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Timing Modeling and Optimization Under the
Transmission Line Model

Tai-Chen Chen, Song-Ra Pan, and Yao-Wen Chang, Member, IEEE

Abstract—As the operating frequency increases to gigahertz
and the rise time of a signal is less than or comparable to the
time-of-flight delay of a wire, it is necessary to consider the trans-
mission line behavior for delay computation. We present in this
paper, an analytical formula for the delay computation under the
transmission line model. Extensive simulations with SPICE show
the high fidelity of the formula. Compared with previous works,
our model leads to smaller average errors in delay estimation.
Based on this formula, we show the property that the minimum
delay for a transmission line with reflection occurs when the
number of round trips is minimized (i.e., equals one). Besides,
we show that the delay of a circuit path is a posynomial function
in wire and buffer sizes, implying that a local optimum is equal
to the global optimum. Thus, we can apply any efficient search
algorithm such as the well-known gradient search procedure
to compute the globally optimal solution. Experimental results
show that simultaneous wire and buffer sizing is very effective for
performance optimization under the transmission line model.

Index Terms—Buffer sizing, delay model, inductance, intercon-
nect, performance optimization, transmission line, wire sizing.

NOTATION

We use the following notation in this paper.
Resistance of a gate with unit size.
Resistance of gate .
Capacitance of a gate with unit size.
Capacitance of gate .
Size of gate .
Capacitance of a wire with unit size.
Inductance of a wire with unit size.
Sheet resistance of a wire.
Width of wire .
Length of wire .
Characteristic impedance of wire .
Propagation velocity of wire .
Driver resistance.
Load capacitance.
High voltage of power supply.
Minimum voltage at the input of a logic gate re-
quired so that gate switches.
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Transmission coefficient at point if a signal is
transmitted from point to point .
Reflection coefficient at point if a reflection travels
from point to point .
Voltage attenuation coefficient on wire if a signal
is transmitted from its source to sink.

I. INTRODUCTION

AS THE operating frequency increases to gigahertz, the rise
time of a signal is less than or comparable to the time-of-

flight delay of a wire. Also, the die size is getting larger, re-
sulting in longer global interconnection lines. The trends make
it important to consider the transmission line behavior for delay
computation [1]. Transmission line effects become significant
when , where is the rise time and is the time of
flight determined by the wire length divided by the velocity

[1]. There are two kinds of transmission lines. A wire with
negligible resistance is called a lossless transmission line. How-
ever, on-chip interconnections have significant resistance, and
they should be treated as lossy transmission lines [1], [6], [18].
Obviously, it is more accurate and desirable to consider line re-
sistance for timing estimation and optimization. In this paper,
therefore, we shall focus on lossy transmission lines.

When two transmission lines on a chip are connected and
these two wires have different characteristic impedance, such
mismatches of wire impedance can cause reflections at the junc-
tion point [1], [13]. Since reflections may cause logic failure
or increase delay, the discontinuities of impedance at junction
points must be controlled in order to minimize the side effect of
reflections. On one hand, if the driving resistance is larger than
the wire impedance, it requires multiple trips (a trip is a signal
travels from one end of a line to the other end) to switch on the
load; on the other hand, if the driving resistance is smaller than
the wire impedance, the load may be falsely triggered. We can
eliminate the reflections by matching the driving resistance and
the wire impedance. The driving resistance of a gate and the
impedance of a wire are approximately in inverse proportion to
its size and width, respectively. Hence, wire and gate sizing can
affect the delay, implying that sizing circuit components (wires
and buffers) is applicable to delay optimization.

A. Previous Work

Timing is a crucial concern in high-performance circuits.
Many techniques such as wire sizing and gate sizing have been
proposed to optimize timing (e.g., [3]–[5], [12], etc.); however,
most of the techniques are based on the Elmore delay model
[8]. Modeling and analysis techniques for simulation and
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Fig. 1. A gate is the loading of its upstream, but is the driver of its downstream. A lossy transmission line is represented by a serial sections of its resistance,
inductance, and capacitance, or we can merge each section of inductance and capacitance into a characteristic impedance.

timing optimization under the lossy transmission line model
have been studied extensively in the literature [9]–[11], [14],
[16], [17], [20], [23], [25]–[29]. Previous works in [16] and
[20] proposed precise methods for simulating waveform, but
they did not present any delay estimator. The works in [17] and
[27] modeled the transmission line effect; however, they did
not consider delay optimization. Several works in the literature
consider the minimization of delay under the transmission line
model. Gao and Wong in [9] and [10] applied continuous wire
sizing to minimize delay under the lossy transmission line
model; however, they focused on exponentially tapered wires.
Ismail and Friedman in [11], computed a uniform buffer size
and the number of buffers to optimize the delay of a circuit path
under the lossy transmission line model; however, their formula
does not handle wire sizing. Lin and Pileggi in [14], proposed
a wire-sizing formulation with second-order central moments,
but their wire-sizing formulation under the transmission line
model is not always a posynomial program and, thus, there is
no optimality guarantee. The works in [25] and [29] adopted
the S-parameter macro delay model to minimize delay and
skew, but the sensitivities were computed at each step using
finite difference approximation, which requires expensive
computation. The works in [23], [26], and [28] adopted higher
order moments to minimize delay, but their delay models were
computationally expensive.

B. Our Contribution

In this paper, we focus on delay modeling, and timing opti-
mization under the transmission line model. Unlike most pre-
vious works that are based on relatively complicated models
(e.g., [16], [17], [26], and [27]) or incur larger errors (e.g., [8]
and [11]), we present a simple, yet accurate formula for the
delay computation under the lossy transmission line model. Ex-
tensive simulations with SPICE show that the formula has high
fidelity, with an average error of within 5.61% for lossy trans-
mission lines. Based on this formula, we show the property that
the minimum delay for a lossy transmission line with reflection
occurs when the number of round trips is minimized (i.e., equals
one). Besides, we show that the delay of a circuit path is a posyn-
omial function in wire and buffer sizes, implying that a local
optimum is equal to the global optimum. Thus, we can apply
any efficient search algorithm, such as the well-known gradient
search procedure, to compute the optimal wire and buffer sizes
for timing optimization for a circuit path. For a routing tree (a
routing tree is a tree that interconnects all signal terminals of a
net), we propose a two-stage algorithm to optimize the delay. In
the first stage, we traverse the tree to determine its critical path
and delay. In the second stage, we control the reflections at all

branching points to prevent from falsely triggering receivers and
minimize the critical path delay. We repeat the two stages until
there are no further improvements in the delay of the tree. Ex-
perimental results show that simultaneous wire and buffer sizing
is very effective in minimizing the delays of circuit paths under
the transmission line model.

The remainder of this paper is organized as follows. Section II
gives the gate and the transmission line models. Section III for-
mulates the problem. Section IV considers the simultaneous
wire and buffer sizing for delay optimization. Section V extends
the cases on a general routing tree. Section VI shows the ex-
perimental results, and finally, concluding remarks are given in
Section VII.

II. TRANSMISSION LINE MODEL

In this Section, we give the wire and gate models and dis-
cuss the transmission line effects which is importance when

, where is the rise time and is the time of flight
determined by the wire length divided by the velocity [1].

A. Gate and Wire Modeling

Fig. 1 illustrates the gate and the lossy transmission line
models used in this paper. For a gate with size , the gate
resistance is and the gate capacitance is ,
where and are the unit-sized resistance and unit-sized
capacitance of a gate, respectively.

A uniform lossy transmission line of width can be rep-
resented by a serial sections of unit-length resistance, ,
unit-length inductance, , and unit-length capacitance,

, where , , and are the sheet resistance, the
unit-sized inductance, and the unit-sized capacitance of a wire,
respectively. The effect of inductance and capacitance can be
represented by a characteristic impedance, , which equals

. The propagation
velocity of a wire , , equals [1]. If the length
of a wire is , its total resistance, total inductance, and total
capacitance are , , and , respectively.
Therefore, with the gate and the lossy transmission line models,
we can represent a circuit path by resistors, capacitors, and
characteristic impedance. Fig. 2 illustrates the resulting circuit
modeling for a circuit path with buffers, where and
are the driver resistance and the load capacitance, respectively.

B. Reflections on a Wire

Due to the inductive and capacitive discontinuities, the re-
sulting reflections may cause logic failure or excessively longer
delay [1], [13]. As shown in Fig. 3, gate drives lossy trans-
mission line and gate . Inductive and capacitive discontinu-
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Fig. 2. A circuit path (with lossy transmission lines) is a combination of resistors, capacitors, and characteristic impedances.

Fig. 3. The resistor with resistance r drives a lossy transmission line with characteristic impedance Z and a capacitor with capacitance c .

ities may occur at the points and . The initial voltage at
the point is the sum of the signal sent out from the point
and the reflection generated at the point . When the reflection
generated at the point travels backward to the point , a new
reflection generated at the point is transmitted toward to the
point . The new voltage at the point is the sum of the in-
coming reflection, the new outgoing reflection, and the initial
voltage.

On the one hand, as shown in Fig. 4(a), if the resistance
of the gate , , is larger than the impedance of the
wire , , the initial voltage at point might not reach the
threshold voltage. Thus, multiple round trips along the wire may
be required to correctly transmit a signal. On the other hand,
as shown in Fig. 4(b), if is smaller than , a reflection
generated at point is negative since the reflection coefficient

is negative. Therefore, the
voltage may oscillate at the point , causing overshoot or under-
shoot. This oscillating pattern is called ringing. If matches
with , the source reflection coefficient . Thus, no
reflections are generated at the source end .

C. Voltage Attenuation on a Wire

In a lossy transmission line, the resistance of a wire causes
voltage attenuation, and the voltage attenuation coefficient
along a lossy transmission line is derived in [1] as follows:

(1)

Therefore, in Fig. 3, the voltage at the point before reflection
is given by

(2)

D. When to use Transmission Line Analysis

According to [1], [15], and [21], the transmission line be-
havior is significant when

(3)

and

(4)

where is the rise time of wire ,
is the time-of-flight delay, is the total

Fig. 4. (a) Multiple round trips are required to correctly transmit a signal. (b)
Ringing may cause logic failures.

resistance, and is the characteristic impedance. As
illustrated in Fig. 3, we can rewrite (3) and (4) as Inequalities
(5) and (6) as follows:

(5)

and

(6)

Besides, to make the voltage at the point correctly drive the
gate , the voltage at the point after infinite reflections should
be greater than or equal to . In other words, the following
inequality must be satisfied.

(7)

where

Therefore, we should model a wire as a lossy transmission line
if Inequalities (5)–(7) are satisfied; it should be modeled as a
distributed RC line, otherwise.
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TABLE I
RC PARAMETERS OF THE 0.13-�m TECHNOLOGY IN SIA’99

Note that, (5) can be reduced as follows by discarding :

(8)

Since , ringing occurs [see Fig. 4(b)]. If ringing oc-
curs, we may need to model a wire as a transmission line; it
should be modeled as a distributed RC line, otherwise.

E. Delay Model

In this Section, we introduce our delay model. Our delay
model is based on the RC model. However, since the resis-
tive loss causes voltage attenuation on a wire and the discon-
tinuity of impedance at a junction point incurs reflection, we
need to modify the original RC model. First, as given in (1),
the voltage attenuation coefficient along a lossy transmis-
sion line is less than 1 because the exponent of is negative.
Therefore, the effective resistance is not equal to the total resis-
tance of the wire, implying that the pull-up resistance needs to be
modified. Second, due to voltage attenuation and reflection, the
final voltage may not equal , implying that we need to use
an approximate method to correct the delay model. Third, due
to reflection, multiple round trips may be required to correctly
transmit a signal, implying that the number of round trips be
considered in delay model. We describe in detail how to modify
the original RC model in the following.

The time for charging the capacitive load (defined at 50% of
the final value) of the lumped network equals , where

is the pull-up resistance and is the total capacitive load
[18], [19], [24]. According to [1], the current that a lossless
transmission line can supply is limited by its characteristic
impedance. As a result, looking from the receiving end, the line
behaves like a resistor with a value . In a lossy transmission
line, not only its characteristic impedance, but also its effective
resistance supplies the current. If the total resistance of a
wire causes voltage attenuation, the voltage at the receiving
end becomes zero and the effective resistance equals the total
resistance. In Section II-C, we know that the voltage at the
receiving end equals . This implies that there is only

percentage of the total resistance for the line between
nodes and , , causing voltage attenuation and
supplying current.

Consequently, the pull-up resistance for the transmission
line is equal to the sum of the characteristic impedance of the
line, and partial resistance of the wire which causes voltage
attenuation. We have the pull-up resistance for the line as
follows:

(9)

Hence, the time for charging the capacitive load (at 50% of
the voltage of the first overshoot) of a transmission line is given
by

(10)

With , , and the
effect of reflection, the voltage of the first overshoot, , at
the receiving end after reflection equals ,
which may not equal . Thus, we can use an approximate
method that divides by to obtain the charging time, ,
for which the voltage equals . Therefore, we have

(11)

where

Since transmission line analysis always gives the correct an-
swer independent of the rise time of the driver, delay is the
sum of the time-of-flight along the wire and the time for
charging the capacitive load [1], [18]. Thus, the propagation
delay from the gate to the next gate in Fig. 3
is given by

(12)

where is the number of required round trips to correctly
transmit a signal.

F. Accuracy

We used SPICE to verify the accuracy of our delay model.
The experiments were performed on a signal wire with no
buffers.

The parameters we used are listed in Table I, where , ,
, , , , , and are the unit capacitance of a wire, the

unit inductance of a wire, the sheet resistance of a wire, the unit
capacitance and resistance of a gate, the area of minimum-size
buffer, the driver resistance, and the load capacitance, respec-
tively. This set of parameters is based on the 0.13- m tech-
nology of the SIA’99 roadmap [22].

In the first and second experiments, we used fixed wire
lengths (2.5 and 5 mm) with a variety of wire widths. The wire
widths for all experiments satisfy (5)–(7). Therefore, the wire
widths ranged from 130 to 480 nm for the first experiment,
and ranged from 130 to 530 nm for the second experiment. In
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Fig. 5. Comparison of the delays calculated by SPICE, Elmore, I&F, and our delay models for lossy transmission lines; (a) wire length= 2.5 mm; (b) wire length
= 5 mm.

TABLE II
EXPERIMENTAL RESULTS FOR THE ACCURACY OF ELMORE, I&F, AND OUR DELAY MODELS FOR LOSSY TRANSMISSION LINES; WIRE LENGTH = 2.5 mm

TABLE III
EXPERIMENTAL RESULTS FOR THE ACCURACY OF ELMORE, I&F, AND OUR DELAY MODELS FOR LOSSY TRANSMISSION LINES; WIRE LENGTH= 5 mm

Fig. 5, the delays are plotted as functions of the wire widths
for SPICE, Elmore, I&F, and our delay models, where I&F
denotes the delay model presented in [11]. Tables II and III
show the experimental results, where width denotes the wire
width, SPICE denotes the delay calculated by SPICE, Elmore
denotes the delay calculated by the Elmore delay model,

denotes the percentage of the error between SPICE and
the Elmore delay model, denotes the delay calculated
by the I&F delay model, denotes the percentage
of the error between SPICE and the I&F delay models, Ours
denotes the delay calculated by our delay model, and
denotes the percentage of the error between SPICE and our
delay models. The percentage of the error is calculated by

, where denotes Elmore,
I&F, or Ours. Compared to SPICE and based on the lossy
transmission line of 2.5 mm (5 mm) long, the maximum error
calculated by the Elmore delay model is
and the average error is 29.20% (12.05%), the maximum error
calculated by the I&F delay model is (11.34%) and
the average error is 2.98% (4.70%), and the maximum error

calculated by our delay model is 6.58% (12.38%) and the
average error is 3.80% (6.22%).

In the third and fourth experiments, we used fixed wire
widths (500 and 130 nm) with a variety of wire lengths. As
mentioned earlier, the wire lengths for all experiments satisfy
(5)–(7). Therefore, the wire lengths ranged from 3.7 to 6.2
mm for the third experiment, and ranged from 0.82 to 7 mm
for the fourth experiment. In Fig. 6, the delays are plotted as
functions of the wire lengths for SPICE, Elmore, I&F, and our
delay models. Tables IV and V show the experimental results,
where Length denotes the wire length. Compared to SPICE
and based on the lossy transmission line of 500 nm (130 nm)
wide, the maximum error calculated by the Elmore delay
model is 10.01 % ( 51.74 %) and the average error is 4.11%
(30.55%), the maximum error calculated by the I&F delay
model is 10.99% ( 14.19 %) and the average error is 9.52%
(5.95%), and the maximum error calculated by our delay model
is 1.99% (20.31%) and the average error is 1.49% (10.94%).

According to the above four experiments, the average error
of our delay model is 5.61%. Besides, based on the observa-
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Fig. 6. Comparison of the delays calculated by SPICE, Elmore, I&F, and our delay models for lossy transmission lines; (a) wire width= 500 mm; (b) wire width
= 130 mm.

TABLE IV
EXPERIMENTAL RESULTS FOR THE ACCURACY OF SPICE, ELMORE, I&F, AND OUR DELAY MODELS FOR LOSSY TRANSMISSION LINES; WIRE WIDTH = 500 nm

TABLE V
EXPERIMENTAL RESULTS FOR THE ACCURACY OF SPICE, ELMORE, I&F, AND OUR DELAY MODELS FOR LOSSY TRANSMISSION LINES; WIRE WIDTH = 130 nm

tion from the simulations, the delays computed from our model
are upper bounds of those obtained by SPICE, which makes our
model a reliable delay estimator under the lossy transmission
line model. The Elmore delay model, however, has a signifi-
cant negative percentage of errors. Therefore, the Elmore delay
model is not a suitable delay estimator for the lossy transmission
line model. Also, the I&F delay model incurs positive as well
as negative errors for different wire widths of the same length.
Hence, although the I&F delay model may be more accurate in
some corner cases, it is less suitable for delay estimation under
the lossy transmission line model when we apply wire sizing to
optimize a circuit. Often circuit designers prefer overestimating
delay to underestimate, since an over-optimistic estimation of
delay may lead to timing violations. Therefore, our delay model
should be more suitable than the Elmore and I&F delay models
for practical applications. Notice that the maximum inaccuracy
of our delay model occurs at the minimum wire size and the
maximum wire length. The reason for this phenomenon is that
the total resistance is comparable to the impedance. According
to Section II-D, the transmission line behavior is insignificant
for this situation.

III. PROBLEM FORMULATION

This paper targets at minimizing delay by sizing circuit com-
ponents. We formulate this problem as follows:

• Input: A circuit path and the lower and upper bounds for
wire and buffer sizes.

• Objective: Determine the optimal wire and buffer sizes for
each segment in a circuit path, so that delay is minimized.

We will reformulate this problem for a routing tree in
Section V.

IV. OPTIMAL WIRE AND BUFFER SIZING FOR A PATH

A. Reflection Considerations

In practice, designers typically desire to optimize perfor-
mance without generating undesirable reflections and transmit
a signal correctly within a limited number of round trips. As
the VLSI technology advances, the wire length is increasing
and the capacitance of a gate is decreasing, making the
time-of-flight delay dominate the delay. Therefore, we have the
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following theorem for the optimal number of round trips for
delay optimization.

Theorem 1: Considering reflections, the minimum delay
based on our model for a circuit section occurs when the
number of round trips equals one.

Proof: With the gate and the wire models described in
Section II-A, we can divide a circuit path into sections, and the
sections can be handled one by one. Consider a section shown
in Fig. 3. Suppose on the contrary that the minimum delay for a
circuit section occurs when the number of round trips is larger
than one. Let and be the values that result in a (local)
minimal delay for the circuit section when the number of round
trips equals one, and and be the values that result in
the globally minimum delay (the number of round trips is larger
than one). According to (12), we have the following:

(13)

and

(14)

where

is the (local) minimal delay when the number of round trips
equals one, is the globally minimum delay, and is the
number of round trips. Here, . Since and a wire
may need to be modeled as a transmission line if ringing occurs
(see Section II-D), the first undershoot for is smaller than

, implying that the first undershoot for is smaller that
for . The first undershoot can be calculated as follows:

(15)

where or , , and . On one
hand, if increases as increases, , implying that

. On the other hand, if decreases as
increases, , implying that . To show
that , we need to discuss the following two cases:

Case 1) :

1) and : The first and
second terms of (14) are always larger than
those of (13). Thus, .

2) and : Subtracting (14)
from (13), we have

(16)

By (7), we have

(17)

When , can be as larger as
. By (8) and (17),

we have the range of as follows:

(18)

Therefore, by (18), (16) can be rewritten as
follows:

(19)

According to (6), the minimum of the
right-hand side of (19) occurs when ,
resulting in the minimum value 0.12 .
Thus, we have .

3) and : According to Case
1.1 and Case 1.2, .

4) and : Let
and , where , . Since

, . The first under-
shoot caused by and is the same as that
caused by and , where
and . Substituting for
and for , the second term of (13) be-
comes smaller. Therefore, when the number
of round trips equals one, and lead
to a (local) minimal delay for the circuit sec-
tion, contradicting the assumption that
and give a (local) minimal delay for the cir-
cuit section. Thus, the case that
and will never happen.

5) and : Let
and , where , .

Since , . Similar
to Case 1.4, and lead to the globally
minimum delay, where and

, contradicting the assumption
that and give the globally minimum
delay. Thus, the case that and

will never happen.
Case 2) :

1) and : Subtracting (14)
from (13), we have

(20)



CHEN et al.: TIMING MODELING AND OPTIMIZATION UNDER THE TRANSMISSION LINE MODEL 35

According to (6), the minimum of the
right-hand side of (20) occurs when ,
resulting in the minimum value 2.06 .
Thus, we have .

2) and : The first and
second terms of (14) are always larger than
those of (13). Thus, .

3) and : According to Case
2.1 and Case 2.2, .

4) and : Let
and , where , .

Since , . Similar to
Case 1.4, and lead to a (local) min-
imum delay, where and

, contradicting the assumption that
and give a (local) minimal delay for the cir-
cuit section. Thus, the case that
and will never happen.

5) and : Let
and , where , .

Since , . Similar
to Case 1.4, and lead to the globally
minimum delay, where and

, contradicting the assumption
that and give the globally minimum
delay. Thus, the case that and

will never happen.

Therefore, the globally minimum delay occurs when the number
of round trips equals one.

According to Theorem 1, we can rewrite (12) as follows:

(21)

where

B. Optimal Wire Sizing

In this section, we minimize the delay of a circuit path by
wire sizing. If all buffer sizes and locations are fixed, the delay
function of a circuit path from the source to sink with
segments can be calculated as follows:

(22)

where

Notice that (22) is a posynomial function in ,
implying that the wire-sizing problem has a unique global
minimum [2], [7]. Thus, we can apply any efficient search
algorithm, such as the well-known gradient search procedure,
to find a locally optimal solution and thus the globally optimal
solution.

Theorem 2: With fixed buffer sizes and locations, the delay
of a circuit path based on our model is a posynomial function in
wire sizes.

C. Optimal Buffer Sizing

In this section, we minimize the delay of a circuit path by
buffer sizing. If all wire sizes and buffer locations are fixed, the
delay function of a circuit path from the source to sink with

segments can be calculated as follows:

(23)

where

Notice that (23) is also a posynomial function in ,
implying that the buffer-sizing problem has a unique global
minimum [2], [7]. Thus, we can apply any efficient search
algorithm, such as the well-known gradient search procedure,
to find a locally optimal solution and thus the globally optimal
solution.

Theorem 3: With fixed wire sizes and buffer locations, the
delay of a circuit path based on our model is a posynomial func-
tion in buffer sizes.

D. Optimal Simultaneous Wire and Buffer Sizing

In this section, we minimize the delay of a circuit path by
simultaneous wire and buffer sizing. If all buffer locations are
fixed, the delay function of a circuit path from the source to
sink with segments is the
same as (23).

Notice that (23) is also a posynomial function in
, , implying that the simultaneous

wire- and buffer-sizing problem has a unique global minimum
[2], [7]. Thus, we can apply any efficient search algorithm,
such as the well-known gradient search procedure, to find a
locally optimal solution and thus the globally optimal solution.
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Fig. 7. A signal is sent out from the point 0 and then passes through the point
1 to the point 2.

Theorem 4: With fixed buffer locations, the delay of a circuit
path based on our model is a posynomial function in wire and
buffer sizes.

V. EXTENSIONS TO WIRE AND BUFFER SIZING

FOR A ROUTING TREE

Given a routing tree, our objective is to minimize the critical
path delay under the constraints that the first undershoot at each
branching point is within the same signal level, and the number
of round trips required for correctly transmitting a signal from
the root to each load is at most one. We formulate this problem
as follows:

• Input: A routing tree and the lower and upper bounds for
wire and buffer sizes.

• Output: Determine the optimal wire and buffer sizes of
the tree, so that the critical path delay is minimized under
the constraints that the first undershoot is within the same
signal level, and the number of round trips is at most one.

We shall first discuss the problem on binary routing trees, and
then apply the technique to general routing trees.

A. Reflection Constraints

As shown in Fig. 7, when a signal is sent out from the source
and passes through the point 1 to the point 2, a reflection

may be generated at the point 2 and travels backward to the
point 1. When the reflection reaches the point 1, the voltage at
the point 1 will be interfered. Further, if a reflection propagated
down to one load is large enough, it could cause logic failure
at the load. To prevent from falsely triggering the load, the re-
flection coefficient at each node must be large enough. For the
example shown in Fig. 7, if the reflection coefficient at the
point 1 is larger, the reflections generated at the points 2 and 3
have smaller impact on the point 1. According to [1], the reflec-
tion coefficient is given by

(24)

By (24), becomes larger when and are
smaller. If becomes larger, the transmission coefficient

is smaller. When a
reflection generated at the point 2 travels backward to the point
1, the impact of the reflection may be negligible if is small
enough. Similarly, the impact of the reflections generated at the
point 3 on other points can also be negligible. For each point

Fig. 8. A signal is sent from the point i� 1 to the point i, and then i+ 1 and
i+ 2. The impact of the reflections generated at the points i+ 1 and i+ 2 on
the point i may be negligible if � and � are small enough.

Fig. 9. A binary routing tree without buffers.

of a routing tree, if the reflections generated at the point
have little interference at other points, a signal can be correctly
transmitted from the source to the loads. In order to correctly
transmit a signal from the source of a routing tree to each load,
the voltage at each branching point must be larger than or equal
to the threshold voltage within one round trip. As shown in
Fig. 8, the following constraint must be satisfied for the point :

(25)

Based on (25), the initial voltage at the point will be greater
than or equal to the threshold voltage when a signal from the
point arrives at the point . Let denote the edge be-
tween the points and , and represent the length of .
Since , , and in Fig. 8 could be different, the
reflections generated at those points will arrive at the point at
different times. Without loss of generality, assume that

. The first reflection arrives at the point is sent
out from the point , next is from the point , and the
last is generated from the point . In order to prevent the re-
flections from changing the signal level at the point , we have
the following constraints:

(26)

-

(27)

-

(28)

If all constraints are satisfied, the reflection coefficient at each
point will be large enough, implying that the reflections gener-
ated at the point have little interference at other points. As a
result, a signal can be correctly transmitted from the source to
the loads in a routing tree.

B. Delay Calculation

Given a routing tree, we number its nodes level by level, and
from left to right on each level (see Fig. 7). Let , , and
denote the number of edges in the tree, the set of loads, and the
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TABLE VI
PARAMETERS AND EXPERIMENTAL RESULTS FOR THE ACCURACY OF ELMORE AND OUR DELAY MODELS ON A BINARY ROUTING TREE WITHOUT BUFFERS

critical path, respectively. Similar to (12), the critical path delay
of a routing tree from the source to a load is given by

(29)

where

(30)

(31)

denotes the capacitance of node , , and denote
the propagation velocity and the impedance of edge ,
respectively.

We used SPICE to verify the accuracy of our delay model. The
experiments were performed on a binary routing tree with no
buffers (as shown in Fig. 9). Table VI shows the parameters
and the experimental results, where denotes the driver
resistance, and denote the length and width of
each segment, denotes the load capacitance of segments 2
and 3, denotes the delay calculated by SPICE,
denotes the delay calculated by the Elmore delay model,
denotes the percentage of the error between SPICE and the
Elmore delay model, denotes the delay calculated by
our delay model, and denotes the percentage of the
error between SPICE and our delay model. The percentage of
the error is calculated by ,
where denotes Elmore or Ours.

We propose Algorithm Find-Critical-Path (summarized in
Fig. 10) to find the critical path of a routing tree . First, we de-
termine the number of round trips along edge required
to correctly transmit a signal (Line 2). The number of round trips
is the minimum that satisfies the following constraint:

Fig. 10. The Algorithm for determining the critical path of a routing tree.

After determining the number of round trips on each edge, we
label each edge with the weight (Line 3). The critical
path delay is the sum of edge weights along the longest path.
We then apply the depth first traversal to compute the longest
path in time, where is the number of nodes (Line 4).

C. General Routing Tree

We extend the technique discussed in Section IV-A and B to
general routing trees. As shown in Fig. 11, assume that the point

has children, and a signal is sent out from the point and
then propagates down to the children of the point . Without loss
of generality, assume that

. To prevent the reflections generated at the children from
changing the signal level at the point , we have the following
constraints:

-

...

-

-
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Fig. 11. The point i has k children, and the signal is sent from the point i� 1

to other points.

Fig. 12. The Algorithm for minimizing the delay of a routing tree.

Fig. 13. A routing tree with buffers.

If all constraints are satisfied, the reflection coefficient at each
point will be large enough; thus, a signal can be correctly trans-
mitted from the source to the loads in a general routing tree.

D. Our Algorithm

Our objective is to minimize the critical path delay of a
routing tree under the constraints that a signal can be correctly
transmitted within one round trip and the reflection is suffi-
ciently small to prevent from falsely triggering loads. Since the
delay of a routing tree is dominated by the critical path delay,
our problem is to find the wire sizes that
minimize the critical path delay of a routing tree subject
to the constraints listed in (25)–(28). We can apply any search
algorithm such as the well-known gradient search procedure to
find a solution. Algorithm Minimize-Tree-Delay computes the
minimum delay of a routing tree (see Fig. 12). It consists of two
stages. The first stage applies the procedure Find-Critical-Path
to compute the critical path of a routing tree. The second stage
applies the gradient search procedure to determine the wire
sizes that minimize the critical path delay. We repeat the two
stages until no improvements on the delay of the tree.

E. Simultaneous Wire and Buffer Sizing for a Routing Tree

Based on the gate and wire models presented in Section II,
we can divide a buffered routing tree into subtrees. In Fig. 13,
the routing tree is divided into three subtrees. We can treat each
subtree as a routing tree with no buffers, and then obtain the re-
flection constraints for each subtree. Thus, we can minimize the
delay of a buffered routing tree under the constraints that a signal

can be correctly transmitted within one round trip, and the first
undershoot is controlled to prevent from changing the signal
level if the reflection constraints for each subtree are satisfied.

VI. EXPERIMENTAL RESULTS

We used the nonlinear programming solver, the LINGO 6.0
system, on an Intel Pentium II 400 MHz PC to compute the
optimal wire and buffer sizes in a circuit path. All computations
are less than 1 s. The parameters used are listed in Table I.

Given four lines of the lengths 2.5, 5, 10, and 15 mm, we
inserted a specified number of buffers at equidistance. Then,
we applied wire and/or buffer sizing to minimize delay. Listed
in Tables VII–X, Column D1 gives the delays and areas by
sizing wires and buffers simultaneously (denoted by SWBS);
Column D2 (D3) gives the delays and areas by sizing wires
alone (denoted by WS), with the resistance of each gate equal
to 90 (60 ); and Column D4 (D5) lists the delays and areas
by sizing buffers alone (denoted by BS) with the fixed wire
width of 0.3 m (0.13 m), where the area is the sum of wire
area (the product of width and length) and buffer area (the
product of buffer size and the area of minimum-size buffer). In
Fig. 14(a)–(d), the path delays are plotted as functions of the
number of buffers for the five optimization techniques D1, D2,
D3, D4, and D5.

As shown in Fig. 14, the ranking of those techniques for opti-
mizing circuit performance, from the most effective to the least,
is given by SWBS WS BS. These phenomena show the
effectiveness of simultaneous wire and buffer sizing under the
transmission line model. Further, the number of buffers required
for performance optimization is quite small for simultaneous
wire and buffer sizing. Since the delay is inversely proportional
to the voltage at the receiving end, and voltage attenuation in-
creases as wire length increases, inserting buffers can partition a
wire into sections of smaller length, which decreases the voltage
attenuation and also the path delay.

VII. CONCLUSIONS

In this paper, we have presented an analytical model for com-
puting the delay of a wire under the transmission line model. Ex-
tensive simulations have shown the high fidelity of our model.
Compared with previous works [8], [11], our model leads to
smaller average errors in delay estimation. Based on our model,
we have shown the property that the minimum delay for a trans-
mission line with reflection occurs when the number of round
trips is minimized (i.e., equals one). Besides, we have shown
that the delay of a circuit path is a posynomial function in wire
and buffer sizes under the transmission line model, implying
that a local optimum is equal to the global optimum. Thus, we
can determine the optimal wire and buffer sizes for performance
optimization by applying an efficient algorithm, such as the gra-
dient search procedure. Experimental results have shown the
effectiveness of simultaneous wire and buffer sizing in perfor-
mance optimization under the transmission line model.
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TABLE VII
EXPERIMENTAL RESULTS. D1: SIMULTANEOUS WIRE AND BUFFER SIZING. D2 and D3: WIRE SIZING ALONE AND THE GATE RESISTANCES ARE 90 AND 60 
,

RESPECTIVELY. D4 and D5: BUFFER SIZING ALONE AND THE WIRE WIDTHS ARE 0.3 AND 0.13 �m, RESPECTIVELY. PATH LENGTH = 2.5 mm

TABLE VIII
EXPERIMENTAL RESULTS. D1: SIMULTANEOUS WIRE AND BUFFER SIZING. D2 and D3: WIRE SIZING ALONE, AND THE GATE RESISTANCES ARE 90 AND 60 
,

RESPECTIVELY. D4 and D5: BUFFER SIZING ALONE AND THE WIRE WIDTHS ARE 0.3 AND 0.13 �m, RESPECTIVELY. PATH LENGTH= 5 mm

TABLE IX
EXPERIMENTAL RESULTS. D1: SIMULTANEOUS WIRE AND BUFFER SIZING. D2 and D3: WIRE SIZING ALONE, AND THE GATE RESISTANCES ARE 90 AND 60 
,

RESPECTIVELY. D4 and D5: BUFFER SIZING ALONE, AND THE WIRE WIDTHS ARE 0.3 AND 0.13 �m, RESPECTIVELY. PATH LENGTH = 10 mm

TABLE X
EXPERIMENTAL RESULTS. D1: SIMULTANEOUS WIRE AND BUFFER SIZING. D2 and D3: WIRE SIZING ALONE, AND THE GATE RESISTANCES ARE 90 AND 60 
,

RESPECTIVELY. D4 and D5: BUFFER SIZING ALONE, AND THE WIRE WIDTHS ARE 0.3 AND 0.13 �m, RESPECTIVELY. PATH LENGTH = 15 mm
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Fig. 14. Comparison of different optimization techniques D1: simultaneous wire and buffer sizing. D2 and D3: wire sizing alone, and the gate resistances are 90
and 60 
, respectively. D4 and D5: buffer sizing alone, and the wire widths are 0.3 and 0.13 �m, respectively. (a) Path length= 2.5 mm. (b) Path length= 5 mm.
(c) Path length = 10 mm. (d) Path length = 15 mm.

REFERENCES

[1] H. B. Bakoglu, Circuit, Interconnections and Packaging for
VLSI. Reading, MA: Addison-Wesley, 1990.

[2] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear Programming:
Theory and Algorithms. New York: Wiley, 1993.

[3] C. P. Chen, Y. P. Chen, and D. F. Wong, “Optimal wire-sizing formula
under the elmore delay model,” in Proc. Design Automation Conf.
(DAC), 1996, pp. 487–490.

[4] C. P. Chen, C. C. N. Chu, and D. F. Wong, “Fast and exact simultaneous
gate and wire sizing by lagrangian relaxation,” in Proc. Int. Conf. Com-
puter-Aided Design (ICCAD), 1998, pp. 617–624.

[5] C. C. N. Chu and D. F. Wong, “A polynomial time optimal algorithm for
simultaneous buffer and wire sizing,” in Proc. Design Automation and
Test Europe (DATE), 1998, pp. 479–485.

[6] A. Deutsch et al., “When are transmission-line effects important for
on-chip interconnections?,” IEEE Trans. Microwave Theory Tech., vol.
45, pp. 1836–1846, Oct. 1997.

[7] R. J. Duffin, E. L. Peterson, and C. Zener, Geometric Programming:
Theory and Application. New York: Wiley, 1967.

[8] W. C. Elmore, “The transient response of damped linear networks with
particular regard to wide band amplifiers,” J. Applied Physics, vol. 19,
no. 1, 1948.

[9] Y. Gao and D. F. Wong, “Shaping a VLSI wire to minimize delay using
transmission line model,” in Proc. Int. Conf. Computer-Aided Design
(ICCAD), 1998, pp. 611–616.

[10] , “Wire-sizing for delay minimization and ringing control using
transmission line model,” in Proc. Design Automation and Test Europe
(DATE), 2000, pp. 512–516.

[11] Y. I. Ismail and E. G. Friedman, “Effects of inductance on the propaga-
tion delay and repeater insertion in VLSI circuits,” IEEE Trans. VLSI
Syst., vol. 8, pp. 195–206, Apr. 2000.

[12] H. R. Jiang, J. Y. Jou, and Y. W. Chang, “Noise-constrained performance
optimization by simultaneous gate and wire sizing based on lagrangian
relaxation,” in Proc. Design Automation Conf. (DAC), 1999, pp.
90–95.

[13] J. Lee and E. Shragowitz, “Overshoot and undershoot control for trans-
mission line interconnects,” in Proc. Electronic Components and Tech-
nology Conf., 1999, pp. 879–884.

[14] T. Lin and L. T. Pileggi, “RC(L) interconnect sizing with second order
considerations via posynomial programming,” in Proc. Int. Symp. Phys-
ical Design (ISPD), 2001, pp. 16–21.

[15] F. Moll, M. Roca, and A. Rubio, “Inductance in VLSI interconnection
modeling,” Inst. Elect. Eng. Circuits, Devices Systems, vol. 145, no. 3,
pp. 175–179, June 1998.

[16] L. T. Pillage and R. A. Rohrer, “Asymptotic waveform evaluation for
timing analysis,” IEEE Trans. Computer-Aided Design, vol. 9, pp.
352–366, Apr. 1990.

[17] R. Gupta and L. Pileggi, “Modeling lossy transmission lines using the
method of characteristics,” IEEE Trans. Circuits Syst. I, vol. 43, pp.
580–582, July 1996.

[18] M. J. Rabaey, Digital Integrated Circuits: A Design Perspec-
tive. Englewood Cliffs, NJ: Prentice-Hall, 1996.

[19] J. Rebinstein, P. Penfield Jr, and M. A. Horowitz, “Signal delay in RC
tree networks,” IEEE Trans. Computer-Aided Design, vol. CAD-2, pp.
202–211, July 1983.

[20] J. S. Roychowdhury, A. R. Newton, and D. O. Pederson, “Algorithms for
the transient simulation of lossy interconnect,” IEEE Trans. Computer-
Aided Design, vol. 13, pp. 96–104, Jan. 1994.

[21] K. L. Shepard, D. Sitaram, and Y. Zheng, “Full-chip, three-dimensional,
shapes-based RLC extraction,” in Proc. Int. Conf. Computer-Aided De-
sign (ICCAD), 2000, pp. 142–149.

[22] International Technology Roadmap for Semiconductors 1999 Edition,
Semiconductor Industry Association, 1999.

[23] Y. Sugiuchi, B. Katz, and R. A. Rohrer, “Interconnect optimization using
asymptotic waveform Evaluation(AWE),” in Proc. Multi-Chip Module
Conf., 1994, pp. 120–125.

[24] W. Wolf, Modern VLSI Design: Systems on Silicon, 2nd
ed. Englewood Cliffs, NJ: Prentice-Hall, 1996.

[25] J. S. H. Wang and W. W. M. Dai, “Optimal design of self-damped lossy
transmission lines for multichip modules,” in Proc. Int. Conf. Computer-
Aided Design (ICCAD), 1994, pp. 594–598.

[26] T. Xu, E. S. Kuh, and Q. Yu, “A sensitivity-based wiresizing approach
to interconnect optimization of lossy transmission line topologies,” in
Proc. Multi-Chip Module Conf., 1996, pp. 117–122.

[27] Q. Yu and E. S. Kuh, “Exact moment matching model of transmission
lines and application to interconnect delay estimation,” IEEE Trans.
VLSI Syst., vol. 3, pp. 311–322, June 1995.

[28] Q. Yu, E. S. Kuh, and T. Xu, “Moment models of general transmission
lines with application to interconnect analysis and optimization,” IEEE
Trans. VLSI Syst., vol. 4, pp. 477–494, Dec. 1996.

[29] Q. Zhu and W. M. Dai, “High-speed clock network sizing optimization
based on distributed RC and lossy RLC interconnect models,” IEEE
Trans. Computer-Aided Design, vol. 15, pp. 1106–1118, Sept. 1996.



CHEN et al.: TIMING MODELING AND OPTIMIZATION UNDER THE TRANSMISSION LINE MODEL 41

Tai-Chen Chen received the B.S. and M.S. degrees
in computer and information science from the
National Chiao Tung University, Hsinchu, Taiwan,
in 1999 and 2001, respectively. He is currently
working toward the Ph.D. degree in the Graduate In-
stitute of Electronics Engineering, National Taiwan
University, Taipei. His current research interests
include computer-aided design and interconnect
optimization for deep submicron technology.

Mr. Chen received the Best Master’s Thesis Award
from the National Science Council of the Republic of

China in 2002.

Song-Ra Pan received the B.S. and M.S. degrees
in computer and information science from National
Chiao Tung University, Hsinchu, Taiwan, in 1998
and 2000, respectively. He is currently working
toward the Ph.D. degree at the University of
California, Santa Barbara.

From 2002 to 2003, he was with the Taiwan Semi-
conductor Manufacturing Company, Ltd., Hsinchu
Science- Based Industrial Park, Taiwan, R.O.C. His
current research interests include computer-aided
design, testing, and verification.

Yao-Wen Chang (S’94–M’96) received the B.S.
degree from National Taiwan University, Taipei,
in 1988, and the M.S. and the Ph.D. degrees, all in
computer science, from the University of Texas at
Austin in 1993 and 1996, respectively.

Currently, he is an Associate Professor in the De-
partment of Electrical Engineering and the Graduate
Institute of Electronics Engineering, National Taiwan
University. In summer 1994, he was with the VLSI
design group of IBM T. J. Watson Research Center,
Yorktown Heights, New York. From 1996 to 2001,

he was on the faculty of the Department of Computer and Information Science,
National Chiao Tung University, Taiwan, where he received an inaugural all-uni-
versity Excellent Teaching Award in 2000. His research interests include phys-
ical design automation, architectures, and systems for VLSI and combinatorial
optimization.

Dr. Chang received the Best Paper Award at the 1995 IEEE International
Conference on Computer Design (ICCD-95) for his work on FPGA routing,
reviewers’ Best Paper nominations at the 2000 ACM/IEEE Design Automation
Conference (DAC) for his work on the B -tree floorplan representation, and
Best Paper nomination at the 2002 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD) for his work on multilevel routing. He
has served on the Technical Program Committees of several international
conferences on VLSI Design Automation. He is a Member of IEEE Circuits
and Systems Society, Association for Computing Machinery (ACM), and
ACM/SIGDA.


