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Abstract

In this paper, we consider the switch-block design problem for three-dimensional FPGAs. A three-dimensional
switch block M with W terminals on each face is said to be universal if every set of nets satisfying the
dimension constraint (i.e., the number of nets on each face of M is at most W) is simultaneously routable
through M. In this paper, we present a class of uniwersal switch blocks for three-dimensional FPGAs. Fach
of our switch blocks has 15W switches and switch-block flexibility 5 (i.e., Fs = 5). We prove that no switch
block with less than 15W switches can be unwversal. We also compare our switch blocks with others of the
topology associated with those used in the Xilint XC4000 FPGAs. Ezperimental results demonstrate that
our unwersal switch blocks improve routabilty at the chip level. Further, the decomposition property of the

unwersal switch block provides a key insight into its layout tmplementation with a smaller silicon area.

Inder Terms—Analysis, Design, Gate-array, Programmable-logic-array

1 Introduction

A conventional FPGA (see Figure 1(a)) consists of an array of logic blocks that can be connected by routing
resources [2]. The logic blocks contain circuits used to implement logic functions. The routing resources
consist of wire segments and switch blocks. An intersection of a horizontal and a vertical channels is referred
to as a switch block; the switch block serves to connect wire segments, and this requires using programmable
switches inside it. Figure 1(b) illustrates a switch block in which the programmable switches, denoted by
dashed lines between terminals, are shown.

For the work on conventional switch blocks (4-sided blocks), Rose and Brown defined the flexibility of a
switch block, represented by Fg, as the number of programming switches between a terminal and others [8].
They investigated the effects of different switch-block flexibilities on routing and suggested that Fs = 3 often
be sufficient for high routability. Chang, Wong, and Wong first presented a class of universal switch blocks [3].
A switch block M with W terminals on each side is said to be universal if every set of nets satisfying the
dimension constraint (i.e., the number of nets on each side of M is at most W) is simultaneously routable

through M [3]. They proved that each of the universal switch blocks can accommodate significantly more

*This work was partially supported by the National Science Council of Taiwan ROC under Grant No. NSC-87-
2215-E-009-041.
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Figure 1: A conventional FPGA and its switch block. (a) A conventional FPGA architecture. (b)
A conventional 4-sided switch block.

routing instances than the Xilinx XC4000-type one of the same size. Recently, a report on the layout
implementations of the universal switch blocks and the XC4000-type ones has also showed that the universal
switch blocks consume a smaller silicon area [11]. Another switch-module architecture called switch matrices
was modeled and investigated by Zhu, Wong, and Chang [13] and Sun, Wang, Wong, and Liu [9]. Chang,
Wong, and Wong later proposed a network-flow based algorithm for switch-matrix design. Wu and Chang
recently showed the nonexistence of universal switch matrices and presented a class of quasi-universal switch
matrices with almost the same routing capacity as universal switch blocks [12]. MCM fabrication techniques
for multiple FPGAs have been studied recently [1, 5].An MCM-based field programmable architecture for
prototyping large designs using multiple FPGAs was proposed in [6]. A three-dimensional (3D) FPGA
architecture by stacking together a number of two-dimensional (2D) FPGAs was studied in [1]. A three-
dimensional FPGA architecture (see Figure 2(a)) is a generalization based on the conventional 2D FPGA;
it stacks a number of 2D FPAG blocks together by MCM fabrication techniques, where each logic block has
six adjacent neighbors, as opposed to four in the 2D case [1]. The 3D switch blocks are not the same as the
conventional switch blocks (see Figure 2(b)). Each switch block is connected with six adjacent switch blocks.
Therefore, they enable each channel segment to connect to some subset of the channel segments incident on
the other five faces of the 3D switch block. This unique architecture motivates our study of the 3D switch
blocks.
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Figure 2: (a) 3D FPGA, (b) 3D switch block.

In this paper, we consider the switch-block design problem for three-dimensional FPGAs. A three-

dimensional switch block M with W terminals on each face is said to be universal if every set of nets satisfying



the dimension constraint (i.e., the number of nets on each face of M is at most W) is simultaneously routable
through M. In this paper, we present a class of universal switch blocks for three-dimensional FPGAs. Each
of our switch blocks has 15W switches and switch-block flexibility 5 (i.e., Fg = 5). We prove that no switch
block with less than 15W switches can be universal. We also compare our switch blocks with others of the
topology associated with those used in the Xilinx XC4000 FPGAs. Experimental results demonstrate that
our universal switch blocks improve routabilty at the chip level. The remainder of this article is organized
as follows. Section 2 introduces the modeling for 3D switch blocks and their routing. Section 3 presents
a class of 3D universal switch blocks and explore their properties. Section 4 considers clique-based switch

blocks and compare them with universal switch blocks. Experimental results are reported in Section 5.

2 Switch-Block Modeling

In this section, we present the modeling for 3D switch blocks and their routing. We show that the 3D switch-
block design problem can be transformed into the 6-sided one. A three-dimensional switch block is a cubic
block with W terminals on each face of the block. We refer to the size of the 3D switch block as W. Some pairs
of terminals, on different faces of the block, may have programmable switches and thus can be connected by
programming the switches to be “ON.” Moreover, these switches are electrically non-interacting, unless they
share a terminal. We represent a 3D switch block by Ms4(T, S), where T is the set of terminals, and .S the set
of switches. Let the faces Fy, Fy, F3, Fi4, F5, and Fg represent the front, hind, left, right, top, and bottom faces,
respectively (see Figure 3). Label the terminals t1 1,21 9,..., 81 w,t21,t2,2, .. ., taw, ..., t61,%6,2, ..., t6,w
starting from the terminals on Fy to those on Fg. Let T(F) = {t11,...,t1,w} (front terminals), T(H) =
{t21,...,taw} (hind terminals), T(L) = {ts1,...,t3w} (left terminals), T(r) = {ta1,...,taw} (right
terminals), T(T) = {t51,...,t5,w} (top terminals), and T(B) = {ts1,...,ts,w} (bottom terminals). Fig-
ure 3(b) shows the labeling of the terminals on Fj. Therefore, S = {(¢; ;,tp 4)| there exists a programmable
switch between ¢; ; and ¢, ;}, and T = UiE{F,H,L,R,T,B} T(i). For convenience, we often refer to a switch
block M34(T,S) simply as Msq4, omitting T and S, if there is no ambiguity about 7" and S, or 7" and S are

not of concern in the context.
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Figure 3: (a) A model of a 3D switch block. (b) One face on the 3D switch block and its terminals.
(c) The corresponding 6-sided switch block.



A hezagonal switch block (HSB) is a 6-sided switch block with V' terminals on each side of the block.
We say that the HSB is of size V. We represent an HSB by M} (T, Sy), where T}, is the set of terminals,

and Sp, the set of programming switches. Label the terminals 1 1,%12,..., 21 v, t21,t22,..., 22 v, ...,
t61,%6,2, ..., t6,v starting from the rightmost terminal on the bottom side and proceeding clockwise. (See
Figure 3(c).) Let Th(¢) = {ti1,...,ti,v}, where ¢ = 1,2,3,4,5, or 6. Therefore, S = {(tmn,tuv)| there
exists a programmable switch between terminal ¢,, , and terminal ¢, ,}, where m # u, m,u = 1,2,...,6,

n,v = 1,2,...,V, and T}, = UTy(3), where ¢ = 1,2,...,6. For convenience, we often refer to My(Th,Sh)
simply as M}, omitting T} and Sy, if there is no ambiguity about 7, and Sy, or T}, and Sy are not of concern
in the context.

In the following, we transform the design problem for the 3D switch blocks into that for the HSBs. For
convenience, we modify the terminology isomorphism used in [3] as follows. Let M(T,S) (M'(T",5")) be a
3D or a hexagonal switch block. We have the following definition.

Definition 1 Two switch blocks M (T, S) and M'(T",S") are isomorphic if there exists a bijection f: T — T'
such that (tmn,tus) € S if and only if (f(tmn), f(tuw)) € S' and, for any two terminals ty, n, and ty ,,
tmn,tuw €T if and only if f(tmn), f(tus) €T

In other words, M (T,S) and M'(T",S’) are isomorphic if we can relabel the terminals of M to be the
terminals of M’, maintaining the corresponding switches in M and M’; and for terminals on the same side
(face) of M, their corresponding terminals are also on the same side (face) of M’. For any two isomorphic

switch blocks, we have the following theorems.

Theorem 1 [3] Any two isomorphic switch blocks have the same routing capacity.

Theorem 2 For any Mszq of size W, there exists an My of the same size such that Msq; and My are

isomorphic, and vice versa.

Proof: For an Msq(S,T) of size W, we can construct an My (Ss, Th) of the same size such that (tm, n,tu,0) €
Sp if (tmn,tuw) € S, where m #u,m,u=1,2,...,6 and n,v = 1,2,...,W. Let the mapping function f:
T — Ty be f(tmn) = tmn. Obviously, (tmn,tus) € S if and only if (f(tmn), f(tue)) = Emn,tuw) € Sh.
Therefore, by Definition 1, M3zq and M}, are isomorphic. For an My (Sh,Th) of size V, we can construct an
M34(S,T) of the same size such that (tm n,tuw) € S if (tmn,tus) € Sp, where m # u,m,u=1,2,...,6
and n,v = 1,2,...,V. Similarly, there exists the bijection f': 7}, — T such that f({p ) = tmn» and
(tmonstuw) € Sp if and only if (f(tmn), f(tuw)) = (tmn,tuw) € S. Therefore, Msq and M), are isomorphic
[] By Theorems 1 and 2, the design problem for the 3D switch block is equivalent to that for the 6-sided
switch block. Therefore, we shall focus on the 6-sided switch block in the rest of the paper. In an HSB,
the switches are electrically non-interacting unless they share a terminal. A connection is an electrical path
between two terminals (say tm, , and t,,) on different sides of a switch block. If the switch (¢m n, tu.o)
is programmed to be “ON,” then a connection between these two terminals is established. Because each
connection is characterized by two sides of a block, we can classify all connections passing through a switch
block into a number of categories. For an HSB, connections can be of 15 types. See Figure 4 for the type

definition.



Figure 4: Fifteen types of connections in an HSB.

A routing requirement vector (RRV') i for an HSB is a 15-tuple (n12,...,n16,72,3,. . ,2.6, N3 4,. . ,N3,6
M4 5,M46,M5.6), where n; ; is the number of type-(i, j) connections required to be routed through an HSB,
0<mni; <V,4,5=12,...,6,1# 7. An RRV 7 is said to be routable on an HSB M) if there exists
a routing for 7 on M. For example, Figure 5(a) shows a routing instance with three nets and the RRV
7 = (0,0,0,0,0,1,1,0,0,1,0,0,0,0,0), and Figures 5(b) and (c) show two HSBs with the same flexibility
(Fs = 5). The RRV 1 is routable on the HSB shown in Figure 5(b), and a routing solution is illustrated by
the thick lines. In Figure 5(c), however, there is always one net that cannot be routed into M. Thus the
RRV 7 is not routable on the HSB shown in Figure 5(c).

RRV =
(0,0,0,0,0,1,1,0,0,1,0,0,0,0,0)

(@

Figure 5:  An example of routing on two HSBs of the same size and same flexibility. (a) A routing
instance 7 = (0,0,0,0,0,1,1,0,0,1,0,0,0,0,0). (b) @ is routable on M,. (c) 7 is not routable on
M.

The routing capacity of a switch block M is referred to as the number of distinct routable vectors on
M that is, the routing capacity of M is the cardinality |{7|7 is routable on M}|. A switch block M with
V terminals on each side is called universal if every set of nets satisfying the dimension constraint (i.e.,
the number of nets on each side of M is at most V) is simultaneously routable through M. We have the

following definition.

Definition 2 An HSB M}, of size V 1is called universal if the following set of inequalities is the necessary



and sufficient conditions for an RRV @i = (n12,...,M1,6, N2,3,...,M2,6,M3,4,...,N3 6, N4 5, Nag, N5¢) Lo be

routable on My,:

nio+ni3+niat+nis+nsg <V (1)
ni2+no3+nss+nys+nyg <V (2)
ni3+nag3+ngas+nzs+nzs <V (3)
Ny 4+no4+ngat+nis+nig <V (4)
nis+nos+ngs+nis+nss <V (5)
nig+nog+ngs+nis+nssg <V (6)

We refer to the dimension constraint as the set of inequalities which characterizes a 6-sided universal
switch block of size V. Therefore, the dimension constraint for an HSB is the set of Inequalities (1)—(6) listed
in Definition 2. Note that the number of nets routed through each side of a switch block can not exceed V;

therefore, a universal switch block has the maximum routing capacity.

3 Universal Switch Blocks

In this section, we present an algorithm for constructing symmetric HSBs and prove that the symmetric
HSBs are universal. The symmetric HSB of size V' has only 15V switches. We prove that no HSB with less
than 15V switches can be universal. Based on isomorphism operations (Theorem 1), we can identify a whole

class of universal switch blocks.

3.1 Symmetric Switch Blocks

Algorithm Symmetric_ Switch_Block shown in Figure 6 constructs a 6-sided switch block M}, of size V.
We refer to the topology of the switch block constructed by the algorithm as the symmetric topology and the
switch block as the symmetric switch block. Figure 7 shows two examples of symmetric switch blocks. For a
symmetric switch block, it has the flexibility (Fg) of 5; thus, the total number of switches in the symmetric
switch block of size V is equal to % =3xV x F, =15V.

For a symmetric switch block with an even V terminals on each side, it can be partitioned into V/2
sub-blocks of size two; and for an odd V, it can be partitioned into [V//2] sub-blocks of size two and one

sub-block of size one. Thus, we have the following property.

Lemma 1 (Switch-Block Decomposition Property) A symmetric switch block of size V' can be partitioned

into |V/2] symmetric sub-blocks of size two and (V mod 2) symmetric sub-block of size one.

Proof: Consider Algorithm Symmetric Switch_Block. For each £ in line 3, we construct a symmetric
sub-block of size two in lines 4-6. Therefore, we will have |V/2] sub-blocks of size two after |V/2] iterations
(see line 3). Further, all these symmetric switch blocks of size two constructed in lines 4-6 have the same
topology. Lines 7-10, just for an odd V', construct a clique of six nodes (i.e., a sub-block of size one) from
the middle terminal of each side of the switch block. Thus we will have (V mod 2) such sub-block of size

one (see lines 7-10). See Figure 8 for illustrations. [



Algorithm: Symmetric_Switch_Block(V)

Input: V—size of the hexagonal switch block.

Output: Mp(7T}h, Sh)—the hexagonal switch block of size V;
Th: set of terminals; Sp: set of switches.

/* See Figure 3(c) for the terminal labeling. */

Th +t;;, Vi=1,2,...,6, Vj=12,...,V;
Sh %@;
for k=1 to L%J do
for : =1 to 6 do
for j =1to 6 do
Sp = SpU{(ti g, t;v_rs1)}, 1 # J;
if V is odd
for 1 =1 to 6 do
for j =1 to 6 do
0 Sh %ShU{(tiyr%],tjy[%])}ai#j?
11 Output Mh(Th,Sh).

= O 00 =~ O O i W N =

Figure 6: Algorithm for constructing a 6-sided symmetric switch block of size V.

Note that these sub-blocks are non-interacting to each other; thus, each sub-block can be considered
independently. Lemma 1 is not only an important property in the proof of the universality of symmetric
HSBs, but is also the key to the layout implementation of an HSB with a smaller silicon area—the symmetric
sub-block of size two is a building block for a larger symmetric switch block (see Figure 8), which can make

the layout of an HSB very regular and compact [11].

3.2 Proof of Universality

In this subsection, we prove that the symmetric switch blocks constructed by Algorithm Symmetric_Switch_Block

are universal. To show that the symmetric switch blocks are universal, we first prove that the symmetric

tay Tap Tys
»

t 13 t 12 t 11

(@)

Figure 7:  Two symmetric hexagonal switch blocks. (a) A symmetric HSB of V' = 3. (b) A
symmetric HSB of V = 2.



Figure 8: Two symmetric HSBs and their sub-blocks. (a) Decomposition of the symmetric HSB
of V.=4. (b) Decomposition of the symmetric HSB of V = 3.

HSBs of size two are universal.
Lemma 2 The HSB M}, of size two constructed by Algorithm Symmetric_Switch_Block is universal.

Proof: By Definition 2, we must prove that 71 is routable on M}, if and only if the following inequalities

are simultaneously satisfied:

nio+ni3+nia+nis+nie <2 (7)
ni2+ne3+ngsa+nas+nie <2 (8)
n13+ne3+ngs+ngs+nye < 2 (9)
Ni4+nNoa+nza+nis+nge < 2 (10)
nis+nes+ngs+nis+nse <2 (11)
nig+nNog+n3ge+nis+nse < 2. (12)

(If) Tt is not difficult to identify all of the RRVs satisfying Inequalities (7)—(12). (In fact, there are 2578
such RRVs.) We verify the RRVs and conclude that they can all successfully be routed on the HSB of size
two constructed by Algorithm Symmetric_Switch_Block '. The key insight is that the two terminals, say
terminals b and ¢, which connect to a terminal, say a, do not share any switch (see Figure 8(b)); thus the

connections associated with them are non-interacting, except those associated with a.

'In fact, based on the work in [10], we need to check only the RRVs in the corresponding dominating set (see [10]
for the definition of dominating sets).



(Only If) For an HSB M}, of size two, the total number of connections routed through each side of M)
cannot exceed two. Hence, if 7 is routable on M}, the six inequalities must be satisfied. [
Let Uy denote the set of RRVs which satisfies the dimension constraint for an HSB of size V. An RRV
¥ € Uy is called a mazimal RRV (MRRV) if there exists no other RRV in Uy that dominates ¥. In the
following, we show that all RRVs in Uy can be decomposed into Uy _5 and Us. Similarly, we need to check

only the RRVs in the corresponding dominating set (i.e., MRRVs). We have the following lemma.

Lemma 3 When an MRRV 4 € Uy is routed on an HSB, all unused terminals, if any, must be on the same
side and the number of unused terminals ¢ynusea = 2¢, 0 < ¢ < |V/2], c € Z.

Proof: If there are two unused terminals on different sides (say sides i and j, ¢ < j), we can increase %; ; by
one without violating the dimension constraint, implying that 4’ is not maximal: a contradiction. Hence, all
unused terminals, if any, must be on the same side. Note that the total number of terminals 18 ¢;otq; = 6V,
an even number. Assume that there are ¢, seq used terminals. Obviously, ¢yseq 18 even since each switch is
incident on two terminals. Also, dunused = Ptotal — Puseda < V since all unused terminals, if any, must be on
the same side. Since @iorqr and ¢y s5eq are even numbers and 0 < @unsed < V', Gunused = Ptotal — Pused = 2€,
0<e<|V/2],ceZ. [

Consider the MRRVs in Uy . By Lemma 3, we can classify the MRRVs into two types. One is that all
terminals are used (i.e., dunuseda = 0), and we call an MRRV of this type a complete MRRV . The other is
that an even number of terminals on the same side are unused (i.e., ¢ynused = 2¢,¢ € Z"’), and we call an
MRRYV of this type a degenerate complete MRRV .

To show that an MRRV in Uy, can be decomposed into Uy _5 and Us, we first construct a multiple graph
and a weighted graph for the MRRV as follows: For any MRRV we construct a multiple graph G, (Vin, Em),
where Vi, = {v1,v2,...,v6}. If n;; = 1, construct an edge between v; and v; with weight 1; if n; ; > 2,
construct two edges between v; and v; with total weights equal to n; ;. (We call the two edges a multi-
edge.) We induce a weighted graph Gy, (Viy, Fy) from G, (Vin, Ep) by substituting a weighted edge for a
multi-edge. Figures 9(b) and 9(c) show a multiple graph G,,, for @ = (1,0,1,0,1,1,0,1,0,1,0,0, 1,0, 3)
and its corresponding weighted graph G, respectively. In G,,,, there are two edges between vs and wvg
because ns ¢ = 3; thus, we construct the corresponding weighted edge (vs,vs) in Gy, . In a weighted graph
Gy (Vw, Ey), a vertex v € V,, represents one side of an HSB, an edge e € E}, represents a type of connection
between two sides of the HSB, and weight(e) denotes the number of connections of the type associated with
e.

Let Cy denote a connected component of k vertices in GG,,. We have the following lemma.

Lemma 4 For a weighted graph G, associated with a complete MRRV, there exists no isolated vertezx in

Gy and, for k > 3, Cy contains no degree-one vertex.

Proof: There exists no isolated vertex in (G, since the total connections associated with a complete MRRV
for aside of HSB must be equal to V. Suppose there exists a Gy (Vy, Ew) (associated with a complete MRRV)
for an HSB of size V with a connected component Cy and, for k > 3, C contains a degree-one vertex v;.
Let v; connect to a vertex v; by an edge e; ; = (v;,v;). Since Gy, is associated with a complete MRRV

and v; is a degree-one vertex. The total number of connections associated with v;, weight(e; ;), is equal to



the dimension constraint V. Further, the total number of connections associated with a vertex can be V at
most; since weight(e; ;) = V, v; only connects to v;. Hence, the degree of v; must also equal one, implying

that v; and v; form a C5: a contradiction. Therefore, there exists no Cy (k > 3) with degree-one vertex in

G I
multiple
Vy edges Vy
/ S // \/ L !
> V3 1 A%, V3 1 V5 weighted
/ \ L —  edge

3t 3
\ I 1
\ \Y/

1 !V 1 6

\Vg/ 2 3
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Figure 9: (a) A routing instance # = (1,0,1,0,1,1,0,1,0,1,0,0,1,0,3). (b) A multiple graph G,,,
associated with RRV 7. (c¢) A weighted graph G, of (b).

A hamiltonian subcycle of a multiple graph G, (Vi , Ep,) is a simple cycle that contains a subset of vertices
in V,,. Two hamiltonian subcycles in a multiple graph are called independent if the two subcycles share no
vertex. A multiple graph G, (Vin, Em) is said to be sub-hamiltonian if it contains a set of independent
hamiltonian subcycles and all vertices in V,,, are on the subcycles; otherwise, it is non-sub-hamiltonian.
Also, we call a weighted graph sub-hamiltonian if its associated multiple graph is sub-hamiltonian. For three
RRVs #, ¢, and Z, we say @ to be a sub-RRV of ¥ if there exists an & such that ¥ = 4 4+ #. Let nj be a

sub-RRV of 7. We define Q and Q' as follows:

Q = {
o =

31
S

c Uv},
=] +ny,n) € Uy_y and 04y € Uy}, where V > 2.

31
3

We have the following Lemmas.
Lemma 5 If the multiple graph of an MRRV 1 is sub-hamiltonian, @i has a complete sub-RRV 13 € Us.
Proof:

Let G, be a sub-hamiltonian graph associated with an MRRV 7. G,, has a set of independent

hamiltonian subcycles I = {c1,¢a,...,cx} that covers all vertices in G,,. We can choose a sub-RRV 75 of

il as follows. For any cycle ¢; € S, ¢; =< viy, Vi, ..., Vi, Vi, >. If k = 2 let N2 (v, v,,) = 2; otherwise,

let N2 (v, ,00,) = M2, (vigvi) = -+ = N2,(v;, 05) = 1. We traverse GG, based on I. [ includes independent
hamiltonian subcycles which contain all vertices in G,,. All vertices will be visited one time. A vertex in
G, corresponds to one side of an HSB associated with 7i. Every vertex contributes two degrees in I. Thus,

the number of connections with one side of the HSB is equal to 2. ns satisfies the following inequalities:

ny,1,2) + N2,1,3) + n2,04) +N2,15) FN2,16) = 2

Ny,(1,2) + N2,(2,3) + N2,24) + N2,25) + N2 26) = 2

10



N2,(1,3) T N2,(2,3) T N2,(3,4) T N2 (35 T N2, (36) =
N2,(1,4) T Na,(2,4) T N2 (3,4) T N2 (a5) T N2 (a6) =

N2,(1,5) T Na,(2,5) T N2 (35) T N2 (a5 T N2 (56 =

N DN NN

N2,(1,6) T N2,(2,6) T N2,(3,6) T N2, (46) T N2,(56) =

Thus, n5 € Uy and it is a complete MRRV. [
Lemma 6 (RRV Decomposition Property) Q2 = €.

Proof: First, we show that Q' C Q. By Definition 2, an RRV n] € Uy_» if and only if the following

inequalities are simultaneously satisfied:

n1,2) 01 as) a4+ as) Fnras SOV -2 (13)
ni(1,2) + n1(23) + n124) N1 25 FRee) <OV -2 (14)
n1(13)+ N1 23+ n134) N1 @5 FREe) SOV -2 (15)
n1,(1,4) + 11 (2.4) 11 (34) F 01 (45) F N1 as) SOV -2 (16)
n1,15) 01 25) 1135 0145 F R SOV -2 (17)
n1,1,6) + 11, (26) 01 (36) T 11 ,(46) T 1, 56) SV —2, (18)

and for an RRV 15 € Us, the following inequalities are simultaneously satisfied:

ng (12) + Na1,3) + Na1,4) 215 206 < 2 (19)
ng (12) + Na (2,3) + Na (24) + N2 (25) t N2, 26) < 2 (20)
ng (1,3) + Na(2,3) + Na (34) + N2, 35 tN2,i36 < 2 (21)
Ng (1,4) + Na (24) + Na (34) + N2 (a5) + N2 ae) < 2 (22)
ng (15) + Na(25) + Na (35) + N2, (a5 t N2 56 < 2 (23)
na (1,6) T Na,(2,6) T Na,(3,6) T N2 (a6) T N256) < 2. (24)
Let @ = ny+1%, n1 o = n1,(1,2)FR2,(1,2), P13 = Ny (1,3)FR2,(1,3), -+ P56 = N1 (5,6) T N2 (5,6) Combining

Inequalities (13) and (19), (14) and (20), (15) and (21), (16) and (22), (17) and (23), and (18) and (24). We
have Inequalities (25)—(30) as follows:

nia+niz+nia+nis+ne <V (25)
Ni2+na3+nyas+nys+nseg <V (26)
ni3+na3+nzs+nzs+nge <V (27)
Ni4a+nsa+n3a+ngs+nse <V (28)
nis+nas+n3s+nas+nse <V (29)
N6+ Na2e+n3e+nse+nse < V. (30)

Thus, 71 € Uy, and we have Q' C Q.

11



Next, we show that Q C €. Tt suffices to show that each MRRV 7 € 2 is also in £’. By Lemma 3, all
unused terminals for routing an MRRV on an HSB are on the same side, and the number of unused terminals
is even. Without loss of generality, assume that all unused terminals, if any, are on side 1 and the number
of unused terminals is equal to ¢1, 0 < ¢; < |V/2]. By Definition 2, an MRRV 7 € Q if and only if the

following equalities are simultaneously satisfied:

natniztniatnis+tne = V—2¢ (31)
nia+nas+nsatnast+nygeg = V (32)
niz+nas+nsatnys+nge = V (33)
ni4+no4+nga+nas+nyeg = V (34)
nis+n2s+n3s+ nas+n56 vV (35)
nig+n2e+nsest+nasgtnseg = V. (36)

Algorithm RRV-Decomposition listed in Figure 10 shows a method to decompose 7i € Uy into nj and
1y, where 1] € Uy _5 and 13 € Us. Tt derives @i based on the two cases: (1) 7 is a complete MRRV, and (2)
i is a degenerate complete MRRV.

We first consider the case where 7 is a complete MRRV. Let G,, be a weighted graph of 77 and C; be a
connected component of ¢ vertices in GG,. By Lemma 4, there exists no isolated vertex or any Cy, k > 3,
with a degree-one vertex in GGy,. Thus, the number of vertices in Cy could only be 2, 3, 4, or 6.

We classify all weighted graphs for complete MRRVSs into four categories a, 3,~, and §, listed in Table
1. (Note that the weighted graphs, except Cq, contain no isolated vertex or degree-one vertex.) Categories
a, B3, v, and 4 represent the cases where GG, consists of three C3’s, one Cy and one Cy, two C3’s, and one
Cs, respectively. The total number of weighted graphs with complete MRRVs is 56, and twelve of them are
illegal, which can be verified by checking if the total edge weights of the graphs equal 3V. (Note that all
6V terminals are used for a complete MRRV, and a connection is incident on two terminals.) For example,
Figure 11(a) shows an infeasible weighted graph G,. Consider vertices v; and vs. The total number of
connections associated with v; must be equal to the dimension constraint V' (i.e., all terminals on each side
of the HSB are used); therefore, |e1| + |ea| + |es| + |ea] = V. Similarly, there are V' connections associated
with vs, and thus |es| + |es| + |e7]| + |eg| = V. Therefore, the total number of connections associated with Gy,
is equal to 2V. By Equalities (31)—(36), however, the total number of connections associated with a complete
MRRYV must be equal to 3V. Therefore, Gy, is illegal. We have the facts that the other 44 weighted graphs
are sub-hamiltonian. (Table 1 summarizes the number of legal and illegal weighted graphs for complete
MRRVs.) Figure 11(b) shows a sub-hamiltonian weighted graph associated with a complete MRRV. Tt has
a hamiltonian subcycle ¢; =< v1,vs,...,vg,v1 > that contains all vertices. By Lemma 5, 77 has a complete

sub-RRV 175 € Us. In other words, 75 satisfies the following equalities:

37)
38)
39)
40)

N2,(1,2) T N2,(1,3) T N2 (1,4) T N2 (15) T N2, (16) =
N2,(1,2) T N2, (2,3) T N2 (2,4) T N2 (25 T N2, (26) =

N2,(1,3) T N2,(2,3) T N2 (3,4) T N2 (35 T N2,(36) =

R NN N

(
(
(
N3,(1,4) T N2 (2,4) + N2,(3,4) T N2 (4,5) + N2, (a6) = (
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N2,(1,5) T N2, (2,5) T N2 (3,5) T N2,(4,5) T N2,(5,6)

n2,(1,6) T N2,(2,6) + N2,(3,6) T N2,(4,6) T N2,(56) = 2. (42)

Let n7 = @ — n3. Since 7 is a complete MRRV, the constant ¢; in Equality (31) equals zero. By
Equalities (31)—(36) and (13)—(18), we have the following equalities:

n2,(1,2) + N2 (13) N2 (14) F N2 15 F 26 = V-2 (43)
n2,(1,2) + N2 (23) + N2 (24) + N2 (25) F N 26) = V —2 (44)
n2(1,3) + N2 (23) + N2 (34) +N235) +n2@3s = V-2 (45)
n2,(1,4) + N2 (24) + N2 (34) + N2 (45) + N a6 = V-2 (46)
n2,15) + N2 (25) + N2 35) + N2 45 o ie = V-2 (47)
n2,(1,6) + N2 (26) + N2 (36) T N2,(46) T N2,56) = V —2. (48)

Obviously, n1 € Uy _s. Applying the similar techniques, we can show that all multiple graphs associated
with degenerate complete MRRVs are sub-hamiltonian. Thus, Q C €. Based the above discussion, we have

Q=Q 1

Algorithm: RRV-Decomposition (7)

Input: 7—An MRRV in Uy .

Output: n3, n5—MRRVs such that 7 = n] + n3, n) € Uy_y and n5 € Us.
/* Lines 1-7 construct a multiple graph G (Vin, Em). */

/* |4 denotes the special “union” operation by keeping duplicate elements;
e.g., {a,btH{a,c} = {a,a,b,c}. */

1 Vip={v1,vs,...,06};

©

2 01: (V_Enl’i) /2;

i=1
3  if ¢; # 0 then /* degenerate complete MRRV */
4 let n2,(1,2) — n3.(1,3) — . N3.(1,6) — 0;
5 Vm — Vm - {Ul};
6 Em = {(vi,vj)ni j # 0};
7 Em = Em W{(vi, vj)|ni j > 2};
8 H + all hamiltonian subcycles in G (Vin, Em);
9 I « set of independent hamiltonian subcycles which contain all vertices in V,;

10 for each cycle < vi,,viy, ..., 05,0, >E T

11 if k = 2 then

12 N2 (vi,,vi,) « 2;

13 else

14 77'2,(@11,@12) — 7’7'2,(1;12,1;,3) — ... n2y(Uik7Uzl) — 1;

15 n} «+ i — ny;
16 Output nj, ns.

Figure 10: Algorithm for RRV decomposition, assuming that all unused terminals, if any, are on
side 1.
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cycle C;
total weight V1 1 & o

=V -
K LY
v © V.
6 € 3 Vg A
% &
Y/~ total weight
Ve e vy =V e vy

(@ (b)

Figure 11: ~ Weighted graphs for two complete MRRVs. (a) An illegal weighted graph—its
total weights is equal to 2V. (b) A legal weighted graph with a hamiltonian subcycle C; =<
U1, U2,...,0g, U1 >.

Category | Number of weighted graphs | Number of illegal graphs | Number of legal graphs
e 1 0 1
B 3 0 3
ol 1 0 1
) 52 12 40
Total 56 12 44

Table 1: Number of weighted graphs for complete M RRV s.

Two sub-blocks are said to be independent if they do not share any terminals. By Lemma 6, independent
switch sub-blocks can be considered individually and merged to form a larger switch block, and the routable
RRVs for the merged switch block are identical to those by applying vector addition operations on the
routable RRVs for the independent switch sub-blocks. With the decomposition properties of symmetric

switch blocks and RRVs, we can prove the following theorem by using mathematical induction.
Theorem 3 The symmetric switch blocks are universal.

Proof: By Definition 2, we shall show that, for an HSB M}, of size V' constructed by Algorithm Symmet-

ric_Switch_Block, 7 is routable on M}, if and only if the following inequalities are simultaneously satisfied:

nia2+nig+niat+tnis+ne <V
N2+ nag+neatnas+nieg <V
ni3+naz+ngatnzs+nge <V
Nia+naa+ngatngs+nie <V
nis+nas+nzgs+nas+nse <V
Nig+nae+n3s+nas+nse < V.
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For the HSBs constructed by the algorithm, we have the following key observations (see Figure 8). For an
HSB of an even V, we can partition it into V/2 non-interacting sub-blocks (shown in Figure 8(a)); each
sub-block has the same topology as that of Sy shown in Figure 8(a). For an HSB of an odd V, we can
partition it into [V//2] non-interacting sub-blocks, with each of the [V//2] sub-blocks identical to S; and one
sub-block with a clique topology formed by the six terminals from the middle of each side (see Figure 8(b)).
Because terminals in different sub-blocks are non-interacting, each sub-block can be considered independently
(Lemma 6). Therefore, each symmetric HSB consists of |V/2] independent universal switch sub-blocks of
size two, and additional one of size one if V' is odd. Further, by Lemma 2, an HSB of size two constructed
by Algorithm Symmetric_Switch_Block is universal.

(If) For an even V, by Lemma 6, we can decompose a vector @ = (n1 9, n13, ..., N6, N23, ..., N26,
N34, ..., N36, Na5, N4, N5e) into V/2 sub-RRVs 1} = (n; (1,2), i(1,3), -+ T (1,6), Mi,(2,3)5 -+ M (2,6);
N (3.4); - T4 (3,6) M4, (4,5), T (4,6), Mi (5,6)), Where ¢ = 1,2,...,V/2, such that each sub-RRV satisfies the

following set of inequalities:

ni(1,2) + ni1,3)+ N4t nias) tnige <2 (49)
ni(1,2) + N (2,3) + N (2,4) + i (2,5) + Ri26) < 2 (50)
ni (1,3) + Ni(2,3) + Ni(3,4) + i35 tni@e <2 (51)
N (1,4) + Ni(2,4) + Ni(34) + Nia5) +ni@ae <2 (52)
ni (1,5) + Ni(25) + Ni (35 + Nias) tnice <2 (53)
n (1,6) + Ni (2,6) + Ni(3,6) + Ni(a6) t Nie < 2, (54)

where 71 = Z:;/lzn_; By Lemma 2, each RRV nj satisfying Inequalities (49)—(54) must be routable on the
HSB of size two, and by Lemma 6, 7 is also routable on the symmetric HSB of size V.
For an odd V, by Lemma 6, we can decompose a vector 7 into [V/2] sub-RRVs n}’s, where i =

1,2,...,[V/2], such that each of the sub-RRVs nj,i = 1,2,...,|V/2] satisfies the set of Inequalities (49)-

(54), and the remaining one #i[y2) satisfies the following set of inequalities:

vy, + npv/e) ) + Rivye) ) vy as) F ey e <01 (55)
v/ ,2) + npv/e) ) + Rivye) 2 vy es) T avye)es) <L (56)
v/, (1,8) + npv/2)(2,8) + RIvye) e v es) T avye e S L (57)
vy a) + npv/e) e + Rvye) e v as) ey as <L (58)
vy s) + v 21 )+ Rve) s T v as) TRy ee) S L (59)
v/l ,e) + RV 2126 + 0 v/e 6.6 T v/ @) T v/ e S 1 (60)

We have 77 = ZEZ{Z] n;. By Lemma 2, each RRV nj satisfying the set of Inequalities (49)—(54) must be
routable on the symmetric HSB of size two. Further, the last RRV is also routable on an HSB of size one (a
clique of six terminals). Hence, by Lemma 6, 7i is also routable on the symmetric HSB of size V.

(Only If) For an HSB M}, of size V, the total number of connections routed through each side of M)

cannot exceed V. Hence, if 7 is routable on M}, Inequalities (1)—(6) must be satisfied. [

Theorem 4 No HSBs with less than 15V switches can be unwversal.
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Proof: By Definition 2, an RRV with only one non-zero component V such as (V,0,0,0,0,0,0, 0,0,0,0,0,
0,0,0), (0,V,0,0,0,0,0,0,0,0,0,0, 0,0,0), ..., (0,V,0,0,0,0,0,0,0,0,0,0, 0,0, V) is routable on a universal
HSB. Hence it needs at least V non-interacting switches for each type of connections to construct a universal
HSB. Since there are 15 types of connections in an HSB, the smallest number of switches needed to construct
a universal HSB is 15V. i

As mentioned in Subsection 3.1, the total number of switches used in a 6-sided symmetric switch block
is 15V. Thus, the symmetric HSBs are the “cheapest” universal ones, i.e.; it uses the minimum number
of switches to construct a universal switch block. Note that the 15V switches requirement is quite small,
compared to a fully connected HSB which has 15V2 switches. By Theorem 1, any two isomorphic switch

blocks have the same routing capacity. Hence, we have following lemma.

Lemma 7 For any two isomorphic switch blocks My (T,S) and M;(T",S"), My(T,S) is universal if and
only if Mj(T",S") is universal.

By Lemma 7, we can obtain a whole class of universal switch blocks by performing isomorphism operations

on a symmetric switch block.

4 Clique-Based Switch Blocks

In this section, we consider the clique-based HSBs associated with those used in the Xilinx XC4000-series
FPGAs (see Figure 12(a)) and show that the clique-based HSBs are not universal. Figures 12(a) and (b)
show two clique-based switch blocks of four and six sides, respectively (Note that the switch block shown
in Figure 12(a) is used in Xilinx XC4000-series FPGAs.). Nevertheless, as shown in Figure 5(c), the clique-
based HSB is not universal since the RRV (0,0,0,0,0,1,1,0,0,1,0,0,0,0,0) which satisfies the dimension
constraint is not routable on the 6-sided clique-based switch block of size two. For the feasibility condition

of the 6-sided clique-based switch blocks, we have the following lemma.

Lemma 8 For a clique-based HSB M}y (Sh, Th) of size V', 7l is routable on M}y, only if the following set of

wnequalities are stmultaneously satisfied:

nia+ni3+niat+nis+neg <V (61)
nia+no3+nss+nys+nyg <V (62)
ni3+ne3+nga+nzs+nzs <V (63)
Ny 4+no4+nga+ngs+nyeg <V (64)
nis+nos+ngs+nys+nse <V (65)
nig+nog+nge+nis+nseg <V (66)

Npg+Ngr+nep, < V,pgqr=12. .6p#qq#r andp#r. (67)

Proof: Tt is obvious that if an RRV is routable (on the clique-based HSB M} ), it must satisfy the dimension
constraint Inequalities (61)—(66). For a clique-based HSB M}, of size V', we have the following key observation.
Consider three arbitrary sides p, q, and r of M. The switches incident on p, q, r form V triangles, and these

triangles are non-interacting and thus can be considered independently. (See Figure 12(b).) Since a triangle
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Figure 12: Clique-based switch blocks. (a) A 4-sided one. (b) A 6-sided one.

can be routed by at most one connection, the total number of connections that can route on p, ¢, 7 cannot

exceed V. Thus the set of Inequalities (67) is also a necessary condition. [
Theorem 5 The clique-based HSBs are not universal.

Let Up (V) (Ch(V)) be the set of RRVs which satisfies the dimension constraint for the universal (clique-
based) HSBs of size V. Let |Ux(V)| (|JCa(V)]) be the cardinality of Up (V) (Ch(V)). We have the following

corollary.

Corollary 5.1 (1) C,(V) CUL(V); (2) |Ch(V)]| < |Ux(V)].

5 Experimental Results

To explore the effects of switch-block architectures on routing on a 3D FPGA, we implemented a maze router
in the C language and ran on a SUN Ultra workstation. We tested the area performance of the router based
on the CGE [8] and the SEGA [7] benchmark circuits. A logic-block pin was connected to any of the W
tracks in the adjacent routing channel. We routed these circuits on a two-layer 3D FPGA and randomly
assigned the layer for each terminal of a net. The switch-block architectures used were the symmetric switch
blocks and clique-based (Xilinx XC4000-like) switch blocks. The quality of a switch block was evaluated by
the area performance of the detailed router. Table 2 shows the results. For the results listed in this table,
we determined the minimum number of tracks W required for 100% routing completion for each circuit,
using the two kinds of switch blocks. Because net ordering often affects the performance of a maze router,
we routed the benchmark circuits by using the following three net-ordering schemes to avoid possible biases:
(1) net order as given in the original benchmark circuits, (2) shortest net first (non-decreasing order of net

lengths), and (3) longest net first (non-increasing order of net lengths). Our results show that, between the
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Number of tracks needed for detailed-routing completion
#Logic Original Order Shortest net first | Longest net first
Circuit blocks #Con. | Symmetric | Clique | Sym. Cliq. Sym. Cliq.
BUSC 13 x 12 x 2 392 7 9 7 7 8 8
DMA 18 x 16 x 2 771 9 9 8 8 10 10
BNRE 22 x 21 x 2 | 1257 9 9 8 9 10 10
DFSM 23 x22x2 | 1422 9 9 8 8 9 9
703 27 x 26 x2 | 2135 9 10 8 9 10 10
9symml 11 x 10 x 2 259 6 6 6 7 7 8
alu2 15 x 13 x 2 511 7 7 7 8 8 9
alu4 19 x 17 x 2 851 8 9 9 9 10 11
apex7 12 x 10 x 2 300 6 7 6 7 8 8
example2 14 x 12 x 2 444 8 8 8 8 9 10
k2 22 x20x 2 | 1256 11 11 10 11 12 12
term1 10 x 9x2 202 7 8 6 6 7 8
too_large 15 x 14 x 2 519 7 9 8 8 9 9
vda 17 x 16 x 2 722 7 9 8 9 9 10
Total - - 109 118 106 112 125 131
Comparison - - 1.00 1.08 1.00 1.06 1.00 1.05

Table 2: Minimum numbers of tracks needed for detailed-routing completion.

two kinds of switch blocks, the symmetric switch blocks usually needed the minimum W’s for 100% routing
completion, no matter what net order was used. The results show that our symmetric switch blocks improve
the routability at the chip level. (An average of 6% improvement in the area performance was achieved.) We
also performed experiments to explore the effects of net density on the area performance of switch blocks.
We randomly generated connections on a 15 x 15 x 3 (number of logic blocks in the three layers) 3D FPGA.
For this purpose, we assume that the number of pins on each logic blocks is unlimited (so that we could test
denser circuits). As shown in Figure 13, no matter how dense the circuit is (numbers of connections ranging
from 400 to 1600), the symmetric switch blocks consistently outperform the clique-based switch blocks. (An

average of 10% improvement in the area performance was achieved.)

6 Conclusion

We have presented a class of universal switch blocks for the three-dimensional FPGAs and shown that they
have better routability than others of the topology associated with those used in the Xilinx XC4000 FPGAs.
Further, the decomposition property of the universal switch block provides a key insight into its layout

implementation with a smaller silicon area.
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For reviewer’s reference, the preliminary version of this work was
cited in the following article by EE Times: “FPGA’99: Advanced
processes unleash architectural ideas,” in EF Times, Feb. 23, 1999

MONTEREY, Calif. - It may not be obvious that the FPGA industry is in upheaval. But attendees at the FPGA’99
conference here had a front-row seat to watch architectural change, driven on the tide of process advances, begin
a sweep through the industry. The key underpinnings of this generation’s FPGA architectures have already been
undermined, and new structures are already beginning to appear in their place. But indications from conference
papers are that the change has only just begun.

The driving force behind all this activity is, not surprisingly, process improvement. Where a generation ago
FPGA designers were delighted to get a fast CMOS process with three usable metal layers, they are now being
offered vastly superior speeds, up to six layers of high-conductivity metal and the ability to route signals over delicate
logic structures. These advances have negated - or at least brought up for reexamination - many of the assumed
truths of FPGA architecture.

The most prominent truth to be questioned is the supremacy of the four-input lookup table (LUT) as the basic
element of combinatorial logic. Research by Jonathan Rose and associates at the University of Toronto years ago
established that the ideal combination of utilization and performance could be achieved by an FPGA built out of a
uniform array of four-input LUTs.

But, as presenters from Actel Corp. pointed out in their opening paper, Rose’s research assumed an interconnect
architecture without hierarchy, and also assumed that it was impossible to route over logic. With current processes,
these assumptions are no longer necessary.

Technically, assaults on the doctrine of homogeneous architecture began some time ago, with the inclusion of
SRAM blocks into FPGAs. But the dominance of the four-input LUT has just in this generation been seriously
challenged.

The first attack came from Altera Corp., with the incorporation of even more flexible memory blocks into its
Apex architecture. In a presentation Monday (Feb.22), Altera pointed out that the Embedded System Blocks (ESBs)
in the new architecture served logic as well as memory functions. In common with the Embedded Array Blocks in
the Flex architecture, the ESBs can be configured as ROM and used as wide-input LLUTs. But in addition, the ESBs
can be configured as AND arrays, very similar to the AND arrays that form the basis of Altera’s Max CPLD family.
While the wide LUT configuration permits single-level implementation of an arbitrary 1-bit function of up to 11
inputs, the AND array configuration can implement up to 16 bits of output functions from 32 inputs. Of course, as
in any product-term structure, not all possible combinations of functions can be implemented. Thus the ESBs give
Altera a way to accommodate either very dense clusters of combinatorial logic or very wide fan-in functions much
more efficiently than they could be handled with four-input LUTs.

An entirely different approach to the same end was described by Vantis Corp. In that vendor’s latest FPGA
family, very fast local interconnect is used to, in effect, cascade three-input LUTs to form four-, five- and six-input
LUTs within a local island of logic. This permit’s Vantis’ design tools to work with, in effect, an heterogeneous array
of LUT of varying widths, while the underlying silicon retains the simplicity of an array of homogeneous three-input
LUT islands.

Actel has carried this idea in a slightly different direction in its new reprogrammable FPGA architecture, which
is now sampling. Repeating Rose’s original research after removing the assumptions about non-hierarchical routing
and no over-the-top routing, the Actel developers concluded that in the latest processes, a basic logic element that
included both three-input and two-input LUTs would be more efficiently used, particularly by data path compilation
tools. Hence their new architecture, based on islands of logic suspended in a three-layered routing hierarchy, employs
basic blocks of one flip-flop, two three-input LUTs and one two-input LUT, sewn together and linked to nearest
neighbors by very fast (0.25-ns) local interconnect.

These papers have shown that fast local interconnect has changed the ground rules for logic topology. But global
interconnect topologies came under as much examination as logic in this year’s presentations. As the amount of
metal available to designers grows, the question becomes not how to get a minimum of links between logic elements,
but how to use additional links.

The answer, it appears, will be borrowed from the world of supercomputing. In a poster session,
several papers considered the possibility of three-dimensional and even four-dimensional topologies
for linking the growing islands of logic in an FPGA.

Herman Schmit of Carnegie Mellon University demonstrated that a partially populated four-
dimensional interconnect scheme - essentially, a hypercube - behaved much better under intensive
routing demands than existing two-dimensional arrays. And a team from the National Chiao Tung
University of Taiwan explored the micro-architecture of three-dimensional switching blocks - the
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all-important connection points between routing elements.
Meanwhile, Rose and his associates at Toronto have not been sleeping. In another poster paper, Rose and
Vaughn Betz demonstrated that a mixture of pass-transistor-controlled segments and buffered interconnect lines could

outperform an interconnect scheme composed exclusively of either pass transistors or buffers. Hence heterogeneity
may be coming not only to logic elements, but to interconnect programming elements as well.

The bottom line for the architectural papers at this year’s conference appears to be simple: everything is up for
reconsideration. Heterogeneous architectures are in. Enabled by the relative unimportance of logic real estate on the
modern die, logic islands of growing sophistication are in. And complex, hierarchical interconnect schemes are on the
way.

The next question, mostly skirted by the architecture papers, is the one that stopped heterogeneous architectures
in their tracks several years ago. Can tools be developed that can exploit the new heterogeneous structures? Or will
the increasingly clear advantages to be gained by more complex FPGA hardware be lost on tool suites still struggling
to exploit a field of sparsely-connected four-input LUTs. That question remains on the table.
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