[11] H. H. Chan, S. N. Adya, and I. L. Markov. Are floorplan representations important
in digital design? InProc. of ISPD, pages 129–136, 2005.

[12] T. Chan, J. Cong, T. Kong, and J. R. Shinnerl. Multilevel optimization for large-
scale circuit placement. InProc. of ICCAD, pages 171–176, 2000.

[13] C.-C. Chang, J. Cong, and X. Yuan. Multi-level placement for large-scale mixed-
size ic designs. InProc. of ASPDAC, pages 325–330, 2003.

[14] Y.-C. Chang, Y.-W. Chang, G.-M. Wu, and S.-W. Wu. B*-trees: A new represen-
tation for non-slicing floorplans. InProc. of DAC, pages 458–463, 2000.

[15] T.-C. Chen and Y.-W. Chang. Modern floorplanning based on fast simulated
annealing. InProc. of ISPD, pages 104–112, 2005.

[16] T.-C. Chen, T.-C. Hsu, Z.-W. Jiang, and Y.-W. Chang. NTUplace: a ratio
partitioning based placement algorithm for large-scale mixed-size designs. In
Proc. of ISPD, pages 236–238, 2005.

[17] J. Cong, J. Fang, and Y. Zhang. Multilevel approach to full-chip gridless routing.
In Proc. of ICCAD, pages 396–403, 2001.

[18] J. Cong, M. Romesis, and J. R. Shinnerl. Fast floorplanning by look-ahead enabled
recursive bipartitioning. InProc. of ASPDAC, 2005.

[19] J. Cong, M. Xie, and Y. Zhang. An enhanced multilevel routing system. InProc. of
ICCAD, pages 51–58, 2002.

[20] P.-N. Guo, C.-K. Cheng, and T. Yoshimura. An O-tree representation of non-slicing
floorplan and its applications. InProc. of DAC, pages 268–273, 1999.

[21] B. Hendrickson and R. Leland. A multilevel algorithm for partitioning graph. In
Proc. of Supercomputing, 1995.

[22] T.-Y. Ho, Y.-W. Chang, S.-J. Chen, and D. T. Lee. A fast crosstalk- and
performance-driven multilevel routing system. InProc. of ICCAD, pages 382–
387, 2003.

[23] X. Hong, G. Huang, T. Cai, J. Gu, S. Dong, C.-K. Cheng, and J. Gu. Corner block
list: An effective and efficient topological representation of non-slicing floorplan.
In Proc. of ICCAD, pages 8–12, 2000.

[24] C.-C. Hu, D.-S. Chen, and Y.-W. Wang. Fast multilevel floorplanning for large
scale modules. InInternational Symposium on Circuits and Systems, pages 205–
208, 2004.

[25] A. B. Kahng. Classical floorplaning harmful? InProc. of ISPD, pages 207–213,
2000.

[26] A. B. Kahng and S. Reda. Placement feedback: a concept and method for better
min-cut placements. InProc. of DAC, pages 357–362, 2004.

[27] G. Karypis and V. Kumar. Multilevel k-way hypergraph partitioning. InProc. of
DAC, pages 343–348, 1999.

[28] H.-C. Lee, Y.-W. Chang, J.-M. Hsu, and H. H. Yang. Multilevel floorplan-
ning/placement for large-scale modules using B*-trees. InProc. of DAC, pages
812–817, 2003.

[29] J.-M. Lin and Y.-W. Chang. TCG: A transitive closure graph-based representation
for non-slicing floorplans. InProc. of DAC, pages 764–769, 2001.

[30] J.-M. Lin and Y.-W. Chang. TCG-S: Orthogonal coupling of P*-admissible
representations for general floorplans. InProc. of DAC, pages 842–847, 2002.

[31] J.-M. Lin, Y.-W. Chang, and S.-P. Lin. Corner sequence - A P-admissible floorplan
representation with a worst case linear-time packing scheme.IEEE Trans. on VLSI
Systems, 11(4):679–686, August 2003.

[32] S.-P. Lin and Y.-W. Chang. A novel framework for multilevel routing considering
routability and performance. InProc. of ICCAD, pages 44–50, 2002.

[33] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajatani. Rectangle-packing based
module placement. InProc. of ICCAD, pages 472–479, 1995.

[34] S. Nakatake, K. Fujiyoshi, H. Murata, and Y. Kajatani. Module placement on bsg-
structure and ic layout applications. InProc. of ICCAD, pages 484–491, 1996.

[35] N. Selvakkumaran and G. Karypis. Theto - a fast and high-quality paritioning
driven global placer. Technical Report 03-46, Dept of Computer Science and
Engineering, Univeristy of Minnesota, Novemver 2003.

[36] N. Selvakkumaran and G. Karypis. Theto - a fast and high-quality paritioning
driven placement tool. Technical Report 04-40, Dept of Computer Science and
Engineering, Univeristy of Minnesota, October 2004.

[37] E. F. Y. Young, C. C. N. Chu, and Z. C. Shen. Twin binary sequences: A
nonredundant representation for general nonslicing floorplan.IEEE Trans. on VLSI
Systems, 22(4):457–469, April 2003.

