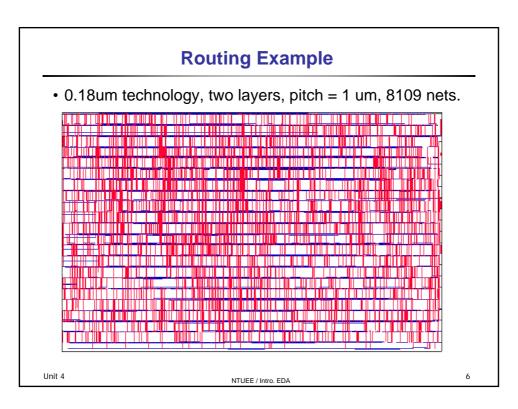
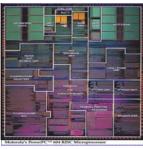
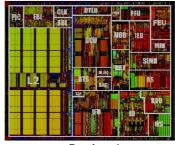

Physical Design



- Physical design converts a circuit description into a geometric description.
- The description is used to manufacture a chip.
- Physical design cycle:
 - Logic partitioning
 - 2. Floorplanning and placement
 - 3. Routing
 - 4. Compaction
- Others: circuit extraction, timing verification, and design rule checking

Unit 4 NTUEE / Intro. EDA

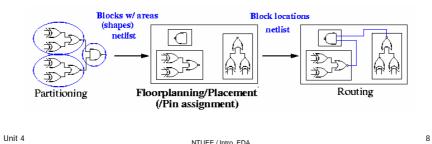

Physical Design Puritioning Placement Routing Compaction Extraction & Physical Design Placement A routing system Little Market Market

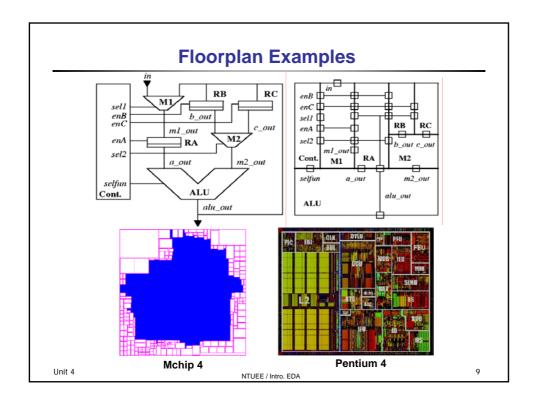


Floorplanning

- Course contents
 - Floorplanning basics
 - Normalized Polish expression for slicing flooprlans
 - B*-trees for non-slicing floorplans
- Readings
 - Chapters 8 and 5.6

PowerPC 604

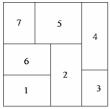

Pentium 4

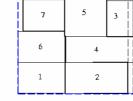

Unit 4

NTUEE / Intro. EDA

Floorplanning

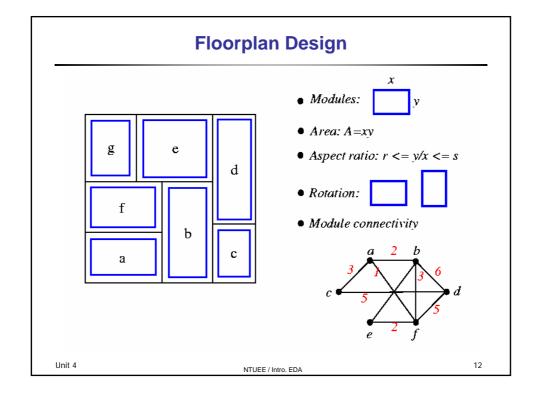
- Partitioning leads to
 - Blocks with well-defined areas and shapes (rigid/hard blocks).
 - Blocks with approximate areas and no particular shapes (flexible/soft blocks).
 - A netlist specifying connections between the blocks.
- Objectives
 - Find locations for all blocks.
 - Consider shapes of soft block and pin locations of all the blocks.


Early Layout Decision Methodology


- An IC is a 2-D medium; considering the dimensions of blocks in early stages of the design helps to improve the quality.
- Floorplanning gives early feedback
 - Suggests valuable architectural modifications
 - Estimates the whole chip area
 - Estimates delay and congestion due to wiring
- Floorplanning fits very well in a *top-down* design strategy; the *step-wise refinement* strategy also propagated in software design.
- Floorplanning considers the *flexibility* in the shapes and terminal locations of blocks.

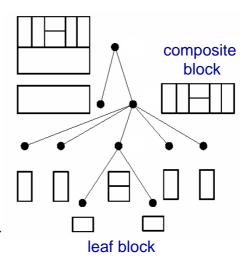
Unit 4 NTUEF / Intro. EDA 10

- Inputs to the floorplanning problem:
 - A set of blocks, hard or soft.
 - Pin locations of hard blocks.
 - A netlist.
- Objectives: minimize area, reduce wirelength for (critical) nets, maximize routability (minimize congestion), determine shapes of soft blocks, etc.



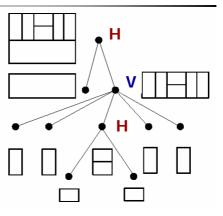
An optimal floorplan, in terms of area

A non-optimal floorplan


Unit 4

NTUEE / Intro. EDA

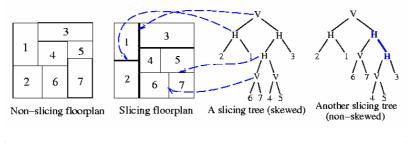
Floorplan Elements


- Leaf block (cell/module): a block at the lowest level of the hierarchy; it does not contain any other block.
- Composite block
 (cell/module): a block
 that is composed of
 either leaf blocks or
 composite blocks. The
 entire IC is the highest level composite block.

Unit 4 NTUEE / Intro. EDA 13

Slicing Floorplan + Slicing Tree

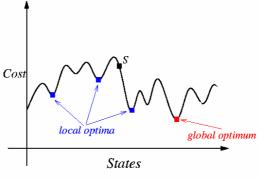
- A composite block's subblocks are obtained by a horizontal or vertical bisection of the composite block.
- Slicing floorplans can be represented by a slicing tree.
- In a slicing tree, all blocks (except for the top-level block) have a parent, and all composite blocks have children.
- A slicing floorplan is also called a floorplan of order 2.



H: horizontal cut V: vertical cut different from the definitions in the text!!

Unit 4 NTLIEF / Intro. FDA 14

Skewed Slicing Tree


- Rectangular dissection: Subdivision of a given rectangle by a finite # of horizontal and vertical line segments into a finite # of nonoverlapping rectangles.
- Slicing structure: a rectangular dissection that can be obtained by repetitively subdividing rectangles horizontally or vertically.
- Slicing tree: A binary tree, where each internal node represents a vertical cut line or horizontal cut line, and each leaf a basic rectangle.
- **Skewed slicing tree:** One in which no node and its **right** child are the same.

Unit 4 NTUEE / Intro. EDA

Floorplan Design by Simulated Annealing

- Slicing Floorplan: Wong & Liu, "A new algorithm for floorplan design," DAC-86.
- Compacted Floorplan: Chang, Chang, Wu, and Wu, "B*-tree: A new representation for non-slicing floorplans," DAC-2K.
- Kirkpatrick, Gelatt, and Vecchi, "Optimization by simulated annealing," *Science*, May 1983.

Unit 4 NTUEE / Intro. EDA 16

Simulated Annealing Basics

- Non-zero probability for "up-hill" moves.
- Probability depends on
 - 1. magnitude of the "up-hill" movement
 - 2. total search time

$$Prob(S \to S') = \begin{cases} 1 & \text{if } \Delta C \le 0 \text{ } /* \text{ "down-hill" moves * / } \\ e^{-\Delta C} & \text{if } \Delta C > 0 \text{ } /* \text{ "up-hill" moves * / } \end{cases}$$

- $\Delta C = cost(S') Cost(S)$
- *T*: Control parameter (temperature)
- Annealing schedule: $T=T_0$, T_1 , T_2 , ..., where $T_i=r^i$ T_0 , r<1.

Unit 4 NTLIEF / letro EDA 17

Generic Simulated Annealing Algorithm

```
1 begin
2 Get an initial solution S;
3 Get an initial temperature T > 0;
4 while not yet "frozen" do
5 for 1 \le i \le P do
6 Pick a random neighbor S' of S;
7 \Delta \leftarrow cost(S') - cost(S);
/* downhill move */
8 if \Delta \le 0 then S \leftarrow S'
/* uphill move */
9 if \Delta > 0 then S \leftarrow S' with probability e^{-\frac{\Delta}{T}};
10 T \leftarrow rT; /* reduce temperature */
11 return S
12 end
```

Unit 4 NTLIEF / Intro. EDA 18

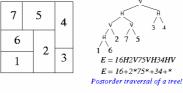
Basic Ingredients for Simulated Annealing

Analogy:

Physical system	Optimization problem
state	configuration
energy	cost function
ground state	optimal solution
quenching	iterative improvement
careful annealing	simulated annealing

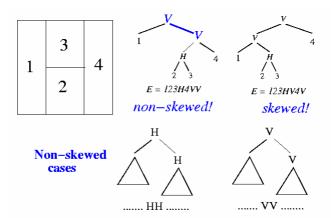
- Basic Ingredients for Simulated Annealing:
 - Solution space
 - Neighborhood structure
 - Cost function
 - Annealing schedule

Unit 4 NTUEE / Intro. EDA


19

20

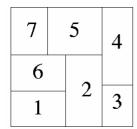
Solution Representation: Slicing Flooprlan

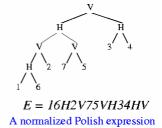

- An expression $E = e_1 e_2 \dots e_{2n-1}$, where $e_i \in \{1, 2, \dots, n, H, V\}$, $1 \le i \le 2n-1$, is a **Polish expression** of length 2n-1 iff
 - every operand j, $1 \le j \le n$, appears exactly once in E;
 - 2. **(the balloting property)** for every subexpression $E_i = e_1 \dots e_j$, $1 \le i \le 2n-1$, # operands > # operators.

- Polish expression ↔ Postorder traversal.
- *ijH*: rectangle *i* on bottom of *j*; *ijV*: rectangle *i* on the left of *j*.

Unit 4

Redundant Representations

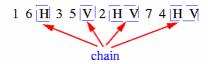



• Question: How to eliminate ambiguous representation?

Unit 4 NTUEE / Intro. EDA 21

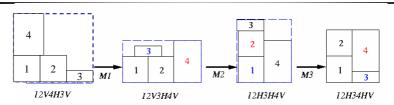
Normalized Polish Expression

- A Polish expression E = e₁ e₂ ... e_{2n-1} is called normalized iff E has no consecutive operators of the same type (H or V).
- Given a normalized Polish expression, we can construct a unique rectangular slicing structure.

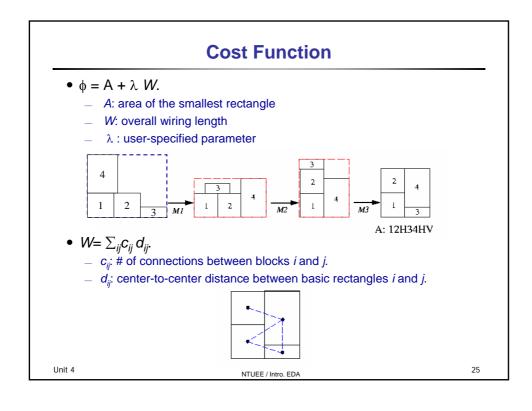


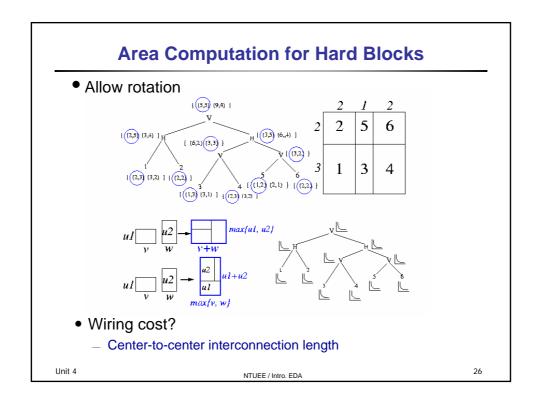
Unit 4 NTUEF / Intro EDA 22

Neighborhood Structure

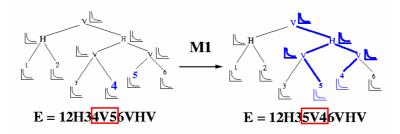

• Chain: HVHVH ... or VHVHV ...

- Adjacent: 1 and 6 are adjacent operands; 2 and 7 are adjacent operands; 5 and V are adjacent operand and operator.
- 3 types of moves:
 - M1 (Operand Swap): Swap two adjacent operands.
 - -M2 (**Chain Invert**): Complement some chain (V = H, H = V).
 - M3 (Operator/Operand Swap): Swap two adjacent operand and operator.


Unit 4 NTUEE / Intro. EDA 23


Effects of Perturbation

- Question: The balloting property holds during the moves?
 - M1 and M2 moves are OK.
 - Check the M3 moves! Reject "illegal" M3 moves.
- Check M3 moves: Assume that M3 swaps the operand e_i with the operator e_{i+1} , $1 \le i \le k-1$. Then, the swap will not violate the balloting property iff $2N_{i+1} < i$.
 - $-N_k$: # of operators in the Polish expression $E = e_1 e_2 ... e_k$, 1 ≤ $k \le 2n$ -1


Unit 4 NTUEE / Intro. EDA 24

Incremental Computation of Cost Function

- Each move leads to only a minor modification of the Polish expression.
- At most **two paths** of the slicing tree need to be updated for each move.

Unit 4 NTUEE / Intro. EDA 27

Incremental Computation of Cost Function (cont'd) E = 12H34V56VHV E = 12H34V56VHV E = 12H34V56VHV Unit 4

Annealing Schedule

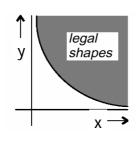
• Initial solution: 12 V3 V ... nV.

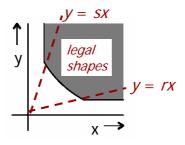
- $T_i = r^i T_0$, i = 1, 2, 3, ...; r = 0.85.
- At each temperature, try kn moves (k = 5-10).
- Terminate the annealing process if
 - # of accepted moves < 5%,</p>
 - temperature is low enough, or
 - run out of time.

Unit 4 29 NTUEE / Intro. EDA

```
Algorithm: Wong-Liu (P, \epsilon, r, k)
```

```
1 begin 2 E \leftarrow 12V3V4V ... nV; /* initial solution */ 3 Best \leftarrow E; T_0 \leftarrow \frac{\Sigma_{avg}}{ln(P)}; M \leftarrow MT \leftarrow uphill \leftarrow 0; N = kn; 4 repeat
                                            MT \leftarrow \text{uphill} \leftarrow \text{reject} \leftarrow 0;
                                                    SelectMove(M);
                                                   Case M of
                                                  Case M of M_1: Select two adjacent operands e_i and e_j: NE \leftarrow \text{Swap}(E, e_i, e_j); M_2: Select a nonzero length chain C; NE \leftarrow \text{Complement}(E, C); M_3: done \leftarrow \text{FALSE}; while not (done) do Select two adjacent operand e_i and operator e_{i+1}; if (e_{i+1} \neq e_{i+1}) and (2 N_{i+1} < i) then done \leftarrow \text{TRUE}; Select two adjacent operator e_i and operand e_{i+1}; if (e_i \neq e_i) then done \leftarrow \text{TRUE}:
                                     10
                                    12
                                     13
                                    14
                                     13
                                                  if (e \neq e_{i+2}) then done \leftarrow TRUE;

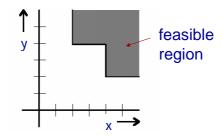

NE \leftarrow Swap(E, e_i, e_{i+1});


MT \leftarrow MT+1; \Delta cost \leftarrow cost(NE) - cost(E);

if (\Delta cost \leq 0) or (Random < \underbrace{-\Delta cost}_{e}) then
                                     15
                                     16
                                     17
                                     18
                                                             if (\triangle cost > 0) then uphill \leftarrow uphill + 1;
                                     19
                                                             E \leftarrow NE; if cost(E) < cost(best) then best \leftarrow E;
                                    20
                                               else reject ← reject + 1;
until (uphill > N) or (MT > 2N);
                                                  T \leftarrow rT; /* reduce temperature */
                                     25 until (reject/MT > 0.95) or (T < \varepsilon) or OutOfTime;
                                     26 end
Unit 4
                                                                                                                                                                                                                                                          30
                                                                                                                NTUEE / Intro. EDA
```

Shape Curve for Floorplan Sizing

- A soft (flexible) block *b* can have different aspect ratios, but is with a fixed area *A*.
- The shape function of *b* is a hyperbola: xy = A, or y = AIx, for width *x* and height *y*.
- Very thin blocks are often not interesting and feasible to design; add two straight lines for the constraints on aspect ratios.
 - Aspect ratio: $r \le y/x \le s$.



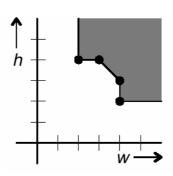
Unit 4

NTUEE / Intro. EDA

Shape Curve

- Since a basic block is built from discrete transistors, it is not realistic to assume that the shape function follows the hyperbola continuously.
- In an extreme case, a block is rigid/hard: it can only be rotated and mirrored during floorplanning or placement.

The shape curve of a 2×4 hard block.


Unit 4

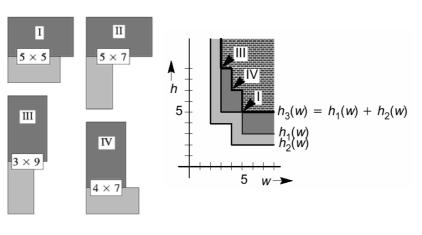
NTUEE / Intro. ED

32

Shape Curve (cont'd)

- In general, a *piecewise linear* function can be used to approximate any shape function.
- The points where the function changes its direction, are called the corner (*break*) *points* of the piecewise linear function.

Unit 4

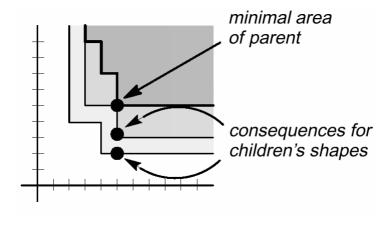

NTUEE / Intro. EDA

33

34

Vertical Abutment

 Composition by vertical abutment (horizontal cut) ⇒ the addition of shape functions.

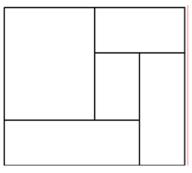


Unit 4

TUEE / Intro. EDA

Deriving Shapes of Children

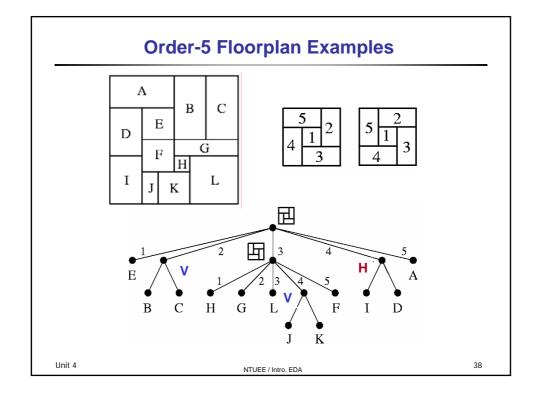
 A choice for the minimal shape of a composite block fixes the shapes of the shapes of its children blocks.

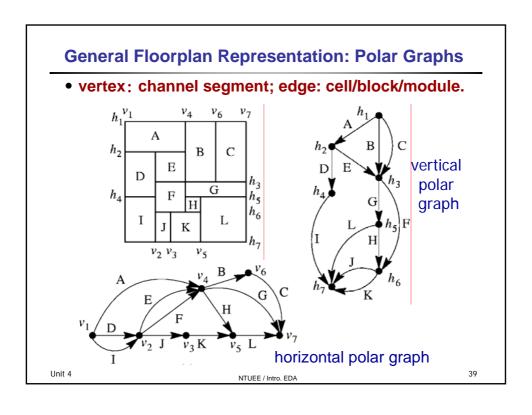

Unit 4 NTUEE / Intro. EDA 3

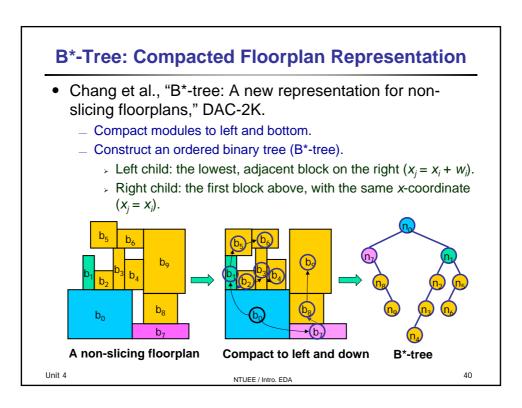
Slicing Floorplan Sizing

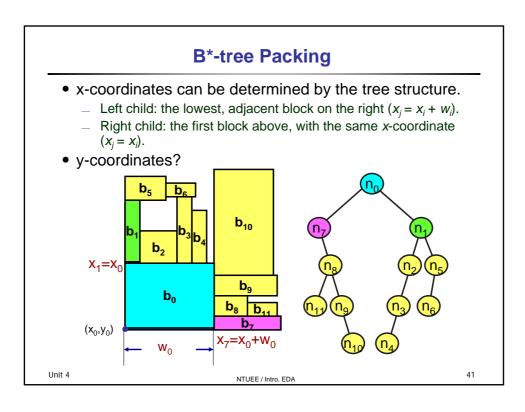
- The shape functions of all leaf blocks are given as piecewise linear functions.
- Traverse the slicing tree to compute the shape functions of all composite blocks (bottom-up composition).
- Choose the desired shape of the top-level block; as the shape function is piecewise linear only the corner points of the function need to be evaluated, when looking for the minimal area.
- Propagate the consequences of the choice down to the leaf blocks (top-down propagation).
- The sizing algorithm runs in polynomial time for slicing floorplans
 - NP-complete for non-slicing floorplans

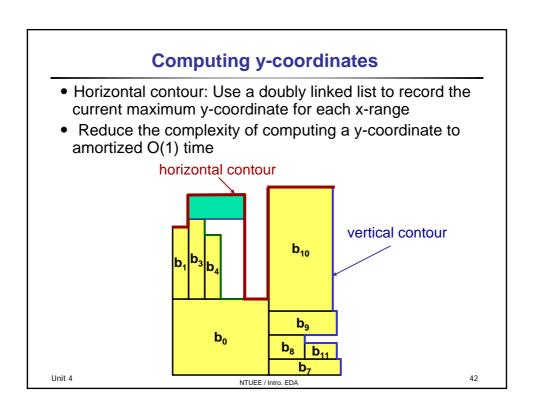
Unit 4 NTLIEF / Intro. EDA 36


Wheel or Spiral Floorplan

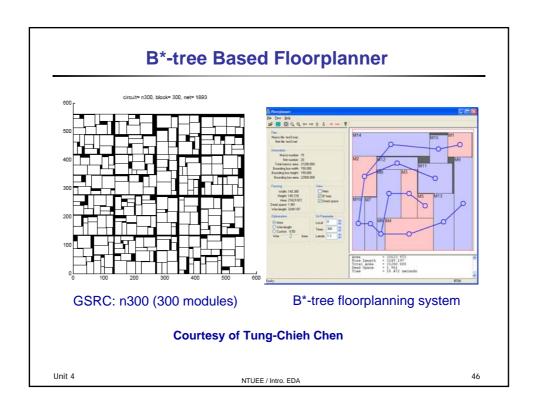


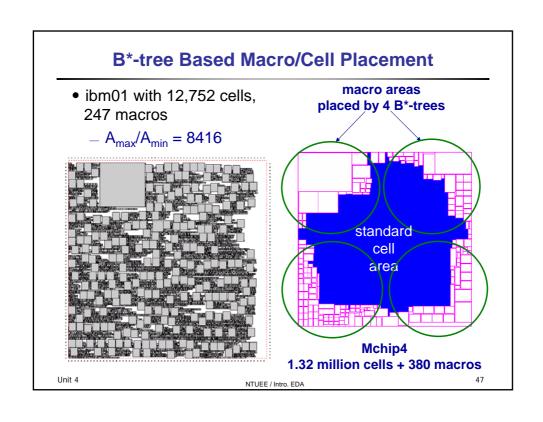

- This floorplan is not slicing!
- Wheel is the smallest non-slicing floorplans.


- Limiting floorplans to those that have the slicing property can facilitate floorplanning algorithms.
- Taking the shape of a wheel floorplan and its mirror image as the basis of operators leads to hierarchical descriptions of order 5.


Unit 4 NTUEE / Intro. EDA 37

B*-Tree Perturbation • Op1: rotate a macro • Op2: delete & insert • Op3: swap 2 nodes • Op4: resize a soft macro Op3(n1, n7) Op2(n11, n6) Op3(n1, n6) Op3(n1, n7) Op3(n1, n6) Op3(n1, n7) Op3(n1, n6) Op3(n


B*-tree Floorplanning


- Was considered as the best representation for packing in a recent survey (Chan et al., ISPD-05)
- More than 100 citations in ACM/IEEE papers since its publication at DAC-2K (> 70% of floorplanning papers)
- Package is available at http://eda.ee.ntu.edu.tw/research.htm/

MCNC Ckts	SP (Japan) 1995	Q-Seq (Japan) 2002	O-tree (USA/ Japan) 1999	CBL (China) 2001	Slicing (USA) 2005	TCG (Ours) DAC 2001	TCG-S (Ours) DAC 2002	CS (Ours) TVLSI 2003	B*-tree (Ours) DAC 2000
apte	48.12	46.92	47.1	NA	46.92	46.92	46.92	46.92	46.92
xerox	20.69	19.93	20.1	20.96	20.20	19.83	19.796	19.83	19.796
hp	9.93	9.03	9.21	NA	9.03	8.947	8.947	8.947	8.947
ami33	1.22	1.194	1.25	1.20	1.183	1.20	1.185	1.18	1.168
ami49	38.84	36.75	37.6	38.58	36.24	36.77	36.4	36.24	36.4

Best chip areas are in red

Unit 4 NTUEE / Intro. EDA 45

