# Chapter 10 Feedback

- 10.1 The General Feedback Structure
- 10.2 Some Properties of Negative Feedback
- 10.7 The Stability Problem
- 10.8 Effect of Feedback on the Amplifier Poles
- 10.9 Stability Study Using Bode Plots
- 10.10 Frequency Compensation



- ◆Assume Xo increases in magnitude →Xf increases, too
- →Xi decreases →Xo decreases
- In the steady state, Xo will be constant, too.

#### 10.1 The General Feedback Structure

## 10.1.1 Signal Flow Graph 10.1.2 The Closed-Loop Gain



$$x_o = A \cdot x_i$$
 (A: open-loop gain)

Let  $x_f = \beta x_o$ ,  $\beta$  feedback factor

$$\Rightarrow$$
  $x_i = x_s - x_f$  (x<sub>i</sub>: error signal)

by 
$$x_o = A \cdot (x_s - \beta x_o)$$

$$\Rightarrow$$
 closed-loop gain  $A_f \equiv \frac{X_o}{X_s} = \frac{A}{1 + \beta A}$ 

where A: the open-loop gain;

 $\beta \cdot A$ : loop gain

 $1+\beta \cdot A$ : amount of feedback

if 
$$\beta \cdot A \gg 1$$

$$\Rightarrow$$
 A<sub>f</sub>  $\approx \frac{1}{\beta}$  (independent of A!)

#### 10.1.3 Loop Gain



- 1. Let  $x_{s} = 0$
- $2. x_r = -\beta \cdot \mathbf{A} \cdot x_t$

(negative feedack  $\Rightarrow x_r$  and  $x_t$  are out of phase)

3. 
$$\beta \cdot A \equiv -\frac{x_r}{x_t}$$

 $(\beta \cdot A \text{ is positive for negative feedback systems})$ 

### Example 10.1



$$\beta = \frac{V_f}{V_o} = \frac{R_1}{R_1 + R_2}$$

$$A_f = \frac{A}{1 + A\beta}$$

(a) If  $A=10^4$  and  $A_f = 10 \Rightarrow$  find  $R_2 / R_1$ ?

If 
$$A\beta >> 1 \Rightarrow A_f \approx 1/\beta \Rightarrow \frac{R_1 + R_2}{R_1} = 10$$

$$\Rightarrow \frac{R_2}{R_1} = 9$$



Exactly  $\beta = 0.0999$ 

$$\Rightarrow \frac{R_2}{R_1} = 9.01$$

(b) if A is reduced by 20%;  $A=0.8 \cdot 10^4$ 

$$A_f = \frac{A}{1 + A\beta}$$

$$= \frac{0.8 \cdot 10^4}{1 + 0.8 \cdot 10^4 \cdot 0.0999} = 9.9975 \ V/V$$

$$\therefore A_f \quad 10 \Longrightarrow 9.9975 \Longrightarrow 0.025\%$$

# **Table 10.1** Summary of the Parameters and Formulas for the Ideal Feedback-Amplifier Structure of Fig. 10.1

- Open-loop gain  $\equiv A$
- Feedback factor  $\equiv \beta$
- Loop gain  $\equiv A\beta$  (positive number)
- Amount of feedback  $\equiv 1 + A\beta$
- Closed-loop gain  $\equiv A_f = \frac{x_o}{x_s} = \frac{A}{1 + A\beta}$
- Feedback signal  $\equiv x_f = \frac{A\beta}{1 + A\beta} x_s$
- Input signal to basic amplifier  $\equiv x_i = \frac{1}{1 + A\beta} x_s$
- Closed-loop gain as a function of the ideal value  $\frac{1}{\beta}$ :  $A_f = \left(\frac{1}{\beta}\right) \frac{1}{1 + 1/A\beta}$
- For large loop gain,  $A\beta \gg 1$ ,

$$A_f \simeq rac{1}{eta} \qquad \qquad x_f \simeq x_s \qquad \qquad x_i \simeq 0$$

## 10.2 Some Properties of Negative Feedback

- 1. Desensitize the gain: make the gain insensitive to temperature effect.
- 2. Reduce nonlinear distortion: make the gain constant.
- Reduce the effect of noise: minimize the unwanted noise.
- **4. Control the input and output impedances** : e.g. increase i/p impedance decrease o/p impedance.
- 5. Extend the bandwidth of the amplifier.

All the desirable properties are at the expense of a reduction in gain.

The gain reduction factor → amount of feedback

So, negative feedback→ tradeoff gain for the desirable properties

## 10.2.1 Gain Desensitivity:

Since 
$$A_f = \frac{A}{1+\beta A}$$

$$\frac{dA_f}{dA} = \frac{1}{1+\beta \cdot A} \cdot 1 + A \cdot \frac{d}{dA} \left(\frac{1}{1+\beta \cdot A}\right)$$

$$= \frac{1}{1+\beta \cdot A} - \frac{\beta \cdot A}{(1+\beta \cdot A)^2}$$

$$= \frac{1}{(1+\beta \cdot A)^2}$$

$$\Rightarrow \frac{dA_f}{A_f} = \frac{1}{1+\beta \cdot A} \cdot \frac{dA}{A} \qquad \text{(Note: } \frac{dA}{A} \text{ is the gain variation)}$$

 $1 + \beta \cdot A$  is known as desensitivity factor

#### 10.2.2 Bandwidth Extension:

An amplifier which has a single pole:

$$A(s) = \frac{A_{M}}{1 + \frac{s}{\omega_{H}}}$$

and

$$A_{f}(s) = \frac{A(s)}{1 + \beta \cdot A(s)} = \frac{\frac{A_{M}}{1 + \frac{s}{\omega_{H}}}}{1 + \beta \cdot \frac{A_{M}}{1 + \frac{s}{\omega_{H}}}} = \frac{A_{M}}{1 + \beta \cdot A_{M}} \cdot \frac{1}{1 + \frac{s}{\omega_{H}}(1 + \beta \cdot A_{M})}$$

the midband gain of the feedback amplifier is  $\frac{A_M}{1+\beta\times A_M}$ ; the equivalent upper-3dB frequency is  $\omega_{Hf} = \omega_H (1+\beta\cdot A_M)$ 

## **Bandwidth Extension: (cont.)**

the upper 3-dB frequency becomes

$$\omega_{\rm Hf} = \omega_H (1 + \beta \cdot A_{\scriptscriptstyle M})$$

Simialrly, the lower 3-dB frequency becomes

$$\omega_{Lf} = \frac{\omega_L}{1 + \beta \cdot A_M}$$

while the gain-bandwidth product is a constant value.

$$A(s) = \frac{A_M}{1 + \frac{\omega_L}{s}} \Rightarrow A_f(s) = \frac{A(s)}{1 + \beta \cdot A(s)} \Rightarrow \omega_{Lf} = \frac{\omega_L}{1 + \beta \cdot A_M}$$



#### •10.2.3 Interference Reduction:



Signal-to-noise ratio  $S/N = V_s/V_n$ 

•Using a "clean" amplifier stage precede the noisy stage! e.g. low-noise amplifier (LNA)

#### **Noise Reduction:**

$$\begin{split} &V_o = V_s \cdot \frac{A_1 A_2}{1 + \beta \cdot A_1 A_2} + V_n \, \frac{A_1}{1 + \beta \cdot A_1 A_2} & \text{Ex. In audio application:} \\ &\Rightarrow \, \frac{S}{N} = \frac{V_s}{V_n} A_2 & \text{Pre-amplifier + Power Am} \end{split}$$

Pre-amplifier + Power Amplifier!



13

#### 10.2.4 Reduction in Nonlinear Distortion:

**Ideally Linear** 



Illustrating the application of negative feedback to reduce the nonlinear distortion in amplifiers. Curve (a) shows the amplifier transfer characteristic without feedback. Curve (b) shows the characteristic with negative feedback ( $\beta$ = 0.01) applied.

#### 4. Control the input and output impedances



$$I_{X} = \frac{V_{X} - A(V_{+} - V_{-})}{R_{O}} + \frac{V_{X}}{R_{1} + R_{2}} = \frac{V_{X} - A(0 - \frac{R_{1}}{R_{1} + R_{2}} V_{X})}{R_{O}} + \frac{V_{X}}{R_{1} + R_{2}}$$

$$\Rightarrow \frac{V_{X}}{I_{X}} = \frac{R_{O}}{1 + A \frac{R_{1}}{R_{1} + R_{2}}} + \frac{R_{O}}{R_{1} + R_{2}} \approx \frac{R_{O}}{1 + A \frac{R_{1}}{R_{1} + R_{2}}}$$

$$\Rightarrow \frac{V_{X}}{I_{X}} = \frac{R_{O}}{1 + A\beta}, \quad \beta = \frac{R_{1}}{R_{1} + R_{2}}$$

## 10.7 The Stability Problem

## 10.7.1 Transfer Function of the Feedback Amplifier

A(s) open-loop transfer function

 $A_{\rm f}$ (s) closed-loop transfer function

 $\beta(s)$  feedback transfer function

$$\mathbf{A}_{\mathbf{f}}(\mathbf{s}) = \frac{\mathbf{A}(\mathbf{s})}{1 + \beta(\mathbf{s}) \cdot \mathbf{A}(\mathbf{s})}$$

$$\begin{split} \mathbf{A}_{\mathbf{f}}(\mathbf{s}) &= \frac{\mathbf{A}(\mathbf{s})}{1 + \beta(\mathbf{s}) \cdot \mathbf{A}(\mathbf{s})} \\ \mathbf{A}_{\mathbf{f}}(\mathbf{j}\boldsymbol{\omega}) &= \frac{\mathbf{A}(\mathbf{j}\boldsymbol{\omega})}{1 + \beta(\mathbf{j}\boldsymbol{\omega}) \cdot \mathbf{A}(\mathbf{j}\boldsymbol{\omega})} = \frac{\mathbf{A}(\mathbf{j}\boldsymbol{\omega})}{1 + \mathbf{L}(\mathbf{j}\boldsymbol{\omega})} \text{ and } \mathbf{L}(\mathbf{j}\boldsymbol{\omega}) = \left|\beta(\mathbf{j}\boldsymbol{\omega}) \cdot \mathbf{A}(\mathbf{j}\boldsymbol{\omega})\right| \cdot \mathbf{e}^{\mathbf{j} \cdot \boldsymbol{\varphi}(\boldsymbol{\omega})} \end{split}$$

at DC, L= $\beta$ ·A should be a positive number (: negative feedback);

**at** 
$$\omega = \omega_{180}$$
,  $\phi(j\omega_{180}) = 180^{\circ}$ 

 $\beta(j\omega_{180}) \cdot A(j\omega_{180})$  is real and negative

- 1.  $|\beta(j\omega_{180}) \cdot A(j\omega_{180})| < 1$ , feedback is positive & system is stable
- 2.  $\beta(j\omega_{180}) \cdot A(j\omega_{180}) = -1$ , oscillator (::1+ $\beta$ A=0)
- 3.  $|\beta(j\omega_{180}) \cdot A(j\omega_{180})| > 1$ , oscillations will grow in amplitude

## 10.7.2 The Nyquist Plot

- •How to check at some  $\omega$  such that  $|L(j\omega)|=1$  and  $\phi=180^\circ$ .
- •The Nyquist plot → the polar plot of loop gain (vs. frequency)



The Loop Gain:

$$L(j\omega) = |\beta(j\omega) \cdot A(j\omega)| \cdot e^{j\phi(\omega)}$$

The Nyquist plot intersects the negative real axis at frequency  $\omega_{180^{\circ}}$ .

# 10.8. Effect of Feedback on Amplifier Poes10.8.1 Stability and Pole Location

Consider an amplifier with a pole pair at  $s = \sigma_0 \pm j \omega_n$ After a disturbance,

$$v(t) = e^{\sigma_0 t} [e^{+j\omega_n t} + e^{-j\omega_n t}] = 2e^{\sigma_0 t} \cos(\omega_n t)$$



Relationship between pole location and transient response.



Relationship between pole location and transient response.

## 10.8.2 Poles of the Feedback Amplifier

The characteristic equation of the feedback loop:

$$1 + \beta(s) \cdot A(s) = 0$$

zeros of the characteristic equation  $\Rightarrow$  poles of the feedback amplifier.

$$(:: A_f = \frac{A(s)}{1 + \beta(s) \times A(s)} \Leftrightarrow \frac{zeros}{poles})$$

## 10.8.3 Amplifier with a Single-Pole Response

open-loop transfer function : A(s) = 
$$\frac{A_0}{1 + \frac{s}{\omega_p}}$$

closed-loop transfer function: 
$$A_f(s) = \frac{\frac{A_0}{1 + \beta \cdot A_0}}{1 + \frac{s}{\omega_p (1 + \beta \cdot A_0)}}$$

- $\Rightarrow$  The feedback moves the pole along the negative real axis to a frequency  $\omega_{pf}$ ,  $\omega_{pf} = \omega_p (1 + \beta \cdot A_0)$
- ⇒ At lower frequency, the gain reduction is

$$20\log(A_0) - 20\log(A_f) = 20\log(\frac{A_0}{A_f}) = 20\log(1 + \beta \cdot A_0)$$

When  $\omega >> \omega_p (1 + \beta \cdot A_0)$ ,  $A_f(s) \approx A(s)$  is the voltage gains.

For any  $\beta$ , this amplifier is unconditionally stable.



Effect of feedback on (a) the pole location and (b) the frequency response of an amplifier having a single-pole open-loop response.

## 10.8.4 Amplifier with a Two-Pole Response

The open-loop transfer function:

$$A(s) = \frac{A_0}{(1 + \frac{s}{\omega_{p1}})(1 + \frac{s}{\omega_{p2}})}$$

The closed-loop poles obtained from  $1 + \beta \cdot A(s) = 0$ , which leads to

$$s^{2} + s(\omega_{p1} + \omega_{p2}) + (1 + \beta \cdot A_{0}) \omega_{p1} \omega_{p2} = 0$$

The closed-loop poles are

$$s = -\frac{1}{2}(\omega_{p1} + \omega_{p2}) \pm \frac{1}{2} \sqrt{(\omega_{p1} + \omega_{p2})^2 - 4(1 + \beta \cdot A_0)\omega_{p1}\omega_{p2}}$$

## •Root-Locus Diagram



Root-locus diagram for a feedback amplifier whose open-loop transfer function has two real poles.

Characteristic Equation of a second-order network:

$$s^{2} + s \cdot \frac{\omega_{0}}{Q} + \omega_{0}^{2} = 0 \Rightarrow s = -\frac{\omega_{0}}{2Q} \pm \frac{\sqrt{(\omega_{0}/Q)^{2} - 4\omega_{0}^{2}}}{2}$$

 $\omega_{0}$  pole frequency, Q : pole Q factor.

$$Q<0.5 \Rightarrow real poles$$

$$Q>0.5 \Rightarrow$$
 complex poles

$$Q \rightarrow \infty \Rightarrow$$
 poles on jw-axis

$$Q = \frac{\sqrt{(1 + \beta \cdot A_0)\omega_{p1}\omega_{p2}}}{\omega_{p1} + \omega_{p2}}$$

$$\omega_o = \sqrt{(1 + \beta \cdot \mathbf{A}_0)\omega_{p1}\omega_{p2}}$$



Definition of  $\omega_0$  and Q of a pair of complex-conjugate poles.

$$s^{2} + s(\omega_{p1} + \omega_{p2}) + (1 + \beta \cdot A_{0}) \omega_{p1} \omega_{p2} = 0 \Rightarrow Q = \frac{\sqrt{(1 + \beta \cdot A_{0})\omega_{p1}\omega_{p2}}}{\omega_{p1} + \omega_{p2}}$$

Q<=0.707 $\rightarrow$  no peak Q = 0.707 (poles at 45° angles) $\rightarrow$ maximally flat



Normalized gain of a two-pole feedback amplifier for various values of Q. Note that Q is determined by the loop gain according to Eq. (10.70).

## Example 10.11: Positive-feedback loop



K = 1.586 Q = 0.707 K = 0  $Q = \frac{1}{3}$  K = 1 Q = 0.5 K = 1.586 Q = 0.707 K = 3

(c)

(a)

By Negative-feedback loop method

L(s)=
$$\frac{-V_r}{V_t} = -K \frac{s/RC}{s^2 + s(3/RC) + (1/RC)^2}$$

Characteristic equation  $\Rightarrow 1+L(s)=0$ 

$$\Rightarrow s^2 + s(\frac{3-K}{RC}) + (\frac{1}{RC})^2 = 0$$

$$\Rightarrow \omega_o = \frac{1}{RC} \text{ and } Q = \frac{1}{3-K}$$

$$s_1, s_2 = -\frac{\omega_0}{2Q} \pm \frac{\sqrt{(\omega_0/Q)^2 - 4\omega_0^2}}{2}$$

Properly choose Q

→ filter or oscillator

By Positive-feedback loop method

$$L(s) = \frac{V_r}{V_r} \Rightarrow 1 - L(s) = 0$$
 26

## 10.8.5 Amplifier with a Three or More Poles



Root-locus diagram for an amplifier with three poles. The arrows indicate the pole movement as  $A_0\beta$  is increased.

## 10.9 Stability Study Using Bode Plots



Bode plot for the loop gain  $A\beta$  illustrating the definitions of the gain and phase margins.

 $\omega_1$ : unity-gain frequency

**at** 
$$\omega = \omega_{180}$$
,  $\phi(j\omega_{180}) = 180^{\circ}$ 

$$\frac{}{\omega \text{ (log scale)}} A(j\omega_1)\beta = 1 \cdot e^{-j\theta}$$

where  $\theta = 180^{\circ}$  – phase margin

## or phase margin $\equiv 180^{\circ} - \theta$

 $\omega$  (log scale) At  $\omega_1$  the closed-loop gain is

$$A_{f}(j\omega_{1}) = \frac{A(j\omega_{1})}{1 + A(j\omega_{1}) \cdot \beta} = \frac{\frac{1}{\beta} \times e^{-j\theta}}{1 + e^{-j\theta}}$$

 $\Rightarrow$  for a phase margin = 45°,  $\theta = 135^{\circ}$ 

$$\Rightarrow \left| A_f(j\omega_1) \right| = \frac{1/\beta}{\left| 1 + e^{-j\theta} \right|} = 1.3 \frac{1}{\beta}$$

## 10.9.3 An Alternative Approach for Investigating Stability:

$$A = \frac{10^5}{(1+j\frac{f}{10^5})(1+j\frac{f}{10^6})(1+j\frac{f}{10^7})}$$

## Its phase can be expressed as

$$\phi = -[tan^{-1}(\frac{f}{10^5}) + tan^{-1}(\frac{f}{10^6}) + tan^{-1}(\frac{f}{10^7})]$$

## By the right figure

$$f_{180} = 3.2 \times 10^6 Hz$$
,  $A(f_{180}) = 58.2 dB$ 

$$180^{0} = -[tan^{-1}(\frac{f_{180}}{10^{5}}) + tan^{-1}(\frac{f_{180}}{10^{6}}) + tan^{-1}(\frac{f_{180}}{10^{7}})]$$

$$f_{180, \text{ exact}} = 3.34 \times 10^{6} \, Hz$$



Stability analysis using Bode plot of |A|.

$$20\log|A(j\omega)| - 20\log(\frac{1}{\beta}) = 20\log|A\beta|$$

(a) 
$$20\log(\frac{1}{\beta}) = 85dB \Rightarrow \beta = 5.623 \times 10^{-5}$$

$$\Rightarrow phase = -108^{\circ} \Rightarrow Phase Margin = 72^{\circ}$$

 $\Rightarrow$  Gain Margin  $\cong 25dB$ 

$$f_t: 100dB - 85dB = 20\log(\frac{f_t}{10^5})$$

$$\Rightarrow f_t \approx 5.6 \times 10^5 \text{Hz}$$

$$(|A\beta|=1 \Rightarrow \text{ exactly } f_t = 4.936 \times 10^5)$$

$$\Rightarrow 100dB \Rightarrow A_0 = 10^5$$

$$A_f = \frac{A_o}{1 + A_o \beta} = 15099 \Longrightarrow 83.6dB$$



Stability analysis using Bode plot of |A|.

$$20\log|A(j\omega)| - 20\log(\frac{1}{\beta}) = 20\log|A\beta|$$

(2) 
$$20\log(\frac{1}{\beta}) = 50dB \Rightarrow unstable \ (\because \text{ phase margin } < 0^{\circ})$$

$$\beta = 0.00316$$

(3) what is the minimum  $20\log(\frac{1}{\beta}) \Rightarrow stable$ 

$$20\log(\frac{1}{\beta})_{\min} = 60dB \Rightarrow \beta = 0.001$$

- (4) 180°-phase point always ocurs on the -40dB/decade segment in Bode plot.
- $\Rightarrow$  The closed-loop amplifier is stable if  $20 dB(1/\beta)$  line intersects the 20 log |A| curve at a point on the -20 dB/decade segment.



# 10.10 Frequency Compensation10.10.1 The Theory

→To modify the open-loop transfer function A(s) of an amplifier having three or more poles so that the closed-loop amplifier is stable!

 $\rightarrow$ A': Introducing a new pole in the function A(s) at a sufficiently low frequency,  $f_D$ . (but mid-band gain is lost too much) ( $\beta$ =0.01, closed-loop gain~40dB)

→A": Eliminate the pole or shift the pole



Frequency compensation for  $\beta = 10^{-2}$ . The response labeled A' is obtained by introducing an additional pole at  $f_D$ . The A" response is obtained by moving the original low-frequency pole to  $f'_D$ .

10.10 Frequency Compensation10.10.1 The Theory

→To modify the open-loop transfer function A(s) of an amplifier having three or more poles so that the closed-loop amplifier is stable!

 $\rightarrow$ A': Introducing a new pole in the function A(s) at a sufficiently low frequency,  $f_D$ . (but mid-band gain is lost too much) ( $\beta$ =0.01, closed-loop gain~40dB)

→A": Eliminate the pole or shift the pole



Frequency compensation for  $\beta = 10^{-2}$ . The response labeled A' is obtained by introducing an additional pole at  $f_D$ . The A'' response is obtained by moving the original low-frequency pole to  $f'_D$ .

### 10.10.2 Implementation:



(a) Two cascaded gain stages of a multistage amplifier. (b) Equivalent circuit for the interface between the two stages in (a). (c) Same circuit as in (b) but with a compensating capacitor  $C_C$  added. Note that the analysis here applies equally well to MOS amplifiers.

$$f_{P1} = \frac{1}{2\pi C_x R_x} \Rightarrow f_D^{'} = \frac{1}{2\pi (C_x + C_c) R_x}$$

How to have a large compensating capacitor  $C_C$  if it is needed

## 10.10.3 Miller Compensation and Pole Splitting



(a) A gain stage in a multistage amplifier with a compensating capacitor connected in the feedback path and (b) an equivalent circuit. Note that although a BJT is shown, the analysis applies equally well to the MOSFET case.

In the original case: 
$$\mathbf{f_{p1}} = \frac{1}{2\pi \ C_1 R_1}$$
 and  $\mathbf{f_{p2}} = \frac{1}{2\pi \ C_2 R_2}$ 

With frequency compensation, the transfer function becomes

$$\begin{split} & \frac{\mathbf{V_o}}{\mathbf{I_i}} = \frac{(sC_f - g_m)R_1R_2}{1 + s[C_1R_1 + C_2R_2 + C_f(g_mR_1R_2 + R_1 + R_2)] + s^2[[C_1C_2 + C_f(C_1 + C_2)]R_1R_2]} \\ & \approx \frac{(sC_f - g_m)R_1R_2}{1 + K_1 \cdot s + K_2 \cdot s^2} \end{split}$$

On the other hand, the denominator polynomial D(s) can be written as

$$\mathbf{D(s)} = \left(\mathbf{1} + \frac{\mathbf{s}}{\omega_{p1}}\right) \left(\mathbf{1} + \frac{\mathbf{s}}{\omega_{p2}}\right) = 1 + \mathbf{s} \cdot \left(\frac{1}{\omega_{p1}} + \frac{1}{\omega_{p2}}\right) + \mathbf{s}^2 \cdot \frac{1}{\omega_{p1}}$$

$$\Rightarrow$$

$$\omega_{p1}' = \frac{1}{[C_1 R_1 + C_2 R_2 + C_f (g_m R_1 R_2 + R_1 + R_2)]} \approx \frac{1}{(g_m R_2) C_f R_1}$$

$$\omega_{p2}' = \frac{1}{\omega_{p1}' \cdot \{[C_1 C_2 + C_f (C_1 + C_2)] R_1 R_2\}} \approx \frac{g_m C_f}{C_1 C_2 + C_f (C_1 + C_2)}$$
Assume
$$\omega_{p2}' = \frac{1}{\omega_{p1}' \cdot \{[C_1 C_2 + C_f (C_1 + C_2)] R_1 R_2\}} \approx \frac{g_m C_f}{C_1 C_2 + C_f (C_1 + C_2)}$$

$$\omega_{p2}' = \frac{1}{\omega_{p2}' \cdot \{[C_1 C_2 + C_f (C_2 + C_2)] R_1 R_2\}} \approx \frac{1}{\omega_{p2}' \cdot \{[C_1 C_2 + C_2] R_1 R_2\}} \approx \frac{1}{\omega_{p2}' \cdot \{[C_1 C_2 + C_2] R_1 R_2\}} \approx \frac{1}{\omega_{p2}' \cdot \{[C_1 C_2 + C_2] R_1 R_2\}} \approx \frac{1}{\omega_{p2}' \cdot \{[C_1 C_2 + C_2] R_1 R_2\}} \approx \frac{1}{\omega_{p2}' \cdot \{[C_1 C_2 + C_2] R_1 R_2\}} \approx \frac{1}{\omega_{p2}' \cdot \{[C_1 C_2 + C_2] R_1 R_2\}} \approx \frac{1}{\omega_{p2}' \cdot \{[C_1 C_2 + C_2] R_1 R_2\}} \approx \frac{1}{\omega_{p2}' \cdot \{[C_1 C_2 + C_2] R_1 R_2\}} \approx \frac{1}{\omega_{p2}' \cdot \{[C_1 C_2 + C_2] R_1 R_2\}} \approx \frac{1}{\omega_{p2}' \cdot \{[C_1 C_2 + C_2] R_1 R_2\}} \approx \frac{1}{\omega_{p2}' \cdot \{[C_1 C_2 + C_2] R_1 R_2\}} \approx \frac{1}{\omega_{p2}' \cdot \{[C_1 C_2 + C_2] R_2 R_2\}} \approx \frac{1}{\omega_{p2}' \cdot \{[C_1 C_2 + C_2] R_2 R_2\}} \approx \frac{1}{\omega_{p2}' \cdot \{[C_1 C_2 + C_2] R_2 R_2\}} \approx \frac{1}{\omega_{p2}' \cdot \{[C_1 C_2 + C_2] R_2 R_2\}} \approx \frac{1}{\omega_{p2}' \cdot \{[C_1 C_2 + C_2] R_2 R_2\}} \approx \frac{1}{\omega_{p2}' \cdot \{[C_1 C_2 + C_2] R_2 R_2\}} \approx \frac{1}{\omega_{p2}' \cdot \{[C_1 C_2 + C_2] R_2 R_2\}} \approx \frac{1}{\omega_{p2}' \cdot \{[C_1 C_2 + C_2] R_2 R_2\}} \approx \frac{1}{\omega_{p2}' \cdot \{[C_1 C_2 + C_2] R_2 R_2\}} \approx \frac{1}{\omega_{p2}' \cdot \{[C_1 C_2 + C_2] R_2 R_2\}} \approx \frac{1}{\omega_{p2}' \cdot \{[C_1 C_2 + C_2] R_2 R_2\}} \approx \frac{1}{\omega_{p2}' \cdot \{[C_1 C_2 + C_2] R_2 R_2\}} \approx \frac{1}{\omega_{p2}' \cdot \{[C_1 C_2 + C_2] R_2 R_2\}} \approx \frac{1}{\omega_{p2}' \cdot \{[C_1 C_2 + C_2] R_2 R_2} \approx \frac{1}{\omega_{p2}' \cdot \{[C_1 C_2 + C_2] R_2 R_2\}} \approx \frac{1}{\omega_{p2}' \cdot \{[C_1 C_2 + C_2] R_2 R_2\}} \approx \frac{1}{\omega_{p2}' \cdot \{[C_1 C_2 + C_2] R_2 R_2} \approx \frac{1}{\omega_{p2}' \cdot \{[C_1 C_2 + C_2] R_2 R_2} \approx \frac{1}{\omega_{p2}' \cdot \{[C_1 C_2 + C_2] R_2} \approx \frac{1}{\omega_{p2}' \cdot \{[$$

## Pole Splitting

The dominant pole:

$$\omega_{p1}' = \frac{1}{(g_m R_2) C_f \cdot R_1}$$

and the second pole:

$$\omega_{p2} = \frac{g_m C_f}{C_1 C_2 + C_f (C_1 + C_2)}$$

#### Important features:

- a. as  $C_f$  is increased,  $\omega_{p1}$  is reduced, and  $\omega_{p2}$  is increased. (pole splitting)
- b. by Miller effect,  $C_f$  is multipled by  $(g_m R_2)$ , it moves Z-point (Fig. 10.38) further to right; thus resulting in higher compensated open-loop gain.