
37

Temporal Floorplanning Using the
Three-Dimensional Transitive
Closure subGraph

PING-HUNG YUH, CHIA-LIN YANG, and YAO-WEN CHANG

National Taiwan University

Improving logic capacity by time-sharing, dynamically reconfigurable Field Gate Programmable Ar-

rays (FPGAs) are employed to handle designs of high complexity and functionality. In this paper, we

use a novel graph-based topological floorplan representation, named 3D-subTCG (3-Dimensional

Transitive Closure subGraph), to deal with the 3-dimensional (temporal) floorplanning/placement

problem, arising from dynamically reconfigurable FPGAs. The 3D-subTCG uses three transitive

closure graphs to model the temporal and spatial relations between modules. We derive the fea-

sibility conditions for the precedence constraints induced by the execution of the dynamically re-

configurable FPGAs. Because the geometric relationship is transparent to the 3D-subTCG and its

induced operations (i.e., we can directly detect the relationship between any two tasks from the

representation), we can easily detect any violation of the temporal precedence constraints on 3D-

subTCG. We also derive important properties of the 3D-subTCG to reduce the solution space and

shorten the running time for 3D (temporal) foorplanning/placement. Experimental results show

that our 3D-subTCG-based algorithm is very effective and efficient.

Categories and Subject Descriptors: B.7.2 [Integrated Circuits]: Design Aids

General Terms: Algorithm, Performance, Design

Additional Key Words and Phrases: Reconfigurable computing, partially dynamical reconfigura-

tion, temporal floorplanning

ACM Reference Format:
Yuh, P.-H., Yang, C.-L., and Chang, Y.-W. 2007. Temporal floorplanning using the three-dimensional

transitive closure subGraph. ACM Trans. Des. Automat. Electron. Syst., 12, 4, Article 37 (Septem-

ber 2007), 34 pages, DOI = 10.1145/1278349.1278350 http:/doi.acm.org/10.1145/ 1278349.1278350

This work was partially supported by the National Science Council of Taiwan under Grant

No’s. NSC 94-2220-E-002-001, NSC 95-2752-E-002-008-PAE, NSC 95-2221-E-002-372, and NSC

95-2221-E-002-374 and by the Excellent Research Projects of National Taiwan University, 95R0062-

AE00-07.

Author’s addresses: P.-H. Yuh, C.-L. Yang (contact author), Department of CSIE, National Taiwan

University, No. 1, Sec. 4, Roosevelt Road, Taipei, Taiwan; email: {r91089, yangc}@csie.ntu.edu.tw;

Y.-W. Chang, Graduate Institute of Electronics Engineering and Department of EE, National

Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, Taiwan; email: ywchang@cc.ee.ntu.edu.tw.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2007 ACM 1084-4309/2007/04-ART37 $5.00 DOI 10.1145/1278349.1278350 http://doi.acm.org/

10.1145/1278349.1278350

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 37, Pub. date: Sept. 2007.

37:2 • P.-H. Yuh et al.

1. INTRODUCTION

An FPGA is a (re)programmable logic device that implements multilevel logic.
Traditionally, an FPGA needs to be reconfigured as a whole. Recently, several
vendors have proposed architectures that allow partially dynamic reconfigura-
tion, such as the Atmel AT6000 Series FPGAs [Atmel 1997], the Xilinx XC6200
Series FPGAs [Hauck et al. 1998], and the Xilinx Virtex Series FPGAs [Xilinx
2000] [Xilinx]. In the following, we introduce these architectures.

AT6000 Series [Atmel 1997] FPGAs are SRAM-based devices. The important
characteristic of this architecture is that we can configure the entire device or
selected portions of a design in this architecture. While the portions of the device
are configured, others keep operating without disturbing. It takes milliseconds
to complete full configuration. Further, partial configuration takes even less
time, which depends on its design density.

Figure 1 shows a bitstream file used to configure a hypothetical device, which
has 6 × 6 cells (i.e., number 0 to number 35) surrounded by 16 I/O cells (i.e.,
number 36 to number 51). According to the bitstream file, it only reconfigures a
portion of the array (i.e., the white circle denotes the cells that are reconfigured).
The other cells (i.e., the double circles) function as if they are in the normal
operational mode.

The XC6200 series FPGAs [Hauck et al. 1998; Xilinx 1996] are also SRAM-
based FPGAs. Based on sea of gates, the architecture is hierarchically con-
structed. The lowest level of the hierarchy lies a large array of simple cells.
Each cell can be programmed individually. Besides, the column readins and
readouts of flip-flop contents may be performed during runtime without inter-
fering other configured parts of the chip. To make it easier to configure and
access the chip’s state, all user registers and SRAM control store memory are
mapped into a host processor’s address space.

To achieve faster configurations in the XC6200 FPGA, it has special hard-
ware called Wildcard Registers, which can be viewed as decompressors for con-
figuration data. The Wildcard Register allows some configuration cells in the
same row or column to be written simultaneously. There are two Wildcard Reg-
isters, namely Row Wildcard Register and Column Wildcard Register, which
are associated with the row address decoder and the column address decoder
respectively. Figure 2 shows an XC6216 FPGA with the row decoder and the col-
umn decoder. The Wildcard Registers and the address decoders can be viewed
as a configuration decompressor. With the decompressor, several cells with the
same function can be configured simultaneously. Since the Wildcard Registers
can inform the address decoder where locations share the some computation
(i.e., they should be configured with the same value), those locations could be
configured with a single write operation. However, XC6200 is discontinuous in
the middle of 90s.

Figure 3(a) shows the Xilinx Virtex model [Xilinx 2000]. The Virtex con-
figuration memory can be considered as an array of bits. The bits of one-bit
width that extend from the top to the bottom of the array constitute a verti-
cal frame, which is the smallest portion of the configuration memory (i.e., the
atomic unit that can be written to or read from in this device). Several frames

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 37, Pub. date: Sept. 2007.

Temporal Floorplanning Using the 3-D Transitive Closure subGraph • 37:3

Fig. 1. A partial configuration example of the AT6000 device.

Fig. 2. An Xilinx XC6200 block diagram.

are grouped together into larger units called columns. Figure 3(b) shows one
column of configurable logic blocks (CLBs for short). In such a device, we have
to specify a full column of a chip for reconfiguration and readin/out of flip-flop of
contents.

Because of the partial reconfiguration capability in an FPGA, studies have
shown that an FPGA-based reconfigurable hardware system can improve per-
formance for many applications [Hauck 1998; Tessier and Burleson 2001; Shoa
and Shirani 2005]. For example, Chaubal [2004] successfully implemented a
partially reconfigurable network controller onto a Xilinx Virtex XCV1000 FPGA
device. They also identified three variables that may change during runtime and

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 37, Pub. date: Sept. 2007.

37:4 • P.-H. Yuh et al.

Fig. 3. (a) The Virtex architecture; (b) one-column of a 2-slice Virtex CLB.

thus the partial reconfiguration technique is necessary. These three variables
are:

—Number of operational channels.

—Protocol used for a particular channels.

—Parameters associated with the network protocol in use, such as the maxi-
mum segment size.

With the feature of partial reconfiguration, we can change the variables of one
channel while other channels are not affected. There are two benefits from the
partial reconfiguration feature. First, one channel can be reconfigured without
affecting any other channels that may be operated in the static part of the
design. Second, it reduces the reconfiguration time since the partial bitstream
can be significantly smaller than the bitstream for entire design.

Another example is the image interpolation of digital signal processing (DSP)
applications. Hudson et al. [1998] developed an image interpolation engine on a
Xilinx XC6264 reference board which is consisted of a Xilinx XC6264 FPGA and
two on-board memories. The whole design is divided into four stages: Inverse
Filter (IF) row computation, IF column computation, Fast Spline Transform
(FST) row computation, and FST column computation. The four stages are se-
quentially loaded into the FPGA. The partial reconfiguration can be used to
reduce the reconfiguration overhead because the column and row computation
for both the IF and the FST are very similar. They used the CalDiff tool [Luk
et al. 1997] to generate the partial reconfiguration. By using the partial re-
configuration, the reconfiguration time between the row computation and the
column computation is reduced from 300 us to 40 μs, a 99 percent saving in the
reconfiguration overhead.

Other researches also demonstrate the benefit of dynamically reconfigurable
systems. For example, the wireless communication systems often operates in a
time-varying environment. The channel noise characteristic, which depends on
environmental parameters, can greatly affect the system performance. Thus,

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 37, Pub. date: Sept. 2007.

Temporal Floorplanning Using the 3-D Transitive Closure subGraph • 37:5

Fig. 4. (a) A running program; (b) a 3D-placement of the running program.

the dynamically reconfigurable hardware can improve the accuracy and the per-
formance of the system based on the runtime conditions. One DSP algorithm
which is heavily depend on the runtime condition is the adaptive Viterbi
algorithm (AVA). The AVA algorithm can dynamically reduce the average num-
ber of computations required per bit of decoded information for comparable
bit-error rate based on current channel noise condition [Swaminathan et al.
2002]. If channel noise increases, a more accurate but slower decoder is swapped
into the FPGA hardware. Reduced channel noise leads to the opposite effect.
Swaminathan et al. [2002] implemented the AVA decoder on a Xilinx XC4036-
based PCI board. The overall performance improvement is 7.5X compared with
a Celeron processor–based system. For other applications, Alsolaim et al. [2000]
achieves more than three times improvement when implementing image pro-
cessing application onto a dynamically reconfigurable hardware. Durbano and
Ortiz [2004] proposed an FPGA-based accelerator to speedup the computa-
tional electromagnetic techniques, such as the Finite-Difference Time-Domain
method. They achieved up to three times speedup compared with a thirty-node
PC cluster. He et al. [2004] proposed an FPGA-based coprocessor for the mi-
gration method, which is the most important seismic data processing method.
They demonstrated that by integrating the FPGA-based coprocessor with an
Intel-based workstation, they can achieve 15.6 times speedup over a 2.4GHz
Pentium 4 workstation. Another advantage of an FPGA-based reconfigurable
system is that different features can be implemented on the same platform for
portable devices [picochip ; quicksilver].

A reconfigurable system is usually composed of a host processor and an
FPGA coprocessor, called a reconfigurable functional unit (RFU) [Bazargan
et al. 2000b]. An RFU, which can be reconfigured during program execution,
may have various configurations at different times. Figure 4(a) shows a pro-
gram with four parts of codes mapped into RFU operations (called RFUOPs
or modules). Because of the area constraint, we may not load all the modules
into the device at the same time. Therefore, how to place these modules into
the RFU becomes a 3-D placement problem as shown in Figure 4(b). We may

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 37, Pub. date: Sept. 2007.

37:6 • P.-H. Yuh et al.

denote each module as a 3-D box with spatial dimensions x and y and the tem-
poral dimension t. Temporal relations exist among scheduled modules since the
result of one module may be needed by another one. The objective of temporal
floorplanning is either to allocate modules in the RFU to optimize the volume
(area times execution time) or to fit all modules within an RFU and minimize
execution time, without violating the temporal constraints.

1.1 Previous Work

Teich et al. [1999] first used component graphs to handle the temporal floorplan-
ning problem assuming no dependence among scheduled modules. They derived
necessary and sufficient conditions for a feasible placement and proposed an
enumeration scheme by using a branch-and-bound tree search algorithm to
find a feasible solution. In practice, however, there often exist temporal prece-
dence constraints among scheduled modules since the output of one module
may be needed as the input of another module. Therefore, Fekete et al. [2001]
later extended their work to solve the placement problem with temporal prece-
dence constraints by using an additional dependency graph. Bazargan et al. in
their pioneering works [Bazargan et al. 2000b; Bazargan and Sarrafzadeh 1999;
Bazargan et al. 2000a] considered both the offline 3D template placement and
the online placements. In the offline placement, they modeled each RFUOP as
a 3D box and fixed the width and height of an RFU. They proposed a 3D floor-
planner that implemented four effective methods, including one greedy method
called KAMER-BF (Keep All Maximal Empty Rectangles with Best Fit). In the
online placement, they dynamically allocated the free space of an RFU to an
RFUOP based on different greedy methods (e.g., best-fit and first-fit). Recently,
Yuh et al. [2004] proposed a tree-based representation, called T-tree, to han-
dle the temporal floorplanning problem. They used a 3-ary tree to represent
the spatial and temporal relationship among RFUOPs. They applied a post-
processing step to fix the violations of the precedence constraints after packing.
All the aforementioned works assume that the RFUOPs first store results to the
external memory and then read back from the external memory. Kaneko et al.
[2002] used the Sequence Quintuple representation [Yamazaki et al. 2000] to
solve the 3D scheduling problem for dynamically reconfigurable systems. Their
formulation included the scheduling and placement of variables between mod-
ules. Wu et al. [2001] discussed the placement algorithm if on-chip memory is
used for the communications between RFUOPs.

1.2 Our Contribution

In this article, we solve the 3-dimensional floorplanning/placement problem
of the general reconfigurable architecture by using a novel topological floor-
plan representation, called 3D-subTCG (3-Dimensional Transitive Closure sub-
Graph). To the best knowledge of the authors, this is the first work that uses a
graph-based fully topological representation to handle the 3-dimensional place-
ment problem of a dynamically reconfigurable device.

Transitive closure graphs were previously proposed to handle the classi-
cal 2D floorplanning/placement problems [Lin and Chang 2001]. The main

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 37, Pub. date: Sept. 2007.

Temporal Floorplanning Using the 3-D Transitive Closure subGraph • 37:7

challenge to solve the 3D floorplanning problem is that there exist additional
temporal precedence constraints, for which some tasks must be executed before
other tasks start. We use the 3D-subTCG which consists of three transitive
closure graphs to model the temporal as well as the spatial relations between
tasks/modules. We derive the feasibility conditions for the temporal precedence
and the spatial constraints induced by the execution of the dynamically re-
configurable FPGAs. We also derive important properties of the 3D-subTCG
to reduce the solution space and shorten the running time for 3D (temporal)
foorplanning/placement.

Compared with recently published partial topological representation; that is,
T-tree, 3D-subTCG has three advantages. First, 3D-subTCG can represent more
general 3D floorplans than T-tree. Therefore, the solution space of T-tree may
not contain the optimal solution when considering other objectives, such as the
minimization of wirelength. Second, the geometric relationship is transparent
to both the representation and the induced operation; that is, we can detect the
relationship between any two tasks directly from the representation. We can
easily detect any violation of temporal precedence and spatial constraints in the
3D-subTCG. Therefore, we can guarantee a feasible solution without resorting
to time-consuming postprocessing to remove infeasible ones. Third, since the
geometric relations among tasks can be directly obtained from the representa-
tion, 3D-subTCG may be more suitable for handling various practical placement
constraints. For example, some boundary modules are desired to be placed on
the boundary of a reconfigurable device for shorter connection to I/O blocks.

In this article, we consider two floorplanning problems. The first one is the
classical temporal floorplanning problem that minimizes the product of the
area and the execution time (i.e., the volume of the 3D floorplan/placement).
The volume optimization is to analyze the tradeoff between the required
area and the total execution time. Experimental results show that our 3D-
subTCG-based algorithm can obtain significantly better floorplans than the
Sequence Triplet (ST) representation [Yamazaki et al. 2000] (35.18% deadspace
in ST vs. 14.86% in 3D-subTCG). The running-time requirement of 3D-subTCG
is also significantly smaller than ST (312.18 sec as ST vs. 166.46 sec as
3D-subTCG).

The second one is the temporal floorplanning with constraints. First, we
extend our 3D-subTCG-based algorithm to handle the temporal floorplanning
with placement constraints (e.g., boundary modules). The experimental result
shows that 3D-subTCG can achieve shorter average wirelength and smaller
average deadspace compared with the T-tree representation. Then, we handle
the fixed-outline floorplanning problem, for which the area of a reconfigurable
device is fixed. The fixed-outline floorplanning problem was advocated by Kahng
[2000] to address modern floorplanning constraints. Adya and Markov [2001,
2003] first proposed algorithms for the classical 2D fixed-outline floorplanning
problem. They added penalty to the cost function for the modules that are
placed out of the desired outline. In this article, we extend their idea to propose
a new cost function to guide the simulated annealing engine. The experimental
results show that our fixed-outline temporal floorplanner is effective of fitting
3D-blocks into the desired outline.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 37, Pub. date: Sept. 2007.

37:8 • P.-H. Yuh et al.

Fig. 5. The flexible 2D reconfigurable area model.

The remainder of this article is organized as follows. Section 2 formulates
the temporal floorplanning problem. Section 3 reviews the Transitive Closure
Graph (TCG) representation and presents the 3D-subTCG for temporal floor-
planning. Section 4 introduces our temporal floorplanning algorithm. Sec-
tion 5 extends our 3D-subTCG-based algorithm to handle various constraints.
Section 6 reports the experimental results. Finally, conclusions are given in
Section 7.

2. FORMULATION

In this section, we introduce the problem formulation of temporal floorplanning.
First we describe the RFU architecture used in this paper. The RFU architecture
assumed in this paper consists of a set of basic cells arranged in a 2D area array.
The basic cell is the smallest unit that an RFUOP can be allocated. Each basic
cell can be allocated to at most one RFUOP at one time. We assume that the
2D flexible area model is used, where each RFUOP can be freely allocated
anywhere in an RFU. Figure 5 shows the area model. In addition, we assume
that an RFUOP can be reconfigured at any time. This assumption may not
match current RFU architectures, where we can only reconfigure an RFUOP
at one time. For RFUOPs, we assume that each RFUOP is a rectangle and the
execution time can be determined in advance. We also assume that the RFUOPs
are nonpreemptive.

In the reconfigurable architecture, a task v is loaded into the device for a
period of time for execution. Let V = {v1, v2, . . . , vm} be a set of m tasks whose
widths, heights, and durations are denoted by Wi, Hi, and Ti, 1 ≤ i ≤ m. Let
(xi, yi) denote the coordinate of the bottom-left corner of a task vi on the chip,
where 1 ≤ i ≤ m.

To guarantee the correctness of the functions in the reconfigurable architec-
ture, we must satisfy the temporal precedence requirements, which describe
the temporal ordering among tasks. We refer to the temporal precedence re-
quirements as the precedence constraints. Let D = {(vi, vj)|1 ≤ i, j ≤ m, i �= j }
denote the precedence constraints for the tasks vi and vj . The precedence con-
straints should not be violated during floorplanning/placement.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 37, Pub. date: Sept. 2007.

Temporal Floorplanning Using the 3-D Transitive Closure subGraph • 37:9

In order to measure the quality of a floorplan, we consider the following four
objective functions:

—Volume (the minimum bounding box of a placement). In temporal floorplan-
ning, we need to consider the tradeoff between the area of a device and the
total execution time. If we use a larger device, the total execution time could
be shortened. In contrast, it takes longer time if a smaller one is used. There-
fore, we shall minimize the product of the area of the device and the total
execution time.

—Wirelength (the summation of half bounding box of interconnections). Due to
the special architecture of the reconfigurable device, the method to estimate
the wirelength in the temporal floorplanning problem is different from the
traditional floorplanning/placement problem. Given a net, those nodes in the
net may be executed at the same time frame or at different time frames. If
they are executed at the same time frame, we can estimate the wirelength
according to their geometric distance directly. However, we have to project
all nodes into the same time frame before computing their wirelength in the
other condition.

—Communication overhead. We quantify the communication overhead based
on the Xilinx Virtex architecture described in Section 1. Similar to Fekete
et al. [2001], we assume that a task communicates with another task (data-
dependence) in the following way: the results of a CLB, which are read by
the successor task, are first written to the external memory through the
bus interface. The dependent task, which has been loaded at the speci-
fied position, then performs a read-in of the results. Recall that a frame
is the atomic unit that can be written to or read from. Each frame con-
tains 1248 bits and the bus width is only 8 bit. Thus, it takes approximately
1248/8 + 24 = 180 clock cycles in each readin or readout, where the 24 cy-
cles are the configuration overhead of the bus interface as described on the
Xilinx FPGA data book [Xilinx 2000]. Therefore, the communication over-
head is 360 × f clock cycles (we should first write the data to the exter-
nal memory and then read back the data) if data in f columns need to be
transferred.

—Reconfiguration overhead. As described in Section 1, Xilinx Virtex architec-
ture is column-oriented (i.e., all bits in one column should be updated in
each readin or readout). Suppose that a task vi occupies Wi × Hi CLBs. We
have to reconfigure Hi columns of CLBs in each reconfiguration. As an exam-
ple, each CLB column in a Virtex FPGA consists of 48 frames, which takes
(1248/8) × 48 + 24 = 7512 clock cycles to configure per CLB column. This
means that we need Wi × 7512 clock cycles in total if the addresses in the
column are incrementally updated.

In this paper, we treat a task vi as a three-dimensional box. A placement P
is an assignment of (xi, yi, ti) for each vi, 1 ≤ i ≤ m, where ti is the starting
time for the scheduled task, such that no two boxes overlap and all precedence
constraints are satisfied. The goal of temporal floorplanning is to optimize a set
of predefined cost metrics induced by a placement.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 37, Pub. date: Sept. 2007.

37:10 • P.-H. Yuh et al.

Fig. 6. (a) A placement; (b) TCG; (c) augmented TCG (augmented Ch and Cv).

3. 3D-SUBTCG FOR TEMPORAL FLOORPLANNING

3.1 Review of TCG

We first review the Transitive Closure Graph (TCG) representation presented
in Lin and Chang [2001]. TCG uses two graphs, a horizontal transitive closure
graph Ch and a vertical transitive closure graph Cv, to describe the geometric
relations among modules. For two nonoverlapping modules bi and bj , bi is said
to be horizontally (vertically) related to bj , denoted by bi � bj (bi⊥bj), if bi is on
the left (bottom) side of bj and their projections on y(x) axis overlap. For two
nonoverlapping modules bi and bj , bi is said to be diagonally related to bj if bi

is on the left side of bj , and their projections on the x axis and y axis do not
overlap. To simplify the operations on geometric relations, we treat a diagonal
relation as a horizontal one, unless there exist a chain of vertical relations
from bi (bj), followed by the modules enclosed with the rectangle defined by
the two closest corners of bi and bj , and finally to bj (bi), for which we make
bi⊥bj (bj ⊥bi). For each module bi, we introduce one node ni both in Ch and Cv.
If bi � bj , a directed edge (ni, nj) is constructed in Ch. Similarly, we construct
a directed edge (ni, nj) in Cv if bi⊥bj . Figure 6(a) shows a placement with five
modules a, b, c, d , and e whose widths and heights are (2, 1), (2, 2), (3, 2),
(1, 2), and (3, 1), respectively. Figure 6(b) shows the TCG corresponding to the
placement of Figure 6(a). The weight of each node in Ch (Cv) represents the
width (height) of the corresponding module bi. Since ba � bb, we construct a
directed edge (na, nb) in Ch. Similarly, since ba⊥bc, a directed edge (na, nc) is
constructed in Cv.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 37, Pub. date: Sept. 2007.

Temporal Floorplanning Using the 3-D Transitive Closure subGraph • 37:11

Fig. 7. (a) A feasible TCG that the edge (nc, ne) lies in Cv; (b) the corresponding placement of

Figure 7 (a); (c) a redundant TCG that the edge (nc, ne) lies in Ch; (d) the corresponding placement

of Figure 7 (c).

TCG has the following three feasibility properties [Lin and Chang 2001]:

(1) Ch and Cv are acyclic.

(2) Each pair of nodes must be connected by exactly one edge either in Ch or
in Cv.

(3) The transitive closure of Ch (Cv) is equal to Ch (Cv) itself.1

The first property ensures that a module bi cannot be both left and right to
(below and above) another module bj in a placement. The second property guar-
antees that no two modules overlap since each pair of modules have exactly one
of the horizontal or vertical relation. The third property eliminates redundant
solutions. Figure 7 illustrates the third property. As shown in Figure 7(a), since
there is a path from node nc to node ne in Cv, the edge (nc, ne) must be in Cv.
If we place the edge (nc, ne) into Ch, as shown in Figure 7(c), the resulting area
of the placement must be larger or equal to the configuration of Figure 7(a).

1The transitive closure of a directed acyclic graph G is defined as the graph G′ = (V , E ′), where

E ′ ={(ni , n j): there is a path from node ni to node n j in G}.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 37, Pub. date: Sept. 2007.

37:12 • P.-H. Yuh et al.

Fig. 8. A placement.

Figure 7(b) and 7(d) shows the two placements. The third property eliminates
this redundant solution.

Given a TCG, a placement can be obtained in O(m2) time by performing a
well-known longest path algorithm [Lawler 1976] on TCG, where m is the num-
ber of modules. To facilitate the implementation of the longest path algorithm,
the two closure graphs can be augmented as follows. For each closure graph,
we introduce two special nodes with zero weights, the source ns and the sink
nt , and construct an edge from ns to each node with in-degree equal to zero and
also from each node with out-degree equal to zero to nt . Figure 6(c) shows the
augmented TCG for the TCG shown in Figure 6(b).

Let Lh(ni) (Lv(ni)) denote the weight of the longest path from ns to ni in the
augmented Ch (Cv). Lh(ni) (Lv(ni)) can be determined by performing the sin-
gle source longest path algorithm on the augmented Ch (Cv) in O(m2) time,
where m is the number of modules. The coordinate (xi, yi) of a module bi

is given by (Lh(ni), Lv(ni)). Further, the coordinates of all modules are de-
termined in the topological order in Ch (Cv). Since the respective width and
height of the placement for the given TCG are Lh(nt) and Lv(nt), the area of
the placement is given by Lh(nt) × Lv(nt). Since each module has a unique
coordinate after packing, there exists a unique TCG corresponding to any
placement.

3.2 3D-subTCG

As shown in the previous subsection, TCG describes the geometric relations
among modules based on two graphs, Ch and Cv. For a dynamically reconfig-
urable device, there exists the temporal ordering among tasks. For two tasks
vi and vj , vi is said to be temporally related to vj , denoted by vi ≺ vj , if vi is
executed before vj starts. Note that ≺ only states the execution order among
tasks. It does not define the precedence constraint. To solve the 3D floorplan-
ning/placement problem, we need to consider the temporal and spatial relations
at the same time. Therefore, we introduce a new graph to model the temporal

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 37, Pub. date: Sept. 2007.

Temporal Floorplanning Using the 3-D Transitive Closure subGraph • 37:13

Table I. The Coordinates, Width, Height, and Duration for

Each Task in Figure 8

Coordinates

Task (xi , yi , ti) Width Height Duration

a (8,0,0) 5 1 4

b (2,2,0) 3 5 4

c (0,2,0) 3 2 3

d (0,0,4) 3 2 1

e (6,0,0) 2 2 1

f (6,2,1) 2 2 3

Fig. 9. The corresponding 3D-subTCG of Figure 8.

relations among tasks, namely a temporal transitive closure graph Ct . This new
representation is called 3D-subTCG, which contains three transitive graphs, Ch,
Cv, and Ct . For each task vi, we construct one node ni in each graph. If vi � vj

(vi⊥nj), we construct an edge (ni, nj) in Ch (Cv). If vi is executed before vj starts,
we construct an edge (ni, nj) in Ct .

Figure 8 shows a placement with six tasks a, b, c, d , e, and f . Table I shows
the coordinate, width, height, and duration of each task in Figure 8. Figure 9
shows the 3D-subTCG corresponding to the placement of Figure 8. The value
associated with a node in Ch (Cv or Ct) gives the width (height or duration) of
the corresponding task, and the edge (ni, nj) in Ch (Cv or Ct) represents the
horizontal (vertical or temporal) relation of vi and vj . In Figure 9, since task vc

(va) is left to (below) vb (v f), there exists an edge (nc, nb) ((na, n f)) in Ch (Cv).
Similarly, since task va must be executed before task vd , there exists an edge
(na, nd) in Ct .

To obtain the coordinate of each task, we apply the longest path algorithm
to the three graphs in a 3D-subTCG. (See Section 3.1 for the details.)

3D-subTCG has the following three feasibility properties:

(1) Ch, Cv, and Ct are acyclic.

(2) Each pair of nodes must have exactly one edge in either Ch, Cv, or Ct .

(3) There must exist an edge (ni, nj) if there is a path from ni to nj in one graph
and there exist no edges between ni and nj in other graphs.

The first two properties, which are the same as TCG, guarantee that a solu-
tion is feasible. The third property is to eliminate the redundant solutions. An
edge (ni, nj) is said to be a closure edge if there exists a path from node ni to node
nj except the edge (ni, nj) itself. For example, the edges (nb, na), (nc, na), (nc, ne),

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 37, Pub. date: Sept. 2007.

37:14 • P.-H. Yuh et al.

Fig. 10. (a) A 3D-subTCG with only one path between node na and nb in Cv; (b) a 3D-subTCG

contains two paths in Ch and Cv between node na and nb.

and (nc, n f) in Ch of Figure 9 are closure edges. If there exists a path from node
ni to node nj in one graph, the closure edge (ni, nj) should appear in the same
graph instead of others to eliminate the redundant solutions as explained in
Section 3.1. However, before adding a new closure edge (ni, nj) after each oper-
ation, we need to make sure that there exist no closure edges between ni and
nj in other graphs. Figure 10 illustrates this scenario. Figure 10(a) shows a
3D-subTCG that there exists a closure edge (na, nb) between two nodes na and
nb. Figure 10(b) shows the resulting graph after deleting the edge (ne, nb) in
Ct and adding the edge (nb, ne) to Ch. Now there is a path from nb to na in Ch.
However, in order to maintain the second property, we cannot add the closure
edge (nb, na) in Ch since (na, nb) has already existed in Cv.

3.3 Discussions

There are other works that also use the topological representation, that is,
T-tree [Yuh et al. 2004], to solve the temporal floorplanning problem. In this
subsection, we discuss the pros and cons of 3D-subTCG and T-tree representa-
tions.

Although the T-tree representation outperforms the 3D-subTCG in terms
of packing efficiency and volume optimization, 3D-subTCG have the following
three advantages over T-tree:

—3D-subTCG is a fully topological representation that can represent the gen-
eral topological modeling of tasks, and thus contains a complete solution
structure for searching the optimal floorplan/placement solution. In contrast,
T-tree is a partially topological representation and can only represent the

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 37, Pub. date: Sept. 2007.

Temporal Floorplanning Using the 3-D Transitive Closure subGraph • 37:15

Fig. 11. Compacted floorplans that can be represented by 3D-subTCGs, but not T-trees. (a) A

compacted floorplan with no task at the origin; the floorplan cannot be modeled by a T-tree; (b) a

compacted floorplan that cannot be represented by a T-tree; (c) the corresponding 3D-subTCG of

(a); (d) the corresponding 3D-subTCG of (b).

compacted 3D floorplans where each task must be compacted to the origin.
Furthermore, there exist 3D compacted floorplans that cannot be represented
by a T-tree but can be represented by a 3D-subTCG. Figure 11 shows two
compacted 3D floorplans that cannot be represented by a T-tree. Figure 11(a)
shows a 3D floorplan with no task at the origin. Since T-tree requires a root
node corresponding to the task at the origin, this 3D floorplan cannot be rep-
resented by a T-tree. Figure 11(b) shows another 3D floorplan with a task at
the origin. This 3D floorplan has three direct relations; that is, task vb is in
the Y + direction of task va and is adjacent to va, task vc is in the T+ direction
of task va and is adjacent to va, and task vc is in the X + direction of task
vb and is adjacent to vb. This 3D floorplan cannot be represented by a T-tree
because the packing method and the tree structure proposed in Yuh et al.
[2004] cannot generate a 3D floorplan with three direct relations. However,
both 3D floorplans can be easily represented by a 3D-subTCG. Figure 11(c)
shows the corresponding 3D-subTCG of Figure 11(a), and Figure 11(d) shows
the corresponding 3D-subTCG of Figure 11(b).

Moreover, the incomplete solution space of T-tree may not contain the
optimal solution when considering other optimization objectives, such as
the wirelength minimization. Figure 12 shows two 3D floorplans. Suppose
there are strong interconnections between tasks va and vc. The wirelength of
Figure 12(a) is smaller than the wirelength of Figure 12(b) because va is ad-
jacent to vc in Figure 12(a). Since Figure 12(a) is not a compacted placement,
a T-tree cannot represent Figure 12(a) and can only represent Figure 12(b).

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 37, Pub. date: Sept. 2007.

37:16 • P.-H. Yuh et al.

Fig. 12. (a) A floorplan that can be represented by a 3D-subTCG; (b) the compacted floorplan

resulted from the T-tree packing. Box A is packed to the position with x = 0.

Thus, T-tree may lose the optimality when considering other objectives.

—Because the relation between each pair of tasks is defined in the represen-
tation, the geometric relation of each pair of tasks is transparent to both the
representation and the induced operations; that is, we know the change of the
geometric relations among tasks before perturbation. Thus, we can perform
the feasibility detection before perturbation to guarantee the satisfaction of
precedence constraints. In contrast, T-tree is a partially topological repre-
sentation where some geometric relations among tasks cannot be obtained
directly from representation. Thus, it is hard to detect the violations of the
precedence constraints before packing and a post-processing is required to
guarantee the feasibility of the solutions after packing.

—Since the geometric relations among tasks can be directly obtained from
the representation, 3D-subTCG may be more suitable for handling various
practical placement constraints. For example, since the input/output blocks
are on the boundary of the reconfigurable devices, such as the Xilinx Virtex
shown in Figure 3, some tasks are desired to be placed on the boundary of
a device. We can easily detect if a task is on the boundary of the device by
observing the in-degree/out-degree of its corresponding node in Ch or Cv. We
can also detect if a task starts at time step zero on an RFU by observing the
in-degree/out-degree of its corresponding node in Ct . As shown in Figure 9,
a node with zero in-degree (out-degree) in Ch corresponds to a task on the
left (right) boundary. Similarly, a node with zero in-degree (out-degree) in
Cv corresponds to a task on the bottom (top) boundary. If a node with zero
in-degree in Ct , then the corresponding task starts at time zero. By observing
the in-degree/out-degree of a node ni in Ch and Cv, we can easily detect if task
vi is on the boundary of a device.

4. TEMPORAL FLOORPLANNING ALGORITHM

Our algorithm is based on simulated annealing [Kirkpatrick et al. 1983]. Given
an initial 3D-subTCG, we perturb the 3D-subTCG to obtain a new 3D-subTCG.
The cost function � used in our algorithm is given by

� = αV + βW + γ O, (1)

where V is the volume of the placement, W is the total wirelength, O is the
reconfiguration overhead, and α, β, and γ are user-specified constants. If a task
vi executes right after a task vj , the overlapping area of vi and vj does not need
to be reconfigured. Therefore, the O term is computed based on the following

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 37, Pub. date: Sept. 2007.

Temporal Floorplanning Using the 3-D Transitive Closure subGraph • 37:17

equation:

O = A(i) + A(j) − OA(i, j), t ′
i = t j , (2)

where A(i) is the area of task vi and OA(i, j) is the overlapping area of tasks vi

and vj . Note that some existing commercial FPGA architectures, such as the
Xilinx Virtex-like architecture, are column- or row-oriented (i.e., configure the
whole column/row at a time); our formulation of computing the overhead cell by
cell is in fact more general. We can report the width or the height of the over-
lapping area as the reconfigurable overhead for the Virtex-like architecture.
For the communication overhead, after determining the width (the number of
columns) of each task, we can calculate the communication overhead of each
task based on the method presented in Section 2. Then, we add the communi-
cation overhead into the execution time of each task. In this section, we first
describe how to identify a reduction edge, and then show the perturbation op-
erations in simulated annealing. Then, we introduce the feasibility condition
that a 3D-subTCG must satisfy during each perturbation in order to maintain
the correct temporal ordering among tasks.

4.1 Reduction Edge Identification

First we illustrate the concept of reduction edges. An edge (ni, nj) is called a
reduction edge if there does not exist another path from node ni to node nj except
the edge (ni, nj) itself. For example, the edges (nb, n f), (nb, ne), and (ne, na) in
Ch of Figure 9 are reduction edges while edges (nc, n f), (nc, na), and (nb, na)
are not. Recall that 3D-subTCG is formed by directed acyclic transitive closure
graphs. Given an arbitrary node ni in one transitive closure graph, there exists
at least one reduction edge (ni, nj), where nj ∈ Fout(ni). Here we define the
fan-in (fan-out) of a node ni, denoted by Fin(ni) (Fout(ni)), as the nodes nj ’s with
edges (nj , ni) ((ni, nj)). For nodes nk , nl ∈ Fout(ni), the edge (ni, nk) cannot be
a reduction edge if nk ∈ Fout(nl). Hence, we remove those nodes in Fout(ni)
that are fan-outs of others. The edges between ni and the remaining nodes in
Fout(ni) are reduction edges. In the Ch of Figure 9, Fout(nc) = {na, nb, ne, n f }.
Since na, ne, and n f belong to Fout(nb), edges (nc, na) and (nc, n f) are closure
edges while (nc, nb) is a reduction one. The reason for identifying reduction
edges is that the operations defined below are only applied to reduction edges.
The time complexity of finding such a reduction edge is O(m2), where m is the
number of tasks (tasks) [Lin and Chang 2001].

4.2 Solution Perturbation

We define the following five operations to perturb a 3D-subTCG:

—Rotation. Rotate a task.

—Swap. Swap two nodes in Ch, Cv, and Ct .

—Reverse. Reverse a reduction edge in Ch, Cv, or Ct .

—Move. Move a reduction edge from one graph (Ch, Cv, or Ct) to another graph.

—Transpositional Move. Move a reduction edge from one graph (Ch, Cv, or Ct)
to another graph, and then transpose the two nodes associated with the edge.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 37, Pub. date: Sept. 2007.

37:18 • P.-H. Yuh et al.

Fig. 13. Examples of perturbations. (a) The initial 3D-subTCG (Ch, Cv, and Ct); (b) the resulting

3D-subTCG after rotating the task na shown in (a); (c) the resulting 3D-subTCG after moving the

reduction edge (nc, nb) from the Ch of (b) to Ct .

Note that Rotation, Swap, Reverse, and Move are first introduced in Lin
and Chang [2001], which can be performed in respective O(1), O(1), O(m2),
and O(m2) time, where m is the number of tasks. The Rotation and Swap op-
erations do not change the topology of 3D-subTCG, while Reverse, Move, and
Transpositional Move do. Therefore, to maintain the properties of a 3D-subTCG,
we may need to update the resulting graphs after performing Reverse, Move,
and Transpositional Move. Furthermore, we shall perform feasibility detection
during each perturbations to ensure that the precedence constraints are not
violated. We first detail the operations as follows.

4.2.1 Rotation. To rotate a task vi, we only need to exchange the weights
of the corresponding node ni in Ch, Cv, and Ct . Figure 13(b) shows the resulting
3D-subTCG after rotating the task va in Figure 13.

4.2.2 Move. The Move operation moves a reduction edge (ni, nj) in one
graph to one of the other two graphs in a 3D-subTCG. Move could switch the
relations of the two tasks vi and vj between a horizontal relation and a vertical

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 37, Pub. date: Sept. 2007.

Temporal Floorplanning Using the 3-D Transitive Closure subGraph • 37:19

one. For two tasks vi and vj , vi � vj (vi⊥vj) and there exists a reduction edge
(ni, nj) in Ch (Cv); after moving the edge (ni, nj) to Cv (Ch), we have the new
geometric relation vi⊥vj (vi � vj). Move could also change the temporal relation
of the two tasks vi and vj . For two tasks vi and vj , vi ≺ vj and there exists a
reduction edge (ni, nj) in Ct ; after moving the edge (ni, nj) to Ch (Cv), we change
the temporal relation into the new geometric relation vi � vj (vi⊥vj). If there
exists a reduction edge (ni, nj) in Ch (Cv); after moving the edge (ni, nj) to Ct ,
we have the new temporal relation vi ≺ vj .

To move a reduction edge (ni, nj) from one transitive graph G to another
transitive graph G ′, we first delete the edge (ni, nj) from G and then add (ni,
nj) to G ′. For each node nk ∈ Fin(ni) ∪ {ni} and nl ∈ Fout(nj) ∪ {nj }, we shall
check whether the edge (nk , nl) exists in G ′. If G ′ contains this edge, we do
nothing; otherwise, we need to add this edge to G ′ and delete the corresponding
edge (nk , nl) or (nl , nk) in G or G ′′, if any, to maintain the properties of the
3D-subTCG. Figure 13(c) shows the result of moving the edge (nc, nb) in Ch of
Figure 13(b) to Ct .

4.2.3 Swap. To swap the nodes ni and nj of two tasks vi and vj , we only
need to exchange the nodes ni and nj in Ch, Cv, and Ct . Figure 14(a) shows the
result of swapping nodes nb and nd shown in Figure 13(c).

4.2.4 Reverse. The Reverse operation reverses the direction of a reduction
edge (ni, nj) in one graph. For two modules vi and vj , vi � vj (vi⊥vj) and there
exists a reduction edge (ni, nj) in Ch (Cv); after reversing the edge (ni, nj),
we have the new geometric relation vj � vi (vj ⊥vi). Similarly, vi ≺ vj and
there exists a reduction edge (ni, nj) in Ct ; after reversing the edge (ni, nj), we
have the new temporal relation vj ≺ vi.

To reverse a reduction edge (ni, nj) in a transitive graph G, we first delete
the edge from G, and then add the edge (nj , ni) into G. Similar to the Move
operation, for each node nk ∈ Fin(nj) ∪ {nj } and nl ∈ Fout(ni) ∪ {ni} in G, we
shall check whether the edge (nk , nl) exists in G. If G contains the edge, we do
nothing; otherwise, we need to add the edge to G and delete the corresponding
edge (nk , nl) or (nl , nk) in the other two transitive closure graphs, if any, to
maintain the properties of the 3D-subTCG. Figure 14(b) shows the result after
reversing the edge (ne, na) in Ch of Figure 14(a).

4.2.5 Transpositional Move. The Transpositional Move operation removes
a reduction edge (ni, nj) from one graph, and adds an edge (nj , ni) to one of the
two graphs in a 3D-subTCG. In one case, Transpositional Move switches the
geometric relation of the two tasks vi and vj between a horizontal relation and
a vertical one and changes the ordering of the two tasks vi and vj in their
geometric relation. For two tasks vi and vj , vi � vj (vi⊥vj) and there exists
a reduction edge (ni, nj) in Ch (Cv); after transpositionally moving the edge
(ni, nj) to Cv (Ch), we have the new geometric relation vj ⊥vi (vj � vi). In the
other case, Transpositional Move changes the temporal relation of the two tasks
vi and vj . For two tasks vi and vj , vi ≺ vj and there exists a reduction edge (ni,
nj) in Ct ; after transpositionally moving the edge (ni, nj) to Ch (Cv), we change
the temporal relation into the new geometric relation vj � vi (vj ⊥vi). If there

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 37, Pub. date: Sept. 2007.

37:20 • P.-H. Yuh et al.

Fig. 14. Examples of perturbations (continued from Figure 13). (a) The resulting 3D-subTCG after

swapping the nodes nb and nd shown in Figure 13 (c); (b) the resulting 3D-subTCG after reversing

the reduction edge (ne, na) in the Ch shown in (a); (c) the resulting 3D-subTCG after transpositional

moving the reduction edge (ne, nb) from the Ct of (b) to Cv.

exists a reduction edge (ni, nj) in Ch (Cv); after transpositionally moving the
edge (ni, nj) to Ct , we have the new temporal relation vj ≺ vi.

To transpositionally move a reduction edge (ni, nj) from one transitive graph
G to another transitive graph G ′, we first delete the edge (ni, nj) from G and add
(nj , ni) to G ′. Similar to the Move operation, for each node nk ∈ Fin(nj) ∪ {nj }
and nl ∈ Fout(ni) ∪ {ni}, we shall check whether the edge (nk , nl) exists in G ′.
If G ′ contains the edge, we do nothing; otherwise, we need to add the edge to
G ′ and delete the corresponding edge (nk , nl) or (nl , nk) in G or G ′′, if any, to
maintain the properties of the 3D-subTCG. Figure 14(c) shows the result of
transpositionally moving the edge (ne, nb) from Ct of Figure 14(b) to Cv. Note
we delete the edge (na, ne) in Ch and add it to Cv. Figure 15 shows the resulting
placement of 3D-subTCG shown in Figure 14(c).

Note that the Transpositional Move operation is different from performing
Move followed by Reverse. Figure 16 shows the resulting 3D-subTCG if we first
Move the edge (ne, nb) from Ct to Cv and then Reverse the edge (ne, nb) in Cv.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 37, Pub. date: Sept. 2007.

Temporal Floorplanning Using the 3-D Transitive Closure subGraph • 37:21

Fig. 15. The resulting placement of 3D-subTCG shown in Figure 14(c).

Fig. 16. The resulting 3D-subTCG after Move the edge (ne, nb) from Ct to Cv then Reverse the

edge (ne, nb) in Cv.

It is clear that this 3D-subTCG is not the same as the 3D-subTCG shown in
Figure 14(c).

After updating the resulting 3D-subTCG after Move, Reverse, Transposi-
tional Move, we preserve the three properties of 3D-subTCG. However, due to
the existence of two pathes between two nodes in different graphs, the Move
and the Transpositional Move may potentially generate a 3D-subTCG with cy-
cles. Figure 17 shows this scenario. Figure 17(a) shows a feasible 3D-subTCG
with five nodes. If we Move the edge (nd , ne) from Ct to Ch, we need to add
edges (nd , na), (nd , nb), and (nd , nc) into Ch in order to maintain the properties
of 3D-subTCG. However, since we delete edges (nc, nd) and (nd , na) in Cv, the
edge (nc, na) becomes a reduction edge. If we Move edge (nc, na) to Ch, then a
cycle between nodes na, nb, and nc is generated as shown in Figure 17(c). In
order to avoid this situation, we do not Move or Transitional Move a reduction
edge that will generate cycles.

4.3 Feasibility Detection

To maintain the temporal ordering among tasks, the 3D-subTCG must guaran-
tee that all precedence constraints are satisfied. Among the five operations

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 37, Pub. date: Sept. 2007.

37:22 • P.-H. Yuh et al.

Fig. 17. (a) A feasible 3D-subTCG; (b) the resulting 3D-subTCG if we Move edge (nd , ne) from

Ct to Ch; (c) if we Move the reduction edge (nc, na) from Cv to Ch, then a cycle consisted of edges

(na, nb), (nb, nc), and (nc, na) (shown in dash lines) is generated.

mentioned above, Move, Swap, Reverse, and Transpositional Move could
violate the constraints. We now show how to detect a violation during
perturbation.

When we move an edge (ni, nj) or reverse/transpositionally move (nj , ni), the
precedence constraint will be violated if nl ∈ Fin(ni) ∪ {ni}, nk ∈ Fout(nj) ∪ {nj },
and (nl , nk) �∈ Ct if (nl , nk) ∈ D. As mentioned in Section 2, D denotes the
precedence constraints. When we swap two nodes ni and nj , three scenarios
could happen:

(1) There exists a precedence constraint between ni and nj ,

(2) Neither of ni and nj has a precedence constraint, or

(3) Either ni or nj has precedence constraint.

In the first case, it is clear that we cannot swap the two nodes. However, if
neither of ni and nj has a precedence constraint, we can swap ni and nj di-
rectly. Without loss of generality, we could assume that node ni has precedence
constraints to explain the third case. If ni has a precedence-constrained edge
(ni, nk), we can swap ni and nj without any violation if nk ∈ Fout(nj) of Ct . If ni

has a precedence-constrained edge (nk , ni) and nk ∈ Fin(nj) of Ct , we can also
swap ni and nj .

Figure 18(a) shows the resulting Ch, Cv, and Ct after swapping the nodes nd

and ne in Figure 14(c). Assume that there exists a precedence-constrained edge
(ne, n f). The precedence constraint will be violated if we swap the two nodes
nd and ne, since n f �∈ Fout(nd) of Ct . Figure 18(b) shows Ch, Cv, and Ct after re-
versing the edge (nd , ne) in the Ch in Figure 14(c). Since {ne} ∩ Fin(ne) = {nc, ne}
ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 37, Pub. date: Sept. 2007.

Temporal Floorplanning Using the 3-D Transitive Closure subGraph • 37:23

Fig. 18. (a) The resulting 3D-subTCG after swapping the nodes nd and ne shown in Figure 14(c);

(b) the resulting 3D-subTCG after reversing the reduction edge (nd , ne) in the Ch shown in Fig-

ure 14(c).

and {nd } ∩ Fout(nd)={nd , n f } in Ch, we shall check (ne, n f) for the precedence
constraint. If there exists a precedence-constrained edge (ne, n f), the prece-
dence constraint will be violated.

By doing the feasibility detection during the Move, Reverse, Transpositional
Move, and Swap operations, we can guarantee that the resulting 3D-subTCG
still satisfies all precedence constraints. We thus have the following theorem.

THEOREM 4.1. The precedence constraints of a 3D-subTCG are not violated
by the Move, Swap, Reverse, or Transpositional Move operation with the feasi-
bility detection.

PROOF.

(1) Recall that if an edge (ni, nj) is in Ct , then task vj must be executed after
task vi. Thus, the necessary condition to satisfy the precedence constraint
between vi and vj is that the edge (ni, nj) must be in Ct .

(2) If an edge (ni, nj) is a precedence-constrained edge, we will not choose this
edge to perform Move, Reverse, or Transitional Move. We will not swap
nodes ni and nj , either.

(3) When we Move, Reverse, or Transitional Move an edge (ni, nj), if a
precedence-constrained edge (nl , nk) should be deleted from Ct and added to
another graph, we abort this operation and choose another reduction edge.
It guarantees that all the precedence-constrained edges remain in Ct .

(4) If there exists a precedence-constrained edge (ni, nj) and we want to swap
node ni with nk or nj with nk , there must exist an edge (nk , nj) or edge

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 37, Pub. date: Sept. 2007.

37:24 • P.-H. Yuh et al.

(ni, nk). This guarantees that the precedence-constrained edge (ni, nj) still
exists after performing Swap.

Thus, by doing the feasibility detection, the precedence constraints are not
violated by the Move, Reverse, Transitional Move, and Swap.

5. TEMPORAL FLOORPLANNING WITH CONSTRAINTS

In this section, we extend our temporal floorplanning algorithm to handle place-
ment with boundary modules and the fixed-outline constraint.

5.1 Boundary Constraint

The floorplanning with boundary constraint is to place a set of tasks on the
desired boundary of a reconfigurable device and can be formulated as follows:

Definition 5.1. Boundary constraint. Given a boundary module vi, it must
be placed on one of the four sides: on the left, on the right, at the bottom, or at
the top of a reconfigurable device in the final packing.

Since the geometric relation of each pair of tasks is transparent to the 3D-
subTCG representation, we can easily detect if a task is on the boundary of a
reconfigurable device. Given a task vi, we can detect if vi is in one of the four
boundaries of a reconfigurable device by observing the in-degree/out-degree of
the corresponding node ni in Ch or Cv. If the in-degree of ni in Ch (Cv) is zero, then
vi is placed on the left (bottom) boundary of a reconfigurable device. Similarly,
if the out-degree of ni in Ch (Cv) is zero, then vi is placed on the right (top)
boundary of a reconfigurable device.

In this paper, for each boundary module vi, we associate it with a boundary
penalty, BPi, and is defined as follows:

BPi =
{

0, i f vi is on the boundar y
d (ni), i f vi is not on the boundar y , (3)

where d (ni) is the distance of ni to the source node in Ch (Cv) if vi needs to be
placed on the left (bottom) boundary or the distance of ni to the sink node in Ch

(Cv) if vi needs to be placed on the right (top) boundary. We can use the above
method to detect whether vi is on the boundary of a reconfigurable device. We
add the boundary penalty in the cost function. The modified cost function φ′ is
given by:

�′ = α(1 + B/Bnorm)V + βW + γ O, (4)

where B is the summation of BPi for all boundary modules vi and Bnorm is used
for normalization. B is zero if all BPis are equal to zero.

5.2 Fixed-Outline Floorplanning

In this subsection, we handle the fixed-outline constraint imposed by a given
reconfigurable device. For the fixed-outline floorplanning, the area of the recon-
figurable device is fixed. Let W f /Hf and Wp/Hp denote the width and height
of a reconfigurable device and a placement, respectively. A feasible floorplan of

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 37, Pub. date: Sept. 2007.

Temporal Floorplanning Using the 3-D Transitive Closure subGraph • 37:25

fixed-outline floorplanning must satisfy the outline constraint; that is, Wp ≤ W f

and Hp ≤ Hf . In this paper, we add the excessive volume in the cost function to
ensure the satisfaction of the fixed-outline constraint. The modified cost func-
tion �′′ is given by:

�′′ = αV ′ + βW + γ O + δM , (5)

where V ′ is defined as W f × Hf × Time, δ is a user-specified constant, and M
is the penalty term and is given by the following equation:

M = min((max(Wp − W f , 0) × Hp) × Time

+(max(Hp − Hf , 0) × Wp) × Time,

(max(Hp − W f , 0) × Wp) × Time

+(max(Wp − Hf , 0) × Hp) × Time). (6)

Since the whole design can be rotated by 90 degrees, we choose the smaller
excessive volume of two orthogonal placements. The rationale behind M is
that when simulated annealing minimizes the cost function, it automatically
minimizes the penalty term. Thus, the fixed-outline constraint is automatically
satisfied.

Beside considering the excessive volume in the objective function, we de-
termine the probability of the Move and Transpositional Move operations for
moving a reduction edge from Ch or Cv to Ct based on the value p defined in the
following equation:

p = max

(
Q × k

Q × k + 1
, 0

)
, (7)

where k is a user-specified value and Q is defined by

Q = max

(
Wp − W f

W f
,

Hp − Hf

Hf

)
. (8)

In this paper, we set k equal to 1.25. At each perturbation, we calculate p based
on the width and height of the current placement. The larger value of p, the
harder for a floorplan to fit the desired outline. Therefore, we should increase
the probability to Move or Transpositional Move a reduction edge from Ch or
Cv to Ct to satisfy the fixed-outline constraint for a larger p.

6. EXPERIMENTAL RESULTS

Based on simulated annealing [Kirkpatrick et al. 1983], we implemented the
temporal floorplanning algorithm in the C++ programming language on a
433 MHz SUN Ultra-60 workstation with 1 GB memory. We compared 3D-
subTCG with Sequence Triplet (ST) [Yamazaki et al. 2000] and T-tree based on
the same SA engine and same SA parameters, (cooling schedule, initial temper-
ature, weights of the cost function, etc.). ST is extended from the well-known
Sequence Pair (SP) [Murata et al. 1995] representation, which is very popular
for handling floorplanning/placement in both the industry and academia.

In this section, we first report the outline-free floorplanning results. Then,
we report results for boundary constraint and fixed-outline constraint.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 37, Pub. date: Sept. 2007.

37:26 • P.-H. Yuh et al.

Table II. Results of Volume Optimization (volume = mm2× clock cycles)

of Sum of Dead space time

Circuit tasks volume Volume (%) (Sec.)

Circuit 1 10 512 512 0.0 8.3

Circuit 2 10 480 480 0.0 1.9

Circuit 3 10 1000 1000 0.0 9.7

Circuit 4 20 3840 4032 4.7 25.2

Circuit 5 30 4096 4608 11.1 127.8

Table III. Results for Volume and Overhead Optimization

ST 3D-subTCG
Sum Volume Dead Volume Dead

of of (mm2× Space Time (mm2× Space Time
Circuit tasks volume clks) (%) (sec.) clks) (%) (sec.)

beasley1 10 6218 8710 28.6 7.7 7504 17.1 8.5

beasley2 17 11497 14664 21.5 45.2 12402 7.2 28.5

beasley3 21 10362 16016 35.3 44.1 12640 18.0 22.4

beasley4 7 10205 13800 26.0 3.0 13064 21.8 2.0

beasley5 14 16734 22750 26.4 18.2 18912 11.5 16.0

beasley6 15 11040 14994 26.3 27.9 13200 16.3 24.8

beasley7 8 17168 24570 30.1 3.8 20574 16.5 2.3

beasley8 13 83044 132275 37.2 15.4 98280 15.5 19.4

beasley9 18 133204 174496 23.6 30.6 167751 20.5 17.2

beasley10 13 493746 660480 25.2 13.0 575685 14.2 10.8

beasley11 15 383391 486381 24.8 17.5 438702 12.6 9.8

beasley12 22 646158 922080 29.9 100.0 823816 21.5 58.5

okp1 50 1.24327e+08 216950048 42.6 1607.2 173829024 28.4 387.3

okp2 30 8.54452e+07 128093128 33.2 285.3 110095000 22.3 73.8

okp3 30 1.23808e+08 185146208 33.1 280.7 160854400 23.0 70.6

okp4 61 2.38861e+08 417942304 42.8 791.3 328835424 27.3 501.9

okp5 97 1.89875e+08 448984000 57.7 607.8 295849984 35.8 565.9

Average 32.01 19.38

6.1 Results for Outline-Free Floorplanning

In this subsection, we report the result for outline-free floorplanning problem.
We have conducted four sets of experiments: (1) volume optimization, (2) volume
and overhead optimization, (3) simultaneous volume, wirelength, and over-
heads optimization, and (4) volume and overhead optimization for five real
circuits.

To verify our algorithm, we first tested 3D-subTCG on five synthetic circuits
that can be packed without deadspace. Table II shows the results. Note that the
volume of a placement is the minimum bounding box enclosing the placement.
We can see that 3D-subTCG obtains the optimal placements for the first three
test cases and near optimal solutions for the last two larger circuits, all in
reasonable time. The results show that our approach is very effective for cost
optimization.

For the second experiment, we perform volume and reconfiguration and com-
munication overheads optimization. In this experiment, we adopted the bench-
mark circuits used in Fekete and Schepers [1997] and added the reconfiguration
and communication overheads. We compared 3D-subTCG with ST. As shown
in Table III, the 3D-subTCG based method outperforms the ST-based one by a

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 37, Pub. date: Sept. 2007.

Temporal Floorplanning Using the 3-D Transitive Closure subGraph • 37:27

Table IV. The Five 3D-MCNC Benchmark Circuits

of # of # of # Total # of precedence
Circuit modules pads nets pins volume constraints

3D-apte 9 73 97 214 9.8 × 107 3

3D-xerox 10 107 203 696 4.0 × 107 3

3D-hp 11 43 83 264 1.2 × 107 3

3D-ami33 33 42 123 480 2.3 × 106 7

3D-ami49 49 24 408 931 1.3 × 108 11

large margin. 3D-subTCG achieved less deadspace on the average compared to
ST (19.38% vs. 32.01%).

For the third experiment, we perform 3D placement with the considerations
of precedence constraints, wirelength, and reconfiguration/communication
overheads. In this experiment, we used the MCNC benchmarks. Since the
MCNC benchmarks do not have execution time and precedence constraints,
we assigned their execution time and precedence constraints by ourselves. The
new benchmark suite is called the 3D-MCNC benchmark. Table IV lists the
statistics of the five 3D-MCNC benchmarks. In the following, we describe how
to construct the control data flow graph (CDFG) from a traditional floorplan-
ning benchmark. The basic idea is to construct the edges among tasks based on
the interconnections among them.

Let F stands for the given floorplanning benchmark. First, we define ci for
each task vi as the summation of the number of interconnections between vi

and all other tasks plus the number of tasks that are connected to vi. Let C
be the set of ci sorted in descending order. The initial CDFG DG = {S, E}
contains the first k tasks in C, where k is a user-defined constant. Then we
delete the interconnections among these k tasks in F . We iteratively add tasks
and edges into DG. For each iteration, we add at most r directed edges into E
from H, where H = {(vi, vj)|vi ∈ S, vj /∈ S, and there exist interconnections
between vi and vj in F }. Here, r is a user-specified constant. Then we add the
task vj into DG and delete the interconnections associated with the task vj

and the interconnections between the tasks vi and vj . When all tasks are in
DG, the algorithm terminates. Finally, we randomly select l tasks from DG
and the edges in E that connect these tasks to form the final CDFG. Here, l is
a user-specified constant.

In this experiment, we simultaneously optimized volume and wirelength,
and reconfiguration/communication overheads with precedence constraints. We
compared 3D-subTCG with ST and T-tree. Table V shows the results. As shown
in Table V, 3D-subTCG achieves better volume utilization (15% deadspace v.s.
35% deadspace) and shorter wirelength compared with ST. 3D-subTCG also
needs less CPU time than ST. Compared with T-tree, 3D-subTCG obtains com-
parable deadspace (14.86% v.s. 14.22%) with shorter wirelength (396.08 v.s.
402.06). Figure 19 shows the resulting placement of 3D-xerox.

Although it is hard to quantify, a key insight to the different performance
between 3D-subTCG and (ST) lies in the effects of their perturbations: swap-
ping two modules in a ST may lead to a dramatic change from the original
placement while the change for the 3D-subTCG perturbation is smaller, which
makes simulated annealing easier to converge to an optimal solution. (Here is

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 37, Pub. date: Sept. 2007.

37:28 • P.-H. Yuh et al.

Table V. Results of Volume and Wirelength Optimization for the Five 3D-MCNC

Benchmark Circuits

ST 3D-subTCG
Volume Volume

(mm2× Wire- Dead (mm2× Wire- Dead
clock length space Time clock length space Time

Circuit cycles) (mm) (%) (sec.) cycles) (mm) (%) (sec.)

3D-apte 1.1 × 108 495.0 16.2 7.7 1.0 × 108 335,3 5.9 3.9

3D-xerox 5.2 × 107 613.2 23.1 19.5 4.4 × 107 602.0 8.4 8.9

3D-hp 2.0 × 107 387.3 37.2 20.6 1.5 × 107 158.3 13.7 11.2

3D-ami33 4.1 × 106 84.7 44.5 446.4 3.0 × 106 77.7 24.7 128.1

3D-ami49 2.9 × 108 1040.8 54.9 1066.7 1.6 × 108 807.1 21.6 680.2

Average 524.2 52.9 312.18 396.08 14.86 166.46

T-tree 3D-subTCG

3D-apte 1.0 × 108 380.0 5.9 0.58 1.0 × 108 335.3 5.9 3.9

3D-xerox 4.7 × 107 595.7 13.8 1.78 4.4 × 107 602.0 8.4 8.9

3D-hp 1.41 × 107 165.1 8.6 1.65 1.5 × 107 158.3 13.7 11.2

3D-ami33 3.0 × 106 78.1 24.5 34.33 3.0 × 106 77.7 24.7 128.1

3D-ami49 1.61 × 108 791.4 18.3 72.46 1.6 × 108 807.1 21.6 680.2

Average 402.06 14.22 22.16 396.08 14.86 166.46

Fig. 19. The result of 3D-xerox with optimizing volume and wirelength simultaneous.

an analogy: like the gradient search for the optimization of nonlinear program-
ming, the step size plays an important role in determining whether a search
scheme can converge to the global optimal solution—a huge step size may fail
to converge to an optimal solution.)

For the final experiment, we used five real circuits: JPEG encoder [Banerjee
et al. 2005], Recursive Least Square filter (RLS) [TORSCHE], Finite Impulse
Filer (FIR), Bandpass Filter (BF) [Papachristou and Konuk 1990], and Fast
Fourier Transform (FFT) [Cooly and Tukey 1965]. We considered volume and
overhead optimization in this experiment. The width and height of each type of
tasks (addition, multiplication, etc.) range from 5 to 15 and the duration ranges
from 15 to 25. Table VI shows the result of the five real circuits. Columns
2 and 3 list the number of tasks and the number of precedence constraints
for each circuit, respectively. Column 4 gives the total volume of each circuit.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 37, Pub. date: Sept. 2007.

Temporal Floorplanning Using the 3-D Transitive Closure subGraph • 37:29

Table VI. Results of Volume and Overhead Optimization for Five Real Circuits

T-tree 3D-subTCG
of Sum Dead Dead
of precedence of space Time space Time

Circuit tasks constraints volume Volume (%) (sec.) Volume (%) (sec.)

JPEG 8 9 17781 25785 31 0.47 25785 31 1.09
RLS 11 12 18448 24990 26.2 1.16 24150 23.6 11.48
FIR 21 12 42672 46440 8.1 11.58 45824 6.8 3.54
BF 29 26 34643 46880 26.1 7.46 47320 26.7 15.43

FFT 64 96 95868 142500 32.7 57.03 148580 35.4 553.0

Average 24.64 15.54 24.52 116.9

Columns 5 to 10 list the resulting volumes, deadspaces, and CPU times of T-
tree and 3D-subTCG. From this table, we can see that 3D-subTCG obtains
comparable average volumes (24.52% deadspace vs. 24.64% deadspace) and
needs longer average CPU time (116.9 sec. vs. 15.54 sec.) than T-tree. This
experiment demonstrates the ability of 3D-subTCG to handle the real circuits.
It also confirms our observation in Section 3.3 that T-tree has advantages in
packing efficiency and volume optimization, especially for large-scale circuits,
such as the FFT circuit.

6.2 Results for Boundary Constraints and Fixed-Outline Constraints

In this subsection, we first report the result for boundary constraint. Next, we
report the result for fixed-outline constraint.

For the floorplanning with boundary modules, we compared 3D-subTCG with
T-tree. The goal of this experiment is to verify the ability of 3D-subTCG for han-
dling various floorplanning constraints. For T-tree, we discarded the infeasible
solutions (boundary modules are not on the boundary) during simulated an-
nealing. We used the 3D-MCNC benchmarks and the five real circuits for this
experiment. Tables VII and VIII show the respective results for the 3D-MCNC
benchmarks and the five real circuits. For the 3D-MCNC benchmark, we con-
sidered the volume, wirelength, and overhead, while we considered the volume
and overhead for the five real circuits. In both tables, column 2 shows the num-
bers of the top, bottom, left, and right tasks, denoted by #|T |, #|B|, #|L|, and
#|R|, respectively. As shown in Table VII, 3D-subTCG achieves shorter average
wirelength (358.94 mm vs. 388.88 mm) and smaller average deadspace (17.84%
vs. 18.3%) than T-tree for the 3D-MCNC benchmarks. However, 3D-subTCG
needs longer CPU time (99.18 sec vs. 27.81 sec) than T-tree. Similar results
are also obtained for the five real circuits. For the five real circuits, 3D-subTCG
obtains smaller average volume (24.09% deadspace vs. 26.00% deadspace) with
longer CPU time (113.28 sec vs. 47.15 sec) than T-tree. From Tables VI and VIII,
we observe that 3D-subTCG obtains similar volumes as T-tree if no boundary
constraint is considered, and obtains smaller volumes than T-tree if boundary
constraints need to be addressed. The experimental results confirm our ob-
servation described in Section 3.3 that 3D-subTCG may be more suitable for
handling various floorplanning constraints, because 3D-subTCG keeps more
geometric information in the representation and has a larger solution space
than T-tree. We can easily determine if a task is on the boundary of a device

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 37, Pub. date: Sept. 2007.

37:30 • P.-H. Yuh et al.

Table VII. Results for the 3D-MCNC Benchmarks with Boundary Constraints

T-tree

Volume

(mm2× Wire- Dead

clock length Space Time

Circuit #|T|, #|B|, #|L|, #|R| cycles) (mm) (%) (sec.)

3D-apte 1,1,1,1 1.05 × 108 341.0 5.9 2.25

3D-xerox 1,1,1,1 4.67 × 107 400.5 13.2 2.02

3D-hp 1,1,1,1 1.63 × 107 201.1 20.9 2.82

3D-ami33 2,2,2,2 3.19 × 106 61.5 27.2 40.13

3D-ami49 3,3,2,3 1.74 × 108 940.3 24.3 91.86

average 388.88 18.3 27.81

3D-subTCG

Volume

(mm2× Wire- Dead

clock length Space Time

Circuit #|T|, #|B|, #|L|, #|R| cycles) (mm) (%) (sec.)

3D-apte 1,1,1,1 1.05 × 108 311.0 5.9 2.68

3D-xerox 1,1,1,1 4.66 × 107 447.6 13.2 7.99

3D-hp 1,1,1,1 1.50 × 107 176.0 13.7 1.67

3D-ami33 2,2,2,2 3.31 × 106 67.4 30.0 115.6

3D-ami49 3,3,2,3 1.79 × 108 792.7 26.4 368.0

average 358.94 17.84 99.18

Table VIII. Results for the Five Real Circuits with Boundary Constraints

T-tree

Dead

Space Time

Circuit #|T|, #|B|, #|L|, #|R| Volume (%) (sec.)

JPEG encoder 0,1,1,1 25785 31.0 0.55

RLS 1,1,1,1 25500 27.7 1.06

FIR 1,1,2,1 46440 8.1 5.33

BF 2,2,2,1 46696 25.8 6.06

FFT 3,3,3,3 153180 37.4 222.76

average 26 47.15

3D-subTCG

Dead

Space Time

Circuit #|T|, #|B|, #|L|, #|R| Volume (%) (sec.)

JPEG encoder 0,1,1,1 25785 31.0 5.03

RLS 1,1,1,1 24150 23.6 13.19

FIR 1,1,2,1 45824 6.8 6.97

BF 2,2,2,1 44850 22.7 24.6

FFT 3,3,3,3 150696 36.38 516.63

average 24.09 113.28

by checking the indegree and outdegree of its corresponding node in Ch or Cv,
and thus the SA engine can search for the feasible solutions more effectively.
Figure 20 shows the resulting 3D floorplan of 3D-ami49. White modules repre-
sent boundary modules.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 37, Pub. date: Sept. 2007.

Temporal Floorplanning Using the 3-D Transitive Closure subGraph • 37:31

Table IX. Results for Various Aspect Ratios of Desired Widths and Heights for

3D-ami33 Circuit

Outline-free SA engine

Outline Min/Avg/Max Min/Avg/Max

Circuit width/ Success Exec. time Deadspace

name height rate (clk cycles) (%)

3D-ami33 1100/600 47% 6/6.61/11 21.51/29.87/39.11

900/900 13% 6/7.92/11 23.81/32.72/37.66

850/700 9% 7/8.44/11 24.47/34.30/37.66

550/1200 42% 6/6.47/11 21.51/29.98/40.02

650/800 6% 7/8.66/11 24.47/33.79/37.44

Avg. 23.4% 6.4/7.62/11 23.15/32.13/38.37

Fixed-outline SA engine

Outline Min/Avg/Max Min/Avg/Max

Circuit width/ Success Exec. time Deadspace

name height rate (clk cycles) (%)

3D-ami33 1100/600 91% 6/6.87/8 37.85/46.15/55.60

900/900 92% 6/6.66/8 46.45/54.56/60.77

850/700 69% 6/7.62/10 32.70/45.89/59.36

550/1200 58% 6/7.56/10 34.17/49.58/64.46

650/800 46% 7/8.59/11 31.73/45.11/57.72

Avg. 71.2% 6.2/7.46/9.4 36.58/48.25/59.58

Fig. 20. The result of 3D-ami49 with boundary constraints. White modules represent boundary

modules.

For the fixed-outline floorplanning problem, we chose the 3D-ami33 cir-
cuit for experiment. We added various outline constraints. Table IX reports
the success rate2, the minimum/average/maximum task execution time3 and
the minimum/average/maximum deadspace4 of the fixed-outline SA engine de-
scribed in Section 5.2. We follow, Adya and Markov [2001, 2003] to compare
the success rate with and without considering the fixed-outline constraint. The

2Number of runs that satisfies the fixed-outline constraint in 100 runs.
3The minimum/average/maximum total execution time in all successful runs.
4The minimum/average/maximum deadspace in all successful runs.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 37, Pub. date: Sept. 2007.

37:32 • P.-H. Yuh et al.

minimum/average/maximum execution time (clk) listed in this table is the to-
tal execution time of the scheduled tasks. The minimum/average/maximum
deadspace is the deadspace in all successful runs. In this experiment, we set
different ratios of desired widths and heights for 3D-ami33. It shows that the
fixed-outline SA engine achieves much higher success rate compared with the
outline-free engine. According to the design of the fixed-outline SA engine, we
can obtain higher success rates (71.2% vs. 23.4%) with smaller minimum total
execution time (6.2 vs. 6.4) and larger minimum deadspace (36.58% vs. 23.15%)
compared with outline-free SA engine. The result shows the effectiveness of our
fixed-outline SA engine. One observation is that for the 850/700 outline con-
straint, outline-free SA engine obtains larger minimum execution time with
smaller minimum deadspace than fixed-outline SA engine. The reason is that
fixed-outline SA engine makes use of the given architecture, and therefore may
generate a floorplan with smaller execution time. In contrast, free-outline SA
engine optimizes volume, and therefore may generate a floorplan with longer
execution time but smaller area, hence smaller deadspace.

7. CONCLUSIONS AND DISCUSSIONS

We have presented the 3D-subTCG representation to handle the temporal
floorplanning/placement problem for dynamically reconfigurable FPGAs. We
have explored the feasibility conditions for the temporal relations among
tasks/modules. Our algorithm can guarantee a feasible placement in each per-
turbation. Experimental results have shown that our method is very effective
and efficient for temporal floorplanning/placement.

Luk at al. [1997] discussed the idea that we can reduce the reconfiguration
overhead by considering the similarities between tasks. Recently, Ghiasi and
Sarrafzadeh [2003] proposed an optimal algorithm to reduce the huge reconfig-
uration overhead by exploiting the similarity among tasks. Our future work will
consider these factors when evaluating the reconfiguration overhead. There are
two possible ideas. The first one is that if the configuration of each cell for each
task is known, we can calculate how many reconfiguration bits are needed to
configure a task. Therefore, we can obtain more accurate reconfiguration over-
head between two tasks. The other possible idea is that we can group several
tasks with similar functionality, since their configurations may be the same.

REFERENCES

ADYA, S. N. AND MARKOV, I. L. 2001. Fixed-outline floorplanning through better local search. In

Proceedings of IEEE International Conference of Computer Design. 328–334.

ADYA, S. N. AND MARKOV, I. L. 2003. Fixed-outline floorplanning: Enabling hierarchical design. IEEE
Trans Very Large Scale Integra. Syst. 11, 6 (Dec.), 1120–1135.

ALSOLAIM, A., BECKER, J., GLESNER, M., AND STARZYK, J. 2000. Architecture and application of

a dynamically reconfigurable hardware array for future mobile communication systems. In

Proceedings of IEEE Symposium on Field-Programmable Custom Computing Machines. 205–

214.

ATMEL. 1997. AT6000 FPGA Configuration Guide Documentation 0436B. Atmel, Inc.

BANERJEE, S., BOZORGZADEH, E., AND DUTT, N. 2005. Hw-sw partitioning for architectures with partial

dynamic reconfiguration. Tech. rep. CECS-TR-05-02, UC Irvine.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 37, Pub. date: Sept. 2007.

Temporal Floorplanning Using the 3-D Transitive Closure subGraph • 37:33

BAZARGAN, K., KASTNER, R., AND SARRAFZADEH, M. 2000a. 3-d floorplanning: Simulated annealing and

greedy placement methods for reconfigurable computing systems. Design Autom. for Embed.
Syst.—RSP’99 Special Issue.

BAZARGAN, K., KASTNER, R., AND SARRAFZADEH, M. 2000b. Fast template placement for reconfigurable

computing systems. IEEE Design Test Comput. 17, 1 (March), 68–83.

BAZARGAN, K. AND SARRAFZADEH, M. 1999. Fast online placement for reconfigurable computing sys-

tems. In Proceedings of IEEE Symposium on Field-Programmable Custom Computing Machines.

300–302.

CHAUBAL, A. P. 2004. Design and implementation of an FPGA-based partially reconfigurable network

controller. Master thesis, Virginia Polytechnic Institute and State University.

COOLY, J. M. AND TUKEY, J. W. 1965. An algorithm for the machine calculation of complex fourier

series. Math. Comput. 19, 297–301.

DURBANO, J. P. AND ORTIZ, F. E. 2004. FPGA-based acceleration of the 3d finite-difference time-

domain method. In Proceedings of IEEE Symposium on Field-Programmable Custom Computing
Machines. 156–163.

FEKETE, S. P., KOHLER, E., AND TEICH, J. 2001. Optimal FPGA module placement with temporal

precedence constraints. In Proceedings of Design Automation and Test in Europe. 658–665.

FEKETE, S. P. AND SCHEPERS, J. 1997. On more-dimensional packing iii: Exact algorithms. ZPR Tech.

Rep. 97-290.

GHIASI, S. AND SARRAFZADEH, M. 2003. Optimal reconfiguration sequence management. In Proceed-
ings of Asia-South Pacific Design Automation Conference. 359–365.

HAUCK, S. 1998. The roles of FPGAs in reprogrammable systems. Proceedings of IEEE 86, 4 (April),

615–639.

HAUCK, S., LI, Z., AND SCHWABE, E. 1998. Configuration compression for the Xilinx xc6200 FPGA.

In Proceedings of IEEE Symposium on Field-Programmable Custom Computing Machines. 138–

146.

HE, C., LU, M., AND SUN, C. 2004. Accelerating seismic migration using FPGA-based coprocessor

platform. In Proc. FCCM. 207–216.

HUDSON, R., LEHN, D., AND ATHANAS, P. 1998. A runtime reconfigurable engine for image interpolation.

In Proceedings of IEEE Symposium on Field-Programmable Custom Computing Machines. 88–

95.

KAHNG, A. B. 2000. Classical floorplanning harmful? In Proceedings of the International Symposium
on Physical Design. 207–213.

KANEKO, M., YOKOYAMA, J., AND TAYU, S. 2002. 3d scheduling based on code space exploration for

dynamically reconfigurable systems. In Proc. of ISCAS. Vol. 5, 465–468.

KIRKPATRICK, S., GELATT, C. D., AND VECCHI, M. P. 1983. Optimization by simulated annealing. Sci-
ence 220, 4598 (May), 671–680.

LAWLER, E. 1976. Combinatorial Optimization: Networks and Matroids. Holt, Rinehart, and

Winston.

LIN, J.-M. AND CHANG, Y.-W. 2001. Tcg: A transitive closure graph-based representation for non-

slicing floorplans. In Proceedings of Design Automation Conference. 764–769.

LUK, W., SHIRAZI, N., AND CHEUNG, P. Y. K. 1997. Compilation tools for runtime reconfigurable designs.

In Proceedings of IEEE Symposium on Field-Programmable Custom Computing Machines. 56–

65.

MURATA, H., FUJIYOSHI, K., NAKATAKE, S., AND KAJITANI, Y. 1995. Rectangle-packing based module

placement. In Proceedings of International Conference on Computer-Aided Design. 472–479.

PAPACHRISTOU, C. A. AND KONUK, H. 1990. A linear program drive scheduling and allocation method

followed by interconnect optimization algorithm. In Proceedings of Design Automation Confer-
ence. 77–83.

PICOCHIP. http://www.picochip.com/.

QUICKSILVER. http://www.qstech.com/products.htm.

SHOA, A. AND SHIRANI, S. 2005. Run-time reconfigurable systems for digital signal processing appli-

cations: A survey. J. VLSI Signal Proc. 39, 3 (March), 213–235.

SWAMINATHAN, S., TESSIER, R., GOECKEL, D., AND BURLESON, W. 2002. A dynamically reconfigurable

adaptive viterbi decoder. In Proceedings of the 10th International Symposium on Field Pro-
grammable Gate Arrays. 227–236.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 37, Pub. date: Sept. 2007.

37:34 • P.-H. Yuh et al.

TEICH, J., FEKETE, S. P., AND SCHEPERS, J. 1999. Compile-time optimization of dynamic hardware re-

configurations. In Proceedings of International Conference on Parallel and Distributed Processing
Techniques and Applications. 1097–1103.

TESSIER, R. AND BURLESON, W. 2001. Reconfigurable computing for digital signal processing: A survey.

J. VLSI Siganl Proc. 28, 1 (May/June), 7–27.

TORSCHE. TORSCHE Scheduling Toolbox for Matlab User’s Guide v0.2.0b2.

WU, G.-M., LIN, J.-M., AND CHANG, Y.-W. 2001. An algorithm for dynamically reconfigurable FPGA

placement. In Proceedings of International Conference on Computer Design. 501–504.

XILINX. http://www.xilinx.com/prs rls/prs rls2001.htm.

XILINX. 1996. XC6200 Field Programmable Gate Arrays Data Sheet. Xilinx, Inc.

XILINX. 2000. XAPP151 Virtex Series Configuration Architecture User Guide v1.5. Xilinx, Inc.

YAMAZAKI, H., SAKANUSHI, K., NAKATAKE, S., AND KAJITANI, Y. 2000. 3d-packing by metadata structure

and packing heuristics. E83-A, 4 (April), 639–645.

YUH, P.-H., YANG, C.-L., AND CHANG, Y.-W. 2004. Temporal floorplanning using the t-tree formulation.

In Proceedings of International Conference on Computer-Aided Design. 300–305.

Received August 2005; revised March 2006, July 2006, March 2007; accepted March 2007

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 37, Pub. date: Sept. 2007.

