
1430 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 8, AUGUST 2007

MB∗-Tree: A Multilevel Floorplanner for
Large-Scale Building-Module Design

Hsun-Cheng Lee, Yao-Wen Chang, Member, IEEE, and Hannah Honghua Yang

Abstract—In this paper, we present an agglomeratively multi-
level floorplanning/placement framework based on the B∗-tree
representation called MB∗-tree to handle the floorplanning and
packing for large-scale building modules. The MB∗-tree adopts a
two-stage technique, i.e., clustering followed by declustering. The
clustering stage iteratively groups a set of modules based on a
cost metric guided by area utilization and module connectivity
and at the same time establishes the geometric relations for the
newly clustered modules by constructing a corresponding B∗-tree
for them. The declustering stage iteratively ungroups a set of
the previously clustered modules (i.e., perform tree expansion)
and then refines the floorplanning/placement solution by using a
simulated annealing scheme. In particular, the MB∗-tree preserves
the geometric relations among modules during declustering, which
makes the MB∗-tree an ideal data structure for the multilevel
floorplanning/placement framework. Experimental results show
that the MB∗-tree obtains significantly better silicon area and
wirelength than previous works. Further, unlike previous works,
the MB∗-tree scales very well as the circuit size increases.

Index Terms—Floorplanning, layout, multilevel framework,
physical design, placement.

I. INTRODUCTION

D ESIGN complexities are growing at breathtaking speed
with the continued improvement of nanometer IC tech-

nologies. On one hand, designs with billions of transistors are
already in production (ICs with billions of transistors are even
expected within this decade), Internet Protocol modules are
widely reused, and a large number of buffer blocks are used
for delay optimization as well as noise reduction in nanometer
interconnect-driven floorplanning [3], [11], [19], [20], [23],
[35], all of which drive the need of a tool to handle large-scale
building modules. On the other hand, the highly competitive IC
market requires faster design convergence, faster incremental
design turnaround, and better silicon area utilization. Efficient
and effective design methodology and tools capable of plac-

Manuscript received April 5, 2003; revised February 28, 2004 and
August 23, 2005. The work of Y.-W. Chang was supported by the National
Science Council of Taiwan under Grants NSC 93-2215-E-002-009, NSC 93-
2220-E-002-001, and NSC 93-2752-E-002-008-PAE. This paper was presented
at the 40th ACM/IEEE Design Automation Conference, June 2003. This paper
was recommended by Associate Editor T. Yoshimura.

H.-C. Lee is with Synopsys, Taipei 110, Taiwan, R.O.C. (e-mail: gis88526@
cis.nctu.edu.tw).

Y.-W. Chang is with the Department of Electrical Engineering and Graduate
Institute of Electronics Engineering, National Taiwan University, Taipei 106,
Taiwan, R.O.C., and also with Waseda University, Tokyo 169-8050, Japan
(e-mail: ywchang@cc.ee.ntu.edu.tw).

H. H. Yang is with Strategic CAD Laboratories, Intel Corporation, Hillsboro,
OR 97124 USA (e-mail: hyang@ichips.intel.com).

Digital Object Identifier 10.1109/TCAD.2007.891368

ing and optimizing large-scale modules are essential for such
large designs.

Many floorplan representations have been proposed [9], [15],
[24]–[28], [31]–[33], [36], [37] in the literature. However, tra-
ditional floorplanning/placement algorithms do not scale well
as the design size, complexity, and constraints increase, which
are mainly due to their inflexibility in handling nonslicing
floorplans and/or intrinsically nonhierarchical data structures
(representations). The B∗-tree, in contrast, has shown an ef-
ficient, effective, and flexible data structure for nonslicing
floorplans [9]. It is particularly suitable for representing a
nonslicing floorplan with large-scale modules and for creating
or incrementally updating a floorplan. What is more important
is that its binary-tree-based structure directly corresponds to
the framework of a hierarchical divide-and-conquer scheme,
and thus, the properties inherited from the structure can sub-
stantially facilitate the operations for multilevel large-scale
building-module floorplanning/placement.

Based on the B∗-tree representation, we present an ag-
glomeratively multilevel floorplanning/placement framework
called MB∗-tree to handle the floorplanning and packing for
large-scale building modules with high efficiency and quality.
MB∗-tree is inspired by the success of the agglomeratively mul-
tilevel framework in graph/circuit partitioning such as Chaco
[16], hMetis [21], and ML [4]; placement such as mPL [6];
hierarchical placement/floorplanning such as BEAR [13]; and
routing such as MRS [10], MR [8], [29], MARS [12], and CMR
[17], [18]. Unlike multilevel partitioners and placers, however,
multilevel floorplanning poses unique difficulties as the shapes
of modules to be clustered together can significantly affect the
area utilization of a floorplan, and a floorplan design within
a cluster needs to be explored along with the global floorplan
optimization. The clustering approach also helps to directly
address floorplan congestion and timing issues, since different
clustering algorithms can be developed to localize intermodule
communication and reduce the critical path length.

The MB∗-tree algorithm adopts a two-stage technique, i.e.,
clustering followed by declustering. (See Fig. 1 for an illustra-
tion of the multilevel framework.) The clustering stage itera-
tively groups a set of modules (could be basic modules and/or
previously clustered modules) based on a cost metric guided by
area utilization and module connectivity and at the same time
establishes the geometric relations for the newly clustered mod-
ules by constructing a corresponding B∗-tree. The clustering
procedure repeats until a single cluster containing all modules is
formed, which is denoted by a one-node B∗-tree that bookkeeps
the entire multilevel clustering information. For soft modules,
we apply Lagrangian relaxation during clustering to determine

0278-0070/$25.00 © 2007 IEEE

LEE et al.: MB∗-TREE: MULTILEVEL FLOORPLANNER FOR LARGE-SCALE BUILDING-MODULE DESIGN 1431

Fig. 1. Multilevel framework.

the module shapes. Then, the declustering stage iteratively un-
groups a set of the previously clustered modules (i.e., expanding
a node into a subtree according to the B∗-tree topology con-
structed at the clustering stage) and then applies simulated
annealing to refine the floorplanning/placement solution based
on a cost metric defined by area utilization and wirelength. The
refinement shall lead to a “better” B∗-tree structure that guides
the declustering at the next level. It is important to note that we
always keep only one B∗-tree for processing at each iteration,
and the MB∗-tree preserves the geometric relations among
modules during declustering (i.e., the tree expansion), which
makes the MB∗-tree an ideal data structure for the multilevel
floorplanning/placement framework. Note that our multilevel
framework agglomeratively clusters solutions (i.e., cluster mod-
ules one by one) with a postrefinement at each level of the
hierarchy, resulting in a linear number of levels. This frame-
work is different from classical multilevel frameworks that si-
multaneously cluster solutions throughout the design, resulting
in a logarithmic number of levels.

Experimental results show that the MB∗-tree scales very
well as the circuit size increases while the famous previous
works, sequence pair (SP), O-tree, and B∗-tree alone do not. For
circuit sizes ranging from 49 to 9800 modules and from 408
to 81 600 nets, the MB∗-tree consistently obtains high-quality
floorplans with dead spaces of less than 3.7% in empirically
linear runtime, while SP, O-tree, and B∗-tree can handle only up
to 196, 196, and 1960 modules in the same amount of runtime
and result in dead spaces of as large as 13.00% (at 196 mod-
ules), 9.86% (at 196 modules), and 27.33% (at 1960 modules),
respectively. We also performed experiments based on a large
industrial design with 189 modules and 9777 nets. The results
show that our MB∗-tree algorithm obtained significantly better
silicon area and wirelength than previous works.

The remainder of this paper is organized as follows:
Section II formulates the module floorplanning/placement
problem. Section III gives a brief overview on the B∗-tree rep-
resentation. Section IV presents our two-stage algorithm, i.e.,
clustering followed by declustering, for the problem addressed
in this paper. Section V presents our approach for handling soft
modules. Section VI gives the experimental results, and finally,
the concluding remarks are given in Section VII.

II. PROBLEM FORMULATION

Let M = {m1,m2, . . . ,mn} be a set of n rectangular mod-
ules. Each module mi ∈ M is associated with a three tuple
(hi, wi, ai), where hi, wi, and ai denote the width, height, and

Fig. 2. Admissible placement and its corresponding B∗-tree.

aspect ratio of mi, respectively. The area Ai of mi is given
by hiwi, and the aspect ratio ai of mi is given by hi/wi.
Let ri,min and ri,max be the minimum and maximum aspect
ratios, i.e., hi/wi ∈ [ri,min, ri,max]. A placement (floorplan)
P = {(xi, yi)|mi ∈ M} is an assignment of rectangular mod-
ules mi with the coordinates of their bottom-left corners be-
ing assigned to (xi, yi) so that no two modules overlap (and
hi/wi ∈ [ri,min, ri,max] ∀i). In this paper, we consider both
hard and soft modules. A hard module is not flexible in its shape
but free to rotate. A soft module is free to rotate and change
its shape within the range [ri,min, ri,max]. The objective of
placement/floorplanning is to minimize a specified cost metric
such as a combination of the area Atot and wirelength Wtot

induced by the assignment of mi, where Atot is measured by
the final enclosing rectangle of P , and Wtot is the summation
of half the bounding box of pins for each net (or the center-to-
center interconnections among all modules).

III. REVIEW OF THE B∗-TREE REPRESENTATION

As mentioned earlier, we apply the B∗-tree representation to
handle the problem of multilevel large-scale building-module
floorplanning/placement. Thus, we shall first give a review of
the B∗-tree representation.

Given a compacted placement P that can neither move down
nor move left (called an admissible placement [15]), we can
represent it by a unique B∗-tree T [9]. [See Fig. 2(b) for the
B∗-tree representing the placement of Fig. 2(a).] A B∗-tree is
an ordered binary tree (a restriction of O-tree with faster and
more flexible operations) whose root corresponds to the module
on the bottom-left corner. Using the depth-first search (DFS)
procedure, the B∗-tree T for an admissible placement P can
be constructed in a recursive fashion. Starting from the root,
we first recursively construct the left subtree and then the right
subtree. Let Ri denote the set of modules located on the right-
hand side and adjacent to mi. The left child of the node ni

corresponds to the lowest module in Ri that is unvisited. The
right child of ni represents the lowest module located above
mi, with its x-coordinate is equal to that of mi.

As shown in Fig. 2, we make n1 the root of T since m1

is on the bottom-left corner. Constructing the left subtree of
n1 recursively, we make n2 the left child of n1. Since the left
child of n2 does not exist, we then construct the right subtree

1432 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 8, AUGUST 2007

Fig. 3. Cluster with the four primitive modules, a, b, c, and d. The placement
can be obtained by applying the clustering scheme {{m1, m2}, {m3, m4}},
resulting in a dead space of 36 units.

of n2 (which is rooted by n3). The construction is recursively
performed in DFS order. After completing the left subtree of
n1, the same procedure applies to the right subtree of n1.

Fig. 2(b) illustrates the resulting B∗-tree for the placement
shown in Fig. 2(a). The construction takes only linear time. The
B∗-tree keeps the geometric relationship between two modules
as follows: If node nj is the left child of node ni, module
mj must be located on the right-hand side of mi, with xj =
xi + wi. Besides, if node nj is the right child of ni, module
mj must be located above module mi, with the x-coordinate of
mj equal to that of mi, i.e., xj = xi. Also, since the root of T
represents the bottom-left module, the coordinate of the module
is (xroot, yroot) = (0, 0).

Inheriting from the nice properties of ordered binary trees,
the B∗-tree is simple, efficient, effective, and flexible for han-
dling nonslicing floorplans. It is particularly suitable for rep-
resenting a nonslicing floorplan with various types of modules
and for creating or incrementally updating a floorplan. What is
more important is that its binary-tree-based structure directly
corresponds to the framework of a hierarchical scheme, which
makes it a superior data structure for multilevel large-scale
building-module floorplanning/placement.

IV. MB∗-TREE ALGORITHM

In this section, we shall present our MB∗-tree algo-
rithm for multilevel large-scale building-module floorplanning/
placement. As mentioned earlier, the algorithm adopts a two-
stage approach, i.e., clustering followed by declustering, by
using the B∗-tree representation.

The clustering operation results in two types of modules,
namely: 1) primitive modules and 2) cluster modules. A prim-
itive module m is a module given as an input (i.e., m ∈ M),
while a cluster one is created by grouping two or more primitive
modules. Each cluster module is created by a clustering scheme
{mi,mj}, where mi (mj) denotes a primitive or a cluster
module. Fig. 3 shows a cluster module with four primitive
modules; a possible way to form the cluster module is by the
clustering scheme {{m1,m2}, {m3,m4}}.

In the following subsections, we detail the two-stage ap-
proach of clustering followed by declustering for hard modules.

A. Clustering

The clustering stage iteratively groups a set of (primitive or
cluster) modules (say, two modules) based on a cost metric

Fig. 4. Example connectivity between each pair of modules. We apply the
clustering scheme {{m1, m2}, {m3, m4}} based on connectivity density
instead of {{{m1, m2}, m3}, m4} (based on connectivity).

defined by area utilization, wirelength, and connectivity among
modules, and at the same time establishes the geometric rela-
tions among the newly clustered modules by constructing a cor-
responding B∗-subtree. The clustering procedure repeats until a
single cluster containing all modules is formed (or the number
of modules is smaller than a predefined threshold), which
is denoted by a one-node B∗-tree that bookkeeps the entire
clustering scheme. We shall first consider the clustering metric.
1) Clustering Metric: The clustering metric is defined by

the two criteria, namely: 1) area utilization (dead space) and
2) the connectivity density among modules.

1) Dead space: The area utilization for clustering two mod-
ules mi and mj can be measured by the resulting dead
space sij , representing the unused area after clustering
mi and mj . Let stot denote the dead space in the final
floorplan P . We have stot = Atot −

∑
mi∈M Ai, where

Ai denotes the area of module mi, and Atot denotes
the area of the final enclosing rectangle of P . Since∑

mi∈M Ai is a constant, minimizing Atot is equivalent
to minimizing the dead space stot. For the example shown
in Fig. 3, s12 = 0, s13 = 36, and stot = 36.

2) Connectivity density: Let the connectivity cij denote the
number of nets between two (primitive or cluster) mod-
ules mi and mj . The connectivity density dij between two
modules mi and mj is given by

dij = cij/(ni + nj) (1)

where ni (nj) denotes the number of primitive modules
in mi (mj). Often, a bigger cluster implies a larger
number of connections. The connectivity density
considers not only the connectivity but also the sizes of
clusters between two modules to avoid possible biases.
For the example shown in Fig. 4, we apply the clustering
scheme {{m1,m2}, {m3,m4}} (based on connectivity
density) instead of {{{m1,m2},m3},m4} (based on
connectivity).

Obviously, the cost function of dead space is for area opti-
mization while that of connectivity density is for timing and
wiring area optimization. Therefore, the metric for clustering
two (primitive or cluster) modules mi and mj , φ : {mi,mj} →
R+ ∪ {0}, is then given by

φ ({mi,mj}) = αŝij +
βK

d̂ij

(2)

where ŝij and K/d̂ij are respective normalized costs for sij

and K/dij , and α, β, and K are user-specified parameters/
constants. We set K =

∑
sij/

∑
dij to normalize the dead

LEE et al.: MB∗-TREE: MULTILEVEL FLOORPLANNER FOR LARGE-SCALE BUILDING-MODULE DESIGN 1433

Fig. 5. Relation of two modules and their clustering. (a) Two candidate
modules mi and mj . (b) Clustering and corresponding B∗-subtree for the
case where mi is horizontally related to mj . (c) Clustering and corresponding
B∗-subtree for the case where mi is vertically related to mj .

space and the connectivity cost, i.e., to make the ranges of the
two normalized costs about the same. Note that we shall nor-
malize the dead space and connectivity density to equally weigh
the two costs. To calculate the normalization factors for si,j

and di,j , we can preprocess using simulated annealing to derive
the initial temperature and then obtain the approximate ranges
of the resulting area and connectivity density to normalize the
costs. For example, we may perform 100 runs of simulated
annealing to obtain the approximate ranges of the resulting
costs (i.e., area and connectivity density here) and derive the
factors (weights) to equally weigh the costs by making the
ranges of the two costs about the same. By doing so, it is more
meaningful to weigh the area and connectivity density costs
through the controlling factors α and β.
2) Clustering Algorithm: Based on φ, we pick a set of

modules (say, two modules) with the minimum clustering cost
φ and cluster them into one. The procedure continues until a
single cluster containing all primitive modules is formed or
the number of modules is smaller than a given threshold (and
thus can be easily handled by a classical floorplanner). During
clustering, we shall record how two modules mi and mj are
clustered into a new cluster module mk. Fig. 5 shows two
ways to cluster two modules mi and mj . If mi is placed left
to (below) mj , then mi is horizontally (vertically) related to
mj , which is denoted by mi → (↑)mj . If mi → (↑)mj , then
nj is the left (right) child of ni in its corresponding B∗-tree.
The relation for each pair of modules in a cluster is established
and recorded in the corresponding B∗-subtree during clustering.
It will be used for determining how to expand a node into a
corresponding B∗-subtree during declustering.

Fig. 6 shows our two-way clustering algorithm. Line 1 com-
putes the initial cost matrix Φ = (φij), where φij = αŝij +
βK/d̂ij . Line 2 assigns to n the number of input primitive
modules. Lines 3–9 perform step-by-step clustering (n− 1
steps in total). At Step k, we pick two modules mi and mj with
the minimum φij (Extract_Min(φij) in Line 4) and then cluster
them into a new cluster module mn+k (cluster(mi,mj) in
Line 5). Line 6 records the clustering scheme qk for {mi,mj}.
Line 7 randomly decides the relation of mi and mj , and
constructs the corresponding B∗-subtree. We then update the
set of modules to cluster modules (Line 8) and the entries
associated with mn+k in the cost matrix Φ (Line 9). We repeat
the two-way clustering process n− 1 times until all mod-
ules are clustered into a single cluster. The clustering scheme
qn−1 for the last two modules bookkeeps the entire clustering
scheme Q. Thus, we assign qn−1 to Q (Line 10) and return the
entire scheme (Line 11).

Fig. 6. Two-way clustering algorithm.

B. Declustering

The declustering stage iteratively ungroups a set of previ-
ously clustered modules (i.e., expanding a node into a subtree
according to the B∗-tree topology constructed at the cluster-
ing stage) and then refines the floorplan solution based on a
simulated annealing scheme. The refinement shall lead to a
“better” B∗-tree structure that guides the declustering at the
next level. It is important to note that we always keep only one
B∗-tree for processing at each iteration, and the agglomeratively
multilevel B∗-tree-based floorplanner preserves the geometric
relations among modules during declustering (i.e., the tree
expansion), which makes the B∗-tree an ideal data structure for
the multilevel floorplanning framework.

We shall first introduce the metric used in simulated anneal-
ing for refining floorplan/placement solutions.
1) Declustering Metric: The declustering metric is defined

by the two criteria, namely: 1) area utilization (dead space) and
2) the wirelength among modules.

1) Dead space: Same as that defined in Section IV-A.
2) Wirelength: The wirelength of a net is measured by half

the bounding box of all the pins of the net or by the length
of the center-to-center interconnections between the mod-
ules if no pin positions are specified. The wirelength for
clustering two modules mi and mj , i.e., wij , is measured
by the total wirelength interconnecting the two modules.
The total wirelength in the final floorplan P , i.e., wtot, is
the summation of the length of the wires interconnecting
all modules.

Obviously, the cost function of dead space is for area op-
timization while that of wirelength is for timing and wiring
area optimization. Therefore, the metric for refining a floorplan
solution during declustering ψtot : M → R+ ∪ {0} is then
given by

ψtot = γŝtot + δŵtot (3)

where ŝtot and ŵtot are the respective normalized costs for stot

and wtot, and γ and δ are user-specified parameters. Note that

1434 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 8, AUGUST 2007

Fig. 7. Declustering algorithm.

the normalization procedure for stot and wtot is similar to that
described in Section IV-A1.
2) Declustering Algorithm: The declustering stage itera-

tively ungroups a set of previously clustered modules (i.e., ex-
pand a node into a subtree according to the B∗-tree constructed
at the clustering stage) and then refines the floorplan solution
based on simulated annealing.

Fig. 7 shows the algorithm for declustering a cluster module
mk into two modules mi and mj that are clustered into mk at
the clustering stage. Without loss of generality, we make mi

right to or below mj . In Algorithm Declustering (see Fig. 7),
parent(ni), right(ni), and left(ni) denote the parent, right
child, and left child of node ni in a B∗-tree, respectively. Line 1
updates the parent of nk as that of ni. Lines 2–5 make ni a left
(right) child if nk is a left (right) child. Lines 6–13 deal with the
case where mi is horizontally related to mj . If mi → mj , then
nj is the left child of ni, and thus, we update the corresponding
links in Line 7. Lines 8–10 (11–13) update the links associated
with the right (left) child of nk. Similarly, Lines 14–23 cope
with the case where mi is vertically related to mj .

Fig. 8 gives an illustration of this algorithm. Fig. 8(a) shows
an instance of clustering and its corresponding B∗-tree, for
which we are preparing to decluster m3 into m6 and m7 (i.e.,
the clustering scheme for m3 is {m6,m7}). Fig. 8(b) shows
four cases to decluster m3, and their corresponding resulting
B∗-trees are illustrated in Fig. 8(c). Cases 1 and 2 correspond

to Lines 6–13 of Fig. 7, and Cases 3 and 4 correspond to
Lines 14–23.
Theorem 1: Each declustering operation takes O(1) time,

and the overall declustering stage takes O(|M |) time, where
|M | is the number of input primitive modules.

Proof: As listed in Algorithm Declustering (see Fig. 7),
each declustering operation requires updating only local links
associated with the three involved modules (mi, mj , and mk).
Since there are only a constant number of such links, per-
forming a declustering operation takes O(1) time. Further, it is
trivial that we perform |M | − 1 declustering operations to un-
group all modules, and the overall declustering complexity thus
follows. �

We proposed a simulated annealing-based algorithm to refine
the solution at each level of declustering. We apply the follow-
ing three operations to perturb a multilevel B∗-tree (a feasible
solution) to another.

1) Op1: Rotate a module.
2) Op2: Move a module to another place.
3) Op3: Swap two modules.

Op1 exchanges the width and height of a module. Op2 deletes
a node of a B∗-tree and inserts it into another position. Op3
deletes two nodes and inserts them into the corresponding po-
sitions in the B∗-tree. Obviously, Op2 and Op3 need to perform
the deletion and insertion operations on a B∗-tree, which takes
O(h) time, where h is the height of the B∗-tree.

The annealing procedure uses a parameter, i.e., temperature
t, to control the probability of accepting an uphill move (an
inferior solution). The initial temperature t0 = ∆avg/ ln(P),
where ∆avg is the average cost change for a set of randomly
generated uphill moves, and P is the initial probability of
accepting uphill moves. The temperature t is then decreased by
a factor r < 1 (i.e., the temperature for the next iteration is rt).
We terminate the annealing process when the temperature cools
down to a user-defined value ε.

The simulated annealing algorithm starts by a B∗-tree pro-
duced during declustering. Then, it perturbs a B∗-tree (a feasi-
ble solution) to another B∗-tree by Op1, Op2, and/or Op3 until
a predefined “frozen” state is reached. At last, we transform
the resulting B∗-tree to the corresponding final admissible
placement.

C. Overall MB∗-Tree Algorithm

The MB∗-tree algorithm integrates the aforementioned three
algorithms and is summarized in Fig. 9. In Line 1, we first
perform clustering to reduce the problem size level by a level
based on the clustering metric described in Section IV-A1 and
then enter the declustering stage. In the declustering stage, we
perform floorplanning for the modules at each level using the
simulated annealing-based algorithm B∗-tree. At level i, we
perform the declustering i2 times and then perform simulated
annealing with i× p tries per iteration, where p is a user-
specified parameter. Therefore, the number of tries for each
iteration of simulated annealing is proportional to the number of
(primitive and cluster) modules at the current level, leading to a
better tradeoff between scalability and solution quality since the
MB∗-tree can inherit a “good” solution from the previous level.

LEE et al.: MB∗-TREE: MULTILEVEL FLOORPLANNER FOR LARGE-SCALE BUILDING-MODULE DESIGN 1435

Fig. 8. Declustering m3 into m6 and m7. (a) Configuration before declustering. (b) Four cases to decluster m6 and m7. (c) Placement and corresponding
B∗-tree topology after declustering.

Fig. 9. MB∗-tree algorithm.

Fig. 10 illustrates an execution of the MB∗-tree algorithm.
For explanation, we cluster three modules each time in Fig. 10.
Fig. 10(a) lists seven modules to be packed, mi, 1 ≤ i ≤
7. Fig. 10(b)–(d) illustrates the execution of the clustering
algorithm. Fig. 10(b) shows the resulting configuration after
clustering m5, m6, and m7 into a new cluster module m8 (i.e.,
the clustering scheme of m8 is {{m5,m6},m7}). Similarly, we
cluster m1, m2, and m4 into m9 by using the clustering scheme
{{m2,m4},m1}. Finally, we cluster m3, m8, and m9 into m10

by using the clustering scheme {{m3,m8},m9}. The cluster-
ing stage is thus done, and the declustering stage begins, in
which simulated annealing is applied to do the floorplanning. In
Fig. 10(e), we first decluster m10 into m3, m8, and m9 [i.e., ex-
pand the node n10 into the B∗-subtree illustrated in Fig. 10(e)].
We then move m8 to the top of m9 (perform Op2 for m8) during
simulated annealing [see Fig. 10(f)]. As shown in Fig. 10(g),

we further decluster m9 into m1, m2, and m4, and then rotate
m2 and move m3 on top of m2 (perform Op1 on m2 and Op2
on m3), resulting in the configuration shown in Fig. 10(h).
Finally, we decluster m8 shown in Fig. 10(i) to m5, m6, and
m7, and move m4 to the right of m3 (perform Op2 for m4),
which results in the optimum placement shown in Fig. 10(j).

V. EXTENSION TO SOFT MODULE HANDLING

In this section, we present our approach for handling soft
modules. We first apply Lagrangian relaxation [38] to cluster
soft modules at the clustering stage while keeping declustering
the same as before. We then propose a network-flow-based
algorithm for projecting Lagrange multipliers to satisfy their
optimality conditions.

A. Clustering Metric for Soft Modules

The clustering metric for soft modules is defined by the two
criteria, namely: 1) area utilization (dead space) and 2) the
distance between modules obtained from the computation of
Lagrangian relaxation.

1) Dead space: Same as that defined in Section IV-A.
2) Distance: In Lagrangian relaxation, we formulate dead

space and wirelength as the objective function. Thus, after
the computation of Lagrangian relaxation to be described
in Section V-C, we can obtain the distances of two cluster
modules i and j, denoted by tij , via their coordinates
computed by Lagrangian relaxation.

Therefore, the metric for clustering two soft (primitive or
cluster) modules mi and mj , i.e., φs : {mi,mj} → R+ ∪ {0},
is then given by

φs ({mi,mj}) = αŝij + βt̂ij (4)

where ŝij and t̂ij are the respective normalized costs for sij

and tij , and α and β are the user-specified parameters. The

1436 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 8, AUGUST 2007

Fig. 10. (a) Given seven modules, mi, 1 ≤ i ≤ 7. (b) Clusters m5, m6, and m7 into m8. (c) Clusters m1, m2, and m4 into m9. (d) Clusters m3, m8, and
m9 into m10. (e) Decluster m10 to m3, m8, and m9. (f) Perform Op2 for m8. (g) Decluster m9 to m1, m2, and m4. (h) Perform Op1 and Op2 for m2 and
m3, respectively. (i) Decluster m8 to m5, m6, and m7. (j) Perform Op2 for m4.

procedure to normalize the sij and tij costs is similar to that
described in Section IV-A1.

Based on φs, we perform the clustering algorithm as before
and then employ the simulated annealing-based algorithm,
which is described in Section IV-B, for the floorplanning.

B. Formulation

Let M = {m1,m2, . . . ,mn} be a set of n primitive soft
modules. Each primitive soft module mi ∈ M is associated
with a three tuple (hi, wi, ai), where hi, wi, and ai denote the
width, height, and aspect ratio of mi, respectively. The area
Ai of mi is given by hiwi, and the aspect ratio ai of mi is
given by hi/wi ∈ [ri,min, ri,max]. Let Li =

√
Ai/ri,min and

Ui =
√
Ai/ri,max denote the minimum and maximum width

of mi, respectively. We have hi = Ai/wi and Li ≤ wi ≤ Ui.
A cluster module mc is composed of a set of primitive soft

modules Mp. mc can be reshaped via reshaping the modules
in Mp without violating the relations of the modules in Mp.
We create two dummy modules ms and mt, and set xs = 0,
ys = 0, ws = 0, and hs = 0. Then, we construct horizontal and
vertical constraint subgraphs of mc, denoted by Ghc and Gvc,
respectively. Ghc and Gvc are constructed as follows.

1) For ms and mt, create two vertices vs and vt in both Ghc

and Gvc.
2) For each mp ∈ Mp, create a vertex vp in Ghc and Gvc.
3) For each mp, mq ∈ Mp, if mp is left to (below) mq,

create an edge e(p, q) from vp to vq in Ghc(Gvc).

LEE et al.: MB∗-TREE: MULTILEVEL FLOORPLANNER FOR LARGE-SCALE BUILDING-MODULE DESIGN 1437

Fig. 11. (a) Cluster module mc with the cluster scheme {{m1, m2}, m3}.
(b) mc corresponding constraint subgraphs Ghc and Gvc. (c) Constraints to
ensure that no relation of modules is violated.

4) For each mp that is placed at the left boundary (bottom
boundary), create an edge e(vs, vp) from vs to vp in
Ghc(Gvc).

5) For each mp that is placed at the right boundary (top
boundary), create an edge e(vp, vt) from vp to vt in
Ghc (Gvc).

If xp + wp ≤ xq∀e(p, q) ∈ Ghc and yp + (Ap/wp) ≤
yq∀e(p, q) ∈ Gvc are satisfied, the relations of the modules in
Mp will not be violated. Fig. 11 illustrates how to construct
Ghc and Gvc, and what corresponding constraints must be
satisfied. Fig. 11(a) shows a cluster module mc with the cluster
scheme {{m1,m2},m3}. Fig. 11(b) shows the corresponding
constraint subgraphs Ghc and Gvc of mc. Fig. 11(c) shows the
constraints to ensure that no relation of modules is violated.
Thus, it implies that wc ≥ xt and hc ≥ yt.

At level i, let M i = {mi
1,m

i
2, . . . ,m

i
ni
} denote the set of

cluster modules. For each mi
j ∈ M i, (xi

j , y
i
j) denote the coor-

dinate of its bottom-left corner, and hi
j and wi

j denote the height
and width of mi

j , respectively. Note that xi
j , y

i
j , h

i
j , and wi

j are
non-negative real numbers. For convenience, we additionally
create two variables, namely: xi

ni+1 and yi
ni+1, which denote

the estimated height and width of the chip at level i, respec-
tively. Thus, the estimated area of the chip at level i equals
xi

ni+1y
i
ni+1. To estimate wirelength, we adopt the quadratic of

the length of the complete graph of pins in a net and take the
center of a module as the location of a pin, if the pins are not
assigned during floorplanning. Let Ei denote the set of nets at
level i. For a net ei

j ∈ Ei, ei
j can be represented as a set of

the modules {mi
k|ei

j has a pin connecting to mi
k}. Thus, the

estimated wirelength /i
j of a net ei

j ∈ Ei is defined by

/i
j =

∑
mi

p,mi
q∈ei

j

(((
xi

p + wi
p/2

) − (
xi

q + wi
q/2

))2

+
((
yi

p + hi
p/2

) − (
yi

q + hi
q/2

))2
)
.

We use the cost function φ′ to guide the clustering of soft
modules as

φ′(0x, 0y) = αxi
ni+1 yi

ni+1 + β
∑

ei
j
∈Ei

/i
j (5)

where 0x and 0y denote the respective vectors of the x-coordinate
and y-coordinate of a module, α and β are nonnegative user-
defined parameters, and /i

j denotes the estimated wirelength
of a net ei

j . In the formulation of clustering for soft modules,
we have the constraints that all modules are not overlapped and
must be laid in the chip (i.e., xi

j + wi
j ≤ xi

ni+1 and yi
j + hi

j ≤
yi

ni+1). Therefore, we can formulate the problem of clustering
for soft modules, called CS, as follows:

Minimize αxi
ni+1y

i
ni+1 + β

∑
ei

j
∈Ei

/i
j

subject to xi
j + wi

j ≤ xi
ni+1 ∀1 ≤ j ≤ ni,

yi
j + hi

j ≤ yi
ni+1 ∀1 ≤ j ≤ ni,

xtj
≤ wi

j , ytj
≤ hi

j ∀1 ≤ j ≤ ni,

xp + wp ≤ xq ∀e(p, q) ∈ Ghj ∀1 ≤ j ≤ ni,

yp +
Ap

wp
≤ yq ∀e(p, q) ∈ Gvj ∀1 ≤ j ≤ ni,

Li ≤ wi ≤ Ui ∀1 ≤ i ≤ n

where α and β are nonnegative user-defined parameters.

C. Lagrangian Relaxation

Then, the Lagrangian relaxation subproblem associated with
the multiplier 0P = (0κ, 0η,0λ, 0µ,0r,0s), denoted by LRS/(0P), can
be defined as follows:

Minimize αxi
ni+1y

i
ni+1 + β

∑
ei

j
∈Ei

/i
j

+
ni∑

j=1

κj

(
xi

j + wi
j − xi

ni+1

)

+
ni∑

j=1

ηj

(
yi

j + hi
j − yi

ni+1

)

+
ni∑

j=1

∑
e(p,q)∈Ghj

λjpq(xp + wp − xq)

+
ni∑

j=1

∑
e(p,q)∈Gvj

µjpq

(
yp +

Ap

wp
− yq

)

+
ni∑

j=1

rj

(
xtj

− wi
j

)
+ sj

(
ytj

− hi
j

)

subject to Li ≤ wi ≤ Ui ∀1 ≤ i ≤ n.

Let Q(0P) denote the optimal value of LRS/(0P). The
Lagrangian dual problem (LDP) of CS can be defined as
follows:

Maximize Q(0P)

subject to 0P ≥ 0.

Since CS can be transformed into a convex problem, we can
apply the theorem in [5, Th. 6.2.4]. This implies that if 0P is an

1438 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 8, AUGUST 2007

optimal solution to LDP, the optimal solution of LRS/(0P) will
also optimize CS.

Consider the Lagrangian ζ of CS defined as follows:

ζ =αxi
ni+1y

i
ni+1 + β

∑
ei

j
∈Ei

/i
j

+
ni∑

j=1

κj

(
xi

j + wi
j − xi

ni+1

)

+
ni∑

j=1

ηj

(
yi

j + hi
j − yi

ni+1

)

+
ni∑

j=1

∑
e(p,q)∈Ghj

λjpq(xp + wp − xq)

+
ni∑

j=1

∑
e(p,q)∈Gvj

µjpq

(
yp +

Ap

wp
− yq

)

+
ni∑

j=1

(
rj

(
xtj

− wi
j

)
+ sj

(
ytj

− hi
j

))

+
n∑

i=1

ui(Li − wi) +
n∑

i=1

vi(wi − Ui).

The Kuhn–Tucker conditions imply that the optimal solution
of CS must be at ∂ζ/∂xp = 0 and ∂ζ/∂yp = 0. Thus, we only
need to consider the multipliers 0P that satisfy these conditions.
Therefore, for 1 ≤ p ≤ n, we have

∂ζ/∂xp =
ni∑

j=1


 ∑

e(p,q)∈Ghj

λjpq −
∑

e(q,p)∈Ghj

λjqp


 = 0 (6)

∂ζ/∂yp =
ni∑

j=1


 ∑

e(p,q)∈Ghj

µjpq −
∑

e(q,p)∈Ghj

µjqp


 = 0. (7)

D. Solving LRS/(0P) and LDP

Let Ω denote the set of multipliers 0P satisfying (6) and (7).
We now consider solving the Lagrangian relaxation subproblem
LRS/(0P) for a given 0P ∈ Ω, i.e., computing the dimension
and coordinate of each module. First, we partially differentiate
ζ with respect to wi to get an optimal value of wi such that ζ is
minimized, i.e.,

∂ζ/∂wi = (vp − up) +
ni∑

j=1


 ∑

q∈outGhj
(vp)

λjpq




−
ni∑

j=1


 ∑

q∈outGvj
(vp)

µjpq
Ap

w2
p


 = 0.

Thus, we have

wp =

√√√√
∑ni

j=1

∑
q∈outGvj

(vp) µjpqAp

(vp − up) +
∑ni

j=1

∑
q∈outGhj

(vp) λjpq

where outG(v) = {u|e(v, u) ∈ E(G)}. Recall that Lp ≤ wp ≤
Up, 1 ≤ p ≤ n. Thus, the optimal w∗

p can be computed by
w∗

p = min{Up,max{Lp, wp}}.
Since the dimension of each primitive module (wp and hp)

has been determined, the dimension of each cluster module (wi
j

and hi
j) can be computed by applying a longest path algorithm

in Ghj and Gvj . Then, we consider partial differentiation of
ζ with respect to xi

j and yi
j , giving the optimality conditions

of CS. Therefore, for 1 ≤ j ≤ ni, we have

∂ζ/∂xi
j =β


 ∑

ei
k
⊃{mi

j}
2
(∣∣ei

k

∣∣−1
)
xi

j−
∑

ei
k
⊃{mi

j}

∑
mi

l
∈ei

k
\{mi

j}
xi

l

+
∑

ei
k
⊃{mi

j}

∑
mi

l
∈ei

k
\{mi

j}

(
wi

j − wi
l

)

+

ni∑
j=1

κj = 0

(8)

∂ζ/∂yi
j =β


 ∑

ei
k
⊃{mi

j}
2
(∣∣ei

k

∣∣−1
)
yi

j−
∑

ei
k
⊃{mi

j}

∑
mi

l
∈ei

k
\{mi

j}
yi

l

+
∑

ei
k
⊃{mi

j}

∑
mi

l
∈ei

k
\{mi

j}

(
hi

j − hi
l

)

+

ni∑
j=1

ηj = 0

(9)

where |ei
k| denotes the number of pins of ei

k.
In (8), there are ni equations with ni variables. Thus, we

can apply Gaussian elimination to solve these ni equations
with ni variables to get the optimal value of xi

j . In these ni

equations, all the coefficients of variables depend only on the
net information (i.e., ei

k). Since the net information is the same
through the entire process, each variable can be solved by the
same process. Hence, we can record the process of solving each
variable during the first iteration (which takes cubic time), and
then each subsequent computation will take only quadratic time
by applying the same process. Similarly, we can compute the
optimal value of yi

j . After the dimensions and coordinates of all
modules are computed, then we can get the dimension of the
chip, xi

ni+1 and yi
ni+1, since all modules are within the chip,

i.e., xi
ni+1 = max{xi

j + wi
j}, and yi

ni+1 = max{yi
j + hi

j} for
all cluster modules mi

j .
Next, we use a subgradient optimization method to search for

the optimal 0P . Let 0P be a multiplier at step k. We move 0P to a
new multiplier 0P′ based on the subgradient direction

κ′
j =

[
κj + ρk

(
xi

j + wi
j − xi

ni+1

)]+
η′j =

[
ηj + ρk

(
yi

j + hi
j − yi

ni+1

)]+
λ′

jpq = [λjpq + ρk (xp + wp − xq)]
+

µ′
jpq =

[
µjpq + ρk

(
yp +

Ap

wp
− yq

)]+

where [x]+ = max{x, 0}, and ρk is a step size such that
limk→∞ ρk = 0 and

∑∞
k=1 ρk = ∞.

LEE et al.: MB∗-TREE: MULTILEVEL FLOORPLANNER FOR LARGE-SCALE BUILDING-MODULE DESIGN 1439

After updating 0P , we need to project 0P′ to 0P∗ ∈ Ω and then
solve the Lagrangian relaxation subproblem LRS/(0P∗) by the
above algorithm until the solution converges.

E. Projecting Lagrange Multipliers

We present a network-flow-based algorithm to check whether
0P belongs to Ω and to project 0P to 0P∗ ∈ Ω, if 0P �∈ Ω. Further,
an increamental update technique is employed to make the
maximum flow computation more efficient. For each cluster
module mc, we first create two networks Nhc (for Ghc) and
Nvc (for Gvc) as follows.

1) For each vi ∈ V (Ghc)(V (Gvc)), create a vertex v′i in
Nhc(Nvc) and make v′s and v′t as the source and sink,
respectively.

2) For each e(p, q) ∈ E(Ghc)(E(Gvc)), create a corre-
sponding edge e(p′, q′) with capacity λcpq(µcpq) in
Nhc(Nvc).

We apply the maximum flow computation on the networks
to check whether 0P belongs to Ω. The maximum flow compu-
tation finds an augmenting path from v′s to v′t and then pushes
flow on it until no argument path can be found. Let cap(v, u)
and flow(v, u) denote the capacity and flow on the edge e(v, u).
An edge e(v, u) is saturated if its capacity equals the flow (i.e.,
cap(v, u) = flow(v, u)).

Theorem 2: If all edges in the networks are saturated,
0P ∈ Ω.

Proof: After the maximum flow computation, for each v′p
in a network except the source and sink, the sum of the flows
of v′p incoming edges equals the sum of its outgoing ones (i.e.,∑

e(p′,q′)∈Nhc
flow(p′, q′) =

∑
e(q′,p′)∈Nhc

flow(q′, p′) for each
Nhc and

∑
e(p′,q′)∈Nvc

flow(p′, q′) =
∑

e(q′,p′)∈Nvc
flow(q′, p′)

for each Nvc). Besides, cap(p′, q′) = flow(p′, q′) for all
edges e(p′, q′) (all edges are saturated), and cap(p′, q′) of
each edge e(p′, q′) in Nhc(Nvc) equals λcpq(µcpq). Hence,∑

e(p,q)∈Ghc
λcpq =

∑
e(q,p)∈Nhc

λcqp and
∑

e(p,q)∈Gvc
µcpq =∑

e(q,p)∈Gvc
µcqp for each cluster module mc. 0P belongs

to Ω. �
If 0P does not belong to Ω, we project 0P to 0P∗ by restoring

the flow flow(p′, q′) of each edge e(p′, q′) in Nhc (Nvc) to λcpq

(µcpq) for each mc.
Theorem 3: 0P∗ ∈ Ω.
The projection process greatly affects the efficiency of the

entire optimization, since there may be O(n2) edges in the
worst case. Thus, we employ an incremental flow update tech-
nique to speed up the max–flow computation after updating
0P and its corresponding capacity. Fig. 12 shows an algo-
rithm for the incremental network update. Lines 1–2 check
whether each edge e(p′, q′) violates the capacity constraint (i.e.,
0 ≤ flow(p′, q′) ≤ cap(p′, q′)). Lines 3–9 fix the overflow on
e(p′, q′) if an edge e(p′, q′) violates its capacity constraint.
Finally, Line 10 computes a maximum flow again.

Note that, for efficiency consideration, we may perform
Lagrangian relaxation only at the higher levels of the agglom-
eratively multilevel framework (when the number of modules
become small enough for Lagrangian relaxation). To do so,

Fig. 12. Incremental update algorithm.

TABLE I
BENCHMARK CIRCUITS USED IN OUR EXPERIMENT

however, we still need to pass the information of the aspect ratio
for each soft module level by level.

VI. EXPERIMENTAL RESULTS

We implemented the MB∗-tree algorithm in C++ language on
a 450-MHz SUN Ultra 60 workstation with 2-GB memory. The
package is available at http://eda.ee.ntu.edu.tw/research.htm.

Columns 1, 2, and 3 of Table I list the names of the
benchmark circuits, the number of modules, and the number
of nets, respectively. ami49 is the largest Microelectronics
Center of North Carolina benchmark circuit used in the previ-
ous works [9], [15] for comparative study. To test the scalability
of existing methods, we created ten synthetic circuits, named
ami49_x, by duplicating the modules and nets of ami49 by
x times. The largest circuit ami49_200 contains 9800 mod-
ules and 91 351 nets (specified by pin-to-pin interconnections).
Note that the work in [22] simply duplicates all modules and
nets of the circuit ami49. However, these kinds of synthetic
circuits are not general since there is no interconnection be-
tween the duplicated copies of circuits. To avoid possible
biases, we also added interconnections among different copies
of duplicated circuits. For the circuit ami49_x, we duplicated
each module/net x times. For each module mi, we dupli-
cated it as mi,1,mi,2, . . . ,mi,x and added x− 1 nets between
(mi,1,mi,2), (mi,1,mi,3), . . . , (mi,1,mi,x). Also, we divide

1440 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 8, AUGUST 2007

TABLE II
COMPARISONS FOR AREA, DEAD SPACE, RUNTIME, AND MEMORY AMONG MB∗-TREE, SP, O-TREE, AND B∗-TREE. NR: NO RESULT OBTAINED WITHIN

5-h CPU TIME ON SUN SPARC ULTRA 60. NOTE THAT MB∗-TREE, SP, AND B∗-TREE FINISHED THEIR MEMORY ALLOCATION IN THE VERY EARLY

STAGE OF EXECUTION. THEREFORE, THEIR MEMORY CONSUMPTION FOR THE LISTED CIRCUIT SIZES CAN BE MEASURED. O-TREE PERFORMS

MEMORY ALLOCATION AND DEALLOCATION DURING EXECUTION; THEREFORE, ONLY THE MEMORY REQUIREMENTS FOR

THE SMALL CASES THAT FINISHED EXECUTION ARE AVAILABLE

the block widths/heights by 5 for the benchmarks to avoid
overflows in computing the wirelength for ami49_x.

Table II shows the results for ami49_x by optimizing area
alone (γ = 1.0 and δ = 0.0). Columns 2, 3, 4, 5, and 6 give
the total area of modules in the circuit, the resulting area, the
dead space, the runtime, and the memory requirement for our
MB∗-tree, respectively. The remaining columns list the results
for the well-known previous works, SP [31], O-tree [15], and
B∗-tree [9]. Note that the B∗-tree package we used here is
the September 2000 version, B∗-tree-v1.0, available also at
http://eda.ee.ntu.edu.tw/research.htm. It runs 50–100× faster
and achieves better area utilization than the B∗-tree package
reported in [9]. We shall also note that the tools we compared
here are all variable-die floorplanners. The well-known floor-
planner Parquet-3.1/-4.0 [1], [34] and the floorplacer Capo 9 [2]
both target on fixed-die floorplanning, a different floorplanning
problem from what we have solved in this paper. We have also
tested publicly available mixed-size placers on the floorplan
benchmarks, including Feng Shui 2.6/5.0 [14] and mGP [7],
[30]. Feng Shui generated the floorplanning results directly
using its legalizer without performing global placement. Thus,
its results are far from optimal. For mGP, it results in many
overlaps and places some modules outside the chip boundary.
So we shall not compare our results with those mixed-size
placers.

As shown in Table II, our MB∗-tree algorithm obtained a
dead space of only 2.78% for ami49 in only 0.4-min runtime
and 1.3-MB memory, while B∗-tree-v1.0 reported a dead space

of 3.53% using 0.25-min runtime and 3.2-MB memory. Fur-
ther, the experimental results for larger circuits show that the
MB∗-tree scales very well as the circuit size increases while the
previous works, i.e., SP, O-tree, and B∗-tree, do not. For circuit
sizes ranging from 49 to 9800 modules and from 408 to 81 600
nets, the MB∗-tree consistently obtains high-quality floorplans
with dead spaces of less than 3.72% in empirically linear run-
time, while SP, O-tree, and B∗-tree can handle only up to 196,
98, and 1960 modules in the same amount of time and result
in dead spaces of as large as 13.00% (at 196 modules), 12.29%
(at 98 modules), and 27.33% (at 1960 modules), respectively.
In Fig. 13, the resulting dead space and runtime are plotted
as functions of the circuit size (in the number of modules),
respectively. As shown in Table II and Fig. 13(a), the resulting
dead spaces for the MB∗-tree are almost independent of circuit
sizes, which proves the high scalability of the MB∗-tree. In
contrast, the dead spaces for the nonhierarchical previous works
all grow dramatically as the circuit size increases. Fig. 13(b)
shows the empirical runtime for the four algorithms. This figure
reveals that the empirical runtime of the MB∗-tree is the best.
In particular, the empirical runtime of the MB∗-tree approaches
linear in circuit size while the other previous works cannot
handle large-scale designs. Fig. 14 shows the layout for the
largest circuit ami49_200 obtained by MB∗-tree in 256-min
CPU time. It has a dead space of only 3.44%. Note that this
circuit is not feasible to the previous works [9], [15], [31].

Table III shows the comparisons on area, dead space, and
runtime between running the complete MB∗-tree scheme and

LEE et al.: MB∗-TREE: MULTILEVEL FLOORPLANNER FOR LARGE-SCALE BUILDING-MODULE DESIGN 1441

Fig. 13. (a) Comparison for the dead space versus circuit size (number of modules). (b) Comparison for the CPU time versus circuit size (number of modules).

Fig. 14. Layout of ami49_200 (9800 modules, 81 600 nets). Dead space =
3.44%.

only clustering based on the ami49 family circuits for area
optimization. The resulting areas right after clustering are
on average about 1.78× of the final areas, and the runtimes
for clustering range from less than 1% to about 13% of the
total runtime. As shown in the table, although several initial
placements have around 60% dead spaces, our declustering can
consistently reduce the dead spaces to around 3%. The results
show the effectiveness of the declustering scheme.

We also tested the scalability of B∗-tree and MB∗-tree for
wirelength optimization. (We shall omit the comparisons with
SP and O-tree since they cannot handle this wirelength opti-
mization problem with more than 100 modules well.) Table IV
shows the results on half-perimeter wirelength (HPWL), dead
space, and CPU time for B∗-tree and MB∗-tree based on the
ami49_x circuits and within 24-h CPU time. As shown in the
table, MB∗-tree results in significantly smaller wirelength and
average dead space than B∗-tree for wirelength optimization.
In particular, the MB-tree scales very well while the B∗-tree
does not.

Table V shows the comparisons for area optimization alone
(γ = 1.0, δ = 0.0), wirelength optimization alone (γ = 0.0,
δ = 1.0), and simultaneous area and wirelength optimization
(γ = 0.5, δ = 0.5) among SP, B∗-tree, and MB∗-tree based

on the circuit industry (whose total area = 658.04 mm2). The
circuit industry is a 0.18-µm 1-GHz industrial design with
189 modules, 20 million gates, and 9777 center-to-center in-
terconnections. It is a large chip design and consists of three
“tough” modules with aspect ratios greater than 19 (and as large
as 36). (Note that we do not have the results for O-tree for this
experiment because the data industry cannot be fed into the
O-tree package.) In each entry of the table, we list the
best/average values obtained in ten runs of simulated annealing
using a random seed for each run. For the column “Time,” we
report the runtime for obtaining the best value and the average
runtime of the ten runs. As shown in the table, our MB∗-tree
algorithm obtained significantly better silicon area and wire-
length than SP and B∗-tree in all tests. For area optimization,
MB∗-tree can obtain a dead space of only 2.11% while SP
(B∗-tree) results in a dead space of at least 28.1% (12.9%). For
wirelength optimization, MB∗-tree can obtain a total wirelength
of only 56 631 mm while SP (B∗-tree) requires a total wire-
length of at least 81 344 mm (113 216 mm). For simultaneous
area and wirelength optimization, MB∗-tree also obtains the
best area and wirelength. The results show the effectiveness of
our MB∗-tree algorithm. For the runtimes, MB∗-tree is larger
than B∗-tree and SP for wirelength optimization. (For area
optimization, MB∗-tree runs faster than SP.) This is reason-
able because it took much longer to obtain significantly better
results, and the multilevel process incurred some overhead.
Nevertheless, as shown in Table II, both SP and B∗-tree do not
scale well to instances with a large number of modules (and
thus their runtimes increase dramatically when the number of
modules grows into hundreds). The resulting layout of industry
for simultaneous area and wirelength optimization using
MB∗-tree is shown in Fig. 15.

VII. CONCLUDING REMARKS

We have presented the MB∗-tree-based agglomeratively mul-
tilevel framework to handle the floorplanning and packing for
large-scale modules. Experimental results have shown that the
MB∗-tree scales very well as the circuit size increases. The ca-
pability of the MB∗-tree shows promise in handling large-scale
designs with complex constraints. We propose to explore the

1442 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 8, AUGUST 2007

TABLE III
COMPARISONS FOR AREA, DEAD SPACE, AND RUNTIME BETWEEN RUNNING THE COMPLETE MB∗-TREE SCHEME AND ONLY CLUSTERING

TABLE IV
COMPARISONS FOR HPWL, DEAD SPACE, AND CPU TIME BETWEEN B∗-TREE AND MB∗-TREE FOR THE ami49_x CIRCUITS.

NR: NO RESULT OBTAINED WITHIN 24-h CPU TIME

TABLE V
COMPARISONS FOR AREA OPTIMIZATION ALONE, WIRELENGTH OPTIMIZATION ALONE, AND SIMULTANEOUS AREA AND WIRELENGTH OPTIMIZATION

AMONG SP, B∗-TREE, AND MB∗-TREE BASED ON THE CIRCUIT INDUSTRY. IN EACH ENTRY, BOTH BEST/AVERAGE VALUES OBTAINED IN TEN RUNS OF

SIMULATED ANNEALING ARE REPORTED. THE LAST TWO ROWS GIVE THE RATIOS OF THE RESULTS (SP TO MB∗-TREE AND B∗-TREE TO MB∗-TREE)

LEE et al.: MB∗-TREE: MULTILEVEL FLOORPLANNER FOR LARGE-SCALE BUILDING-MODULE DESIGN 1443

Fig. 15. Layout of industry by simultaneously optimizing area and wire-
length (γ = 0.5, δ = 0.5). CPU time = 5234 s, Area = 716 263 680 µm2,
Total wirelength = 67 786 296 µm, Dead space = 8.14%.

floorplanning/placement problem with large-scale rectilinear
and mixed-sized modules/cells as well as buffer-block planning
for interconnect-driven floorplanning in the future.

REFERENCES

[1] S. Adya and I. Markov, “Fixed-outline floorplanning: Enabling hierarchi-
cal design,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 11,
no. 6, pp. 1120–1135, Dec. 2003.

[2] S. N. Adya, S. Chaturvedi, J. A. Roy, D. A. Papa, and I. L. Markov, “Unifi-
cation of partitioning, placement and floorplanning,” in Proc. IEEE/ACM
Int. Conf. Comput.-Aided Des., Nov. 2004, pp. 550–557.

[3] C. J. Alpert, J. H. Hu, S. S. Sapatnekar, and P. G. Villarrubia, “A practical
methodology for early buffer and wire resource allocation,” in Proc.
ACM/IEEE Des. Autom. Conf., Jun. 2001, pp. 189–194.

[4] C. J. Alpert, J.-H. Huang, and A. B. Kahng, “Multilevel circuit partition-
ing,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 17,
no. 8, pp. 655–667, Aug. 1998.

[5] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear Programming
Theory and Algorithms. Hoboken, NJ: Wiley, 1993.

[6] T. F. Chan, J. Cong, T. Kong, and J. R. Shinnerl, “Multilevel optimization
for large-scale circuit placement,” in Proc. IEEE/ACM Int. Conf. Comput.-
Aided Des., Nov. 2000, pp. 171–176.

[7] C.-C. Chang, J. Cong, and X. Yuan, “Multi-level placement for large-
scale mixed-size ic designs,” in Proc. ACM/IEEE Asia and South
Pac. Des. Autom., Jan. 2003, pp. 325–330.

[8] Y.-W. Chang and S.-P. Lin, “MR: A new framework for multilevel full-
chip routing,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 23, no. 5, pp. 793–800, May 2004.

[9] Y.-C. Chang, Y.-W. Chang, G.-M. Wu, and S.-W. Wu, “B∗-trees: A
new representation for non-slicing floorplans,” in Proc. ACM/IEEE Des.
Autom. Conf., Jun. 2000, pp. 458–463.

[10] J. Cong, J. Fang, and Y. Zhang, “Multilevel approach to full-chip gridless
routing,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided Des., Nov. 2001,
pp. 396–403.

[11] J. Cong, T. Kong, and D. Z. Pan, “Buffer block planning for interconnect-
driven floorplanning,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided Des.,
Nov. 1999, pp. 358–363.

[12] J. Cong, M. Xie, and Y. Zhang, “An enhanced multilevel routing system,”
in Proc. IEEE/ACM Int. Conf. Comput.-Aided Des., Nov. 2002, pp. 51–58.

[13] W. W. Dai, B. Eschermann, E. Kuh, and M. Pedram, “Hierarchical place-
ment and floorplanning in bear,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 8, no. 12, pp. 1335–1349, Dec. 1989.

[14] FengShui Standard Cell/Mixed Block/Structure Placer. [Online].
Available: http://vlsicad.cs.binghamton.edu/software.html

[15] P.-N. Guo, C.-K. Cheng, and T. Yoshimura, “An O-tree representation
of non-slicing floorplan and its applications,” in Proc. ACM/IEEE Des.
Autom. Conf., Jun. 1999, pp. 268–273.

[16] B. Hendrickson and R. Leland, “A multilevel algorithm for partitioning
graph,” in Proc. Supercomputing, 1995, pp. 1–24.

[17] T.-Y. Ho, Y.-W. Chang, S.-J. Chen, and D. T. Lee, “A fast crosstalk- and
performance-driven multilevel routing system,” in Proc. IEEE/ACM Int.
Conf. Comput.-Aided Des., San Jose, CA, Nov. 2003, pp. 382–387.

[18] T.-Y. Ho, Y.-W. Chang, S.-J. Chen, and D. T. Lee, “Multilevel full-chip
routing considering crosstalk and performance,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 25, no. 6, pp. 869–878, Jun. 2005.

[19] H.-R. Jiang, Y.-W. Chang, J.-Y. Jou, and K.-Y. Chao, “Simultaneous
floorplanning and buffer block planning,” in Proc. IEEE/ACM Asia and
South Pac. Des. Autom. Conf., Jan. 2003, pp. 431–434.

[20] H.-R. Jiang, Y.-W. Chang, J.-Y. Jou, and K.-Y. Chao, “Simultaneous floor-
planning and buffer block planning,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 23, no. 5, pp. 694–703, May 2004.

[21] G. Karypis and V. Kumar, “Multilevel k-way hypergraph partitioning,” in
Proc. ACM/IEEE Des. Autom. Conf., Jun. 1999, pp. 343–348.

[22] H.-C. Lee, Y.-W. Chang, J.-M. Hsu, and H. Yang, “Multilevel floor-
planning/placement for large-scale modules using B∗-trees,” in Proc.
ACM/IEEE Des. Autom. Conf., Jun. 2003, pp. 812–817.

[23] S.-M. Li, Y.-H. Cherng, and Y.-W. Chang, “Noise-aware buffer plan-
ning for interconnect-driven floorplanning,” in Proc. IEEE/ACM Asia and
South Pac. Des. Autom. Conf., Jan. 2003, pp. 423–426.

[24] J.-M. Lin and Y.-W. Chang, “TCG: A transitive closure graph based rep-
resentation for non-slicing floorplans,” in Proc. ACM/IEEE Des. Autom.
Conf., Jun. 2001, pp. 764–769.

[25] J.-M. Lin and Y.-W. Chang, “TCG-S: Orthogonal coupling of P∗-
admissible representations for general floorplans,” in Proc. ACM/IEEE
Des. Autom. Conf., Jun. 2002, pp. 842–847.

[26] J.-M. Lin and Y.-W. Chang, “TCG-S: Orthogonal coupling of P∗-
admissible representations for general floorplans,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 24, no. 6, pp. 968–980, Jun. 2004.

[27] J.-M. Lin and Y.-W. Chang, “TCG: A transitive closure graph based rep-
resentation for general floorplans,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 13, no. 2, pp. 288–292, Feb. 2005.

[28] J.-M. Lin, Y.-W. Chang, and S.-P. Lin, “Corner sequence: A P-admissible
floorplan representation with a worst-case linear-time packing scheme,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 11, no. 4, pp. 679–
686, Aug. 2003.

[29] S.-P. Lin and Y.-W. Chang, “A novel framework for multilevel routing
considering routability and performance,” in Proc. IEEE/ACM Int. Conf.
Comput.-Aided Des., Nov. 2002, pp. 44–50.

[30] MGP: Multilevel Global Placer for large-scale standard-cell placement,
mixed-sized (standard-cells mixed with macros) placement for wire-
length minimization and routability optimization. [Online]. Available:
http://ballade.cs.ucla.edu/mGP/

[31] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani, “Rectangle-
packing based module placement,” in Proc. IEEE/ACM Int. Conf.
Comput.-Aided Des., Nov. 1995, pp. 472–479.

[32] S. Nakatake, K. Fujiyoshi, H. Murata, and Y. Kajitani, “Module placement
on BSG-structure and IC layout applications,” in Proc. IEEE/ACM Int.
Conf. Comput.-Aided Des., Nov. 1996, pp. 484–491.

[33] R. H. J. M. Otten, “Automatic floorplan design,” in Proc. ACM/IEEE Des.
Autom. Conf., Jun. 1982, pp. 261–267.

[34] PARQUET: Floorplanner for fixed-outline floorplanning and classi-
cal min-area block packing. [Online]. Available: http://vlsicad.eecs.
umich.edu/BK/parquet/

[35] P. Sarkar, V. Sundararaman, and C. K. Koh, “Routability-driven repeater
block planning for interconnect-centric floorplanning,” in Proc. ACM Int.
Symp. Phys. Des., Apr. 2000, pp. 186–191.

[36] T. C. Wang and D. F. Wong, “An optimal algorithm for floorplan and are
optimization,” in Proc. ACM/IEEE Des. Autom. Conf., 1990, pp. 180–186.

[37] D. F. Wong and C. L. Liu, “A new algorithm for floorplan design,” in Proc.
ACM/IEEE Des. Autom. Conf., Jun. 1986, pp. 101–107.

[38] F. Y. Young, C. C. N. Chu, W. S. Luk, and Y. C. Wong, “Floorplan
area minimization using Lagrangian relaxation,” in Proc. ACM Int. Symp.
Phys. Des., Apr. 2000, pp. 174–179.

Hsun-Cheng Lee received the B.S. degree in in-
formation computer engineering from Chung Yuan
Christian University, Chungli, Taiwan, R.O.C., in
1999, and the M.S. degree in computer information
science from the National Chiao Tung University,
Hsinchu, Taiwan, in 2001.

He is currently a Software Engineer with Synop-
sys, Taipei, Taiwan. His research interests include
physical design and DFM-related topics.

1444 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 8, AUGUST 2007

Yao-Wen Chang (S’94–M’96) received the B.S.
degree from National Taiwan University, Taipei,
Taiwan, in 1988, and the M.S. and Ph.D. degrees
from the University of Texas at Austin in 1993 and
1996, respectively, all in computer science.

He is a Professor in the Department of Electrical
Engineering and the Graduate Institute of Electronics
Engineering, National Taiwan University. He is cur-
rently also a Visiting Professor at Waseda University,
Japan. He was with the IBM T. J. Watson Research
Center, Yorktown Heights, NY, in the summer of

1994. From 1996 to 2001, he was on the faculty of National Chiao Tung
University, Taiwan. His current research interests lie in VLSI physical design,
design for manufacturing, and FPGA. He has been working closely with
industry on projects in these areas. He has coauthored one book on routing
and over 120 ACM/IEEE conference/journal papers in these areas.

Dr. Chang received an award at the 2006 ACM ISPD Placement Contest,
Best Paper Award at ICCD-1995, and nine Best Paper Award Nominations
from DAC-2007, ISPD-2007 (two), DAC-2005, 2004 ACM TODAES, ASP-
DAC-2003, ICCAD-2002, ICCD-2001, and DAC-2000. He has received many
awards for research performance, such as the inaugural First-Class Principal
Investigator Awards and the 2004 Mr. Wu Ta You Memorial Award from the
National Science Council of Taiwan, the 2004 MXIC Young Chair Professor-
ship from the MXIC Corp, and for excellent teaching from National Taiwan
University and National Chiao Tung University. He is an editor of the Journal
of Computer and Information Science. He has served on the ACM/SIGDA
Physical Design Technical Committee and the technical program committees
of ASP-DAC (topic chair), DAC, DATE, FPT (program co-chair), GLSVLSI,
ICCAD, ICCD, IECON (topic chair), ISPD, SOCC (topic chair), TENCON,
and VLSI-DAT (topic chair). He is currently an independent board member of
Genesys Logic, Inc, the chair of the Design Automation and Testing (DAT)
Consortium of the Ministry of Education, Taiwan, a member of the board of
governors of the Taiwan IC Design Society, and a member of the IEEE Circuits
and Systems Society, ACM, and ACM/SIGDA.

Hannah Honghua Yang received the B.S. degree
from Peking University, Beijing, China, in 1988, and
the M.S. and Ph.D. degrees from the University of
Texas, Austin, in 1991 and 1995, respectively, all in
computer science.

She is currently a Senior Staff CAD Researcher
with Strategic CAD Laboratory, Intel Corporation,
Hillsboro, OR. She is a technical lead on very
large scale integration (VLSI) design automation for
physical design and microarchitecture planning and
exploration. She has published over 30 technical

papers in the semiconductor design automation field in premium international
conferences and journals.

