IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 6, JUNE 2009 791

Analog Placement Based on
Symmetry-Island Formulation

Po-Hung Lin, Yao-Wen Chang, Member, IEEE, and Shyh-Chang Lin

Abstract—To reduce the effect of parasitic mismatches and
circuit sensitivity to thermal gradients or process variations for
analog circuits, some pairs of modules need to be placed symmet-
rically with respect to a common axis, and the symmetric modules
are preferred to be placed at closest proximity for better elec-
trical properties. Most previous works handle the problem with
symmetry constraints by imposing symmetric-feasible conditions
in floorplan representations and using cost functions to minimize
the distance between symmetric modules. Such approaches are
inefficient due to the large search space and cannot guarantee the
closest proximity of symmetry modules. In this paper, we present
the first linear-time-packing algorithm for the placement with
symmetry constraints using the topological floorplan representa-
tions. We first introduce the concept of a symmetry island which
is formed by modules of the same symmetry group in a single
connected placement. Based on this concept and the B*-tree rep-
resentation, we propose automatically symmetric-feasible (ASF)
B*-trees to directly model the placement of a symmetry island. We
then present hierarchical B*-trees (HB*-trees) which can simulta-
neously optimize the placement with both symmetry islands and
nonsymmetric modules. Unlike the previous works, our approach
can place the symmetry modules in a symmetry group in close
proximity and significantly reduce the search space based on the
symmetry-island formulation. In particular, the packing time for
an ASF-B*-tree or an HB*-tree is the same as that for a plain
B*-tree (only linear) and much faster than previous works. Experi-
mental results show that our approach achieves the best-published
quality and runtime efficiency for analog placement.

Index Terms—Analog circuit, floorplanning, physical design,
placement.

I. INTRODUCTION

OR ANALOG layout design, some pairs of modules need
to be placed symmetrically with respect to a common axis.
The symmetric placement has several advantages: It reduces
the effect of parasitic mismatches which may lead to higher
offset voltages and degrade power-supply rejection ratio [2].
It can also reduce the circuit sensitivity to process variations

Manuscript received May 31, 2008; revised October 15, 2008 and January 6,
2009. Current version published May 20, 2009. This paper was presented in part
at the 2007 ACM/IEEE Design Automation Conference (DAC’07) [1]. This
work was supported in part by Springsoft, by Etron, by TSMC, and by the
National Science Council of Taiwan under Grants NSC-096-2917-1-002-121,
NSC 93-2815-C-002-046-E, NSC 94-2215-E-002-005, and NSC 94-2752-E-
002-008-PAE. This paper was recommended by Associate Editor H. E. Graeb.

P-H. Lin is with the Graduate Institute of Electronics Engineering, National
Taiwan University, Taipei 106, Taiwan (e-mail: marklin@eda.ee.ntu.edu.tw).

Y.-W. Chang is with the Graduate Institute of Electronics Engineering and
the Department of Electrical Engineering, National Taiwan University, Taipei
106, Taiwan (e-mail: ywchang @cc.ee.ntu.edu.tw).

S.-C. Lin is with the Physical Design Group, Springsoft, Inc., Hsinchu 300,
Taiwan (e-mail: chris_lin@springsoft.com).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2009.2017433

by placing the symmetric devices closed to each other. Failure
to adequately balance thermal coupling in a differential circuit
can even introduce unwanted oscillations [3]. Furthermore,
the symmetric modules are preferred to be placed at closest
proximity for better parasitic matching and other electrical
properties.

A. Previous Work

The problem of analog placement considering symmetry
constraints has been extensively studied in the literature. Most
of these works used the simulated-annealing (SA) algorithm
[4] in combination with floorplan representations to handle
symmetry constraints. We can classify these representations
into two major categories: 1) the absolute representation and
2) the topological representation.

An absolute representation was proposed by Jepsen and
Gellat [5]. For this representation, each module is associ-
ated with an absolute coordinate on a gridless plane. It op-
erates on a module by changing its coordinate directly. The
KOAN/ANAGRAM 1I [2], PUPPY-A [6], and LAYLA [7]
systems all adopted the absolute representation to handle the
placement of analog modules. The main weakness of the ab-
solute method lies in the fact that it may generate an infeasible
placement with overlapped modules. Therefore, a postprocess-
ing step must be performed to eliminate this condition, which
implies a longer computation time.

Recently, most previous works apply topological floor-
plan representations due to its flexibility and effectiveness.
Balasa et al. derived the symmetric-feasible conditions for
several popular floorplan representations including sequence
pairs (SPs) [8], O-tree [9], and binary trees [10]. To explore
the solution space in the symmetric-feasible binary trees, they
augmented the B*-tree [11] using various data structures, in-
cluding segment trees [3], [12], red-black trees [13], and de-
terministic skip lists [14]. Lin et al. [15] also presented the
symmetric-feasible conditions for the TCG-S representation.
Three more recent works [16]-[18] further took advantage of
the symmetric-feasible condition in SPs [8]. Koda et al. [16]
proposed a linear-programming-based method, and Tam et al.
[17] introduced a dummy node and additional constraint edges
for each symmetry group after obtaining a symmetric-feasible
SP. Krishnamoorthy et al. [18] proposed an O(m - nlglgn)
packing-time algorithm by employing the priority queue, where
m is the number of symmetry groups and n is the number
of modules. More recently, Zhang et al. [19] further im-
proved the perturbation time of the TCG representation from

O(n?) to O(n).

0278-0070/$25.00 © 2009 IEEE

Authorized licensed use limited to: National Taiwan University. Downloaded on December 27, 2009 at 13:42 from IEEE Xplore. Restrictions apply.

792 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 6, JUNE 2009

Most of the previous works showed that the symmetric-
feasible conditions in the topological representations can han-
dle the placement problem with a symmetry group effectively.
However, it is time-consuming to generate a relatively larger
scale placement with several symmetry groups. For example,
Koda et al. [16] reported that it takes almost an hour on a
3.2-GHz Pentium PC to generate a symmetric placement of
110 modules with five symmetry groups.

We observed several problems/deficiencies in the previous
works for analog placement: First, most previous works em-
ployed either an initial scan or a postprocessing with penalty
to avoid or fix the violation of the symmetric-feasible con-
dition for each perturbation during the SA process. There is
no direct representation that can guarantee the symmetric-
feasible condition in the representation itself. It is clear that
such approaches are inefficient due to the large search space and
fixing overheads. Consequently, the previous works using topo-
logical floorplan representations need O(m - nlglgn) time for
packing n modules. Second, most previous works used cost
functions or weights to penalize the solution with symmetric
modules far from each other. Obviously, such approaches can-
not guarantee the close proximity (or even the adjacency) of
symmetry modules.

B. Our Contributions

In this paper, we present the first linear-time-packing algo-
rithm for the placement with symmetry constraints, compared
to the previous works that need O(m - nlglgn) time. Specif-
ically, the packing complexity of the previous works [8]-[10],
[15]-[17], [19] are all O(n?) time while those of [3], [12]-[14]
need O(nlgn) time (the work in [18] requires O(m - nlglgn)
time, which was the fastest previous work).

We first introduce the concept of symmetry island that keeps
modules of the same symmetry group connected to each other
so that the circuit sensitivity to thermal gradients or process
variations can be reduced. Based on this concept and the B*-
tree representation [11], we propose a representation called au-
tomatically symmetric-feasible (ASF)-B*-trees that can model
the compacted placement of a symmetry island (i.e., the sym-
metric placement of the modules in a symmetry group). Specif-
ically, an ASF-B*-tree corresponds to a symmetry island with a
rectilinear placement. It guarantees a symmetric placement and
does not need to verify/fix the symmetric-feasible conditions
during SA perturbations.

We then present a hierarchical framework called hierarchi-
cal B*-trees (HB*-trees) which can simultaneously optimize
the placement with both symmetry islands and nonsymmetric
modules and dynamically update the rectilinear shape for the
modules in a symmetry island. In particular, the overall time
complexity for packing an ASF-B*-tree or an HB*-tree is
the same as that for a plain B*-tree (only linear) and much
faster than previous works. Experimental results based on the
MCNC benchmarks [15] and the real industry designs used
in [16] show that our approach produces the best published
results and runtime efficiency for analog placement. Further-
more, the scalability of our approach is much better than those
of the previous works. It should be noted that our formula-

TABLE 1
COMPARISONS OF POPULAR PREVIOUS WORKS AND OUR APPROACHES.
n: THE NUMBER OF MODULES; m: THE NUMBER OF SYMMETRY PAIRS

Analog Placement Perturbation Packing
Approach Time Time
O-tree [9] O(lgn) O(n?)
B*-tree [10] O(lgn) O(n?)
B*-tree + Seg. Tree [3] O(lgn) O(nlgn)
BT + RB-tree [13] O(lgn) O(nlgn)
BT + Skip List [14] O(gn) O(nlgn)
Sequence-pair (SP) [8] o(1) O(n?)
SP + LP [16] o(1) O(n?)
SP w. Dummy [17] o(1) O(n?)
SP w. Priority Queue [18] O(1) O(m - nlglgn)
TCG-S [15] O(n?) O(n?)
TCG [19] o) O(n?)
ASF-B*-tree + HB*-tree O(lgn) O(n)

tion requires modules in a symmetry island to be connected,
which corresponds to common cases in analog placements.
We can leverage this property to prune the solution subspace
formed with nonsymmetry-island placements, leading to effi-
cient and effective operations of the ASF-B*-trees. According
to our empirical results, in particular, this solution pruning
does not degrade the resulting solution quality for practical
applications.

Table I compares state-of-the-art previous works using
the topological floorplan representations and our approach
(ASF-B*-tree + HB*-tree).

The remainder of this paper is organized as follows.
Section II gives the preliminaries about the symmetry con-
straints, symmetry islands, and the B*-tree representation.
Section III presents how to model the placement of a symmetry
group as a symmetry island using the ASF-B*-tree. Section IV
proposes the hierarchical framework, HB*-tree, and Section V
presents our placement algorithm. Section VI reports the exper-
imental results, and finally, Section VII concludes this paper.

II. PRELIMINARIES

In this section, we first introduce the symmetry constraints
for analog placement, the definitions of symmetry types, and
the concept of symmetry islands. Then, we review the B*-tree
representation in [11] on which this paper is based.

A. Symmetry Constraints

Symmetry constraints can be formulated in terms of symme-
try types, symmetry groups, symmetry pairs, and self-symmetric
modules. In analog layout design, a symmetry group may
contain some symmetry pairs and self-symmetric modules with
respect to a certain symmetry type. A symmetry type may
correspond to a symmetry axis in either horizontal or vertical
direction. Fig. 1 shows two different symmetry types with either
vertical or horizontal symmetry axis.

For the symmetric placement with the vertical (horizontal)
symmetry axis shown in Fig. 1(a) [Fig. 1(b)], a symmetry pair
with two modules of the same dimensions and orientations
should be placed symmetrically along the vertical (horizon-
tal) symmetry axis. A self-symmetric module whose internal

Authorized licensed use limited to: National Taiwan University. Downloaded on December 27, 2009 at 13:42 from IEEE Xplore. Restrictions apply.

LIN et al.: ANALOG PLACEMENT BASED ON SYMMETRY-ISLAND FORMULATION

by

b

(b)

Fig. 1. Two symmetry types. (a) Symmetric placement with the vertical
symmetry axis. (b) Symmetric placement with the horizontal symmetry axis.

TABLE II
NOTATIONS IN THIS PAPER

b a module
S a symmetry group
((XD) a symmetry pair
b® a self-symmetric module
b" the representative of a symmetry pair or a self-symmetric
module
n number of modules
m number of symmetry groups
(s, y;) | the center coordinate of the module b;
Wi, i the width and the height of the module b;
Ti, Ui the coordinate(s) of the symmetry axis (axes) of the
symmetry group Sj;

structure is self-symmetric must have its center placed at the
symmetry axis.

We use the notations listed in Table II throughout this paper.
Let S ={51,59,...,5n} be a set of m symmetry groups
whose coordinate(s) of the symmetry axis (axes) is (are) de-
noted by Z; or ¢; (&; and ¢;), 1 < i < n. A symmetry group
Si = {(b1,01), (b2, 05), ..., (b, b)), 05,03, ..., b5} consists of
p symmetry pairs and ¢ self-symmetric modules, where (b;, b;)
denotes a symmetry pair and b; denotes a self-symmetric mod-
ule. Let (x,y;) and (2, ;) denote the respective coordinates
of the centers of two modules b; and b;- in a symmetry pair
(bj,b’;), respectively, and (z},y;) denotes the coordinate of
the center of the self-symmetric module b;. The symmetric
placement of a symmetry group S; with the vertical (horizontal)

symmetry axis must satisfy (1) [(2)]

T+ =2 X a4 Vi=1,2,...,p
yj:y;- Vi=1,2,...,p
2’y =3y Vk=1,2,...,q (1)
T =) Vi=1,2,...,p
yj—i—y;:Qin Vi=1,2,...,p
Yk = Ui Vk=1,2,...,q.)

B. Symmetry Island

Before introducing the symmetry island, we shall first inves-
tigate the effect of the symmetric device layout on the electrical
matching properties of the symmetric devices. Pelgrom et al.
[20] measured the mismatch between MOS transistors with
various electrical parameters as a function of device areas, dis-
tances, and orientations. According to Pelgrom et al. [20], the
difference of an electrical parameter P between two rectangular
devices is modeled by the standard deviation, as shown in (3),
where Ap is the area proportionality constant for P, W and L

793

denote the respective width and length of the device, and Sp
denotes the variation of P under the device spacing D,

43
WL

We assume that the device dimensions of modules in a
symmetry pair are the same. According to the above equation,
the larger the distance between the symmetry pair, the greater
differences between their electrical properties. Therefore, it
is of significant importance for the symmetric devices of a
symmetry group to be placed in close proximity. Fig. 2(a) shows
an analog circuit of a two-stage CMOS operational amplifier
containing the differential input subcircuit. The devices M1,
M2, M3, M4, and M5 in the differential input subcircuit
form a symmetry group S = {(M1, M2), (M3, M4), M5}.
Fig. 2(b) and (c) shows two corresponding layouts with dif-
ferent placement styles for the symmetry group .S. The layout
style in Fig. 2(c) is generally considered much better than that
in Fig. 2(b) because the symmetric modules of the same sym-
metry group are placed at closer proximity (or even adjacent)
to each other. Consequently, the sensitivities due to process
variations can be minimized, and the circuit performance can
be improved.

Based on the placement with the closest proximity for a
symmetry group as shown in Fig. 2(c), we introduce the concept
of symmetry islands and give its definition as follows.

Definition 1: A symmetry island is a placement of a symme-
try group in which each module in the group abuts at least one
of the other modules in the same group, and all modules in the
symmetry group form a connected placement.

We further use the example in Fig. 3 to explain the concept of
symmetry islands. The symmetry group S; in Fig. 3(a) forms a
symmetry island but that in Fig. 3(b) does not, since it results in
two disconnected components. The placement style in Fig. 3(a)
is preferred in analog layout design due to its better electrical
properties.

o?(AP) = + S%D2. 3)

C. Review of B*-Trees

Since this paper is based on the B*-tree representation [11],
we shall first give a brief review over the representation. A
B*-tree is an ordered binary tree representing a compacted
placement, in which every module can no longer move left and
bottom. As shown in Fig. 4, every node of a B*-tree corresponds
to a module of a compacted placement. The root of a B*-
tree corresponds to the module on the bottom-left corner. For
each node n corresponding to a module b, the left child of n
represents the lowest adjacent module on the right side of b,
while the right child of n represents the first module above b
with the same horizontal coordinate.

Given a B*-tree, we can calculate the coordinate of each
module by a preorder tree traversal. Suppose the module b;,
represented by the node n;, has the bottom-left coordinate
(24,y:), the width w;, and the height h;. Then, for the left child
nj of n;, r; = x; + w;y; for the right child ny of n;, x3, = ;.
In addition, we maintain a contour structure to calculate the
y-coordinates. Thus, starting from the root node, whose bottom-
left coordinate is (0, 0), then visiting the root’s left subtree and,

Authorized licensed use limited to: National Taiwan University. Downloaded on December 27, 2009 at 13:42 from IEEE Xplore. Restrictions apply.

794 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 6, JUNE 2009

-

— [™6

M8

(b)

Fig. 2. Example analog circuit and two different layout styles for the circuit. (a) Schematic of a two-stage CMOS operational amplifier, where the differential
input subcircuit forms a symmetry group. (b) Layout design of the circuit in (a), where the devices of a symmetry group are not placed close to each other.
(c) Another layout design of the circuit in (a), where the devices of a symmetry group are placed close to each other.

by | by | bs | b, by | bs || b | b2

by | by by by b, by by by

(a) (b)

Fig. 3. Two symmetric-placement examples of a symmetry group Si =
{(b1,b), (b2,b5)}. (a) Sy forms a symmetry island. (b) Sy cannot form a
symmetry island.

(1)
f4__’b5 12\6__’@ @@ @@
|
by b —— 1\72 —1>b; @ @@

(a) (b)

Fig. 4. (a) Compacted placement [same as in Fig. 3(a)]. (b) B*-tree represent-
ing the compacted placement in (a).

then, its right subtree, this preorder-tree-traversal procedure,
also known as B*-tree packing, calculates all coordinates of
the modules in the placement. Using a doubly linked list to
implement the contour structure, the total packing time is linear
to the number of modules.

III. PLACEMENT OF A SYMMETRY GROUP

In this section, we propose the ASF-B*-tree to consider the
symmetric placement of a symmetry group and the packing
of the symmetry modules to make a symmetry island. Like

by i by rightmost
>
| i
1 1
b, |b5 b’ = by b
| i
b(“ | b()r
I I
() (b) ()

Fig. 5. (a) Placement example of a symmetry group with a vertical symmetry
axis. (b) Selecting a representative for each symmetry pair and self-symmetric
module. (c) ASF-B*-tree (also a representative B*-tree) representing the place-
ment of the symmetry group, where the dash circled nodes represent the left-
boundary modules.

B*-trees, the ASF-B*-tree can represent only compacted sym-
metric placement; in particular, there exists a unique corre-
spondence between a compacted symmetric placement of a
symmetry group and its induced ASF-B*-tree which results in
a symmetry island. We first present the definitions and prop-
erties of the ASF—B*-tree and then prove the correspondence
between a symmetry island and its induced ASF-B*-tree.

Before introducing the ASF-B*-tree, we should define the
representative of a symmetry pair, the representative of a self-
symmetric module, and the representative B*-tree.

Definition 2: The representative b7 of a symmetry pair
(b, b;) is b;.

Definition 3: The representative by, of a self-symmetric mod-
ule b;, is the right (top) half of b7 in a symmetric placement with
respect to a (horizontal) symmetry axis.

For the example shown in Fig. 5, the representative b of the
symmetry pair {b1, b} } is ¥, while the representative bfj of the
self-symmetric module b is the right half of b§.

Authorized licensed use limited to: National Taiwan University. Downloaded on December 27, 2009 at 13:42 from IEEE Xplore. Restrictions apply.

LIN et al.: ANALOG PLACEMENT BASED ON SYMMETRY-ISLAND FORMULATION

It should be noted that each symmetry pair or self-symmetric
module must have its own representative module. Therefore, the
number of the representatives in a symmetry group should be
the same as the number of symmetry pairs and self-symmetric
modules. We define the representative B*-tree as follows.

Definition 4: A representative B*-tree is a B*-tree containing
only the representative nodes that correspond to representative
modules.

In the following, we describe how to obtain an ASF-B*-tree
by making a representative B*-tree symmetric feasible for sym-
metric placements with vertical and horizontal symmetry axes.
We first introduce the mirrored placement of the representative
modules for a symmetry group.

Definition 5: The mirrored placement of the representative
modules for a symmetry group S; is to place the nonrepresen-
tative modules on the mirrored positions of the representative
ones for each symmetry pair or each self-symmetric module in
S; with respect to its symmetry axis (axes). Furthermore, the
representative and the nonrepresentative modules of each self-
symmetric module are not disjointed.

We are now ready to define the symmetric-feasible condition
of a representative B*-tree for the symmetric placements.

Definition 6: A representative B*-tree is symmetric feasible
if the mirrored placement of the representative modules can be
obtained after packing the representative B*-tree.

In Fig. 5(a), the modules in the symmetry group S =
{(b1,0}), b, b5,b5} are placed symmetrically with respect to
the vertical axis. To construct the corresponding representative
B*-tree, we should select the representative module of each
symmetry pair and self-symmetric module and consider the
placement on the right half-plane. Fig. 5(b) shows the rep-
resentative modules, and Fig. 5(c) shows the corresponding
representative B*-tree of the symmetric placement. Each node
in the representative B*-tree corresponds to a representative
module.

To make the representative B*-tree symmetry symmetric fea-
sible, we have the following lemmas which gives the symmetry
condition for a self-symmetric module and a symmetry pair.

Lemma 1: The representative of a self-symmetric module
must abut the symmetry axis.

Proof: Let S be a symmetry group with a vertical symme-
try axis and b° be a self-symmetric module in .S. The symmetry
axis of S is denoted by Z, and the center of b° is denoted by
(z%,y°).

Based on (1), the symmetry axis & always passes through the
center (z°,y*) of the self-symmetric module b°, i.e., & = z°.
According to Definition 3, the representative b” of b is the right
half of b°. Therefore, the center (z°,y®) of b° must be on the
left boundary of b”. To keep the symmetric-feasible condition
T =x°, b" must abut the symmetry axis . The case for a
symmetry group with a horizontal symmetry axis can be proved
similarly. Q.E.D.

Lemma 2: The representative of a symmetry pair not on a
symmetry axis is always symmetric feasible.

Proof: Let S be a symmetry group with a vertical symme-
try axis and (b, b") be a symmetry pair in S. The symmetry axis
of S is denoted by #. The respective centers of band V' are (z,)
and (2, y), and the respective widths/heights of b and b’ are

795

by’ byl left most
branch ," N
b 1k b i b T 7’
1 2 3 ’
beadeeecb - |- mp _ eSS =) ’
b | b | b5 4 @
I
by -
(a) (b) (©)
Fig. 6. (a) Placement example of a symmetry group with a horizontal sym-

metry axis. (b) Selecting a representative module for each symmetry pair
and self-symmetric module. (c) ASF-B*-tree (also a representative B*-tree)
representing the placement of the symmetry group, where the dash circled
nodes represent the bottom-boundary modules.

w/h and w’/h', where w = w’ and h = h'. The representative
of the symmetry pair (b,0') is V.

Given the coordinate of the representative b’ and the vertical
symmetry axis Z, the coordinate of the symmetric module b can
be calculated by (1). Wehave x = 2 x & — 2’ and y = /. After
transposing Z to the left side and having the absolute value on
both sides, we have |z — &| = |# — 2'|. Since the representative
is not on the symmetry axis, we have |z — | = |& — 2| >
w/2. Tt means that the distances from the symmetry axis to
the centers of b and b’ are greater than or equal to half of the
width of b or ¥'. Since b and b’ are on different sides of the
symmetry axis, b and ' will not overlap each other. Therefore,
the symmetric-feasible condition is always satisfied. The case
for a symmetry group with a horizontal symmetry axis can be
proved similarly. Q.E.D.

According to Lemma 1 and the boundary constraints [21] in
the B*-trees, we have the following property for the symmetric-
feasible representative B*-trees representing 1-D symmetric
placement.

Property 1: The left-boundary (right-boundary) constraint
for the symmetric placement with respect to a vertical (horizon-
tal) symmetry axis: The representative node of a self-symmetric
module should always be on the rightmost (leftmost) branch of
the representative B*-tree.

Based on the above property, the nodes representing the mod-
ules on the left boundary should be on the rightmost branch, as
shown in Fig. 5(c).

Similarly, we can get the symmetric-feasible representative
B*-tree of the symmetric placement when the symmetry axis
is in the horizontal direction. In this case, we only consider
the top half-plane during the placement of the representative
modules. Fig. 6(c) shows the representative B*-tree of the
symmetry group S = {(bo, b), b3, b3, b5} having the symmet-
ric placement with respect to the horizontal symmetry axis
in Fig. 6(a). Again, the representatives of the self-symmetric
modules should abut the horizontal symmetry axis which is on
the bottom boundary of the top half-plane. Therefore, the nodes
representing the modules on the bottom boundary should be on
the leftmost branch, as shown in Fig. 6(c).

Based on Definition 4 and Property 1, we define an ASF-
B*-tree as follows.

Definition 7: An ASF-B*-tree is a representative B*-tree
which satisfies Property 1.

Once an ASF-B*-tree is packed, the coordinates of these
representatives are obtained. We can further calculate the

Authorized licensed use limited to: National Taiwan University. Downloaded on December 27, 2009 at 13:42 from IEEE Xplore. Restrictions apply.

796 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 6, JUNE 2009

coordinates of their symmetric modules based on (1) and (2)
with the given coordinates of the symmetry axes, &; and g;.
Then, we have the symmetric placement of a symmetry group,
and it automatically forms a symmetry island.

Based on Lemmas 1 and 2, we have the following theorems.

Theorem 1: An ASF-B*-tree is symmetric feasible in a sym-
metric placement of a symmetry group with respect to either a
vertical or a horizontal symmetry axis.

Proof: An ASF-B*-tree is symmetric feasible if all
the representatives in the ASF-B*-tree are symmetric fea-
sible. There are four kinds of representatives, and the
symmetric-feasible condition for each is defined and proved
in Lemmas 1 and 2. Therefore, an ASF-B*-tree is symmet-
ric feasible in a symmetric placement of a symmetry group
with respect to either a vertical or a horizontal symmetry
axis. Q.E.D.

Theorem 2: The packing of an ASF-B*-tree results in a
symmetry island of the corresponding symmetry group.

Proof: 1t is obvious that all the representative modules
will form a connected placement after packing. We set the
coordinate(s) of the symmetry axis (axes) to the left or (and) the
bottom boundary (boundaries) of the connected placement of
the representative modules. The coordinates of the symmetric
modules can be calculated by (1) and (2). The symmetric
modules also form a connected placement, and the boundary
of the connected placement also abut the symmetry axis (axes).
Therefore, the whole symmetry group forms a connected place-
ment, and each module in the group abuts at least one of the
other modules in the same group. The packing of an ASF-B*-
tree, thus, results in a symmetry island of the corresponding
symmetry group. Q.E.D.

Theorem 3: There exists a unique correspondence between
a compacted symmetric placement of a symmetry group and its
induced ASF-B*-tree.

Proof: According to Chang et al. [11], there is a unique
correspondence between an admissible placement and its in-
duced B*-tree. After obtaining the placement of the repre-
sentative modules, we simply get the mirrored placement of
the symmetric ones. The mirrored placement is also unique.
Therefore, there exists a unique correspondence between a
compacted symmetric placement of a symmetry group and its
induced ASF-B*-tree. Q.ED.

Based on the earlier theorems, we can correctly find a
corresponding symmetric placement for an ASF-B*-tree very
efficiently, by avoiding searching in redundant solution spaces.
It will be clear later in Section VI that these nice properties of
ASF-B*-trees lead to superior solution quality and efficiency
for analog placement.

IV. HIERARCHICAL FRAMEWORK

We propose a hierarchical framework, called hierarchical
B*-tree (HB*-tree for short), to handle the simultaneous place-
ment of modules in symmetry islands and nonsymmetric mod-
ules. In an HB*-tree, the symmetry island of each symmetry
group can be in any rectilinear shapes, and symmetry and
nonsymmetric modules are simultaneously placed to optimize
the placement.

hierarchy node

ASF-B*-tree in a
hierarchy node

non-hierarchy node

Fig. 7. HB*-tree for the placement in Fig. 3(a).

m = horizontal contour

() w § °
@ b() b(),

(@)

e Coy c
00 I L ‘o2

=== vertical contour

So

(©)

Fig. 8. (a) ASF-B*-tree of a symmetry group Sp. (b) Horizontal and vertical
contours of the corresponding placement. (c) Symmetry island and its effective
contours. (d) HB*-tree for the rectilinear symmetry island.

A. HB*-Tree Representation

Fig. 7 shows an HB*-tree for the placement in Fig. 3(a). Two
symmetry groups, S1 and Sy, are represented by two hierarchy
nodes, ng, and ng,, and each hierarchy node contains an ASF-
B*-tree that corresponds to a symmetry island in the symmetric
placement.

The symmetry islands are often not rectangular but are of rec-
tilinear shapes. For example, in Fig. 8(c), the symmetry island
of the symmetry group .Sy is of the rectilinear shape. Therefore,
we should augment the HB*-tree in Fig. 7 to handle rectilinear
symmetry islands. Wu et al. [22] proposed a method to deal
with rectilinear modules by slicing a rectilinear module into
several rectangular submodules along each vertical boundary.
However, it is complicated to maintain the relationship between
the submodules during B*-tree perturbations.

Instead of slicing a rectilinear symmetry island, we introduce
contour nodes to represent top horizontal contour segments of
the symmetry island. In Fig. 8(c), there are three horizontal
contour segments: cgg, Co1, and coz. We augment the HB*-tree
by introducing the three contour nodes, ngg, 791, no2, as shown
in Fig. 8(d). Each contour node keeps the coordinates of the
corresponding horizontal contour segment. The relationship of
a hierarchy node, its contour nodes, and other regular module
nodes is described as follows.

Property 2: Properties for an HB*-tree.

1) The left child of a hierarchy node, if any, must be a
noncontour node.

2) The right child of a hierarchy node must be the contour
node representing the leftmost top horizontal contour
segment of the symmetry island.

Authorized licensed use limited to: National Taiwan University. Downloaded on December 27, 2009 at 13:42 from IEEE Xplore. Restrictions apply.

LIN et al.: ANALOG PLACEMENT BASED ON SYMMETRY-ISLAND FORMULATION

3) The left child of a contour node, if any, must be the
contour node representing the next contour segment on
the right side.

4) The right child of a contour node, if any, must be a
noncontour node.

5) The children of a regular module node must be noncon-
tour nodes.

6) The parent of a contour node cannot be a regular module
node.

Proof: Given a symmetry group S, bg, denotes the sym-
metry island of Sy, ng, denotes the corresponding hierarchy
node, and ng; represents the ith top contour segment of bg,
from left to right.

1) Since the contour node ng; represents the ith top contour
segment of bg,, it is impossible for ng; to be the left child
of ng, that corresponds to the lowest adjacent module on
the right side of bg,, based on the B*-tree definition. The
property thus follows.

According to the definition of the B*-tree, the right child
of ng, represents the first module above bg,. Since the
top horizontal contour segments of bg, always abut bg,,
other modules cannot be placed between bg, and its top
contour segments. Therefore, the right child of ng, must
be a contour node representing the leftmost top horizontal
contour segment of bg, .

By the contour-node definition, the contour node ng ;
represents the ¢th top contour segment of bg, from left
to right, and the left child of ng;, if any, is ng 11,
representing the next [(¢ + 1)th] contour segments. If ng ;
represents the last (the rightmost) top contour segment,
the left child of ng; is empty.

The right child of the contour node n; represents the first
module above the ith top contour segment of bg, . If there
exists another contour node ng; that is the right child of
noi, both contour segments will overlap each other with
ng;’s contour segment on top of that of ng;, implying that
ng; 18 not a contour node. A contraction.

Based on the second and the third properties of the HB*-
tree, the contour node ng; cannot be the left or right child
of a regular module node. The property thus follows.
Based on the construction of the HB*-tree, the parent of a
contour node is either a contour node or a hierarchy node.

Q.ED.
Fig. 8(a) shows the ASF-B*-tree of the symmetry group
So = {(bo, bg), (b1,b}), (b, b5)}. In Fig. 8(b), the horizontal
and vertical contours are obtained from the rectilinear outline
after packing the ASF-B*-tree. Fig. 8(c) shows the symmetry
island and the effective horizontal and vertical contours. The
horizontal contour segments are denoted as cqg, cg1, and cyo
from left to right. Therefore, we have a hierarchy node ng,
representing the symmetry island of the symmetry group Sy,
and three contour nodes ngg, np1, and ngo representing the
contour segments. The relationship between the hierarchy node
and its contour nodes is shown in the HB*-tree in Fig. 8(d).
After introducing the representation and the properties of
HB*-trees, we present the packing procedure for ASF-B*-trees
and HB*-trees.

2)

3)

4)

5)

6)

797

by’

Fig. 9. Packing procedure including the contour updates of the ASF-B*-tree
in Fig. 8(a).

== horizontal

b, by by’ by’ b, by by by’ contour
=== vertical

b b’ b b contour

0 0 0 0
@ convex
point
(@) (b)

Fig. 10. Generation of the bottom contour of the symmetry island based on
the dual vertical contours. (a) Convex points obtained by traversing the dual
vertical contours from bottom to top. (b) Bottom horizontal contour connected
by the convex points.

B. ASF-B*-Tree Packing

The packing of the ASF-B*-tree is similar to that of the
B*-tree [11] which follows the preorder-tree-traversal proce-
dure to calculate the coordinates of the modules. During the
packing, two double-linked lists are implemented to keep both
horizontal and vertical contour structures. Fig. 9 shows the
packing procedure of the example ASF-B*-tree in Fig. 8(a). The
bold (red) lines denote the horizontal contour, while the dotted
(green) lines represent the vertical contour.

After obtaining the coordinates of all representative modules
in the symmetry group, we can calculate the coordinates of
the symmetric modules and the extended contours based on
either (1) or (2). Fig. 8(b) shows the resulting placement of the
symmetry group and the contours of the symmetry island for
the ASF-B*-tree shown in Fig. 8(a). As shown in Fig. 8(b), the
symmetry island contains one top horizontal and dual vertical
contours. To further calculate the bottom horizontal contour of
the symmetry island, we need to traverse both vertical contours
from bottom to top and keep the convex points as shown in
Fig. 10(a). By connecting the convex points horizontally, we
can obtain the bottom horizontal contour of the symmetry
island, as shown in Fig. 10(b).

C. HB*-Tree Packing

The HB*-tree packing also adopts the preorder-tree-traversal
procedure. When a hierarchy node is traversed, the ASF-B*-
tree in the hierarchy node should be packed first to obtain
the contours of the symmetry island described previously. The
contours are then stored in the corresponding hierarchy node.
During packing a hierarchy node representing a symmetry
island, we should calculate the best packing coordinate for the
bottom boundary of the symmetry island, based on the bottom
contour shown in Fig. 10(b). We then proceed to pack the
left child of the hierarchy node. After the left child and all
its descendants are packed, we pack the first contour node of
the symmetry island, followed by the second one, and so on.
When packing the contour nodes, we only need to update their

Authorized licensed use limited to: National Taiwan University. Downloaded on December 27, 2009 at 13:42 from IEEE Xplore. Restrictions apply.

798 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 6, JUNE 2009

O hierarchy node

‘ contour node
symmetry

by O module node

O non-symmetry
module node

b, | b1 |87 by | by bylby| 04

(b)

Fig. 11. (a) HB*-tree representing 20 modules with two symmetry groups Sp
and S7. (b) Resulting placement after packing the HB*-tree.

coordinates and replace the hierarchy node in the contour data
structure of the HB*-tree.

Fig. 11(a) shows an HB*-tree representing 20 modules with
two symmetry groups Sy and .57 . For the packing, the two ASF-
B*-trees in ng, and ng, are packed first, and the rectilinear
outlines of the two symmetry islands are obtained. Then, the
nodes, ns, ng, N7, ng, and ng, are packed in the depth-first
search order. The temporal contour list is (ns, ng, n7,ng). By
calculating the rectilinear outlines between the temporal con-
tour list and the bottom boundary of the symmetry island S,
the dead space between the previously packed modules and the
symmetry island can be minimized. The updated temporal con-
tour list becomes (ng,,n7, ng). Continuing the packing pro-
cedure, we can obtain the resulting placement of the HB*-tree
in Fig. 11(b) finally. Although the purpose of the packing is
to obtain a compacted placement, we might need to allocate
sufficient white space for the surrounding wells or guard rings
based on the device types, such as NMOS or PMOS transistors.
When packing a node, the device type of the corresponding
module should be compared with those of the previously
packed modules in the current contour list. If the device types
are different, the currently packed module should be snapped to
a position to reserve sufficient white space for the surrounding
wells or guard rings.

We have the following theorem for the packing complexity.

Theorem 4: The packing for an ASF-B*-tree or an HB*-tree
takes linear time.

Proof: Given a design with n modules (including symme-
try and nonsymmetry ones) and m symmetry groups, let 1 be
the number of nonsymmetric modules and n(S;) be the number
of modules in each symmetry group S;, where n(S;) > 1. We
have n =n+ > ;" n(S;).

For the HB*-tree representing the symmetric placement of
the given design, there are m hierarchy nodes, O(>_/~, n(S;))
contour nodes, and 7 module nodes. For the ASF-B*-tree of
the symmetry group S; in a hierarchy node, there are O(n(.S;))
representative nodes.

We first consider the packing for the ASF-B*-tree of the
symmetry group .S; in a hierarchy node. It consists of two steps.
The first step is the packing for all representative modules.
The second step is the calculation of the coordinate of each
symmetric module.

According to Chang et al. [11], the packing for a B*-tree
takes linear time, so the time complexity of the first step is
O(n(S;)). Since it takes constant time to calculate the coor-
dinate of a symmetric module, it also takes O(n(.S;)) time to
compute the coordinates of all the symmetric modules in S;.
Combining both steps, we have the O(n(.S;)) time complexity
for the packing of an ASF-B*-tree of .5;.

Second, we consider the packing for the HB*-tree. If all the
symmetry islands of m symmetry groups are in a rectangular
shape. We can ignore the contour nodes in the HB*-tree, and
it takes O(m + n) time to pack the HB*-tree. However, if any
symmetry island is in a rectilinear shape, we need to consider
the packing of the hierarchy node representing this symmetry
island, particularly the additional contour nodes.

The bottom contour of the symmetry island of .S; is obtained
when the corresponding ASF-B*-tree of the symmetry group
is packed, and the number of the bottom contour segments is
O(n(S;)). By comparing the current packing contour segments
and the bottom contour segments of the symmetry island from
left to right, it also takes O(n(.S;)) time to get the coordinates
of the modules in the symmetry island .S;.

To sum up, it takes O(m + >, n(S;) + 7) time to pack
the HB*-tree. Since n = Y, ; n(S;) + 7, the packing time can
be reduced to O(m + n) time. Since the number of symmetry
group m is upper bounded by the number of total modules 7,
the packing time is O(n). Q.E.D.

It should be noted that this is the fastest algorithm in the lit-
erature for the placement with symmetry constraints, as shown
in Table I.

D. Advanced Symmetry Constraints

For some analog layout applications, the symmetry con-
straints could be even more complex than what we have con-
sidered. We brief the handling of two kinds of such symmetry
constraints in the following.

1) Multiple Symmetry-Group Alignment: In some analog
layouts, the symmetry axes of different symmetry groups are
required to be aligned to share a common symmetry axis. To
align multiple symmetry groups with respect to a common
vertical (horizontal) symmetry axis, we can insert a zero-
height (zero-width) dummy block right at the left (bottom)
of each to-be-aligned symmetry island. We then introduce a
dummy node as the parent of the hierarchy node representing
the corresponding symmetry island in the HB*-tree, where the
hierarchy node is the left (right) child of the dummy node.
By adjusting the width (height) of each dummy block, the
symmetry islands of different symmetry groups can be aligned
with respect to a common vertical (horizontal) symmetry axis.
Such an alignment technique is an extension of the work
in [23].

2) Hierarchical Symmetry: In some fully symmetric analog
designs, the device layouts should be hierarchically symmetric.

Authorized licensed use limited to: National Taiwan University. Downloaded on December 27, 2009 at 13:42 from IEEE Xplore. Restrictions apply.

LIN et al.: ANALOG PLACEMENT BASED ON SYMMETRY-ISLAND FORMULATION

A symmetry group S; may also contain a self-symmetry group
S5 and/or a symmetry-group pair (Sk, S}). Consequently, the
top-level symmetry group St contains all device modules
and other symmetry groups hierarchically. Based on the pro-
posed symmetry-island and tree formulations, a hierarchical
tree structure [24] that mixes both the ASF-B*-trees and the
HB*-trees can be constructed. The optimized fully symmetric
placement with the hierarchical symmetry constraint can then
be obtained by searching a desired configuration of the tree
structure and packing the trees to form the symmetry islands
hierarchically.

E. Application to Hierarchical Clustering Constraint

Besides handling the symmetry constraints based on the
symmetry-island formulation, the proposed hierarchical frame-
work, HB*-trees, can also effectively manage the hierarchical
clustering constraint in analog placement or mixed-signal floor-
planning based on the intrinsic hierarchical tree structure.

Let C = {Cy,Cs,...,C;} be a set of device module clus-
ters. Each cluster contains at least two modules, or one module
and one of the other clusters, or two of the other clusters. If the
cluster C; contains the cluster C';, we call C; a supercluster and
C'; a subcluster. The hierarchical clustering constraint limits all
the device modules and/or subclusters of the same supercluster
to a connected placement.

To formulate the hierarchical clustering constraint using
the HB*-trees, each of the hierarchy nodes nc,,nc,, - .., ng,
denotes a cluster. Each hierarchy node nc, further contains
another HB*-tree to represent the topological relation of the
device modules and/or the subclusters in the supercluster de-
noted by nc,. After hierarchically constructing the HB*-trees,
the placement can be optimized by searching a desired con-
figuration of the HB*-trees while the inner placement of each
cluster is connected.

F. Consideration of Nonsymmetry-Island Placements

In addition to the preferred symmetry-island placements
in analog layouts, the proposed ASF-B*-trees and HB*-trees
can also generate a nonsymmetry-island placement by inte-
grating nonsymmetric modules as a self-symmetric module
cluster or a symmetry pair consisting of two module clusters
in a symmetry group represented by an ASF-B*-tree. Fig. 12
shows two examples, including the symmetric placements and
the corresponding ASF-B*-trees, which integrate nonsymmet-
ric module clusters into symmetry groups. In Fig. 12(a), the
nonsymmetric modules, b3 and by, form the self-symmetric
module cluster C'y in the symmetry group S;. After packing
the B*-tree representing the placement of the nonsymmetric
modules, the representative node ngl is introduced in the ASF-
B*-tree representing a symmetric placement of S;. Similarly,
in Fig. 12(b), the nonsymmetric modules, b7, bg, and by, form
two clusters, Co and CY, as a symmetry pair in the symmetry
group Ss. In the corresponding ASF-B*-tree, the representative
node ng, is introduced to denote the larger dimensions of the
placements of C and C%.

799

C;
by - by
bs 4 by
b, ; by’
(a)
G . ,
' : C2
bg !
bs b5 by
by !

(b)

Fig. 12. Integrating nonsymmetric modules into symmetry groups. (a) Non-
symmetric modules form the self-symmetric module cluster C1 = {b3, b4} in
the symmetry group S1 = {(b1,d}), (b2, b}), C§}. (b) Nonsymmetric mod-
ules form two clusters, Co = {b7,bg} and C%, = {bg}, as a symmetry pair in
the symmetry group Se = {b%, (be, bj;), (C2, C%)}.

V. ALGORITHM

Our algorithm is based on the SA [4]. Given a set of modules
and symmetry constraints as the inputs, we construct an initial
solution represented by an HB*-tree and, then, perturb it to
search for a desired configuration until a predefined termination
condition is satisfied. The cost function ®(P) of the placement
is defined in (4), where « and (are user-specified parameters,
Ap is the area of the bounding rectangle for the placement, and
Wp is the half-perimeter wire length

®(P)=ax Ap + 8 x Wp. 4)

A. HB*-Tree Perturbation

We apply the following operations to perturb an HB*-tree.

1) Opl: Rotate a module.

2) Op2: Move a node to another place.

3) Op3: Swap two nodes.

In the perturbation, the nonhierarchy nodes have higher prob-
abilities to be selected because rotating, moving, or swapping
the hierarchy nodes might incur a big jump in finding the next
solution. It is well known that such a big jump might deteriorate
the solution quality during the SA process. It should be noted
that, due to the special structure of the HB*-tree, we cannot
move a nonhierarchy node to the right child of a hierarchy node
or the left child of a contour node. The contour nodes are always
moved along with its hierarchy node which cannot be moved
individually.

B. ASF-B*-Tree Perturbation

In addition to the aforementioned Opl, Op2, and Op3 for
HB*-tree perturbation, we introduce the operations, Op4 and
Op5, to perturb the ASF-B*-trees. It should be noted that
Property 1 should always be satisfied when perturbing an ASF-
B*-tree according to the definition of the ASF-B*-trees in
Definition 7.

1) Op4: Change a representative.

2) Op5: Convert a symmetry type.

Authorized licensed use limited to: National Taiwan University. Downloaded on December 27, 2009 at 13:42 from IEEE Xplore. Restrictions apply.

800 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 6, JUNE 2009

A

by 1 by by’

1
) [
: .|
I b
I

T

1 T by

Fig. 13. Rotating the self-symmetric module b7 in the symmetry group
S = {b, b] } results in the shape change of its representative b .

1) Module Rotation: When rotating modules in a symmetry
group, the corresponding ASF-B*-tree is unchanged. We should
consider two cases of symmetry-module rotation.

Case 1) Rotate a symmetry pair.

Case 2) Rotate a self-symmetric module.

In case 1), both modules of a symmetry pair should be rotated
at the same time so that they can still be symmetrically placed
with respect to a symmetry axis. In case 2), after rotating a
self-symmetric module, the shape of its representative should
be updated accordingly, as shown in Fig. 13.

2) Node Movement: When moving a node to another place in
an ASF-B*-tree, we should consider the following two cases.

Case 1) Move a node representing the representative of a

symmetry pair.

Case 2) Move a node representing the representative of a

self-symmetric module.

In case 1), we can move the representative node of a sym-
metry pair to anywhere in an ASF-B*-tree. In case 2), however,
we can only move the representative node of a self-symmetric
module along the rightmost (leftmost) branch of the ASF-
B*-tree for vertical (horizontal) symmetric placement so that
Property 1 is satisfied.

3) Node Swapping: When swapping two nodes in an ASF-
B*-tree, we consider the following two cases.

Case 1) Both nodes represent the representatives of two

different symmetry pairs.

Case 2) At least one node represents the representative of a

self-symmetric module.

In case 1), we can arbitrarily swap two nodes representing the
representatives of two different symmetry pairs. However, we
should be very careful for case 2). If at least one of the swapped
nodes represents the representative of a self-symmetric module,
the other node must be located on the same branch (i.e., the left-
most or the rightmost branch) of the ASF-B*-tree. Therefore,
Property 1 is still satisfied after node swapping.

4) Representative Change: The purpose of changing a rep-
resentative for a symmetry pair or a self-symmetric module is to
optimize the wire length, while the area is kept unchanged after
changing the representative. We can change the representative
of either a symmetry pair or a self-symmetric module.

Case 1) Change the representative of a symmetry pair.

Case 2) Change the representative of a self-symmetric

module.

In case 1), for a symmetry pair (b, b}), we can simply change
the representative from b; to b; or from b’ to b;. Fig. 14 shows
that changing the representative of the symmetry pair (by,)
from b/ to b; may result in shorter wire length between b; and
bs. Similarly, in case 2), for a self-symmetric module b7, we can
change its representative by flipping it horizontally or vertically

by | by by | by

b’ 3 3
bl—-—g'l’ b/y b,//

Fig. 14. Changing the representative of the symmetry pair (b1, b}) from b
to b1 may result in shorter wire length between by and b3.

b, | by b, | b,
b3 /173
— s 5
[\ i 1

Fig. 15. Changing the representative of the self-symmetric module b may
result in shorter wire length between b; and b3.

! bjr b
: @ @ by 1 by
inr b @) @ I 7 S
:) @ @) @
by

(a) (b)

Fig. 16. Converting the symmetry type from (a) vertical symmetry to
(b) horizontal symmetry.

b0’ @ @ i by
br | by | br T
___1_ __2____3__ - i by by
@ @) .
o

(a) (b)

Fig. 17. Converting the symmetry type from (a) horizontal symmetry to
(b) vertical symmetry.

according to its symmetry axis. As shown in Fig. 15, changing
the representative of the self-symmetric module b by flipping
it horizontally may result in shorter wire length between b and
bs. Obviously, each operation takes constant time.

5) Symmetry-Type Conversion: For symmetry-type conver-
sion of a symmetry group, we should consider both conversions
between the vertical symmetry and the horizontal one.

Case 1) Convert the symmetry type from vertical symmetry

to horizontal one.

Case 2) Convert the symmetry type from horizontal symme-

try to vertical one.

To convert the symmetry type of a symmetry group from
vertical symmetry to horizontal one or vice versa, we first rotate
every module including the representative and, then, swap the
left and the right children of each node in the given ASF-B*-
tree. Figs. 16 and 17 show the respective examples for the
conversions of cases 1) and 2).

It should be noted that the symmetry type is usually pre-
defined based on the power/ground lines or signal flows in
the layout by the analog designers. Therefore, Op5 is seldom
applied in real applications.

Authorized licensed use limited to: National Taiwan University. Downloaded on December 27, 2009 at 13:42 from IEEE Xplore. Restrictions apply.

LIN et al.: ANALOG PLACEMENT BASED ON SYMMETRY-ISLAND FORMULATION

b
4| b,

by
Bl
by | by
by | by

b,
bs

bs

Fig. 18. Example of updating contour-related nodes. (a) HB*-tree and its
corresponding placement containing the symmetry group So = {(bo, b}),
(b1,b])}. (b) Intermediate HB*-tree after perturbing the ASFB*-tree in the hi-
erarchy node ngg and the corresponding symmetry island of Sp. The contour-
related nodes, ng and ns, become dangling. (c) HB*-tree after updating the
contour-related nodes and its corresponding placement.

C. Contour-Node-Related Updates

Once an ASF-B*-tree is perturbed, the number of the cor-
responding contour nodes in the HB*-tree might be changed.
The tree structure might have to be updated accordingly. If the
number of contour nodes representing the horizontal contour
segments of the symmetry island is increased, the structure of
the HB*-tree can be kept unchanged. However, if that of the
contour nodes is decreased, some other nodes in the HB*-tree
might not have parents. We call such nodes dangling node,
and we should reassign new parents for these nodes. To keep
the relative placement topology before and after perturbing an
ASF-B*-tree, we first find the nearest contour node for each
dangling node. If the nearest contour node has no right child,
it is the parent of the dangling node, and the dangling node
will be its right child. If the nearest contour node has a right
child, we continuously traverse the leftmost skewed child of
the right child. The leftmost skewed child will be the parent of
the dangling node, and the dangling node is assigned to its left
child. It takes amortized constant time to update the contour-
related nodes.

Fig. 18 shows an example of updating contour-related nodes.
In Fig. 18(a), there are initially three contour nodes representing
the three top contour segments of the symmetry island of the
symmetry group Sy. After performing Op2 to perturb the ASF-
B*-tree in ng,, the representative node n] is moved from the
left child to the right child of the other representative node ng.

TABLE III
MCNC BENCHMARK CIRCUITS

Circuit || # of Mod. | # of Sym. Mod. | Mod. Area (mm?2) |

apte 9 8 46.56

hp 11 8 8.83

ami33 33 6 1.16

ami49 49 4 35.45

TABLE IV
INDUSTRY BENCHMARK CIRCUITS

Circuit # of Mod. | # of Sym. Mod. Mogl‘ Area
(10° um*)

biasynth_2p4g 65 8+12+5 4.70

Inamixbias_2p4g 110 16+6+6+12+4 46.00

The placement of Sy forms a new symmetry island, as shown in
Fig. 18(b) which has only one top contour segment. Therefore,
the contour nodes ng; and ngo disappear, and the nodes n3 and
ns become dangling nodes. We first find the nearest contour
node of ng, which is ngg. Since ngg already has the right child
nsg, the leftmost skewed child of ny should be searched. In this
case, we directly assign ng to be the left child of ns because ng
has no left child. After ns is assigned to a proper tree location,
the nearest contour node of n5 is then searched, which is also
ngo. Since ngo already has the right child no, the leftmost
skewed child is searched, which is n3. We assign ng to be the
parent of ns, and nj is the left child of ns.

VI. EXPERIMENTAL RESULTS

We implemented our placement algorithm in the C++ pro-
gramming language on a 3.2-GHz Intel Pentium4 PC under the
Linux operating system. We performed two sets of experiments:
One is based on the four MCNC benchmarks (apte, hp, ami33,
and ami49) used in [15], and the other consists of two real
industry analog designs (biasynth_2p4g and Inamixbias_2p4g)
used in [12] and [16] (note that they both were extracted by
Koda ef al. [16] from [12, Figs. 9 and 10]). Table III lists
the names of the MCNC benchmark circuits (“Circuit”), the
numbers of modules (“# of Mod.”), the numbers of sym-
metry modules (“# of Sym. Mod.”), and the total module
areas (“Mod. Area”). Table IV lists the names of the indus-
try benchmark circuits (“Circuit”), the numbers of modules
(“# of Mod.”), the numbers of symmetry modules (“# of
Sym. Mod.”), and the total module areas (“Mod. Area”).

Our approach is based on SA. A left skewed HB*-tree was
constructed as the initial solution. The initial temperature Tj
was calculated by (5), where A, is the average uphill cost and
P is the initial probability to accept uphill solutions. During the
SA process, the temperature was reduced at the rate of 0.9 for
each subsequent pass, and 20 000 iterations were performed at
each temperature/pass

Ty = —Aayg/In P. (5)

In the first set of experiments, we compared our algorithm
with the following works: SPs [8], segment trees [3], TCG-S
[15], and SPs with dummy nodes [17]. Table V lists the names
of the MCNC benchmark circuits (“Circuit”), the total areas

Authorized licensed use limited to: National Taiwan University. Downloaded on December 27, 2009 at 13:42 from IEEE Xplore. Restrictions apply.

802

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 6, JUNE 2009

TABLE V
COMPARISONS OF AREA UTILIZATION AND CPU TIMES FOR SP (ON SUN SPARC ULTRA-60 433 MHz), SEGMENT TREE (SEG. TREE) (ON SUN SPARC
ULTRA-60 433 MHz), TCG-S (ON SUN SPARC ULTRA-60 433 MHz), SP WITH DUMMY NODES (SP w. DUMMY) (ON PENTIUM4 3.2 GHz),
AND OUR HB*-TREE (ON PENTIUM4 3.2 GHz) WITH AREA OPTIMIZATION ALONE, SAME AS THE PREVIOUS WORKS, AND WITH
SIMULTANEOUS AREA AND WIRE-LENGTH OPTIMIZATION [HB*-TREE (AREA+WL)], BASED ON THE MCNC BENCHMARKS

SP [8] Seg. Tree [3] TCG-S [15] SP w. Dummy [17] HB*-tree HB*-tree (Area + WL)
Circuit Area Time Area Time Area Time Area Time Area Time Area HPWL | Time
mm* | (8 | mm® | (5 | mm?) | () | (mm? ®) (mm?*) | (s (mm?) | (mm) O]
apte 48.12 25 47.52 11 47.52 3 46.92 13 46.92 2 47.90 10.20 3
hp 9.84 138 9.71 62 9.71 50 9.43 13 9.35 2 10.10 30.74 16
ami33 1.24 684 1.23 307 1.21 423 1.24 23 1.23 12 1.29 47.23 39
ami49 37.82 2038 37.31 983 37.04 1247 38.32 29 36.85 20 41.32 769.99 96
[Comparison || 103 [- [1.02 | - [101 | - [102 | 409 [100 | too [- [- [- |
TABLE VI
COMPARISONS OF AREA UTILIZATION AND CPU TIMES FOR SP (ON SUN BLADE 100 500 MHz), SEGMENT TREE (SEG. TREE)
(ON SUN BLADE 100 500 MHz), SP+LP (PENTIUM4 3.2 GHz), SP WITH DUMMY NODES (SP w. DUMMY) (ON PENTIUM4 3.2 GHz),
AND HB*-TREE (ON PENTIUM4 3.2 GHz), BASED ON TWO REAL INDUSTRY BENCHMARKS
SP [8] Seg. Tree [12] SP+LP [16] SP w. Dummy [17] HB*-tree
Circuit Area Time Area Time Area Time Area Time Area w/o Area w/ Time
Mod. Rot. Mod. Rot.
10%um?) | (9 | A0%um?) | (9 | ACPum?) | (8 | A0Pum?) | (9 | A0°%um?) | A03um?) | ()
biasynth 2p4dg 5.40 780 5.40 246 4.96 206 5.57 134 5.15 4.92 22
Inamixbias 2p4g 50.80 2824 50.30 726 50.15 3027 52.21 227 50.28 48.63 43
[Comparison || 1071 | - [1066 | - | 1016 [3988 | 1103 [568 | 1040 | 1 [1|
(“Area”), and the runtimes (“Time”) for the aforementioned
works and our HB*-tree with area optimization alone, same as
the previous works, and with simultaneous area and wire-length
optimization. The results of the works in [3], [8], and [15] are i =N
taken from [15], and those of [17] are based on the package —
provided by the authors. The results show that our HB*-tree

achieves average area reductions of 3%, 2%, 1%, and 2% over
[31], [81, [15], and [17], respectively. Note that the improvements
should not be considered marginal, since the previous works
have pushed the solution quality close to their limits. The main
reason for the area improvement over the previous works is
that our approach benefits from both the symmetry-island for-
mulation and the short packing time of the proposed floorplan
representations. Based on the symmetry-island formulation, the
undesired solutions are pruned, and thus, we do not waste the
time to search inferior solutions during SA. With the short
packing time, we can search for more solutions within the same
time limit. Consequently, our approach has greater possibility
to find better solutions in shorter running time. For the running
time, our algorithm is about 4.09x faster than in [17]. Since
all other previous works ran on different platforms, it is not
easy to report the speedups of our algorithm. Nevertheless, it
is obvious from the table that our algorithm runs much faster
than the previous works.

In the second set of experiments, we compared our algo-
rithm with SPs in [8], segment trees in [12], SPs with linear
programming in [16], and SPs with dummy nodes in [17].
Table VI lists the names of the industry benchmark circuits,
the total areas, and the runtime for SPs, segment trees, SPs
with linear programming, SPs with dummy nodes, and HB*-
tree. The results show that our algorithm achieved average
area reductions of 7.1%, 6.6%, 1.6%, and 10.3% over [8],
[12], [16], and [17], respectively. In some applications, the
orientations of analog device modules may not be allowed to

XA

03 01 04

Fig. 19. Resulting placement of ami49 with simultaneous area and wire-
length optimization, which contains the symmetry group, S = {(b19, b21),

b30, b}

be changed. To make fair comparisons with the previous works,
we also performed our algorithm without module rotation. Our
results show only 2.4% and 4% area overheads without the
rotation, compared to the results of SPs with linear program-
ming [16] and our approach, respectively. For the running time,
our approach achieves significant speedups over the previous
works, which is about 39.88x and 5.68x faster than those
in [16] and [17], respectively. Again, the previous works [8],

Authorized licensed use limited to: National Taiwan University. Downloaded on December 27, 2009 at 13:42 from IEEE Xplore. Restrictions apply.

LIN et al.: ANALOG PLACEMENT BASED ON SYMMETRY-ISLAND FORMULATION

803

PR
FRCAR

11

(b)

Fig. 20. Resulting placement of biasynth_2p4g with three symmetry groups. (a) Resulting placement without module rotation. (b) Resulting placement with

module rotation.

[12] ran on different platforms, and thus, we do not report the
corresponding speedups; yet, it is obvious that our algorithm
runs much faster than the previous works. It is clear from the
two experiments that our algorithm achieves the best quality
and efficiency than all published works.

Fig. 19 shows the resulting placement of ami49 with si-
multaneous area and wire-length optimization, which contains
the symmetry group S = {(b19, b21), b3y, bis }- Fig. 20 shows
the resulting placements of biasynth_2p4g with the symmetry
modules being colored.

VII. CONCLUSION AND FUTURE WORK

We have proposed the first linear-time-packing algorithm
for the placement with symmetry constraints, based on the
symmetry-island formulation that prunes the solution subspace
formed with nonsymmetry-island placements. We have intro-
duced the concept of symmetry islands and presented the ASF-
B*-trees to directly model the placement of a symmetry island.
We have also presented the hierarchical HB*-trees to simultane-
ously optimize the placement with both symmetry islands and
nonsymmetric modules. Experimental results have shown that
our approach achieves the best-published quality and runtime
efficiency for analog placement.

ACKNOWLEDGMENT

The authors would like to thank Prof. E. F. Y. Young and
Y.-C. Tam of the Chinese University of Hong Kong for provid-
ing the package of their work [17] for the comparative studies.

REFERENCES

[1] P-H. Lin and S.-C. Lin, “Analog placement based on novel symmetry-
island formulation,” in Proc. ACM/IEEE Des. Autom. Conf., Jun. 2007,
pp. 465-470.

[2] J. Cohn, D. Garrod, R. Rutenbar, and L. Carley, “KOAN/ANAGRAM II:
New tools for device-level analog placement and routing,” IEEE J. Solid-
State Circuits, vol. 26, no. 3, pp. 330-342, Mar. 1991.

[3] F. Balasa, S. Maruvada, and K. Krishnamoorthy, “Efficient solution space
exploration based on segment trees in analog placement with symme-
try constraints,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided Des.,
Nov. 2002, pp. 497-502.

[4] S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi, “Optimization
by simulated annealing,” Science, vol. 220, no. 4598, pp. 671-680,
May 1983.

[5] D. Jepsen and C. Gelatt, Jr., “Macro placement by Monte Carlo anneal-
ing,” in Proc. IEEE Int. Conf. Comput. Des., Nov. 1983, pp. 495-498.

[6] E. Malavasi, E. Charbon, E. Felt, and A. Sangiovanni-Vincentelli,

“Automation of IC layout with analog constraints,” [EEE Trans.

Comput.-Aided Design Integr. Circuits Syst., vol. 15, no. 8, pp. 923-942,

Aug. 1996.

K. Lampaert, G. Gielen, and W. Sansen, “A performance-driven place-

ment tool for analog integrated circuits,” IEEE J. Solid-State Circuits,

vol. 30, no. 7, pp. 773-780, Jul. 1995.

(7]

Authorized licensed use limited to: National Taiwan University. Downloaded on December 27, 2009 at 13:42 from IEEE Xplore. Restrictions apply.

804 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 6, JUNE 2009

[8

—

F. Balasa and K. Lampaert, “Symmetry within the sequence-pair repre-
sentation in the context of placement for analog design,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 19, no. 7, pp. 721-731,
Jul. 2000.

[9] Y. Pang, F. Balasa, K. Lampaert, and C.-K. Cheng, “Block placement with
symmetry constraints based on the o-tree non-slicing representation,” in
Proc. ACM/IEEE Des. Autom. Conf., 2000, pp. 464-467.

[10] F. Balasa, “Modeling non-slicing floorplans with binary trees,” in Proc.
IEEE/ACM Int. Conf. Compu.-Aided Des., 2000, pp. 13—-16.

[11] Y.-C. Chang, Y.-W. Chang, G.-M. Wu, and S.-W. Wu, “B*-trees: A
new representation for non-slicing floorplans,” in Proc. ACM/IEEE Des.
Autom. Conf., 2000, pp. 458-463.

[12] E Balasa, S. Maruvada, and K. Krishnamoorthy, “On the exploration
of the solution space in analog placement with symmetry constraints,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 23, no. 2,
pp. 177-191, Feb. 2004.

[13] F Balasa, S. Maruvada, and K. Krishnamoorthy, “Using red-black inter-
val trees in device-level analog placement with symmetry constraints,”
in Proc. IEEE/ACM Asia South Pacific Des. Autom. Conf., Jan. 2003,
pp. 777-782.

[14] S. Maruvada, A. Berkman, K. Krishnamoorthy, and F. Balasa, “Determin-
istic skip lists in analog topological placement,” in Proc. IEEE Int. Conf.
ASIC, Oct. 2005, vol. 2, pp. 834-837.

[15] J.-M. Lin, G.-M. Wu, Y.-W. Chang, and J.-H. Chuang, “Placement with
symmetry constraints for analog layout design using TCG-S,” in Proc.
IEEE/ACM Asia South Pacific Des. Autom. Conf., Jan. 2005, vol. 2,
pp. 1135-1138.

[16] S. Koda, C. Kodama, and K. Fujiyoshi, “Linear programming-based cell
placement with symmetry constraints for analog IC layout,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 26, no. 4, pp. 659668,
Apr. 2007.

[17] Y.-C. Tam, Y. Young, and C. Chu, “Analog placement with symmetry
and other placement constraints,” in Proc. IEEE/ACM Int. Conf. Comput.-
Aided Des., Nov. 2006, pp. 349-354.

[18] K. Krishnamoorthy, S. Maruvada, and F. Balasa, “Topological placement
with multiple symmetry groups of devices for analog layout design,” in
Proc. IEEE Int. Symp. Circuits Syst., May 2007, pp. 2032-2035.

[19] L. Zhang, C.-J. R. Shi, and Y. Jiang, “Symmetry-aware placement with
transitive closure graphs for analog layout design,” in Proc. IEEE/ACM
Asia South Pacific Des. Autom. Conf., Mar. 2008, pp. 180-185.

[20] M. Pelgrom, A. Duinmaijer, and A. Welbers, “Matching properties of
MOS transistors,” IEEE J. Solid-State Circuits, vol. 24, no. 5, pp. 1433—
1439, Oct. 1989.

[21] J.-M. Lin, H.-E. Yi, and Y.-W. Chang, “Module placement with boundary
constraints using B*-trees,” Proc. Inst. Elect. Eng.—Circuits, Devices
Syst., vol. 149, no. 4, pp. 251-256, Aug. 2002.

[22] G.-M. Wu, Y.-C. Chang, and Y.-W. Chang, “Rectilinear block placement
using B*-trees,” ACM Trans. Design Autom. Electron. Syst., vol. 8, no. 2,
pp. 188-202, Apr. 2003.

[23] M.-C. Wu and Y.-W. Chang, “Placement with alignment and performance
constraints using the b*-tree representation,” in Proc. IEEE Int. Conf.
Comput. Des., Oct. 2004, pp. 568-571.

[24] P-H. Lin and S.-C. Lin, “Analog placement based on hierarchical module

clustering,” in Proc. ACM/IEEE Des. Autom. Conf., Jun. 2008, pp. 50-55.

Po-Hung Lin received the B.S. and M.S. degrees in
electronics engineering from National Chiao Tung
University, Hsinchu, Taiwan, in 1998 and 2000, re-
spectively. He is currently working toward the Ph.D.
degree in the Graduate Institute of Electronics Engi-
neering, National Taiwan University, Taipei, Taiwan.

From 2000 to 2007, he was with Springsoft, Inc.,
Hsinchu. In 2008, he was a Visiting Scholar in the
Department of Electrical and Computer Engineer-
ing, University of Illinois at Urbana—Champaign,
Urbana. His research interests include analog design
automation and very large scale integration physical synthesis.

Yao-Wen Chang (S’94-A’96-M’96) received the
B.S. degree from National Taiwan University (NTU),
Taipei, Taiwan, in 1988, and the M.S. and Ph.D.
degrees from the University of Texas at Austin in
1993 and 1996, respectively, all in computer science.
He is a Professor in the Department of Electrical
Engineering and the Graduate Institute of Electron-
ics Engineering, NTU. He is currently also a Vis-
iting Professor at Waseda University, Kitakyushu,
Japan. He was with National Chiao Tung University
(NCTU), Hsinchu, Taiwan from 1996 to 2001 and
IBM T. J. Watson Research Center in the summer of 1994. His current research
interests lie in VLSI physical design, design for manufacturability/reliability,
and design automation for biochips. He has been working closely with industry
in these areas. He has co-edited one textbook on EDA and coauthored one book
on routing and over 150 ACM/IEEE conference/journal papers in these areas.
Dr. Chang is a winner of the 2009 ACM ISPD Clock Network Synthesis
Contest, the 2008 ACM ISPD Global Routing Contest, and the 2006 ACM
ISPD Placement Contest. He is a recipient of Best Paper Award at ICCD-95
and 12 Best Paper Award Nominations from DAC (four times), ICCAD (twice),
ISPD (three times), ACM TODAES, ASP-DAC, and ICCD in the past eight
years. He has received many research awards, such as the 2007 Outstanding
Research Award, the inaugural 2005 First-Class Principal Investigator Award,
and the 2004 Dr. Wu Ta You Memorial Award, all from National Science
Council of Taiwan, and the 2004 MXIC Young Chair Professorship from the
MXIC Corp, and excellent teaching awards from NTU (five times) and NCTU.
He is currently an associate editor of [IEEE TRANSACTIONS ON COMPUTER-
AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS (TCAD) and an
editor of the Journal of Information Science and Engineering (JISE) and the
Journal of Electrical and Computer Engineering (JECE). He has served on
the ICCAD Executive Committee, the ASP-DAC Steering Committee, the
ACM/SIGDA Physical Design Technical Committee, the ACM ISPD and IEEE
FPT Organizing Committees, and the technical program committees of ASP-
DAC, DAC, DATE, FPL, FPT, GLSVLSI, ICCAD, ICCD, IECON, ISPD,
SOCC, TENCON, and VLSI-DAT. He is currently an independent board di-
rector of Genesys Logic, Inc., a technical consultant of RealTek Semiconductor
Corp., a member of board of governors of Taiwan IC Design Society, and a
member of the IEEE Circuits and Systems Society, ACM, and ACM/SIGDA.

Shyh-Chang Lin received the B.S. degree in control
engineering from National Chiao Tung University,
Hsinchu, Taiwan, in 1989 and the M.S. and Ph.D.
degrees in electrical engineering from Michigan
State University, East Lansing, in 1993 and 1997,
respectively.

He is currently with the Physical Design Group,
Springsoft, Inc., Hsinchu. His research interests in-
clude analog layout automation and physical design
automation for very large scale integration.

Authorized licensed use limited to: National Taiwan University. Downloaded on December 27, 2009 at 13:42 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

