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Concept

Constant

●Assume Xo increases in magnitude →Xf increases, too

→Xi decreases →Xo decreases

● In the steady state, Xo will be constant, too.
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10.1 The General Feedback Structure

10.1.1 Signal Flow Graph  10.1.2 The Closed-Loop Gain
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10.1.3 Loop Gain
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1. Desensitize the gain :  make the gain insensitive to temperature effect.

2. Reduce nonlinear distortion : make the gain constant. 

3. Reduce the effect of noise : minimize the unwanted noise.

4. Control the input and output impedances : e.g. increase i/p impedance

decrease o/p impedance.

5. Extend the bandwidth of the amplifier.

All the desirable properties are at the expense of a reduction in gain.

The gain reduction factor→  amount of feedback

So, negative feedback→ tradeoff gain for the desirable properties

10.2 Some Properties of Negative Feedback
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10.2.1  Gain Desensitivity:
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10.2.2 Bandwidth Extension:
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Bandwidth Extension: (cont.)
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•10.2.3 Interference Reduction:

•Using a “clean”  amplifier stage

precede the noisy stage!

e.g. low-noise amplifier (LNA)

s nSignal-to-noise ratio  S/N V /V=
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Noise Reduction:
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Pre-amplifier + Power Amplifier!
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10.2.4 Reduction in Nonlinear Distortion:

Illustrating the application of negative feedback to reduce the nonlinear 

distortion in amplifiers. Curve (a) shows the amplifier transfer 

characteristic without feedback. Curve (b) shows the characteristic with 

negative feedback ( = 0.01) applied.
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4. Control the input and output impedances 
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1+β(s) A(s)

A(jω) A(jω)
A (jω)= =  and  L(jω)= β(jω) A(jω) e
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f

A(s) open-loop transfer function

A (s) closed-loop transfer function

β(s) feedback transfer function

o
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at DC, L=β A should be a positive number ( negative feedback);

at , 

β(jω ) A(jω ) is real and negative 

1. β(jω ) A(jω ) <1, feedback is positive & system is stable

2. β(jω )

( )



 =    =





 180

180 180

A(jω )= -1, oscillator ( 1+βA=0)

3. β(jω ) A(jω ) >1, oscillations will grow in amplitude

10.7 The Stability Problem    

10.7.1 Transfer Function of the Feedback Amplifier 
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10.7.2 The Nyquist Plot  

•How to check at some  such that |L(j)|=1 and =180o.

•The Nyquist plot → the polar plot of loop gain  (vs. frequency)

( )

180

The Loop Gain:

( ) ( ) ( )

The Nyquist plot intersects the 

negative real axis at frequency .
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

The Nyquist plot of an unstable amplifier.
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0 0

0Consider an amplifier with a pole pair at s

 a disturbance,
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Relationship between pole location and transient response.

10.8. Effect of Feedback on Amplifier Poes

10.8.1 Stability and Pole Location  

0Re[ ] 0s = 
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Relationship between pole location and transient response.

0Re[ ] 0s = 

0Re[ ] 0s = =
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10.8.2 Poles of the Feedback Amplifier

The characteristic equation of the feedback loop:

1 (s) A(s) 0

zeros of the characteristic equation poles of the feedback amplifier.
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10.8.3 Amplifier with a Single-Pole Response
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pf 0

0
0 0

0

The feedback moves the pole along the negative real axis

to a frequency ,   (1 )

At lower frequency, the gain reduction is

20log(A ) 20log( ) 20log( ) 20log(1 )
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Effect of feedback on (a) the pole location and (b) the frequency response of an amplifier 

having a single-pole open-loop response.
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10.8.4 Amplifier with a Two-Pole Response
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Root-locus diagram for a feedback amplifier whose open-loop transfer function 

has two real poles.

•Root-Locus Diagram

0 0A  =

0A  
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Normalized gain of a two-pole feedback amplifier for various values of Q. Note that Q is 

determined by the loop gain according to Eq. (10.70).

Q<=0.707→ no peak

Q = 0.707 (poles at 45o angles)→maximally flat
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Example 10.11:  Positive-feedback loop
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10.8.5 Amplifier with a Three or More Poles

Root-locus diagram for an amplifier with three poles. The arrows indicate the pole 

movement as A0 is increased.

3 2 1

0A →

0 0A =
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Bode plot for the loop gain A

illustrating the definitions of the gain  

and phase margins.
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o

180 180j 180( )=   =at , 

j

1

o

o

A j 1 e

where 180

180

( ) −   = 

 = −

 −

phase margin

or phase margin

1

1
f 1

1

1

At  the closed-loop gain is 

1

( )
A ( )

1 ( ) 1

for a phase margin  45 , 135

1/ 1
( ) 1.3

1

j

j

f j

e
A j

j
A j e

A j
e









 


 








−

−

−



= =
+  +

 =  = 

 = =
+

10.9 Stability Study Using Bode Plots 
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10.9.3 An Alternative Approach for Investigating Stability:

Stability analysis using Bode 

plot of |A|.
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Stability analysis using Bode 

plot of |A|.
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(1)

(2)

1
20log|A(j ) | 20log( ) 20log | |A 


− =

o1
(2) 20log( ) 50  ( phase margin <

0.0031

0 )
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dB unstable

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
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1
(3) what is the minimum 20log( )

1
20log( ) 0.00160
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dB 







== 

o(4) 180 -phase point always ocurs on the

      -40dB/decade segment in Bode plot.

The closed-loop amplifier is stable if 

     20dB(1/ ) line intersects the 20log|A|

     curve at a point on the -20dB/de





cade

     segment.

(3)
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Frequency compensation for  = 10−2. The response labeled A is obtained by introducing an additional 

pole at fD. The A response is obtained by moving the original low-frequency pole to f D.

→To modify the open-loop transfer 

function A(s) of an amplifier having 

three or more poles so that the 

closed-loop amplifier is stable!

→A’: Introducing a new pole in the 

function A(s) at a sufficiently low 

frequency, fD. (but mid-band gain is 

lost too much) (β=0.01, closed-loop 

gain~40dB) 

→A”: Eliminate the pole or shift the 

pole

10.10 Frequency Compensation

10.10.1 The Theory 
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Frequency compensation for  = 10−2. The response labeled A is obtained by introducing an additional 

pole at fD. The A response is obtained by moving the original low-frequency pole to f D.

→To modify the open-loop transfer 

function A(s) of an amplifier having 

three or more poles so that the 

closed-loop amplifier is stable!

→A’: Introducing a new pole in the 

function A(s) at a sufficiently low 

frequency, fD. (but mid-band gain is 

lost too much) (β=0.01, closed-loop 

gain~40dB) 

→A”: Eliminate the pole or shift the 

pole

10.10 Frequency Compensation

10.10.1 The Theory 
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10.10.2 Implementation :

(a) Two cascaded gain stages of a multistage amplifier. (b) Equivalent circuit for the interface between the two stages 

in (a). (c) Same circuit as in (b) but with a compensating capacitor CC added. Note that the analysis here applies 

equally well to MOS amplifiers.

(first-stage) (second-stage)

Adding the

compensation

capacitor here!

(a compensation

capacitor)

'

1

1 1

2 2 ( )
P D

x x x c x

f f
C R C C R

=  =
+ 

How to have a large compensating capacitor CC if it is needed
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10.10.3 Miller Compensation and Pole Splitting

(a) A gain stage in a multistage amplifier with a compensating capacitor connected in the feedback path and (b) an 

equivalent circuit. Note that although a BJT is shown, the analysis applies equally well to the MOSFET case.
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Pole Splitting

' '
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m 2
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f

Important  features:

a.  as C  is increased,  is reduced, and  is increased. (pole splitting)

b.  by Miller effect, C  is multipled by ( ),  it moves Z-point (Fig. 10.38) further to right;
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