Unit 3: Computational Complexity

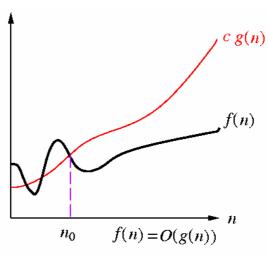
- Course contents:
 - Computational complexity
 - NP-completeness
 - General Purpose Combinational Optimizations
- Readings
 - Chapters 3, 4, and 5

Time	Big-Oh	n = 10	n = 100	$n = 10^3$	$n = 10^6$
500	O(1)	$5 \times 10^{-7} \text{ sec}$	$5 \times 10^{-7} \text{ sec}$	5×10^{-7} sec	5×10^{-7} sec
3n	O(n)	$3 \times 10^{-8} \text{ sec}$	$3 \times 10^{-7} \text{ sec}$	$3 \times 10^{-6} \text{ sec}$	0.003 sec
$n \log n$	$O(n \log n)$	$3 \times 10^{-8} \text{ sec}$	$2 \times 10^{-7} \text{ sec}$	3×10^{-6} sec	0.006 sec
n^2	$O(n^2)$	$1 \times 10^{-7} \text{ sec}$	1×10^{-5} sec	0.001 sec	16.7 min
_n 3	$O(n^3)$	$1 \times 10^{-6} \text{ sec}$	0.00 <u>1</u> sec	1 sec	3 × 10 ⁵ cent.
2 ⁿ	$O(2^n)$	$1 \times 10^{-6} \text{ sec}$	3×10^{17} cent.	œ	∞
n!	O(n!)	0.003 sec	œ	00	00

Unit 2 NTUEE / Intro. EDA 1

O: Upper Bounding Function

- **Def**: f(n) = O(g(n)) if $\exists c > 0$ and $n_0 > 0$ such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$.
 - Examples: $2n^2 + 3n = O(n^2)$, $2n^2 = O(n^3)$, $3n \lg n = O(n^2)$
- Intuition: f(n) " \leq " g(n) when we ignore constant multiples and small values of n.



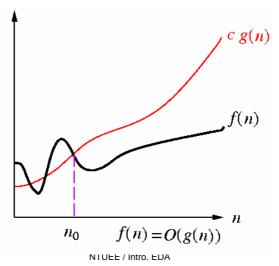
Unit 2 NTUEE / Intro. EDA 2

Big-O Notation

• How to show O (Big-Oh) relationships?

 $= f(n) = O(g(n)) \text{ iff } \lim_{n \to \infty} \frac{f(n)}{g(n)} = c \text{ for some } c \ge 0.$

"An algorithm has worst-case running time O(f(n))":
 there is a constant c s.t. for every n big enough, every
 execution on an input of size n takes at most cf(n)
 time.



Unit 2

3

Big-Theta Notation

- **Def**: $f(n) = \Theta(g(n))$ if $\exists c_1 > 0 c_2 > 0$ and $n_0 > 0$ such that $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$ for all $n \ge n_0$.
 - = Examples: $2n^2 + 3n = \Theta(n^2)$, $2n^2 = O(n^2)$, $3n \lg n = O(n \lg n)$
 - g(n) is asymptotically tight bound of f(n)

Computational Complexity

- Computational complexity: an abstract measure of the time and space necessary to execute an algorithm as functions of its "input size".
- Input size examples:
 - sort *n* words of bounded length ⇒ *n*
 - the input is the integer n ⇒ lg n
 - _ the input is the graph $G(V, E) \Rightarrow |V|$ and |E|
- Time complexity is expressed in *elementary* computational steps (e.g., an addition, multiplication, pointer indirection).
- Space Complexity is expressed in *memory locations* (e.g. bits, bytes, words).

Unit 2 NTUEE / Intro. EDA 5

Asymptotic Functions

- Polynomial-time complexity: $O(n^k)$, where n is the **input** size and k is a constant (k = O(1)).
- Example polynomial functions:
 - 999: constant
 - _ lg n: logarithmic
 - $-\sqrt{n}$: sublinear
 - _ n: linear
 - _ n lg n: loglinear
 - n^2 : quadratic
 - n^3 : cubic
- Example non-polynomial functions
 - 2ⁿ, 3ⁿ: exponential
 - _ n!: factorial

Running-time Comparison

• Assume 1000 MIPS (Yr: 200x), 1 instruction /operation

Time	Big-Oh	n = 10	n = 100	$n = 10^3$	$n = 10^6$
500	O(1)	5×10^{-7} sec	$5 \times 10^{-7} \text{ sec}$	5×10^{-7} sec	5×10^{-7} sec
3n	O(n)	3 × 10 ⁻⁸ sec	$3 \times 10^{-7} \text{ sec}$	3×10^{-6} sec	0.003 sec
$n \log n$	$O(n \log n)$	3 × 10 ⁻⁸ sec	$2 \times 10^{-7} \text{ sec}$	3 × 10 ⁻⁶ sec	0.006 sec
$_{n}^{2}$	$O(n^2)$	$1 \times 10^{-7} \text{ sec}$	$1 \times 10^{-5} \text{ sec}$	0.001 sec	16.7 min
$_n$ 3	$O(n^3)$	$1 \times 10^{-6} \text{ sec}$	0.001 sec	1 sec	3×10^5 cent.
2 ⁿ	$O(2^n)$	$1 \times 10^{-6} \text{ sec}$	3×10^{17} cent.	o co	œ
n!	O(n!)	0.003 sec	œ	œ	œ

Unit 2 NTUEE / Intro. EDA 7

Ch4. Tractable and Intractable Problems

- Tractable problems
 - Can be solved within polynomial time
- Intractable problems
 - Cannot be solved within polynomial time
- NP-complete problems
 - Likely to be intractable
 - Still under research ...

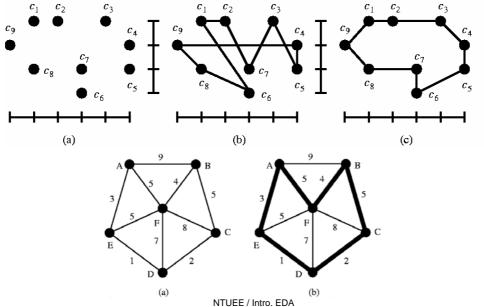
Optimization Problems

- Problem: a general class, e.g., "the shortest-path problem for directed acyclic graphs."
- Instance: a specific case of a problem, e.g., "the shortestpath problem in a specific graph, between two given vertices."
- Optimization problems: those finding a legal configuration such that its cost is minimum (or maximum).
 - MST: Given a graph G=(V, E), find the cost of a minimum spanning tree of G.
- An optimization problem Π has instance I = (F, c) where
 - F is the set of feasible solutions, and
 - _ c is a cost function, assigning a cost value to each feasible solution $c: F \rightarrow R$
 - The solution of the optimization problem is the feasible solution with optimal (minimal/maximal) cost
- cf., Optimal solutions/costs, optimal (exact) algorithms (Attn: optimal ≠ exact in the theoretic computer science community).

Unit 2 9 NTUEE / Intro. EDA

The Traveling Salesman Problem (TSP)

 TSP: Given a set of cities and that distance between each pair of cities, find the distance of a "minimum tour" starts and ends at a given city and visits every city exactly once.



Unit 2 10

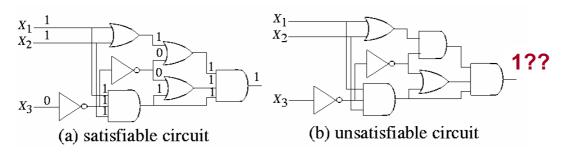
Decision Problem

- Decision problems: problem that can only be answered with "yes" or "no"
 - MST: Given a graph G=(V, E) and a bound K, is there a spanning tree with a cost at most K?
 - TSP: Given a set of cities, distance between each pair of cities, and a bound B, is there a route that starts and ends at a given city, visits every city exactly once, and has total distance at most B?
- A decision problem D_{II} has instances: I = (F, c, k)
 - The set of instances for which the answer is "yes" is given by Y_{Π} .
 - A subtask of a decision problem is *solution checking*: given $f \in F$, checking whether the cost is less than k.
- Could apply binary search on decision problems to obtain solutions to optimization problems.
- NP-completeness is associated with decision problems.

Unit 2 NTUEE / Intro. EDA 11

A Decision Problem

- The Circuit-Satisfiability Problem (Circuit-SAT):
 - Instance: A combinational circuit C composed of AND, OR, and NOT gates.
 - Question: Is there an assignment of Boolean values to the inputs that makes the output of C to be 1?
- A circuit is satisfiable if there exists a set of Boolean input values that makes the output of the circuit to be 1.
 - Circuit (a) is satisfiable since $\langle x_1, x_2, x_3 \rangle = \langle 1, 1, 0 \rangle$ makes the output to be 1.



Complexity Class P

- Complexity class *P* contains those problems that can be solved in polynomial time in the size of input.
 - Input size: size of encoded "binary" strings.
 - Edmonds: Problems in P are considered tractable.
- The computer concerned is a deterministic Turing machine
 - Deterministic means that each step in a computation is predictable.
 - A Turing machine is a mathematical model of a universal computer (any computation that needs polynomial time on a Turing machine can also be performed in polynomial time on any other machine).
- MST is in P.

Unit 2 NTUEE / Intro. EDA 13

Complexity Class NP

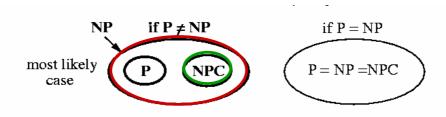
- Class NP (Nondeterministic Polynomial): class of problems that can be verified in polynomial time in the size of input.
 - NP: class of problems that can be solved in polynomial time on a nondeterministic machine.
- Solution checking can be done in polynomial time on a deterministic machine ⇒ the problem can be solved in polynomial time on a nondeterministic Turing machine.
 - Nondeterministic: the machine makes a guess, e.g., the right one (or the machine evaluates all possibilities in parallel).
- Is TSP ∈ NP?
 - Need to verify a solution in polynomial time.
 - Guess a tour.
 - Check if the tour visits every city exactly once.
 - Check if the tour returns to the start.
 - Check if total distance $\leq B$.
 - All can be done in O(n) time, so TSP ∈ NP.

Complexity Class NP-Complete

Still unsettled issue:

$$P \subset NP$$
 or $P = NP$?

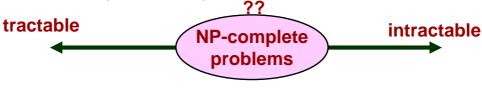
- There is a strong belief that P≠ NP, due to the existence of NP-complete problems.
- The class NP-complete (NPC):
 - Developed by S. Cook and R. Karp in early 1970.
 - All problems in NPC have the same degree of difficulty:
 Any NPC problem can be solved in polynomial time ⇒ all problems in NP can be solved in polynomial time.



Unit 2 NTUEE / Intro. EDA 15

NP-Complete and NP-hard

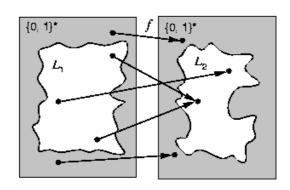
- NP-completeness: worst-case analyses for decision problems.
- A decision problem L is NP-complete (NPC) if
 - 1. $L \in NP$, and
 - 2. $L' \leq_{P} L$ for every $L' \in NP$.
- **NP-hard:** If *L* satisfies property 2, but not necessarily property 1, we say that *L* is **NP-hard**.
- Suppose $L \in NPC$.
 - If $L \in P$, then there exists a polynomial-time algorithm for every $L' \in NP$ (i.e., P = NP).
 - If $L \notin P$, then there exists no polynomial-time algorithm for any $L' \in NPC$ (i.e., $P \neq NP$).



Unit 2 NTUEE / Intro. EDA 16

Polynomial-time Reduction

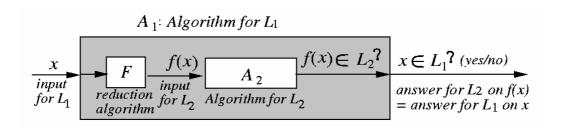
- **Motivation:** Let L_1 and L_2 be two decision problems. Suppose algorithm A_2 can solve L_2 . Can we use A_2 to solve L_1 ?
- Polynomial-time reduction f from L_1 to L_2 : $L_1 \leq_{\mathbf{P}} L_2$
 - f reduces input for L_1 into an input for L_2 s.t. the reduced input is a "yes" input for L_2 iff the original input is a "yes" input for L_1 .
 - $L_1 \le_P L_2$ if \exists polynomial-time computable function $f: \{0, 1\}^* \to \{0, 1\}^*$ s.t. $x \in L_1$ iff $f(x) \in L_2$, $\forall x \in \{0, 1\}^*$.
 - L_2 is at least as hard as L_1 .
 - f is computable in polynomial time.



Unit 2 NTUEE / Intro. EDA 17

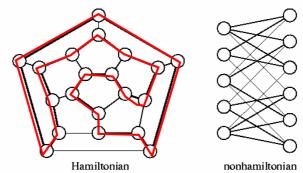
Significance of Reduction

- Significance of $L_1 \leq_{\mathbf{P}} L_2$:
 - = ∃ polynomial-time algorithm for $L_2 \Rightarrow \exists$ polynomial-time algorithm for L_1 ($L_2 \in P \Rightarrow L_1 \in P$).
 - \not ∃ polynomial-time algorithm for $L_1 \Rightarrow \not$ ∃ polynomial-time algorithm for L_2 ($L_1 \notin P \Rightarrow L_2 \notin P$).
- \leq_{P} is transitive, i.e., $L_1 \leq_{P} L_2$ and $L_2 \leq_{P} L_3 \Rightarrow L_1 \leq_{P} L_3$.



Example: HC ≤_P TSP

- The Hamiltonian Circuit Problem (HC)
 - **Instance:** an undirected graph G = (V, E).
 - Question: is there a cycle in G that includes every vertex exactly once?
- TSP (The Traveling Salesman Problem)
- How to show HC ≤_P TSP?
 - Define a function f mapping any HC instance into a TSP instance, and show that f can be computed in polynomial time.
 - 2. Prove that G has an HC iff the reduced instance has a TSP tour with distance $\leq B$ ($x \in HC \Leftrightarrow f(x) \in TSP$).



Unit 2

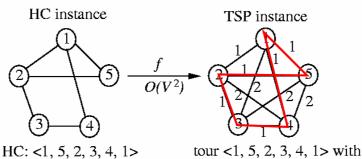
19

$HC \leq_P TSP$: Step 1

- 1. Define a reduction function f for $HC \leq_{P} TSP$.
 - Given an arbitrary HC instance G = (V, E) with n vertices
 - Create a set of n cities labeled with names in V.
 - Assign distance between u and v

$$d(u,v) = \begin{cases} 1, & \text{if } (u,v) \in E, \\ 2, & \text{if } (u,v) \notin E. \end{cases}$$

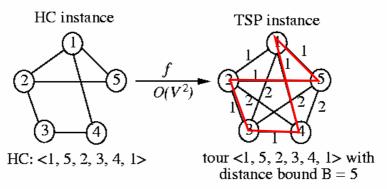
- Set bound B = n.
- f can be computed in $O(V^2)$ time.



distance bound B = 5

HC ≤_P TSP: Step 2

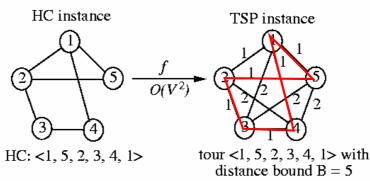
- 2. *G* has an HC iff the reduced instance has a TSP with distance ≤ *B*.
 - $-x \in HC \Rightarrow f(x) \in TSP.$
 - Suppose the HC is $h = \langle v_1, v_2, ..., v_n, v_1 \rangle$. Then, h is also a tour in the transformed TSP instance.
 - The distance of the tour h is n = B since there are n consecutive edges in E, and so has distance 1 in f(x).
 - Thus, f(x) ∈ TSP (f(x) has a TSP tour with distance ≤ B).



Unit 2 NTUEE / Intro. EDA 21

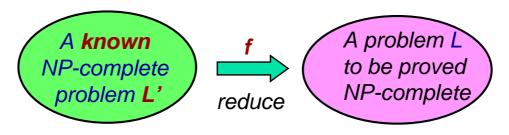
$HC \leq_P TSP$: Step 2 (cont'd)

- 2. G has an HC iff the reduced instance has a TSP with distance $\leq B$.
 - f(x) ∈ TSP \Rightarrow x ∈ HC.
 - Suppose there is a TSP tour with distance $\leq n = B$. Let it be $\langle V_1, V_2, ..., V_n, V_1 \rangle$.
 - Since distance of the tour $\leq n$ and there are n edges in the TSP tour, the tour contains only edges in E.
 - Thus, $\langle v_1, v_2, ..., v_n, v_1 \rangle$ is a Hamiltonian cycle ($x \in HC$).



Summary: Proving NP-Completeness

- Five steps for proving that L is NP-complete:
 - 1. Prove $L \in NP$.
 - Select a known NP-complete problem L'.
 - 3. Construct a reduction *f* transforming **every** instance of *L*' to an instance of *L*.
 - 4. Prove that $x \in L'$ iff $f(x) \in L$ for all $x \in \{0, 1\}^*$.
 - 5. Prove that *f* is a polynomial-time transformation.
- We have shown that TSP is NP-complete (reducing from HC).



Unit 2 NTUEE / Intro. EDA 23

Ch 5. Optimization Algorithms

- Continuous optimization problems
 - Variables are real numbers
- Combinatorial optimization problems
 - Variables are discrete values
 - Useful in EDA

Coping with Optimization Problems

Exact solution (may not applicable to big problems)

- Exhaustive search
 - Feasible only when the problem size is small.
- Visit only part of search space
 - E.g. Branch and bound, dynamic programming, integer linear programming.

Approximation algorithms

- Guarantee to be a fixed percentage away from the optimum.
- No general purpose approx. algorithms
- E.g., MST for the minimum Steiner tree problem.

Heuristics

- No guarantee of performance
- E.g. Greedy algorithm, Local search, Tabu search, Simulated annealing (hill climbing), Genetic algorithms, etc.

Unit 2 NTUEE / Intro. EDA 25

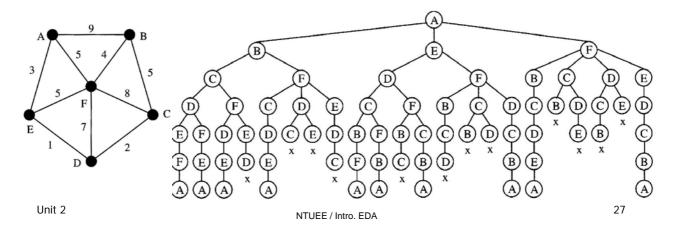
Algorithmic Paradigms

- Branch and bound: A search technique with pruning.
- Mathematical programming: A system of solving an objective function under constraints.
- Dynamic programming: Partition a problem into a collection of sub-problems, the sub-problems are solved, and then the original problem is solved by combining the solutions. (sub-problems are NOT independent)
- Divide and Conquer: Partition problems into independent subproblems.
- **Greedy**: Pick a locally optimal solution at each step.
- **Simulated annealing:** An adaptive, iterative, non-deterministic algorithm that allows "uphill" moves to escape from local optima.
- **Tabu search:** Similar to simulated annealing, but does not decrease the chance of "uphill" moves throughout the search.
- Genetic algorithm: A population of solutions is stored and allowed to evolve through successive generations via mutation, crossover, etc.

Exhaustive search

General principle

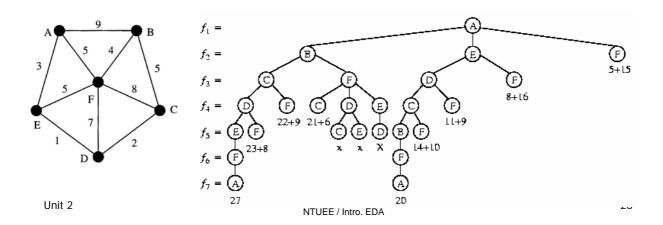
- Systematically assign values to unspecified variables
- Until a single point in search space is identified, or
- An implicit constraints makes it impossible to continue
 - backtracking
- Example: TSP
 - X means backtracking



Branch and Bound

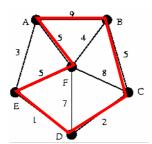
• General principle

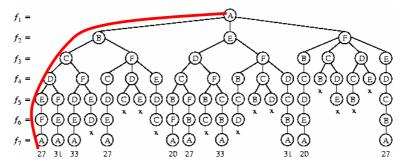
- Estimate the cost lower bound
- Kill partial solutions higher than the lowest cost
- Example: TSP
 - Use MST as cost lower bound
 - E.g. A→ B→ C→ F = 22; MST of {CDEA} = 6
 - 22+8 > 27 → Killed



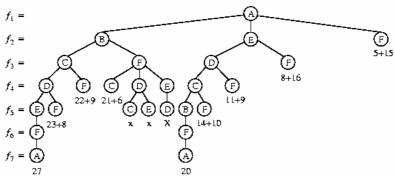
Exhaustive Search vs. Branch and Bound

• TSP example





Backtracking/exhaustive search 72 nodes!



Branch and bound only 27 nodes

Unit 2 NTUEE / Intro. EDA 29

Pseudo Code of B&B

```
float best_cost;
solution_element val[n], best_solution[n];
b_and_b(int k)
  float new_cost;
  \mathbf{if}\,(k=n)\,\{
     new_cost := cost(val);
     if (new_cost < best_cost) {</pre>
       best_cost := new_cost;
       best_solution := copy(val);
  else if (lower_bound_cost(val,k) \geq best_cost)
         /* No action, node is killed. */
    for each (el \in allowed(val, k)) {
       val[k] := el;
      b_and_b(k+1);
main ()
   best_cost := \infty;
   b_and_b(0);
   report(best_solution);
```

Figure 5.5 The pseudo-code of the branch-and-bound algorithm.

- Disadvantage:
 - Finding lower bound is not easy all the time

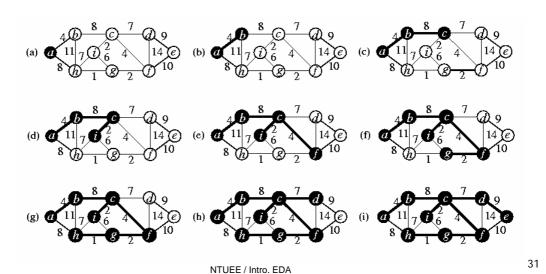
30

Greedy Algorithms

General principle:

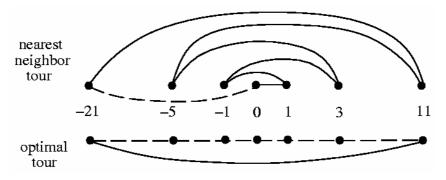
Unit 2

- Pick a locally optimal solution at each step
- Greedy method does not guarantee performance
 - sometimes is correct: e.g. Prim's algorithm for MST
 - sometimes is not correct : e.g. Nearest neighbor for TSP



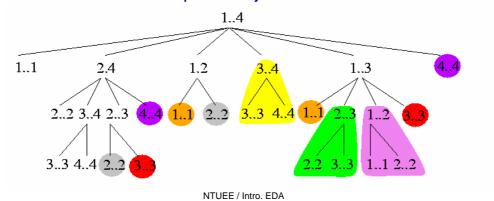
Nearest Neighbor for TSP

- 1. pick and visit an initial point p_0 ;
- 2. $P \leftarrow p_0$;
- 3. $i \leftarrow 0$;
- 4. while there are unvisited points do
- 5. visit p_i 's closet unvisited point p_{i+1} ;
- 6. $i \leftarrow i + 1$;
- 7. return to p_0 from p_i .
- Simple to implement and very efficient, but not optimal!



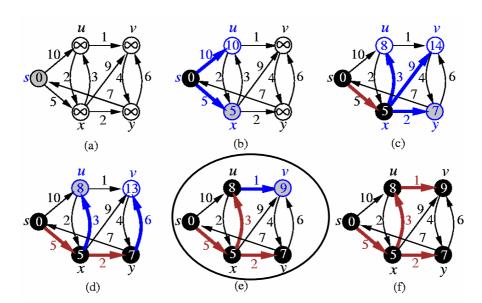
Dynamic Programming (DP) vs. Divide-and-Conquer

- Both solve problems by combining the solutions to subproblems.
- Divide-and-conquer algorithms
 - Partition a problem into independent subproblems, solve the subproblems recursively, and then combine their solutions to solve the original problem.
 - Inefficient if they solve the same subproblem more than once.
- Dynamic programming (DP)
 - Applicable when the subproblems are **not independent**.
 - DP solves each subproblem just once.



Dijkstra's Shortest Path

- Reduce search space by dynamic programming
 - _ Shortest path from $s \rightarrow v = s \rightarrow u$ plus $u \rightarrow v$
 - Since shortest path s→u is already known (8), calculation is eliminated
 - Shortest path from s→ v is 8+1



Unit 2

Unit 2

33

Linear Programming

- General principle
 - Convert problems into the mathematic format
 - Canonical form of LP
 - AX≤b
 - X≥0
- Integer Linear Programming (ILP)
 - Variables are restricted to integers
- 0-1 ILP problems
 - Solutions are restricted to 0,1
- Why ILP useful for EDA?
 - ILP solvers are widely available
 - Problem independent

Unit 2 NTUEE / Intro. EDA 35

Example 1: TSP

- Variables $x_1 \dots x_{12}$
 - Xi = 1 means the edge is traveled
 - Xi = 0 means the edge is not traveled
- Minimize cost of travel $\sum_{i=1}^{12} w(e_i)x_i$
- Subject to constraints
 - Every vertex has exactly two edges traveled

$$v_1: x_1 + x_2 + x_3 + x_4 = 2$$

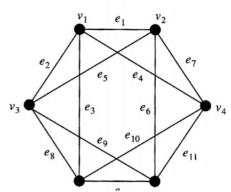
$$v_2: x_1 + x_5 + x_6 + x_7 = 2$$

$$v_3: x_2 + x_5 + x_8 + x_9 = 2$$

$$v_4: x_4 + x_7 + x_{10} + x_{11} = 2$$

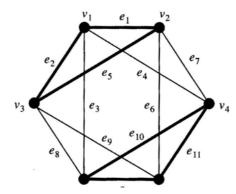
$$v_5: x_3 + x_8 + x_{10} + x_{12} = 2$$

$$v_6: x_6 + x_9 + x_{11} + x_{12} = 2$$



Example 1: TSP (cont'd)

- However, not enough constraints
 - Multiple disjoint tour



Add more constraints to avoid multiple disjoint tour

$$\{v_1, v_2, v_3\} \{v_4, v_5, v_6\} : x_3 + x_4 + x_6 + x_7 + x_8 + x_9 \ge 2$$

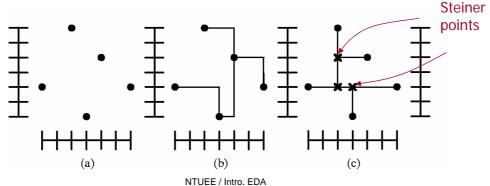
$$\{v_1, v_3, v_5\} \{v_2, v_4, v_6\} : x_1 + x_4 + x_5 + x_9 + x_{10} + x_{12} \ge 2$$

$$\{v_1, v_2, v_4\} \{v_3, v_5, v_6\} : x_2 + x_3 + x_5 + x_6 + x_{10} + x_{11} \ge 2$$

Unit 2 37 NTUEE / Intro. EDA

Approximation Algorithm Spanning Tree vs. Steiner Tree

- Manhattan distance: If two points (nodes) are located at coordinates (x_1, y_1) and (x_2, y_2) , the Manhattan distance between them is given by $d_{12} = |x_1 - x_2| + |y_1 - y_2|$.
- Rectilinear spanning tree: a spanning tree that connects its nodes using Manhattan paths (Fig. (b) below).
- Steiner tree: a tree that connects its nodes, and additional points (Steiner points) are permitted to used for the connections.
- The minimum rectilinear spanning tree problem is in P, while the minimum rectilinear Steiner tree (Fig. (c)) problem is NP-complete.
 - The spanning tree algorithm can be an approximation for the Steiner tree problem (at most 50% away from the optimum).



Unit 2 38

Local Search

- General principle
 - Search only the neighbors of the current solution
 - Move to the neighbor with lower cost than the current solution
- Problem
 - Can be trapped in local minimum

```
local_search() {

struct feasible_solution f;

set of struct feasible_solution G;

f \leftarrow \text{initial\_solution}();

do {

G \leftarrow \{g | g \in N(f), c(g) < c(f)\};

if (G \neq \emptyset)

f \leftarrow \text{"any element of } G";

} while (G \neq \emptyset);

"report f";
}
```

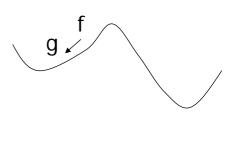
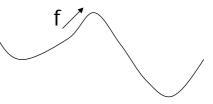


Figure 5.8 The pseudo-code description of local search.

Unit 2 NTUEE / Intro. EDA 39

Simulated Annealing (SA)

- General Principle: mimic material cooling process
 - Search the neighbors of current solution
 - A good move means the cost decreases
 - always accepted
 - A bad move means the cost increases
 - Accepted with probability exp (-∆cost/T)
- Analogy
 - Energy = cost function
 - Temperature = controlling parameter T
- Advantage: can escape local minimum
 - 'Uphill climbing' is possible



Pseudo Code of SA

```
int accept(struct feasible_solution f, g)
  float \Delta c;
   \Delta c \leftarrow c(g) - c(f);
  if (\Delta c \leq 0)
     return 1;
  else return (e^{\frac{-\Delta c}{T}} > \text{random}(1));
simulated_annealing()
 struct feasible_solution f, g;
  float T;
  f \leftarrow \text{initial\_solution()};
  do {
      do {
          g \leftarrow "some element of N(f)";
          if (accept(f, g))
             f \leftarrow g
      while (!thermal_equilibrium());
      T \leftarrow \text{new\_temperature}(T);
  while (!stop());
  "report f";
                 NTUEE / Intro. EDA
```

Tabu Search

- General Principle: avoid staying in the 'taboo' solutions
 - Keep a list of visited solutions : Taboo list
 - Always move to a new solution other than the taboo list
 - even the new solution is poor than the current solution

```
tabu_search()
  struct feasible_solution f, g, b;
  set of struct feasible_solution G;
  "k-element FIFO queue of" feasible_solution Q;
  Q \leftarrow "empty";
  b \leftarrow \text{initial\_solution()};
  f \leftarrow \text{initial\_solution()};
  do {
      G \leftarrow "some subset of N(f) such that \forall s \in Q, s \notin G";
     if (G \neq \emptyset) {
        g \leftarrow "cheapest element of G";
        "shift g into Q";
         f \leftarrow g;
        if (c(f) < c(b))
           b \leftarrow f;
  while (G \neq \emptyset \text{ or stop}());
```

Unit 2

41

Genetic Algorithms (GA)

- General Principle
 - Survival of the fittest
 - Keep a group of feasible solutions
 - 'population'
 - 'Parent' population generates the 'child' population
 - Keep only the best children

Unit 2 NTUEE / Intro. EDA 43

Important steps in GA

 Cross over: Two feasible solutions generate their child by switching chromosomes

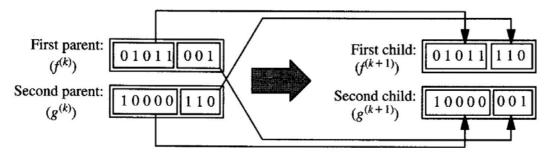


Figure 5.11 The generation of a pair of children by crossover.

Mutation: some chromosomes can change by probability

Pseudo Code of GA

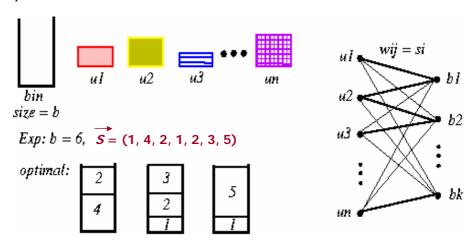
```
genetic()
  int pop_size;
  set of struct chromosome pop, newpop;
  struct chromosome parent1, parent2, child;
  pop \leftarrow \emptyset;
  for (i \leftarrow 1; i \leq \text{pop\_size}; i \leftarrow i + 1)
     pop \leftarrow pop \cup \{\text{"chromosome of random feasible solution"}\};
  do {
      newpop \leftarrow \emptyset;
      for (i \leftarrow 1; i \leq pop\_size; i \leftarrow i + 1) {
         parent1 \leftarrow select(pop);
         parent2 \leftarrow select(pop);
         child \leftarrow crossover(parent1, parent2);
         newpop \leftarrow newpop \cup {child};
      pop ← newpop;
  } while (!stop());
  "report best solution";
```

Figure 5.12 The pseudo-code description of a genetic algorithm.

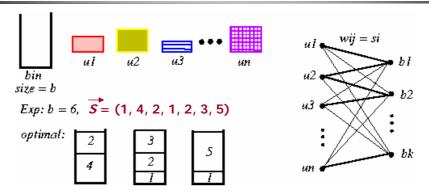
Unit 2 NTUEE / Intro. EDA 45

Example 2: Bin Packing

- The Bin-Packing Problem Π : Items $U = \{u_1, u_2, ..., u_n\}$, where u_i is of an integer size s_i ; set B of bins, each with capacity b.
- Goal: Pack all items, minimizing # of bins used. (NP-hard!)



Example 2: Bin Packing (cont'd)



- Greedy approximation alg.: First-Fit Decreasing (FFD)
 FFD(Π) ≤ 11OPT(Π)/9 + 4)
- Use integer linear programming (ILP) to find a solution using |B| bins, then search for the smallest feasible |B|.

Unit 2 NTUEE / Intro. EDA 47

Example 2: Bin Packing (cont'd)

• 0-1 variable: $x_{ij}=1$ if item u_i is placed in bin b_i , 0 otherwise.

```
\max \sum_{(i,j) \in E} w_{ij} x_{ij}
\sup_{\forall i \in U} w_{ij} x_{ij} \leq b_j, \forall j \in B \ / * \ capacity \ constraint * / \ (1)
\sum_{\forall j \in B} x_{ij} = 1, \forall i \in U \ / * \ assignment \ constraint * / \ (2)
\sum_{ij} x_{ij} = n \ / * \ completeness \ constraint * / \ (3)
x_{ij} \in \{0,1\} \ / * 0, \ 1 \ constraint * / \ (4)
```

- Step 1: Set |B| to the lower bound of the # of bins.
- Step 2: Use the ILP to find a feasible solution.
- Step 3: If the solution exists, the # of bins required is |B|. Then exit.
- Step 4: Otherwise, set $|B| \leftarrow |B| + 1$. Goto Step 2.