
Challenges and Solutions in Modern VLSI
Placement

(Invited Paper)

Zhe-Wei Jiang1, Hsin-Chen Chen2, Tung-Chieh Chen1, and Yao-Wen Chang1,2

1Graduate Institute of Electronics Engineering, National Taiwan University, Taipei 106, Taiwan
2Department of Electrical Engineering, National Taiwan University, Taipei 106, Taiwan

{crazying, indark, donnie}@eda.ee.ntu.edu.tw; ywchang@cc.ee.ntu.edu.tw

Abstract— The VLSI placement problem is to place objects
into a fixed die such that there are no overlaps among
objects and some cost metric (e.g., wirelength, routability) is
optimized. It is a major step in physical design that has been
studied for decades. However, modern VLSI design challenges
have reshaped the placement problem. A modern placer
needs to handle large-scale designs with millions of objects,
heterogeneous objects with very different sizes, and various
complex placement constraints such as preplaced blocks and
chip density. In this paper, we first introduce the major
techniques employed in our placer for tackling the large-scale
mixed-size designs and the aforementioned constraints, and
then provide some future research directions for the modern
placement problem.

I. INTRODUCTION

The VLSI placement problem is to place objects into a fixed
die such that there are no overlaps among objects and some cost
metric (e.g., wirelength, routability) is optimized. It is a major step
in physical design that has been studied for decades. Yet, it has
attracted much attention recently because recent studies show that
existing placers still cannot produce near optimal solutions. As a
result, many new academic placers were invented in the recent
years. Further, modern VLSI design challenges have reshaped the
placement problem. As the feature size keeps shrinking, billions
of transistors (or millions of standard cells) can be integrated in a
single chip. Meanwhile, the intellectual property (IP) modules and
pre-designed macro blocks (such as embedded memories, analog
blocks, pre-designed datapaths, etc.) are often reused. As a result,
advanced VLSI designs often contain a large number (hundreds)
of macros of very different sizes from each other and the standard
cells, and some of the macros may be preplaced in the chip. The
dramatically increasing interconnect complexity further imposes
routing difficulty. In addition to wirelength, therefore, modern
placement shall also consider the density constraint.

To solve such the modern large-scale mixed-size placement
problem, many academic placers were invented in recent years.
Those placers can be classified into three major categories: (1)
the analytical approach [3] [5] [11] [16] [22] [27], (2) the min-cut
partitioning based approach [2] [4] [21], and (3) the hybrid ap-
proach [13] [25]. Among those approaches, the analytical placers
have shown their superior efficiency and quality.

We shall first introduce the major techniques employed in the
leading academic placer, NTUplace3 [5], which is based on the
analytical technique and can handle modern large-scale mixed-
size placement with wirelength, preplaced blocks, and density
considerations. Like most modern placers, NTUplace3 consists of
three major stages: global placement, legalization, and detailed
placement. The global placement of NTUplace3 is based on
the multilevel framework which applies a two-stage technique
of bottom-up coarsening followed by top-down uncoarsening.
The objective function is based on the log-sum-exp wirelength
model 1 proposed by Naylor et al. [20]. To handle preplaced
blocks, NTUplace3 applies a two-stage smoothing technique,
Gaussian smoothing followed by level smoothing, to facilitate
block spreading during global placement. The density is controlled
mainly by cell spreading during global placement and cell sliding
during detailed placement. We further use the conjugate gradient

1The log-sum-exp wirelength model is a patented technology [20] and
use requires a license from Synopsys.

method with dynamic step-size control to speed up the global
placement and apply macro shifting to find better macro positions.

During legalization, NTUplace3 removes the overlaps and
places all standard cells into rows using a priority-based scheme
based on block sizes and locations. A look-ahead legalization
scheme is also incorporated into global placement to facilitate
the legalization process. During detailed placement, NTUplace3
adopts cell matching and cell swapping to minimize the wire-
length, and cell sliding to optimize the density.

Although the recent academic placers have made significant
progress in the large-scale mixed-size placement problem, there
are still many emerging challenges for this problem. As the num-
ber of macros increases dramatically, the single-stage methodology
of integrated macro and standard-cell designs incurs significant
difficulties in legality and complexity. Other design methodologies
would be needed to tackle the increasing design complexity. In
addition to wirelength, other cost metrics such as routability,
timing, power, and thermal should also be addressed to handle
the increasing integration complexity and operation frequency.
We shall discuss these placement challenges and related research
directions.

The remainder of this paper is organized as follows. Section II
gives the analytical model used in NTUplace3. Section III explains
the placement techniques employed in NTUplace3. Section IV
reports the experimental results. Section V presents some future
research directions. Finally, conclusions are given in Section VI.

II. ANALYTICAL PLACEMENT MODEL

Circuit placement can be formulated as a hypergraph H =
(V, E) placement problem. Let vertices V = {v1, v2, ..., vn}
represent blocks and hyperedges E = {e1, e2, ..., em} represent
nets. Let xi and yi be the respective x and y coordinates of the
center of the block vi, and ai be the area of the block vi. The
circuit may contain some preplaced blocks which have fixed x and
y coordinates and are not movable. We intend to determine the
optimal positions of movable blocks so that the total wirelength
is minimized and there is no overlap among blocks.

xi, yi center coordinate of block vi

wi, hi width and height of block vi

wb, hb width and height of bin b
Mb maximum area of movable blocks in bin b
Db potential (area of movable blocks) in bin b
Pb base potential (preplaced block area) in bin b
tdensity target placement density

Fig. 1. Notation used in this paper.

To evenly distribute the blocks, we divide the placement region
into uniform non-overlapping bin grids. Then, the global place-
ment problem can be formulated as a constrained minimization
problem as follows:

min W (x,y)
s.t. Db(x,y) ≤ Mb, for each bin b,

(1)

where W (x,y) is the wirelength function, Db(x,y) is the po-
tential function that is the total area of movable blocks in bin b,
and Mb is the maximum area of movable blocks in bin b. Mb can
be computed by Mb = tdensity(wbhb − Pb), where tdensity is
a user-specified target density value for each bin, wb (hb) is the
width (height) of bin b, and Pb is the base potential that equals

the preplaced block area in bin b. Note that Mb is a fixed value
as long as all preplaced block positions are given and the bin size
is determined. Figure 1 gives the notation used in this paper.

The wirelength W (x,y) is defined as the total half-perimeter
wirelength (HPWL) given by

W (x,y) =
∑
net e

(max
vi,vj∈e

|xi − xj | + max
vi,vj∈e

|yi − yj |). (2)

Since W (x,y) is non-convex, it is hard to minimize it directly.
Thus, several smooth wirelength approximation functions are
proposed in the literature. In NTUplace3, we apply the log-sum-
exp wirelength model [20],

γ
∑
e∈E

(log
∑
vk∈e

exp(xk/γ) + log
∑
vk∈e

exp(−xk/γ) +

log
∑
vk∈e

exp(yk/γ) + log
∑
vk∈e

exp(−yk/γ)). (3)

As γ ≈ 0, log-sum-exp wirelength gives a good approximation to
the HPWL [20].

The function Db(x,y) can be expressed as Db(x,y) =∑n

v∈V
Px(b, v)Py(b, v), where Px and Py are the overlap func-

tions between bin b and block v along the x and y directions. Since
density Db(x,y) is neither smooth nor differentiable, APlace [16]
uses bell-shaped functions px and py for each block to smooth the
density Px and Py , respectively. In [16], the bell-shaped potential
function px is defined by

px(b, v) ={
1 − ad2

x, 0 ≤ dx ≤ wv/2 + wb

b(dx − 2wb − 2wg)2, wv/2 + wb ≤ dx ≤ wv/2 + 2wb

0, wv/2 + 2wb ≤ dx,
(4)

where
a = 4/((wv + 2wb)(wv + 4wb))
b = 2/(wb(wv + 4wb)).

(5)

Here, wb is the bin width, wv is the block width, and dx is the x
direction difference between the block v and the center of the bin
b. The range of block’s potential is wv + 2wb in the x direction.
The smooth y-potential function py(b, v) can be defined similarly.

By doing so, the non-smooth function Db(x,y) can be re-
placed by the smooth one, D′

b(x,y) =
∑n

v∈V
cvpx(b, v)py(b, v),

where cv is a normalization factor so that the total potential of a
block equals its area.

A quadratic penalty method is used to solve Equation (1),
implying that we solve a sequence of unconstrained minimization
problems of the form

min W (x,y) + λ
∑

b

(D′
b(x,y) − Mb)

2 (6)

with increasing λ’s. The solution of the previous problem is used
as the initial solution for the next one. We solve the unconstrained
problem in Equation (6) by the conjugate gradient (CG) method.
We observe that CG with line search in [16] is not efficient enough
since the line search spends most running time on the minimization
process. Therefore, we further use CG with a dynamic step
size to minimize Equation (6). The dynamic step-size control,
to be explained in the next Section, leads to significantly better
efficiency.

III. CORE TECHNIQUES OF NTUPLACE3

Like many modern placers, NTUplace3 consists of three major
steps: global placement, legalization, and detailed placement.
Global placement evenly distributes the blocks and finds the
better position for each block to minimize the target cost (e.g.,
wirelength). Then, legalization removes all overlaps among blocks
and places standard cells into rows. Finally, detailed placement
further refines the solution quality.

In the following sections, we describe the underlying tech-
niques used in the global placement, legalization, and detailed
placement of NTUplace3.

Algorithm: Multilevel Global Placement
Input:

hypergraph H0: mixed-size circuit
nmax: the maximum block number in the coarsest level

Output:
(x∗, y∗): optimal block positions

01. level = 0;
02. while (BlockNumber(Hlevel) > nmax)
03. level++;
04. Hlevel = FirstChoiceClustering(Hlevel−1);
05. initialize block positions by SolveQP (Hlevel);
06. for currentLevel = level to 0
07. initialize bin grid size nbin ∝ √

nx;
08. initialize base potential for each bin;

09. initialize λ0 =

∑
|∂W (x,y)|∑
|∂D′

b
(x,y)|

; m = 0;

10. do
11. solve min W (x, y) + λm

∑
(D′

b(x, y) − Mb)
2;

12. m + +;
13. λm = 2λm−1;
14. if (currentLevel == 0 & overflow ratio < 10%)
15. call LookAheadLegalization() and

save the best result;
16. compute overflow ratio;
17. until (spreading enough or

no further reduction in overflow ratio)
18. if (currentLevel == 0)
19. restore the best look-ahead result;
20. else
21. call MacroShifting();
22. decluster and update block positions.

Fig. 2. Our global placement algorithm.

A. Global Placement
As mentioned earlier, the global placement is based on the

multilevel framework and the log-sum-exp wirelength model. A
two-stage smoothing technique is used to handle preplaced blocks.
We further use the conjugate gradient method with dynamic step-
size control to speed up the global placement and apply macro
shifting to find better macro positions. Now we detail those
techniques.

1) Multilevel Framework: We use the multilevel framework
for global placement to improve the scalability. Our algorithm
is summarized in Figure 2. The coarsening stage (lines 1–4)
iteratively clusters the blocks based on connectivity/size to reduce
the problem size until a given threshold is reached. Then, we
find an initial placement (line 5). In the uncoarsening stage (lines
6–22), it iteratively declusters the blocks and refines the block
positions to reduce the objective function. The declustering process
continues until all blocks are evenly distributed. In NTUplace3,
the evenness of block distribution is measured by the overflow
ratio, which is defined as follows:

overflow ratio =

∑
Bin b

max(Db(x,y) − Mb, 0)∑
total movable area

. (7)

The global placement stage stops when the overflow ratio is less
than a user-specified target value, which is 0 by default.

2) Base Potential Smoothing: Preplaced blocks pre-define
the base potential, which significantly affects block spreading.
Since the base potential Pb is not smooth, it incurs mountains
that prevent movable blocks from passing through these regions.
Therefore, we shall smooth the base potential to facilitate block
spreading. We first use the Gaussian function to smooth the base
potential change, remove the rugged regions in the base potential,
and then smooth the base potential level so that blocks can spread
to the whole placement region.

The base potential of each block can be calculated by the bell-
shaped function. However, we observe that the potential generated
by the bell-shaped function has “valleys” among the adjacent
regions of blocks, and these regions do not have any free space
but their potentials are so low that a large number of blocks
may spread to these regions. To avoid this problem, we use
the Gaussian function to smooth the base potential. The two-
dimensional Gaussian is given by

G(x, y) =
1

2πσ2
e
− x2+y2

2σ2 , (8)

where σ is the standard deviation of the distribution. Applying
convolution to the Gaussian function G with the base potential
P , P ′(x, y) = G(x, y) ∗ P (x, y), we can obtain a smoother base

(a) (b) (c)

Fig. 3. (a) The density profile of newblue2. (b) The base potential after Gaussian smoothing results in a better smoothing potential. (c) The base
potential after level smoothing.

potential P ′. Gaussian smoothing works as a low-pass filter, which
can smooth the local density change.

After the Gaussian smoothing, we apply another landscape
smoothing function [8] [14] to reduce the potential levels. The
smoothing function P ′′(x, y) is defined as follows:

P ′′(x, y) =

{
P ′ + (P ′(x, y) − P ′)δ if P ′(x, y) ≥ P ′

P ′ − (P ′ − P ′(x, y))δ if P ′(x, y) ≤ P ′,
(9)

where δ ≥ 1. Level smoothing reduces “mountain” (high potential
regions) heights so that blocks can spread to the whole placement
area smoothly. Figure 3 shows the smoothing process of the circuit
newblue2.

3) Conjugate Gradient Search with Dynamic Step Size:
We use the conjugate gradient (CG) method with dynamic step size
instead of line search to minimize Equation (6). After computing
the conjugate gradient direction dk, the step size αk is computed
by αk = s/||dk||2, where s is a user-specified scaling factor. By
doing so, we can limit the step size of block spreading since the
total quadratic Euclidean movement is fixed,∑

vi∈V

(∆x2
i + ∆y2

i) = ||αkdk||22 = s2, (10)

where ∆xi and ∆yi are the respective amounts of the movement
along the x and y directions for the block vi in each iteration.

To show the effectiveness of the dynamic step-size control, we
performed experiments on adaptec1 with different step sizes. In
Figure 4, the CPU times and HPWLs are plotted as functions of
the step sizes. As shown in Figure 4, the CPU time decreases as
the step size s becomes larger. In contrast, the HPWL decreases
as the step size s gets smaller. The results show that the step size
significantly affects the running time and the solution quality.

Fig. 4. The CPU times and HPWLs resulting from different step sizes
based on the circuit adaptec1.

4) Macro Shifting: In the global placement stage, it is
important to preserve legal macro positions since macros are much
bigger than standard cells and illegal macro positions typically
make legalization much more difficult. To avoid this, we apply
macro shifting at each declustering level of the global placement
stage. Macro shifting moves macros to the closest legal positions.

Integrated within the multilevel framework, only macros with
sizes larger than the average cluster size of the current level are
processed. Then, the legal macro positions provide a better initial
solution for the next declustering level, and those macros are still
allowed to spread at subsequent declustering levels.

B. Legalization
After global placement, legalization removes all overlaps and

places standard cells into rows. We extend the standard-cell
legalization method in [10] to solve the mixed-size legalization
problem. The legalization order of macros and cells are determined
by their x coordinates and sizes (widths and heights). Larger
blocks get the priority for legalization. Therefore, we legalize
macros earlier than standard cells. After the legalization order is
determined, macros are placed to their nearest available positions
and cells are packed into rows with the smallest wirelength.
Despite its simplicity, this macro/cell legalization strategy works
well on all benchmarks.

Recall that we performed block spreading during global place-
ment. It is important to determine when to terminate the block
spreading. If blocks do not spread enough, the wirelength may
significantly be increased after legalization since blocks are over
congested. If blocks spread too much, the wirelength before
legalization may not be good even the legalization step only
increases wirelength a little. This situation becomes even worse
when the density is also considered, since the placement objective
is more complicated.

To improve the legalization quality, we use a look-ahead legal-
ization technique during global placement to make the subsequent
legalization process easier. At the finest level of the multilevel
placement, we apply legalization right after placement objective
optimization in each iteration and record the best result with
the minimum cost (wirelength and density penalty). Although
the look-ahead legalization may take longer running time due to
more iterations of legalization, we can ensure that blocks do not
over spread and thus obtain a better legal placement. As a result,
the look-ahead legalization significantly alleviates the difficulty
in removing the macro and standard-cell overlaps during the later
legalization stage, and eventually leads to a more robust placement
result.

C. Detailed Placement
The detailed placement stage consists of two stages: the

wirelength minimization stage and the density optimization stage.
In the wirelength minimization stage, we apply cell matching and
cell swapping to reduce the total wirelength. In the density opti-
mization stage, we apply the cell sliding technique to reduce the
density overflow in congested regions. In the following, we explain
the cell-matching, cell-swapping, and cell-sliding algorithms.

1) Cell Matching: We extend the window-based detailed
placement (WDP) algorithm [13] and name our approach cell
matching here. The WDP algorithm finds a group of exchangeable
cells inside a given window, and formulates a bipartite matching
problem by matching the cells to the empty slots in the window.
The cost is given by the HPWL difference of a cell in each empty
slot. The bipartite matching problem can be solved optimally in
polynomial time, but the optimal assignment cannot guarantee the
optimal HPWL result because the HPWL cost of a cell to each
empty slot depends on the positions of the other connected cells.
Our cell matching algorithm remedies this drawback by selecting
independent cells at one time to perform bipartite matching. Here
by independent cells, we mean that there is no common net
between any pairs of the selected cells.

2) Cell Swapping: The cell swapping technique selects k
adjacent cells each time to find the best ordering by enumerating
all possible orderings using the branch-and-bound method. Here, k
is a user-specified parameter. In our implementation, we set k = 3
for a good tradeoff between the running time and solution quality.
This process repeats until all standard cells are processed.

3) Cell Sliding: The objective of cell sliding is to reduce the
density overflow in the congested area. We divide the placement
region into uniform non-overlapping bins, and then iteratively
reduce the densities of overflowed bins by sliding the cells
horizontally from denser bins to sparser bins, with the cell order
being preserved. Each iteration consists of two stages: left sliding
and right sliding. In each stage, we calculate the density of each
bin and then compute the area flow fbb′ between bin b and its left
or right neighboring bin b′. Here, fbb′ denotes the desired amount
of cell area to move from bin b to b′. Recall that we define Db

as the total movable cell area in bin b and Mb as the maximum
allowable block area in bin b. If bin b has no area overflow or the
area overflow ratio of b is smaller than b′, that is Db ≤ Mb or
Db/Mb ≤ Db′/Mb′ , we set fbb′ = 0. Otherwise we calculate fbb′
according to the capacity of b′. If bin b′ has enough free space,
we move the overflow area of bin b to b′. Otherwise, we evenly
distribute the overflow area between b and b′. Therefore, fbb′ is
defined by

fbb′ =

{
Db − Mb, if (Mb′ − Db′) ≥ (Db − Mb)
DbMb′−Db′Mb

Mb+Mb′
, otherwise,

(11)
where the second condition of Equation (11) is derived from

Db−
(

Mb +
(Db − Mb + Db′ − Mb′)Mb

Mb + Mb′

)
=

DbMb′ − Db′Mb

Mb + Mb′
.

(12)
After the area flow fbb′ is computed, we sequentially slide the
cells across the boundary between b and b′ until the amount of
sliding area reaches fbb′ or there is no more area for cell sliding.
Then we update Db and Db′ . In the right sliding stage, we start
from the left-most bin of the placement region, and b′ is right
to b. In the left sliding stage, we start from the right-most bin,
and b′ is left to b, accordingly. We iterative slide the cells from
the area overflow regions to sparser regions until no significant
improvement can be obtained.

IV. EXPERIMENTAL RESULTS

The experiment was performed on a Linux PC with an AMD
Opteron 2.6GHz CPU. Table I gives the normalized average
HPWL, DHPWL, CPU time, and score of NTUplace3 and other
state-of-the-art academic placers based on the ISPD’06 placement
contest benchmark suite [1] [19]. The density HPWL (DHPWL)
and the score function are defined as follows:

DHPWL = HPWL × (1 + density penalty),

Score = HPWL × (1 + density penalty + cpu factor).

Among all placers, we obtained both the best average HPWL
and the best average DHPWL. Further, according to the scoring
function in the 2006 ISPD Placement Contest, placers with 2X
(4X) CPU time incur about 4% (8%) penalty. Therefore, our
overall result considering (1) HPWL, (2) density penalty, and
(3) the CPU factor, is the best among all participating placers,
and is about 4%, 5%, and 6% better than the three leading
placers, Kraftwerk [22], mPL6 [3], and NTUplace2 respectively.
See Figure 5 for the placement result of the circuit newblue7.

V. FUTURE CHALLENGES

Although recent academic placers (e.g., NTUplace3) have
made significant progress in the large-scale mixed-size placement
problem, there are still many emerging challenges arising from
advanced VLSI process technologies. In this section, we present
some potential research directions for modern VLSI placement.

A. Macro Placement
We can classify the methods for handling the large-scale

mixed-size designs into three major categories: (1) simultaneous
macro and standard-cell placement: Most existing mixed-sized
placers (e.g., APlace, Kraftwerk, mPL, NTUplace3, etc.) employ
this single-stage methodology for macro and standard-cell place-
ment. As the number of macros increases dramatically due to the
pervasive use of IP modules, however, the methodology incurs
significant difficulties in legality and complexity. Consequently,

Fig. 5. A resulting placement of the circuit newblue7.

TABLE I

HPWL, DHPWL, CPU TIME, AND SCORE COMPARISON BASED ON

THE ISPD’06 BENCHMARKS

Placer HPWL DHPWL CPU time Score

NTUplace3 [5] 1.00 1.00 1.00 0.99
Kraftwerk [22] 1.12 1.08 0.59 1.03

mPL6 [3] 1.06 1.01 2.08 1.04
NTUplace2 [13] 1.04 1.02 1.92 1.05

mFAR [11] 1.14 1.10 1.38 1.11
APlace3 [17] 1.13 1.10 3.64 1.16
Dragon [25] 1.36 1.29 0.51 1.23

FastPlace [27] 1.21 1.38 0.58 1.33
DPlace 1.37 1.41 0.75 1.36

Capo [21] 1.41 1.34 2.20 1.39

a robust legalizer is desirable for this method. (2) constructive
macro placement: Most partitioning based placers (e.g., Capo,
PATOMA [7]) keep macro overlap-free during the placement pro-
cess by recursively partitioning the chip/macros into subregions.
An intrinsic limitation of this hierarchical approach lies in the
lack of the global interaction among different subregions/macros,
and thus the solution quality is also limited, especially for the
placement instances with low utilization rates. (3) two-stage macro
placement: The two-staged approach consists of macro placement
followed by standard-cell placement. This approach is more robust
in finding legal placement, and is thus widely used in the industry.
For this approach, it is often needed to obtain a prototype of
macro placement with the consideration of standard-cell positions
to guide the legalization of the macros. It is thus desirable to
develop an effective macro placement algorithm that can consider
the interactions among macros as well as between macros and
standard cells. See Figure 6(a) for an illegal placement for the
circuit newblue3 and Figure 6(b) for a legal placement with the
special consideration of macros.

Further, there are many other issues that need to be consid-
ered for real-world macro placement. For example, placement
blockages and pre-placed macros, performance, hierarchy, and
region constraints, macro orientations, and (power) pin positions,

(a) (b)

Fig. 6. (a) An illegal placement of the circuit newblue3. (b) A legal
placement generated by NTUplace3 with the special consideration of
macros.

and so on. There are substantial research opportunities along this
direction.

B. Routability-Driven Placement
Most existing placement algorithms focus on total wirelength

minimization to obtain better circuit performance and smaller
layout area. Despite the pervasive use of the half-perimeter
wirelength objective, there is a significant mismatch between
wirelength and congestion objectives in placement. Although most
routing algorithms can handle congestion, often routing congestion
violations cannot be totally removed if the given placement does
not consider routability. Therefore, it is of particular significance
to consider routability during placement, especially for modern
VLSI designs with very large-scale interconnections.

Previous works [16] [18] [28] allocate white spaces into con-
gested regions for better routability. However, persevering white
spaces does not solve the congestion problem effectively. Another
issue is that, due to the lack of interactions between placement and
routing, routers may not honor the resource allocation obtained
from placers. Thus, a potential research direction is to develop
a fast and accurate routing demand estimation and incorporate it
into the placement stage, or even a simultaneous placement and
routing algorithm for modern VLSI designs if the time complexity
is tractable.

C. Timing-Driven Placement
In high-performance circuits, a large portion of timing opti-

mization is performed in the placement stage. Traditional place-
ment algorithms usually achieve the timing goal via wirelength
minimization. Nevertheless, there is a significant gap between
wirelength and actual delay, so many methods have been proposed
recently to tackle this challenge. Those proposed timing-driven
placement methods can be classified into two major categories: (1)
path-based and (2) net-based methods. The path-based methods [9]
[12] [23] [24] try to control critical path delays directly, but
they might incur prohibitively high time complexity for modern
large-scale circuits due to their exponentially growing numbers
of paths. The net-based method [15], in contrast, transfers the
timing constraint of each path into net weights. However, since
the net-based method ignores the global views of a full path,
it is less accurate for the timing control. Due to the limitations
in existing timing-driven placement algorithms, it is desirable to
further explore the timing optimization techniques with lower
complexity and higher controllability for placement.

D. Power-Aware Placement
Power consumption has long become the first-order cost metric

not only for hand-held devices for longer battery life, but also for
high-performance applications for lower heat dissipation (and thus
cooling cost). Previous works, like Cheon et al. [6], proposed
to reduce the power consumption during the placement stage.
Moreover, to further reduce the power consumption under the
performance constraint, multiple supply voltages (MSV’s) [26]
are widely used for low-power designs, and bring up many new
research opportunities in various design stages. Integration of
voltage assignment and placement is essential to further reduce
the power consumption for MSV designs.

E. Thermal Placement
As the process technology advances, the feature size keeps

shrinking and thus the integration density keeps increasing while
the clock frequency keeps rising. As a result, the increased
power density significantly raises the chip temperature. However,
reducing the power consumption alone is not sufficient to reduce
the chip temperature, since the power density is also a dominant
factor. Therefore, it is desirable to develop new techniques that can
evenly spread hot blocks/cells over the whole placement region to
lower the chip temperature and increase the chip reliability.

VI. CONCLUSIONS

Modern VLSI design challenges have reshaped the placement
problem. In this paper, we have presented example techniques to
tackle the challenges arising from large-scale mixed-size circuit
designs with the wirelength optimization. Although significant
progress has been made in placement research, modern circuit
designs have induced many more challenges and opportunities
for future research on macro placement and routability-, timing-
, power-, and/or thermal-driven optimization of the placement
problem.

VII. ACKNOWLEDGMENTS

This work was partially supported by National Science Council
of Taiwan under Grant No’s NSC 95-2221-E-002-372, NSC 95-
2221-E-002-374, and NSC 95-2752-E-002-008-PAE.

REFERENCES

[1] ISPD 2006 Program. http://www.ispd.cc/program.html.
[2] A. R. Agnihotri, S. Ono, and P. H. Madden. Recursive bisection

placement: Feng Shui 5.0 implementation details. In Proc. of ISPD,
pages 230–232, 2005.

[3] T. Chan, J. Cong, J. Shinnerl, K. Sze, and M. Xie. mPL6: Enhanced
multilevel mixed-size placement. In Proc. of ISPD, pages 212–214,
2006.

[4] T.-C. Chen, T.-C. Hsu, Z.-W. Jiang, and Y.-W. Chang. NTUplace: a
ratio partitioning based placement algorithm for large-scale mixed-
size designs. In Proc. of ISPD, pages 236–238, 2005.

[5] T.-C. Chen, Z.-W. Jiang, T.-C. Hsu, H.-C. Chen, and Y.-W. Chang.
A high-quality mixed-size analytical placer considering preplaced
blocks and density constraints. In Proc. of ICCAD, 2006.

[6] Y. Cheon, P.-H. Ho, A. B. Kahng, S. Reda, and Q. Wang. Power-
aware placement. In Proc. of DAC, pages 795–800, 2005.

[7] J. Cong, M. Romesis, and J. R. Shinnerl. Fast floorplanning by
look-ahead enabled recursive bipartitioning. In Proc. of ASPDAC,
2005.

[8] J. Gu and X. Huang. Efficient local search with search space
smoothing: A case study of the traveling salesman problem (TSP).
Trans. on SMC, 24(5):728–735, 1994.

[9] T. Hamada, C. K. Cheng, and P. M. Chau. Prime: A placement tool
using a piece wise linear resistive network approach. In Proc. of
DAC, pages 531–536, 1993.

[10] D. Hill. US patent 6,370,673: Method and system for high speed
detailed placement of cells within an intergrated circuit design. 2002.

[11] B. Hu, Y. Zeng, and M. Marek-Sadowska. mFAR: fixed-points-
addition-based VLSI placement algorithm. In Proc. of ICCAD, pages
239–241, 2006.

[12] M. Jackson and E. S. Kuh. Performance-driven placement of cell
based ic’s. In Proc. of DAC, pages 370–375, 1989.

[13] Z.-W. Jiang, T.-C. Chen, T.-C. Hsu, H.-C. Chen, and Y.-W. Chang.
NTUplace2: A hybrid placer using partitioning and analytical tech-
niques. In Proc. of ISPD, pages 215–217, 2006.

[14] A. B. Kahng, S. Reda, and Q. Wang. APlace: A general analytic
placement framework. In Proc. of ISPD, pages 233–235, 2005.

[15] A. B. Kahng and Q. Wang. An analytic placer for mixed-size
placement and timing-driven placement. In Proc. of ICCAD, pages
565–572, 2004.

[16] A. B. Kahng and Q. Wang. Implementation and extensibility of an
analytic placer. IEEE Trans. on CAD, 24(5), May 2005.

[17] A. B. Kahng and Q. Wang. A faster implementation of APlace. In
Proc. of ISPD, pages 218–220, 2006.

[18] C. Li, M. Xie, C.-K. Koh, J. Cong, and P. H. Madden. Routability-
driven placement and white space allocation. In Proc. of ICCAD,
pages 394–401, 2004.

[19] G.-J. Nam, C. J. Aplert, and P. G. Villarrubia. The ISPD 2006
placement contest and benchmark suite. In Slides presented at
ISPD’06, 2006.

[20] W. C. Naylor, R. Donelly, and L. Sha. US patent 6,301,693: Non-
linear optimization system and method for wire length and dealy
optimization for an automatic electric circuit placer. 2001.

[21] J. Roy, D. Papa, A. Ng, and I. Markov. Satisfying whitespace
requirements in top-down placement. In Proc. of ISPD, pages 206–
208, 2006.

[22] P. Spindler and F. M. Johannes. Fast and robust quadratic placement
combined with an exact linear net model. In Proc. of ICCAD, 2006.

[23] A. Srinivasan, K. Chaudhary, and E. S. Kuh. Ritual: Performance
driven placement algorithm for small cell ics. In Proc. of ICCAD,
pages 48–51, 1991.

[24] W. Swartz and C. Sechen. Timing driven placement for large standard
cell circuits. In Proc. of DAC, pages 211–215, 1995.

[25] T. Taghavi, X. Yang, B.-K. Choi, M. Wang, and M. Sar-
rafzadeh. Dragon2006: Blockage-aware congestion-controlling
mixed-size placer. In Proc. of ISPD, pages 209–211, 2006.

[26] K. Usami and M. Horowitz. Clustered voltage scaling technique for
low-power design. In Proc. of ISQED, pages 3–8, 1995.

[27] N. Viswanathan, M. Pan, and C. Chu. FastPlace 2.0: An efficient
analytical placer for mixed-mode designs. In Proc. of ASPDAC,
pages 195–200, 2006.

[28] X. Yang, B.-K. Choi, and M. Sarrafzadeh. Routability-driven white
space allocation for fixed-die standard-cell placement. In Proc. of
ISPD, pages 42–47, 2002.

