CHAPTER 15 CMOS Digital Logic Circuits

15.1 CMOS Logic-Gate Circuits

15.1.1 Switch-Level Transistor Model

(G = 0)

 $V_G = V_{DD}$

(G = 1)

(b)

(a)

 $V_G = 0$

(G = 0)

Gate voltage=V_{DD}→ Logic "1" Gate voltage=0 → Logic "0"

Logic "1" at G NMOS on and PMOS off

Logic "0" at G NMOS off and PMOS on

15.1.2 The CMOS Inverter

Logic:
$$Y = \overline{X}$$

NMOS: Pull Down transistor

PMOS: Pull Up transistor

15.1.3 General Structure of CMOS Logic

CMOS Logic Gate: Pull Down Network and Pull Up Network

Pull Down Network (PDN)

Logic:
$$\overline{Y} = A + B$$

or
$$Y = \overline{A + B}$$
 or $Y = \overline{AB}$

$$\overline{Y} = AB$$

or
$$Y = \overline{AB}$$

$$\overline{Y} = A + BC$$

or
$$Y = \overline{A + BC}$$

Pull UP Network (PUN)

15.1.4 Two-Input NOR Gate

From PDN:
$$\overline{Y} = A + B$$

or
$$Y = \overline{A + B}$$

From PUN:
$$Y = \overline{A} \cdot \overline{B}$$

Logic:
$$Y = \overline{A + B} = \overline{A \cdot B}$$

15.1.5 The Two-Input NAND Gate

Logic:
$$Y = \overline{AB} = \overline{A} + \overline{B}$$

15.1.6 A Complex Gate

15.1.7 Obtaining the PUN from the PDN and Vice Versa

From PDN (relatively easy)

Logic:
$$\overline{Y} = A(B + CD)$$

We can use the duality property to obtain PUN from PDN

From PUN (De-Morgan's law)

$$\overline{Y} = A(B + CD)$$

$$\Rightarrow$$

$$Y = \overline{A(B + CD)} = \overline{A} + \overline{B + CD}$$
$$= \overline{A} + \overline{B} \cdot \overline{CD} = \overline{A} + \overline{B}(\overline{C} + \overline{D})$$

15.1.8 The Exclusive-OR Function

(a)

From PUN (relatively easy)

$$Y = A \cdot \overline{B} + \overline{A} \cdot B$$

From PDN

$$\overline{Y} = AB + \overline{A} \cdot \overline{B}$$

From PUN (De-Morgan's law)

$$Y = A \cdot \overline{B} + \overline{A} \cdot B$$

$$\Rightarrow \overline{Y} = \overline{A \cdot \overline{B} + \overline{A} \cdot B} = \overline{A \cdot \overline{B}} \cdot \overline{\overline{A} \cdot B}$$

$$= (\overline{A} + B) \cdot (A + \overline{B}) = AB + \overline{A} \cdot \overline{B}$$

1. Two inverters are required. So, totally 12 transistors are needed.

(b)

PUN and PDN are not dual networks.Two networks are not necessarily duals.

15.1.9 Summary of the Synthesis Method

- 1. The PDN can be synthesized by expressing /Y as a function of the un-complemented variables. If the complemented variables appear, additional inverters are needed.
- 2. The PUN can be synthesized by expressing Y as a function of the complemented variables. Then, applying the un-complemented variables to the gates of the PMOS transistors. If the un-complemented variables appear, additional inverters are needed.
- 3. The PDN can be obtained from the UN (vice versa) using the duality property.

Example 15.1 Synthesize $Y = \overline{A + B(C + D)}$

From PDN: Y = A + B(C + D)

From PUN:
$$Y = \overline{A + B(C + D)} = \overline{A} \cdot \overline{B(C + D)}$$

= $\overline{A} \cdot (\overline{B} + \overline{C} + \overline{D}) = \overline{A} \cdot (\overline{B} + \overline{C} \cdot \overline{D})$

15.2 Digital Logic Inverters

15.2.1 The Voltage Transfer Characteristic (VTC)

Four parameters (V_{OH} , V_{OL} , V_{IL} , and V_{IH}) to determine the noise margins (N_{MH} and N_{ML})

Table 15.1 Important Parameters of the VTC of the Logic Inverter (Refer to Fig. 15.13)

 V_{OL} : Output low level

 V_{OH} : Output high level

 V_{IL} : Maximum value of input interpreted by the inverter as a logic 0 V_{IH} : Minimum value of input interpreted by the inverter as a logic 1

 NM_L : Noise margin for low input = $V_{IL} - V_{OL}$ NM_H : Noise margin for high input = $V_{OH} - V_{IH}$

15.2.2 Noise Margin

Noise voltage v_N is coupled to the interconnection between G1 and G2. The input of G2 becomes

$$v_{I2} = v_{O1} + v_N$$

G2 has a noise margin for input low @ $v_{O1} = v_{OL} \& v_N > 0$

$$v_{I2} = v_{O1} + v_N < v_{IL} \Longrightarrow v_N < (v_{IL} - v_{OL}) \equiv NM_L$$

vo 1

 V_{OH}

G2 has a noise margin for input high @ $v_{O1} = v_{OH} & v_N < 0$

$$v_{I2} = v_{O1} + v_N > v_{IH} \Longrightarrow |v_N| < (v_{OH} - v_{IH}) \equiv NM_H$$

V_{IL} and V_{IH} : The VTC points at which the slope is -1

 V_M : The M point at which $V_O = V_I$

15.2.3 The Ideal VTC

15.2.4 Inverter Implementation

Voltage-controlled Switch: on-resistance R_{on} is small and off-resistance R_{off} is large

When
$$V_{I}$$
 is high, $V_{OL} = V_{DD} \frac{R_{on}}{R + R_{on}}$

$$R_{on} \approx \frac{1}{\mu_n C_{ox} \frac{W}{L} (V_{GS} - V_t)}$$

The logic inverter utilizing two complementary switches.

Pull UP (PU) Switch Pull Down (PD) Switch

Double-Throw Switch

Current-Steering Logic or Current-Mode Logic (CML)

BJT version: Emitter-Coupled Logic (ECL)

Example 15.2 Resistively Loaded MOS Inverter

- (a) When $V_I < V_t$ $i_D=0$ and $V_{OH}=V_{DD}$
- (a) When $V_I > V_t$ $i_D = \frac{\mu_n C_{OX} W}{2L} \left(V_{GS} V_t \right)^2 \Rightarrow i_D = \frac{k_n}{2} \left(v_I V_t \right)^2$, $\lambda = 0$

$$i_{D} = \frac{k_{n}}{2} (v_{I} - V_{t})^{2} , \lambda = 0$$

$$v_{o} = V_{DD} - i_{D}R = V_{DD} - \frac{k_{n}R_{D}}{2} (v_{I} - V_{t})^{2}$$

$$k_{n}R_{D} = \frac{1}{V_{x}}$$

$$\Rightarrow v_{O} = V_{DD} - \frac{1}{2V} (v_{I} - V_{t})^{2}$$

To determine $V_{IL} @ dv_O/dv_F = -1$

$$\Rightarrow -1 = -\frac{1}{V_x} (V_{IL} - V_t) \Rightarrow V_{IL} = V_x + V_t$$
(15.12)

To determine $V_M @ v_O = v_I = V_M$

$$\Rightarrow V_{M} = V_{DD} - \frac{1}{2V_{x}} (V_{M} - V_{t})^{2} \Rightarrow V_{M} = V_{t} + \sqrt{2(V_{DD} - V_{t})V_{x} + V_{x}^{2}} - V_{x}$$
 (15.14)

The boundary of the saturation-segment BC : Point C Substituting $v_O = V_{GS} - V_t = v_I - V_t$ into $v_O = V_{DD} - \frac{1}{2V_x} (v_I - V_t)^2$

The boundary of the saturation-segment BC : Point C

(b)

$$\Rightarrow V_{OC} = \sqrt{2V_{DD}V_x + V_x^2} - V_x$$

$$V_{IC} = V_t + \sqrt{2V_{DD}V_x + V_x^2} - V_x$$

Beyond Point C, i.e., segment CD, the transistor in the triode region

$$i_D = k_n \left[(V_{GS} - V_t) V_{DS} - \frac{1}{2} V_{DS}^2 \right]$$

$$\Rightarrow i_D = k_n \left[\left(v_I - V_t \right) v_O - \frac{1}{2} v_O^2 \right]$$

$$v_o = V_{DD} - i_D R \implies v_O = V_{DD} - \frac{(v_I - V_t)v_O - \frac{1}{2}v_O^2}{V_x}$$
 (15.17)

To determine $V_{IH} @ dv_O/dv_I = -1$

$$\Rightarrow V_{IH} = 2v_O - V_x + V_t \tag{15.18}$$

Substituting (15.18) into (15.17) and $v_i = V_{iH}$

Substituting (15.18) into (15.17) and $v_i = V_{iH}$

$$\Rightarrow v_O \mid_{v_I = V_{IH}} = 0.816 \sqrt{V_{DD}V_x}$$

Substituting into (15.18)

$$\Rightarrow V_{IH} = V_t + 1.63\sqrt{V_{DD}V_x} - V_x$$
 (15.20)

To determine $V_{OL} @ v_i = V_{DD}$

$$v_{O} = V_{DD} - \frac{1}{V_{x}} [(v_{I} - V_{t}) v_{O} - \frac{1}{2} v_{O}^{2}]$$

$$\Rightarrow V_{OL} = V_{DD} - \frac{1}{V_{r}} [(V_{DD} - V_{t})V_{OL} - \frac{1}{2}V_{OL}^{2}]$$

To determine $V_{OL} \ll V_{DD} - V_t$

$$\Rightarrow V_{OL} \cong V_{DD} - \frac{1}{V_x} [(V_{DD} - V_t) V_{OL}]$$

$$\Rightarrow V_{OL} \cong \frac{V_{DD}}{1 + (V_{DD} - V_t) / V_x}$$
(15.22)

It is interesting that V_{OL} can be found by

$$V_{OL} \cong V_{DD} \frac{r_{DS}}{R_D + r_{DS}} \quad @ \ r_{DS} = R_{on} \cong \frac{1}{k_n (V_{DD} - V_t)}$$

$$\Rightarrow V_{OL} = \frac{V_{DD}}{1 + (V_{DD} - V_t) / V_r} \qquad \text{Same as (15.22)}$$

(b) If $V_M = V_{DD}/2$, what is V_x

$$V_{M} = V_{t} + \sqrt{2(V_{DD} - V_{t})V_{x} + V_{x}^{2}} - V_{x}$$
 (15.14)

$$\Rightarrow V_{x}|_{V_{M} = V_{DD}/2} = \frac{(V_{DD} / 2 - V_{t})^{2}}{V_{DD}}$$
 (15.25)

(c) If
$$V_{DD}=1.8V$$
, $V_t=0.5V$, $V_M=V_{DD}/2$

$$V_x \mid_{V_M = 0.9V} = 0.089V$$

(b)

$$V_{OH} = V_{DD} = 1.8V$$

$$(15.22): V_{OI} = 0.12V$$

$$(15.12)$$
: $V_{II} = 0.59V$

$$(15.20)$$
: $V_{IH} = 1.06V$

$$NM_L = V_{IL} - V_{OL} = 0.47V$$

$$NM_H = V_{OH} - V_{IH} = 0.74V$$

(d) If k'_n =300uA/V² and W/L=1.5, determine R_D

$$k_n R_D = \frac{1}{V_x} \Rightarrow R_D = \frac{1}{k_n V_x} = \frac{1}{k_n' (W/L) V_x}$$
$$= \frac{1}{300 \cdot 10^{-6} \cdot 1.5 \cdot 0.089} = 25k\Omega$$

When $v_0 = V_{OL}$, the current from the supply is

$$I_{DD} = \frac{V_{DD} - V_{OL}}{R_D} = \frac{1.8 - 0.12}{25k} = 67 \,\mu A$$
$$P_D = V_{DD}I_{DD} = 1.8 \times 67 = 121 \,\mu W$$

The inverter spends half of the time in this state:

$$P_{D,average} = P_D / 2 = 60.5 \mu W$$
 23

Example 15.3 To eliminate R_D, the pseudo-NMOS Inverter is used.

(a) If
$$V_{DD}=1.8V$$
, $V_{tn}=-V_{tp}=V_{t}=0.4V$, $k_{n}=300uA/V^{2}$, $k_{n}=5k_{p}$,

When
$$V_l < V_t$$

 $i_{DN}=i_{DP}=0$ and $V_{OH}=V_{DD}$

When $V_I = V_{DD}$ Q_P in Saturation; Q_N in Triode

$$i_{DP} = k_p \left(V_{DD} - V_t \right)^2 / 2$$

$$i_{DN} = k_n \left[(V_{DD} - V_t) V_{OL} - \frac{1}{2} V_{OL}^2 \right] = i_{DP}$$

$$\Rightarrow V_{OL} = (V_{DD} - V_t)[1 - \sqrt{1 - k_p / k_n}]$$

(b)
$$V_{OH} = V_{DD} = 1.8V$$
; $V_{OL} = 0.15V$
 $i_{DP} = 58.8 \mu A$; $P_D = i_{DP} V_{DD} = 105.8 \mu W$
 $P_{D, average} = 52.9 \mu W$

$$i_{DP} = k_p (V_{DD} - V_t)^2 / 2 = 300 / 5(1.8 - 0.4)^2 / 2 = 58.8uA$$

15.3 The CMOS Inverter

When $v_I = 0V$ (Logic 0), $V_{OH} = V_{DD}$ When $v_I = V_{DD}$ (Logic 1), $V_{OL} = 0V$

When $V_I = 0V$, $V_{OH} = V_{DD}$

- 1. The output levels are 0 and V_{DD}
- 2. Static power=0 in the two states; neglecting the leakage currents
- 3. The low output resistance makes the inverter less sensitive to the effects of noises and other disturbances
- 4. The pull-up and pull-down devices provide the high output driving capability in both directions
- 5. The input resistance of the inverter is high

15.3.2 The VTC

$$Q_N$$
 in Triode, $v_O \le v_I - V_m$

$$i_{DN} = k_n' \left(\frac{W}{L}\right)_n \left[\left(v_I - V_{tn}\right) v_O - \frac{1}{2} {v_O}^2 \right]$$

$$Q_{N} \text{ in Sat., } v_{O} \ge v_{I} - V_{tn}$$

$$i_{DN} = k'_{n} \left(\frac{W}{L}\right)_{n} \left(v_{I} - V_{tn}\right)^{2} / 2$$

$$Q_P$$
 in Triode, $v_O \ge v_I + |V_{tp}|$

$$Q_{P} \text{ in Triode, } v_{O} \ge v_{I} + |V_{tp}|$$

$$i_{DP} = k'_{p} \left(\frac{W}{L}\right)_{p} \left[\left(V_{DD} - v_{I} - |V_{tp}|\right) (V_{DD} - v_{O}) - \frac{1}{2} (V_{DD} - v_{O})^{2} \right]$$

$$Q_P$$
 in Sat., $v_O \le v_I + |V_{tp}|$

$$i_{DP} = k_p' \left(\frac{W}{L}\right)_p \left(V_{DD} - v_I - |V_{tp}|\right)^2 / 2$$

Let Q_p and Q_n have the same channel lengths,

Differentiate (15.33); let $v_i = V_{iH}$ @ slope=-1;

$$\Rightarrow v_O = V_{IH} - \frac{V_{DD}}{2} \quad (15.34)$$

Substituting (15.34) into (15.33); let $v_i = V_{IH}$

$$\Rightarrow V_{IH} = \frac{5V_{DD} - 2V_t}{8}$$
 28

V_{IL} can be determined similarly. Alternatively, we can use the symmetrical property

$$V_{IH} - \frac{V_{DD}}{2} = \frac{V_{DD}}{2} - V_{IL} \Rightarrow V_{IL} = \frac{3V_{DD} + 2V_t}{8}$$

$$NM_L = V_{IL} - V_{OL} = \frac{3V_{DD} + 2V_t}{8}$$

$$NM_H = V_{OH} - V_{IH} = \frac{3V_{DD} + 2V_t}{8}$$

$$(\because V_{IH} = \frac{5V_{DD} - 2V_t}{8})$$

15.3.2 When Q_N and Q_P are not matched

Assume Q_N and Q_P are in Sat., $v_I = V_M$

$$i_{DN} = k_n' (\frac{W}{L})_n (v_I - V_{tn})^2 / 2$$

$$i_{DP} = k'_{p} \left(\frac{W}{L}\right)_{p} \left(V_{DD} - v_{I} - |V_{tp}|\right)^{2} / 2$$

Q_p and Q_n have the same channel lengths,

$$i_{DN} = i_{DP} \Rightarrow V_{M} = \frac{r(V_{DD} - |V_{tp}|) + V_{tn}}{1 + r}$$

$$r = \sqrt{\frac{k_{p}}{k_{n}}} = \sqrt{\frac{\mu_{p}W_{p}}{\mu_{n}W_{n}}}$$

For a 0.18um process,

- 1. V_M increases with r, i.e., if $k_p > k_n$, V_M moves to V_{DD}
- 2. V_M is not a strong function of r. Change r from 1 to 0.5, reduces V_M by 0.13V.
- For matched case, PMOS's W/L increases → Increase Area But, maximize NM₁ and NM₁

Example 15.4 CMOS Inverter Design

$$V_{M} = \frac{r(V_{DD} - |V_{tp}|) + V_{tn}}{1 + r} \qquad r = \sqrt{\frac{k_{p}}{k_{n}}} = \sqrt{\frac{\mu_{p} W_{p}}{\mu_{n} W_{n}}}$$

Ex.
$$r=1$$
, $V_M = \frac{(1.8-0.5)+0.5}{2} = 0.9V$

(a) If $V_M=0.9V$, find $W_p=?$

 $r=1 \rightarrow W_p=4W_n \rightarrow W_p=0.27 \,\mu m$ and $W_p=1.08 \,\mu m$

(b)
$$V_{IH} = \frac{5V_{DD} - 2V_t}{8} = \frac{5 \cdot 1.8 - 2 \cdot 0.5}{8} = 1V$$

$$V_{IL} = \frac{3V_{DD} + 2V_t}{8} = 0.8V$$

$$NM_L = V_{IL} - V_{OL} & NM_H = V_{OH} - V_{IH}$$

Ideally,
$$NM_H = V_{OH} - V_{IH} = 1.8 - 1 = 0.8V$$

 $NM_L = V_{IL} - V_{OL} = 0.8 - 0 = 0.8V$
at slope=-1, $v_{OL} = V_{IH} - \frac{V_{DD}}{2}$ (15.34)

$$\Rightarrow V_{OL \max} = 1 - 0.9 = 0.1V$$

From symmetry, $V_{OH, min} = V_{DD} - 0.1 = 1.7V$

Worst Case

$$NM_{H} = V_{OH, min} - V_{IH} = 1.7 - 1 = 0.7V$$

 $NM_{L} = V_{IL} - V_{OL, max} = 0.8 - 0.1 = 0.7V$

(c) Inverter's output resistance at low-state

$$r_{DSN} \cong \frac{1}{\mu_n C_{ox} (\frac{W}{L})_n (V_{DD} - V_{tn})} = \frac{1}{300u \cdot 1.5 \cdot (1.8 - 0.5)} = 1.71k\Omega$$

Since symmetry, Inverter's output resistance at high-state

$$r_{DSP} = r_{DSN} = 1.71k\Omega$$

(d) $V_{l}=V_{o}=V_{M}=0.9V$, $V_{OV}=V_{M}-V_{tn}=0.4V$, Qp and Qn are in sat. $\lambda n=\lambda p=0.2\ V^{-1}$

$$i_{DN} = \mu_n C_{ox} \left(\frac{W}{L}\right)_n \left(v_I - V_{tn}\right)^2 / 2 = 36 \mu A$$

$$g_{mn} = g_{mp} = \frac{I_D}{V_{OV}} = 0.18 mA / V^2$$

$$r_{on} = r_{op} = \frac{1}{\lambda_n I_D} = 139 k\Omega$$

$$A_v = -(g_{mn} + g_{mp})(r_{on} / / r_{op}) = -25 V / V$$

15.4 Dynamic Operation of the CMOS Inverter

15.4.1 Propagation Delay

- 1. The output signal is not longer an ideal pulse.
- 2. There is a time delay between the edges of the input and the corresponding inverter output. For example, t_{PHL} and t_{PLH} .

The inverter's Propagation Delay is defined as $t_P = \frac{t_{PHL} + t_{PLH}}{2}$

To consider the inverter's maximum switching frequency;

i.e., the minimum period for each cycle is

$$T_{\min} = t_{PHL} + t_{PLH} = 2t_{P}$$
 $f_{\max} = \frac{1}{T_{\min}} = \frac{1}{2t_{P}}$

34

The propagation delay is owing to the time to charge and discharge the various capacitances in the circuit.

1. A fundamental rule to analyze the dynamic operation of a circuit

$$I\Delta t = \Delta Q = C\Delta V$$

2. To consider a step input for a single-time-constant (STC) circuit,

$$y(t) = Y_{\infty} - (Y_{\infty} - Y_{0+})e^{-t/\tau}$$

where Y_{∞} is the final value, Y_{0+} is the initial value, and τ is the time constant of an STC circuit.

Example 15.5 Calculating the propagation delay of a simple Inverter

$$V_o(t) = V_{OH} - (V_{OH} - V_{OL})e^{-t/\tau}, \tau = RC$$

$$v_o(t_{PLH}) = V_{OH} - (V_{OH} - V_{OL})e^{-t_{PLH}/\tau} = \frac{V_{OH} + V_{OL}}{2}$$

$$\Rightarrow t_{PLH} = \tau \ln 2 = 0.69\tau = 0.69RC$$

(b)

The propagation delay and the transition time of the logic Inverter

- 1. t_r rise time: The time from 10% to 90% of the input swing $(V_{OH}-V_{OI})$
- 2. t_f : fall time: The time from 90% to 10% of the input swing $(V_{OH}-V_{OI})$
- 3. t_{PHL} , t_{PLH} : The time from $V_{i}=(V_{OL}+V_{OH})/2$ to $V_{O}=(V_{OL}+V_{OH})/2$
- 4. t_{THL} and t_{TLH} : The time from 10% to 90% of the output swing $(V_{OH}-V_{OL})$

37

15.4.2 Determining the Propagation Delay of the CMOS Inverter

- 1. Cap. C: consider all the parasitic cap. of Q_N and Q_P , the interconnection cap. and the input cap. of the next logics.
- 2. To calculate t_{PHL} , t_{PLH} , and t_{PLH}

- 1. Let the initial voltage $v_O = V_{DD}$
- 2. At t=0, $v_1=V_{DD} \rightarrow Q_N$ on and Q_P off.
- 3. i_{DN} will discharge C. It operates from $E \rightarrow F \rightarrow M \rightarrow D$.
- 4. E-F: Q_N is in saturation.
- 5. F-M-D: Q_N is in triode.
- 6. E-M: Assume an average current I_{ave}

$$I_{ave} = \left[i_{DN}(E) + i_{DN}(M)\right] / 2, \ i_{DN}(E) = k'_{n} \left(\frac{W}{L}\right)_{n} \left(V_{DD} - V_{tn}\right)^{2} / 2$$
$$i_{DN}(M) = k'_{n} \left(\frac{W}{L}\right)_{n} \left[\left(V_{DD} - V_{tn}\right)V_{DD} / 2 - \frac{1}{2}\left(V_{DD} / 2\right)^{2}\right]$$

$$I_{ave} = \frac{1}{2} k_n \left(\frac{W}{L} \right)_n \left[\left(V_{DD} - V_{tn} \right)^2 / 2 + \left(V_{DD} - V_{tn} \right) V_{DD} / 2 - \frac{1}{2} \left(V_{DD} / 2 \right)^2 \right]$$

$$=\frac{k_{n}^{'}(\frac{W}{L})_{n}V_{DD}^{2}}{4}[(1-\frac{V_{m}}{V_{DD}})^{2}+(1-\frac{V_{m}}{V_{DD}})-\frac{1}{4}]=\frac{k_{n}^{'}(\frac{W}{L})_{n}V_{DD}^{2}}{4}[\frac{7}{4}-\frac{3V_{m}}{V_{DD}}+(\frac{V_{m}}{V_{DD}})^{2}]=\frac{k_{n}^{'}(\frac{W}{L})_{n}V_{DD}^{2}}{2\alpha_{n}}$$

(c)

$$\alpha_n = 2/[\frac{7}{4} - \frac{3V_{tn}}{V_{DD}} + (\frac{V_{tn}}{V_{DD}})^2]$$

$$I_{ave}t_{PHL} = C[V_{DD} - V_{DD} / 2]$$

$$t_{PHL} = \frac{CV_{DD}}{2I_{ave}}$$

$$t_{PHL} = \frac{\alpha_n C}{k_n (W/L)_n V_{DD}}$$

(d)

$$t_{PLH} = \frac{\alpha_p C}{k_p' (W/L)_p V_{DD}}$$

$$\alpha_p = 2/\left[\frac{7}{4} - \frac{3|V_{tp}|}{V_{DD}} + (\frac{|V_{tp}|}{V_{DD}})^2\right]$$

$$\Rightarrow t_P = \frac{t_{PHL} + t_{PLH}}{2}$$

- 1. When $V_{tn}=|V_{tp}|$, $\alpha_n=\alpha_p$. By selecting W/L and $k'_n(W/L)_n=k'_p$ (W/L)_p, one can equalize t_{PHL} and t_{PLH} .
- 2. Since t_P is proportional to C, one shall minimize all the parasitic capacitances; such as devices (minimizing the length), wiring, and coupling cap.
- 3. For 0.25um, 0.18um, and 0.13um processes, $\mu_n C_{ox}$ is 110, 300, 430 $\mu A/V^2$. So, one can select high $\mu_n C_{ox}$ to reduce t_P . But, for such process, C_{ox} is increased.
- 4. One can increase W/L to reduce t_P . Sometimes, it works, but it may also increase C.
- 5. One can increase V_{DD} to reduce t_P . But, it depends upon the supply voltage which determined by the process.
- 6. The conclusion is "there is a trade-off in designing CMOS digital circuits".

An Alternative Approach

For a step input,
$$t_{PHL} = \tau \ln 2 = 0.69\tau = 0.69R_NC$$
 & $t_{PLH} = 0.69R_PC$

Empirical values
$$R_N = \frac{12.5}{(W/L)_n} k\Omega$$
 & $R_P = \frac{30}{(W/L)_p} k\Omega$

For a ramp input,
$$t_{PHL} \approx R_N C$$
 & $t_{PLH} \approx R_P C$

15.4.3 Determining the Equivalent Load Capacitance

1. Wiring Cap. C_W is the cap. of the wire or interconnection.

2. Interconnection cap. becomes dominant as technology scaled down

3. Miller Effect for Cap. C_{gd1}

Junction cap.

$$C_{db} = \frac{C_{db0}}{\sqrt{1 + \frac{V_{DB}}{V_{o}}}} \quad C_{sb} = \frac{C_{sb0}}{\sqrt{1 + \frac{V_{SB}}{V_{o}}}}$$

Cap. C_{db1} and $C_{db2} \rightarrow (9.25)$

Cap. C_{g3} and C_{g4}

 $V_{_{\! O}}$ junction built-in voltage (0.6~0.8V)

 V_{DB} , V_{SB} reverse-bias voltage

$$C_{g3} + C_{g4} = (WL)_3 C_{ox} + (WL)_4 C_{ox} + C_{gsov3} + C_{gdov3} + C_{gsov4} + C_{gdov4}$$

Equivalent Load Capacitance

$$C = 2C_{gd1} + 2C_{gd2} + C_{db1} + C_{db2} + C_{g3} + C_{g4} + C_{W}$$

Example 15.7 Determining the Equivalent Load Capacitance and Propagation Delay

To consider a 0.25um process, V_{DD} =2.5V, V_{tn} =- V_{tp} 0.5V, $\mu_n C_{ox}$ =110uA/ V^2 , $\mu_{p}C_{ox}=30uA/V^{2}, C_{ox}=6fF/\mu m^{2}, Qn's Wn/Ln=0.375\mu m/0.25\mu m, , Qp's$ $\dot{W}p/Lp=1.125\mu m/0.25\mu m$, overlap capacitance $C_{qdn}=0.3fF/\mu m \times Wn$, C_{qdp} =0.3fF/ μ m x Wp, C_{dbn} =0.1fF, C_{dbp} =0.1fF, wire capacitance C_W =0.2fF

$$C = 2C_{gd1} + 2C_{gd2} + C_{db1} + C_{db2} + C_{g3} + C_{g4} + C_{W}$$

$$C_{gd1} = 0.3 \text{ x} W_n = 0.3 \text{ x} 0.375 = 0.1125 \text{fF}$$

$$C_{gd2} = 0.3 \text{ x}W_p = 0.3 \text{ x}1.125 = 0.3375 \text{fF}$$

$$C_{g3} = W_n L_n C_{ox} + 2C_{gdn} = 0.375 \times 0.25 \times 6 + 2 \times 0.3 \times 0.375 = 0.7875 \text{fF}$$

$$C_{g4} = W_p L_p C_{ox} + 2C_{gdp} = 1.125 \times 0.25 \times 6 + 2 \times 0.3 \times 1.125 = 2.3625 \text{ f}$$

$$\Rightarrow$$
 $C = 6.25 fF$

$$I_{ave}t_{PHL} = C[V_{DD} - V_{DD} / 2]$$

$$t_{PHL} = \frac{CV_{DD}}{2I_{ave}} \implies \alpha_n = 2/[\frac{7}{4} - \frac{3V_{tn}}{V_{DD}} + (\frac{V_{tn}}{V_{DD}})^2] = 1.7 \quad \& \quad t_{PHL} = \frac{\alpha_n C}{k_n'(W/L)_n V_{DD}} = 25.8 \, ps$$

$$\alpha_{p} = 2/\left[\frac{7}{4} - \frac{3|V_{tp}|}{V_{DD}} + (\frac{|V_{tp}|}{V_{DD}})^{2}\right] = 1.7 \quad \& \quad t_{PLH} = \frac{\alpha_{p}C}{k_{p}(W/L)_{p}V_{DD}} = 31.5 \, ps$$

$$\Rightarrow t_{P} = \frac{t_{PHL} + t_{PLH}}{2} = 28.7 \, ps$$

15.5 Transistor Sizing15.5.1 Inverter Sizing

- 1. To minimize area, the minimum length given by the technology is selected.
- 2. To minimize area, $(W/L)_n$ is selected in the range of 1 to 1.5. The selection of $(W/L)_p$ relative to $(W/L)_n$ has an impact on Noise Margin and t_{PLH} . Both are optimized by matching Q_N and Q_P . It wastes area and increases C. Thus, selecting $(W/L)_p = (W/L)_n$ or $(W/L)_{p=2(W/L)_n}$ for compromise.
- 3. Having settled on the ratio of $(W/L)_p$ to $(W/L)_n$. Let us consider t_p

 $C = C_{\rm int} + C_{\rm ext}$; intrinsic cap. $C_{\rm int}$ and extrinsic cap. $C_{\rm ext}$: wire cap. and the input cap. from the driven satge

Increase $(W/L)_p$ and $(W/L)_n$ by a factor of S relative to the minimum-size inverter by which $C_{int} = C_{int0}$.

$$C = C_{\text{int}} + C_{ext} = S \cdot C_{\text{int }0} + C_{ext}$$

For a given equivalent resistance,

$$R_{eq} = \frac{1}{2}(R_N + R_P) \Longrightarrow t_P = 0.69R_{eq}C$$

If the minimum-size inverter has R_{eq0} , increasing $(W/L)_p$ and $(W/L)_n$ by a factor of S reduces $R_{eq} = R_{eq0}/S$.

$$\Rightarrow t_P = 0.69 \frac{R_{eq0}}{S} (S \cdot C_{\text{int0}} + C_{ext}) = 0.69 R_{eq0} \cdot C_{\text{int0}} + 0.69 \frac{R_{eq0}}{S} \cdot C_{ext}$$

Thus, this scaling does not change the part of t_P caused by Q_N and Q_P . It reduces the part of t_P caused by C_{ext} . Of course, the area will be increased.

15.5.2 Transistor Sizing in CMOS Logic Gates

1. For a basic inverter, $(W/L)_n = n$ and $(W/L)_p = p$ where n is usually 1 to 1.5. For match design $p=(\mu_n/\mu_p)$ *n; often p=2n, and for minimum design, p=n.

a discharging PDN has current equal to that $(W/L)_n=n$ and PUN has a charging

current equal to that of $(W/L)_p = p$

2. If a number of MOSFETs with $(W/L)_1$, $(W/L)_2$, ... are in series,

$$R_{Series} = R_{N1} + R_{N2} + \dots = \frac{\text{constant}}{\left(W/L\right)_1} + \frac{\text{constant}}{\left(W/L\right)_2} + \dots = \frac{\text{constant}}{\left(W/L\right)_{eq}}$$

$$\Rightarrow (W/L)_{eq} = \frac{1}{\frac{1}{(W/L)_1} + \frac{1}{(W/L)_2}} + \dots$$
 E.g., Two transistors series, $(W/L)_{eq} = (W/L)_{1,2}/2$

in

If a number of MOSFETs with $(W/L)_1$, $(W/L)_2$, ... are in parallel,

$$(W/L)_{eq} = (W/L)_1 + (W/L)_2 + ...$$

E.g., Two transistors in parallel, $(W/L)_{eq}=2(W/L)_{1,2}$

For example, for a 4-input OR gate in the worst case (the lower current), only a NMOS with $(W/L)_n$ =n is on. To have the same charging current compared to a basic inverter, PMOS has $(W/L)_p$ =4p. Similarly, for a 4-input NAND gate, NMOS has $(W/L)_n$ =4n.

Example 15.8 Transistor Sizing of a CMOS Gate

For a basic inverter, n=1.5 and p=5 and L=0.25um.

PDN: to consider a worst case, Q_{NB} is active and either Q_{NC} or Q_{ND} is active. Thus, we have two transistors in series.

 Q_{NB} : W/L=2n=3=0.75/0.25

 Q_{NC} : W/L=2n=3=0.75/0.25

 Q_{ND} : W/L=2n=3=0.75/0.25

 Q_{NA} : W/L=n=1.5=0.375/0.25

PUN: to consider a worst case, three transistors are in series.

 Q_{PD} : W/L=3p=15=3.75/0.25

Q_{PC}: W/L=3p=15=3.75/0.25

 Q_{PA} : W/L=3p=15=3.75/0.25

The equivalent W/L of the series connection of Q_{PB} and Q_{PA} should be equal to p.

Q_{PB}: W/L=1.5p=7.5=1.875/0.25

15.5.3 Effects of Fan-in and Fan-out on Propagation Delay

- 1. Each additional input to a CMOS gate, two transistors are required (ex. 2-NAND and 4-NAND). To increase with fan-in, it increases the chip area, capacitance, and propagation delay. Thus, the fan-in of a NAND gate is limited to 4.
- 2. When a CMOS gate increases its fan-out, the capacitance will be increase which increases the propagation delay. If a higher number of inputs is required, one can realize the Boolean function with the gates of no more than 4-inputs.

15.5.4 Driving a Large Capacitance

Assume a ramp input,

$$t_P = \tau = C_L R$$
$$C_{in} = C$$

To drive a large capacitance load, one can increase the size to reduce the equivalent resistance. But, the input capacitance Increases.

A chain of inverters in cascade is used.

Each inverter in the chain is scaled by a factor of x. For example, the input capacitance of the n-th inverter is

$$C_{in,n-th} = x^{n-1}C$$

For the 1st~(n-1)th inverters, the time constant is $\tau = xCR$ For the n-th inverter, the time constant is $\tau_n = C_L R / x^{n-1}$

To have the minimum delay (will be verified later),

$$\tau_n = \tau \implies x^n = \frac{C_L}{C}$$

The total propagation delay is $t_P = n \cdot x \cdot CR$

$$t_P = (n-1)xRC + \frac{1}{x^{n-1}}RC_L$$
 Q.E.D. (1)

(b) Differenting t_P in Eq. (1) relative to x gives

$$\frac{\partial t_P}{\partial x} = (n-1)RC - \frac{(n-1)}{x^n}RC_L$$

Equating $\frac{\partial t_P}{\partial x}$ to zero gives

$$x^n = \frac{C_L}{C} \qquad \text{Q.E.D.}$$

(c) Differenting t_P in Eq. (1) relative to n gives

$$\frac{\partial t_P}{\partial n} = xRC - \frac{1}{x^{n-1}} (\ln x) RC_L$$

Equating $\frac{\partial t_P}{\partial n}$ to zero gives

$$x^n \left(\frac{C}{C_L}\right) = \ln x$$
 Q.E.D. (3)

To obtain the value of x for optimum performance, we combine the two optimality conditions in (2) and (3). Thus

$$\ln x = 1$$

 $\Rightarrow x = e$ Q.E.D. $x=e=2.718$
In practice, $x=2.5\sim4$

Example 15.8 Design an inverter chain to drive a large load capacitance

An inverter has an input capacitance C=10fF and an equivalent output resistance R=1k Ω to drive a load capacitance C₁=1pF.

1. An inverter directly drives a C_L. The propagation delay is around

$$t_P = C_L R = 1 ns$$

2. An inverter chain is selected to drive C₁.

$$x^{n} = \frac{C_{L}}{C} = 100 \implies \text{if } x = e = 2.718, \text{ then } n = 4.6$$

Assume n=5,

$$x^5 = \frac{C_L}{C} = 100 \Longrightarrow \text{if } x = 2.51$$

The total propagation delay is

$$t_P = n \cdot x \cdot CR = 5 \cdot 2.51 \cdot (10 \cdot 10^{-15}) \cdot 1k = 125.5 \, ps$$

It reduces the total propagation delay by a factor of about 8.

15.6 Power Dissipation

15.6.1 Sources of Power Dissipation

- When v_I is low, Q is off. →No power dissipation
- 2. When v_l is high, Q is on. The power is around

$$V_{DD}^2/R$$

3. If the inverter is not switching, the power dissipates. → Static Power Dissipation

- If the inverter is not switching→ no Static Power Dissipation
- 2. If the inverter switching, the current will charge or discharge the load capacitance.
- → Dynamic Power Dissipation

$$P_{DD}(t) = V_{DD} \cdot i_D(t)$$

Within a charging time T_c , the power supply delivered the energy to the load is

$$E_{DD} = \int_{0}^{T_{C}} V_{DD} \cdot i_{D}(t) dt = V_{DD} \int_{0}^{T_{C}} i_{D}(t) dt = V_{DD} \cdot Q$$

Assume the initial voltage on C is zero, the charge Q is

$$Q = V_{DD} \cdot C \implies E_{DD} = C \cdot V_{DD}^{2}$$

At the end of the charging process, the energy stored on C is

$$E_{stored} = \frac{C \cdot V_{DD}^{2}}{2}$$

The energy dissipated in the pull-up switch is

$$E_{dissipated} = E_{DD} - E_{stored} = \frac{C \cdot V_{DD}^{2}}{2}$$

2. When v_l is high, Q_N (or R_{PD}) is active. The energy dissipated in the pull-down switch is

$$C \cdot V_{DD}^{2} / 2$$

Thus, the total energy dissipated per cycle is

$$E_{dissipated} / cycle = C \cdot V_{DD}^{2}$$

If the inverter is switching at the frequency of f Hz, the dynamic power dissipation of the inverter

$$P_{dyn} = f \cdot C \cdot V_{DD}^{2}$$

To reduce the dynamic power, C or/and $V_{\rm DD}$ must be reduced.

3. Another power dissipation results from the current flows through Q_N and Q_P during the switching. The current versus v_I is given for a matched inverter. The peak current occurs at $v_I = V_{DD}/2$.

$$I_{peak} = \frac{\mu_n C_{OX}}{2} \left(\frac{W}{L}\right)_n \left(\frac{V_{DD}}{2} - V_{tn}\right)^2$$

The width of the current pulse depends upon the rate of change of v_I with time. In general, this power is less than P_{dyn}.

15.6.2 Power–Delay and Energy-Delay Products

The power dissipation of an inverter is P_D. Power–Delay Product (PDP) of the inverter is

$$PDP = P_D \cdot t_P$$

Assume the static power dissipation of an inverter is zero. Then, $P_{\rm D}$ will be equal to the dynamic power dissipation $P_{\rm dyn}$.

$$P_{dyn} = f \cdot C \cdot V_{DD}^{2} = P_{D} \implies PDP = f \cdot C \cdot V_{DD}^{2} \cdot t_{P}$$

When the inverter is operated at the maximum switching speed; i.e., $f=1/(2t_P)$.

 $PDP = \frac{1}{2} \cdot C \cdot V_{DD}^{2}$

PDP > It is the energy consumed by the inverter for each output transition.

One can reduce V_{DD} to minimize PDP. But, it may not be true since t_P is increased while V_{DD} is reduced. So, Energy-Delay Product (EDP) is better and given as

$$EDP$$
 = Energy per transition x $t_P = \frac{1}{2} \cdot C \cdot V_{DD}^2 \cdot t_P$