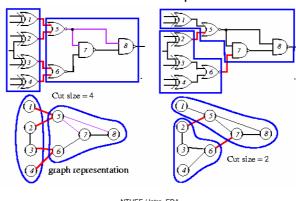


Circuit Partitioning

- **Objective:** Partition a circuit into parts such that every component is within a prescribed range and the # of connections among the components is minimized.
 - More constraints are possible for some applications.
- Cutset? Cut size? Size of a component?



Unit 5 2

Problem Definition: Partitioning

- k-way partitioning: Given a graph G(V, E), where each vertex v ∈ V has a size s(v) and each edge e ∈ E has a weight w(e), the problem is to divide the set V into k disjoint subsets V₁, V₂, ..., V_k, such that an objective function is optimized, subject to certain constraints.
- Bounded size constraint: The size of the *i*-th subset is bounded by B_i ($\sum_{v \in V_i} s(v) \leq B_i$).
 - Is the partition balanced?
- Min-cut cost between two subsets: Minimize $\sum_{\forall e=(u,v) \land p(u) \neq p(v)} w(e)$, where p(u) is the partition # of node u.
- The 2-way, balanced partitioning problem is NP-complete, even in its simple form with identical vertex sizes and unit edge weights.

Unit 5 NTUEE / Intro. EDA

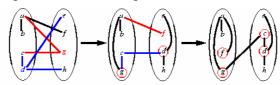
Kernighan-Lin Heuristic

- Kernighan and Lin, "An efficient heuristic procedure for partitioning graphs," The Bell System Technical Journal, vol. 49, no. 2, Feb. 1970.
- An iterative, 2-way, balanced partitioning (bi-sectioning) heuristic.
- Till the cut size keeps decreasing
 - Vertex pairs which give the largest decrease or the smallest increase in cut size are exchanged.
 - These vertices are then locked (and thus are prohibited from participating in any further exchanges).
 - This process continues until all the vertices are locked.
 - Find the set with the largest partial sum for swapping.
 - Unlock all vertices.

Unit 5 NTUEF / Intro_EDA 4

K-L Heuristic: A Simple Example

• Each edge has a unit weight.



Step#	Vertex pair	Cost reduction	Cut cost
0	-	0	5
1	{d, g}	3	2
2	{c, f}	1	1
3	{b, h}	-2	3
4	₹a, e}	-2	5

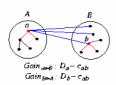
- Questions: How to compute cost reduction? What pairs to be swapped?
 - Consider the change of internal & external connections.

Unit 5 NTUEE / Intro. EDA

Properties

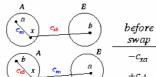
- Two sets A and B such that |A| = n = |B| and $A \cap B = \emptyset$.
- External cost of $a \in A$: $E_a = \sum_{v \in B} c_{av}$.
- Internal cost of $a \in A$: $I_a = \sum_{v \in A} c_{av}$.
- *D*-value of a vertex *a*: $D_a = E_a I_a$ (cost reduction for moving *a*).
- Cost reduction (gain) for swapping a and b: $g_{ab} = D_a + D_b 2c_{ab}$.
- If *a* ∈ A and *b* ∈ B are interchanged, then the new *D*-values, *D*', are given by

$$\begin{array}{rcl} D'_x & = & D_x + 2c_{xa} - 2c_{xb}, \forall x \in A - \{a\} \\ D'_y & = & D_y + 2c_{yb} - 2c_{ya}, \forall y \in B - \{b\}. \end{array}$$



Internal cost vs. External cost

Unit 5



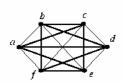
 $\begin{array}{ccccc}
-c_{xa} & +c_{xa} & +2c_{xa} \\
+c_{xb} & -c_{xb} & -2c_{xb}
\end{array}$

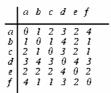
 $\triangle C$

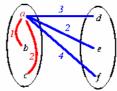
updating D-values

NTUEE / Intro. EDA

K-L Heuristic: A Weighted Example







costs associated with a

Initial cut cost = (3+2+4)+(4+2+1)+(3+2+1) = 22

• Iteration 1:

```
\begin{array}{llll} I_a=1+2=3; & E_a=3+2+4=9; & D_a=E_a-I_a=9-3=6 \\ I_b=1+1=2; & E_b=4+2+1=7; & D_b=E_b-I_b=7-2=5 \\ I_c=2+1=3; & E_c=3+2+1=6; & D_c=E_c-I_c=6-3=3 \\ I_d=4+3=7; & E_d=3+4+3=10; & D_d=E_d-I_d=10-7=3 \\ I_e=4+2=6; & E_e=2+2+2=6; & D_e=E_e-I_e=6-6=0 \\ I_f=3+2=5; & E_f=4+1+1=6; & D_f=E_f-I_f=6-5=1 \end{array}
```

Unit 5

NTUEE / Intro. EDA

7

Computing the g Value

• Iteration 1:

```
\begin{array}{llll} I_a = 1 + 2 = 3; & E_a = 3 + 2 + 4 = 9; & D_a = E_a - I_a = 9 - 3 = 6 \\ I_b = 1 + 1 = 2; & E_b = 4 + 2 + 1 = 7; & D_b = E_b - I_b = 7 - 2 = 5 \\ I_c = 2 + 1 = 3; & E_c = 3 + 2 + 1 = 6; & D_c = E_c - I_c = 6 - 3 = 3 \\ I_d = 4 + 3 = 7; & E_d = 3 + 4 + 3 = 10; & D_d = E_d - I_d = 10 - 7 = 3 \\ I_e = 4 + 2 = 6; & E_e = 2 + 2 + 2 = 6; & D_e = E_e - I_e = 6 - 6 = 0 \\ I_f = 3 + 2 = 5; & E_f = 4 + 1 + 1 = 6; & D_f = E_f - I_f = 6 - 5 = 1 \end{array}
```

 $\bullet \ g_{xy} = D_x + D_y - 2c_{xy}.$

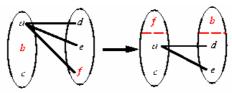
$$\begin{array}{lll} g_{ad} & = & D_a + D_d - 2c_{ad} = 6 + 3 - 2 \times 3 = 3 \\ g_{ae} & = & 6 + 0 - 2 \times 2 = 2 \\ g_{af} & = & 6 + 1 - 2 \times 4 = -1 \\ g_{bd} & = & 5 + 3 - 2 \times 4 = 0 \\ g_{be} & = & 5 + 0 - 2 \times 2 = 1 \\ g_{bf} & = & 5 + 1 - 2 \times 1 = 4 \ (maximum) \\ g_{cd} & = & 3 + 3 - 2 \times 3 = 0 \\ g_{ce} & = & 3 + 0 - 2 \times 2 = -1 \\ g_{cf} & = & 3 + 1 - 2 \times 1 = 2 \end{array}$$

• Swap b and f. $(\hat{g_1} = 4)$

Unit 5

NTUEE / Intro. EDA

Updating the D Value



- $D'_x = D_x + 2 c_{xp} 2 c_{xq}$, $\forall x \in A \{p\}$ (swap p and $q, p \in A, q \in B$)
 - $D'_a = D_a + 2c_{ab} 2c_{af} = 6 + 2 \times 1 2 \times 4 = 0$

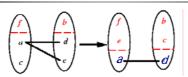
 - $D'_{c} = D_{c} + 2c_{db} 2c_{ef} = 3 + 2 \times 1 2 \times 1 = 3$ $D'_{d} = D_{d} + 2c_{df} 2c_{db} = 3 + 2 \times 3 2 \times 4 = 1$ $D'_{e} = D_{e} + 2c_{ef} 2c_{eb} = 0 + 2 \times 2 2 \times 2 = 0$
- $g_{xy} = D'_x + D'_y 2c_{xy}$.
 - $\begin{array}{ll} g_{ad} & = D_a' + D_d' 2c_{ad} = 0 + 1 2 \times 3 = -5 \\ g_{ae} & = D_a' + D_e' 2c_{ae} = 0 + 0 2 \times 2 = -4 \\ g_{cd} & = D_c' + D_d' 2c_{cd} = 3 + 1 2 \times 3 = -2 \end{array}$

 - $g_{ce} = D_c' + D_e'' 2c_{ce} = 3 + 0 2 \times 2 = -1$ (maximum)
- Swap c and e. $(\hat{g_2} = -1)$

Unit 5

NTUEE / Intro. EDA

Determining Swapping Pairs



• $D''_x = D'_x + 2 c_{xp} - 2 c_{xq}, \forall x \in A - \{p\}$

$$\begin{array}{lll} D_a'' & = & D_a' + 2c_{ac} - 2c_{ae} = 0 + 2 \times 2 - 2 \times 2 = 0 \\ D_d'' & = & D_d' + 2c_{de} - 2c_{dc} = 1 + 2 \times 4 - 2 \times 3 = 3 \end{array}$$

• $g_{xy} = D_x'' + D_y'' - 2c_{xy}$

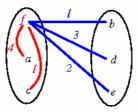
$$g_{ad} = D_a'' + D_d'' - 2c_{ad} = 0 + 3 - 2 \times 3 = -3(\hat{g}_3 = -3)$$

- Note that this step is redundant $(\sum_{i=1}^n \widehat{g_i} = 0)$.
- Summary: $\hat{g_1} = g_{bf} = 4$, $\hat{g_2} = g_{ce} = -1$, $\hat{g_3} = g_{ad} = -3$.
- Largest partial sum $\max \sum_{i=1}^k \hat{g_i} = 4 \ (k=1) \Rightarrow \text{Swap } b \text{ and } f.$

Unit 5 10

Next Iteration

	а	b	С	d	е	f	
$\begin{bmatrix} a \\ b \\ c \\ d \\ e \\ f \end{bmatrix}$	0 1 2 3 2 4	1 0 1 4 2 1	2 1 0 3 2 1	3 4 3 0 4 3	-0	4 1 1 3 2 0	•



Initial cut cost = (1+3+2)+(1+3+2)+(1+3+2) = 18(22-4)

- Iteration 2: Repeat what we did at Iteration 1 (Initial cost = 22-4 = 18).
- Summary: $\hat{g_1} = g_{ce} = -1$, $\hat{g_2} = g_{ab} = -3$, $\hat{g_3} = g_{fd} = 4$.
- Largest partial sum = $\max \sum_{i=1}^{k} \hat{g_i} = 0 \ (k=3) \Rightarrow \text{Stop!}$

Unit 5 11 NTUEE / Intro. EDA

Kernighan-Lin Heuristic

```
Algorithm: Kernighan-Lin(G)
```

Input: G = (V, E), |V| = 2n.

Output: Balanced bi-partition A and B with "small" cut cost.

1 begin

- 2 Bipartition G into A and B such that $|V_A|=|V_B|,\ V_A\cap V_B=\emptyset,$ and $V_A \cup V_B = V$.
- 3 repeat
- Compute D_v , $\forall v \in V$.
- Find a pair of unlocked vertices $v_{ai} \in V_A$ and $v_{bi} \in V_B$ whose 6 exchange makes the largest decrease or smallest increase in
- Mark v_{ai} and v_{bi} as locked, store the gain $\widehat{g_i}$, and compute the new D_v , for all unlocked $v \in V$; 7
- Find k, such that $G_k = \sum_{i=1}^k \hat{g}_i$ is maximized; 8
- if $G_k > 0$ then
- Move v_{a1},\ldots,v_{ak} from V_A to V_B and v_{b1},\ldots,v_{bk} from V_B to V_A ; 11 Unlock $v, \forall v \in V$.
- 12 until $G_k \leq 0$;
- 13 end

Unit 5

Time Complexity

- Line 4: Initial computation of *D*: $O(n^2)$
- Line 5: The **for**-loop: *O*(*n*)
- The body of the loop: $O(n^2)$
 - Lines 6--7: Step *i* takes $(n-i+1)^2$ time
- Lines 4--11: Each pass of the repeat loop: $O(n^3)$
- Suppose the repeat loop terminates after *r* passes
- The total running time: $O(rn^3)$
 - Polynomial-time algorithm?

Unit 5 NTUEE / Intro. EDA 13

Extensions of K-L Heuristic

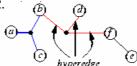
- Unequal sized subsets (assume $n_1 < n_2$)
 - 1. Partition: $|A| = n_1$ and $|B| = n_2$.
 - ². Add n_2 n_1 dummy vertices to set A. Dummy vertices have no connections to the original graph.
 - 3. Apply the Kernighan-Lin algorithm.
 - 4. Remove all dummy vertices.
- Unequal sized "vertices"
 - 1. Assume that the smallest "vertex" has unit size.
 - 2. Replace each vertex of size s with s vertices which are fully connected with edges of infinite weight.
 - 3. Apply the Kernighan-Lin algorithm.
- k-way partition
 - 1. Partition the graph into *k* equal-sized sets.
 - 2. Apply the Kernighan-Lin algorithm for each pair of subsets.
 - 3. Time complexity? Can be reduced by recursive bi-partition.
- How to handle hypergraphs?
 - Need to handle multi-terminal nets directly.

Unit 5

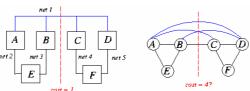
NTUEE / Intro. EDA

Coping with Hypergraph

A hypergraph H = (N, L) consists of a set N of vertices and a set L of hyperedges, where each hyperedge corresponds to a subset N_i of distinct vertices with |N_i| ≥ 2.



- Schweikert and Kernighan, "A proper model for the partitioning of electrical circuits," 9th Design Automation Workshop, 1972.
- For multi-terminal nets, **net cut** is a more accurate measurement for cut cost (i.e., deal with hyperedges).
 - = {A, B, E}, {C, D, F} is a good partition.
 - Should not assign the same weight for all edges.

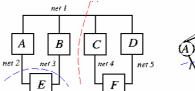


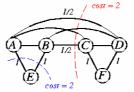
Unit 5

15

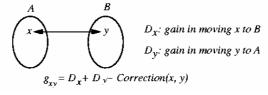
Net-Cut Model

- Let n(i) = # of cells associated with Net i.
- Edge weight $w_{xy} = \frac{2}{n(i)}$ for an edge connecting cells x and y





• Easy modification of the K-L heuristic.



Unit 5

ITUEE / Intro. EDA

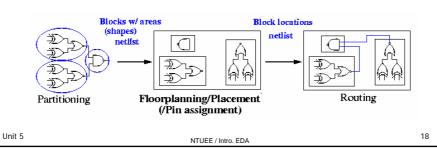
A Linear-Time Heuristic for Partitioning

- Fiduccia and Mattheyses, "A linear time heuristic for improving network partitions," DAC-82.
- New features to the K-L heuristic:
 - Aims at reducing net-cut costs; the concept of cutsize is extended to hypergraphs.
 - Only a single vertex is moved across the cut in a single move.
 - Vertices are weighted.
 - Can handle "unbalanced" partitions; a balance factor is introduced.
 - A special data structure is used to select vertices to be moved across the cut to improve running time.
 - Time complexity O(P), where P is the total # of terminals.

Unit 5 NTUEE / Intro. EDA 17

Placement

- Placement is the problem of automatically assigning correct positions on the chip to predesigned cells, such that some cost function is optimized.
- Inputs: A set of fixed cells/modules, a netlist.
- Goal: Find the best position for each cell/module on the chip according to appropriate cost functions.
 - Considerations: routability/channel density, wirelength, cut size, performance, thermal issues, I/O pads.

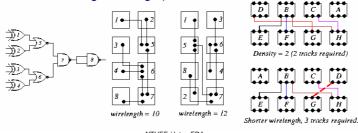


Placement Objectives and Constraints

- What does a placement algorithm try to optimize?
 - _ the total area
 - the total wire length
 - the number of horizontal/vertical wire segments crossing a line
- Constraints:

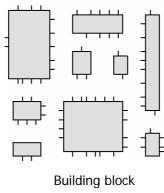
Unit 5

- the placement should be routable (no cell overlaps; no density overflow).
- timing constraints are met (some wires should always be shorter than a given length).



VLSI Placement: Building Blocks

- Different design styles create different placement problems.
 - E.g., building-block, standard-cell, gate-array placement
- Building block: The cells to be placed have arbitrary shapes.



Unit 5 NTUEE / Intro. EDA 20

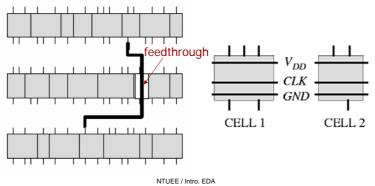
VLSI Placement: Standard Cells

- Standard cells are designed in such a way that power and clock connections run horizontally through the cell and other I/O leaves the cell from the top or bottom sides.
- The cells are placed in rows.

Unit 5

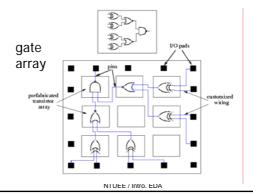
Unit 5

Sometimes feedthrough cells are added to ease wiring.



Consequences of Fabrication Method

- Full-custom fabrication (building block):
 - Free selection of aspect ratio (quotient of height and width).
 - Height of wiring channels can be adapted to necessity.
- Semi-custom fabrication (gate array, standard cell):
 - Placement has to deal with fixed carrier dimensions.
 - Placement should be able to deal with fixed channel capacities.



22

Relation with Routing

- Ideally, placement and routing should be performed simultaneously as they depend on each other's results.
 This is, however, too complicated.
 - P&R: placement and routing
- In practice placement is done prior to routing. The placement algorithm estimates the wire length of a net using some *metric*.

Unit 5 NTUEE / Intro. EDA 23

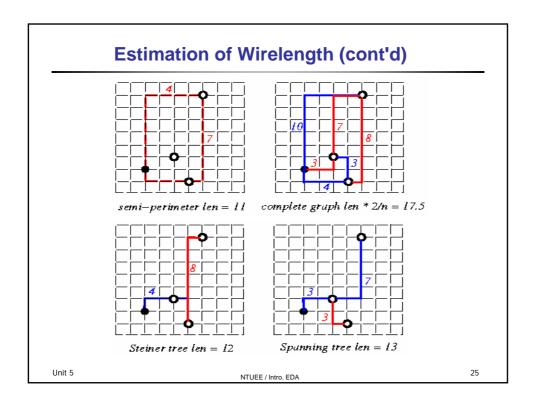
Estimation of Wirelength

- Semi-perimeter method: Half the perimeter of the bounding rectangle that encloses all the pins of the net to be connected. Most widely used approximation!
- Squared Euclidean distance: Squares of all pairwise terminal distances in a net using a quadratic cost function

$$\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \gamma_{ij} [(x_i - x_j)^2 + (y_i - y_j)^2]$$

- Steiner-tree approximation: Computationally expensive.
- Minimum spanning tree: Good approximation to Steiner trees.
- Complete graph: Since #edges in a complete graph is $\left(\frac{n(n-1)}{2}\right) = \frac{n}{2} \times \#$ of tree edges (*n*-1), wirelength $\approx \frac{2}{n} \sum_{(i,j) \in net} dist(i,j)$.

Unit 5 NTUEF / Intro. EDA 24



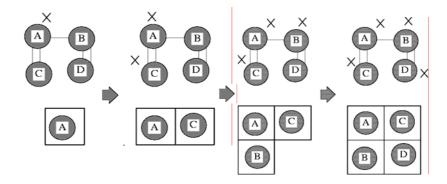
Placement Algorithms

- The placement problem is NP-complete
- Popular placement algorithms:
 - Constructive algorithms: once the position of a cell is fixed, it is not modified anymore.
 - Cluster growth, min cut, etc.
 - Iterative algorithms: intermediate placements are modified in an attempt to improve the cost function.
 - Force-directed method, etc
 - Nondeterministic approaches: simulated annealing, genetic algorithm, etc.
- Most approaches combine multiple elements:
 - Constructive algorithms are used to obtain an initial placement.
 - The initial placement is followed by an iterative improvement phase.
 - The results can further be improved by simulated annealing.

Unit 5 NTUEE / Intro. EDA 2

Bottom-Up Placement: Clustering

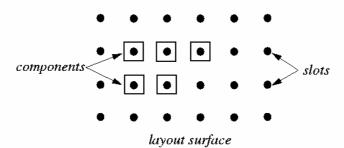
 Starts with a single cell and finds more cells that share nets with it.



Unit 5 NTUEE / Intro. EDA 27

Placement by Cluster Growth

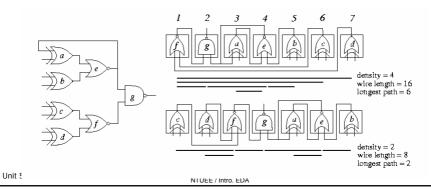
- Greedy method: Selects unplaced components and places them in available slots.
 - SELECT: Choose the unplaced component that is most strongly connected to all of the placed components (or most strongly connected to any single placed component).
 - PLACE: Place the selected component at a slot such that a certain "cost" of the partial placement is minimized.



Unit 5 NTUEE / Intro. EDA 28

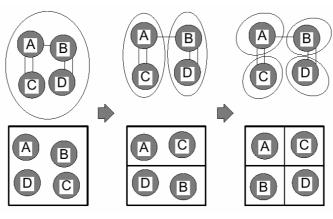
Cluster Growth Example

- # of other terminals connected: c_a =3, c_b =1, c_c =1, c_d =1, c_e =4, c_i =3, and c_g =3 \Rightarrow e has the most connectivity.
- Place *e* in the center, slot 4. *a*, *b*, *g* are connected to *e*, and $\hat{c}_{ae} = 2$, $\hat{c}_{be} = \hat{c}_{eg} = 1 \Rightarrow$ Place *a* next to *e* (say, slot 3). Continue until all cells are placed.
- Further improve the placement by swapping the gates.



Top-down Placement: Min Cut

- Starts with the whole circuit and ends with small circuits.
- Recursive bipartitioning of a circuit (e.g., K&L) leads to a min-cut placement.



Unit 5 NTUEF / Intro. EDA 30

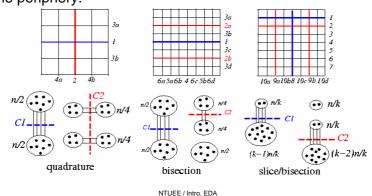
Min-Cut Placement

- Breuer, "A class of min-cut placement algorithms," DAC-77.
- Quadrature: suitable for circuits with high density in the center.
- Bisection: good for standard-cell placement.

Unit 5

Unit 5

• **Slice/Bisection:** good for cells with high interconnection on the periphery.



Algorithm for Min-Cut Placement

```
Algorithm: Min_Cut_Placement(N, n, C)

/* N: the layout surface */

/* n: # of cells to be placed */

/* n_0: # of cells in a slot */

/* C: the connectivity matrix */

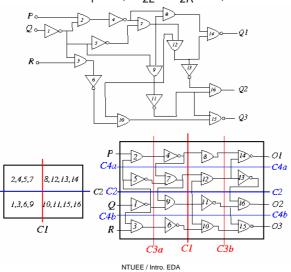
1 begin
2 if (n \le n_0) then PlaceCells(N, n, C)
3 else
4 (N_1, N_2) \leftarrow CutSurface(N);
5 (n_1, n_1, (n_2, n_2) \leftarrow Partition(n, n_1);
6 Call Min_Cut_Placement(n_1, n_1, n_2);
7 Call Min_Cut_Placement(n_2, n_2, n_2);
8 end
```

16

31

Quadrature Placement Example

• Apply the K-L heuristic to partition + Quadrature Placement: Cost $C_1 = 4$, $C_{2L} = C_{2R} = 2$, etc.



Min-Cut Placement with Terminal Propagation

33

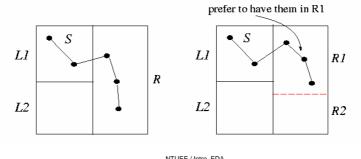
34

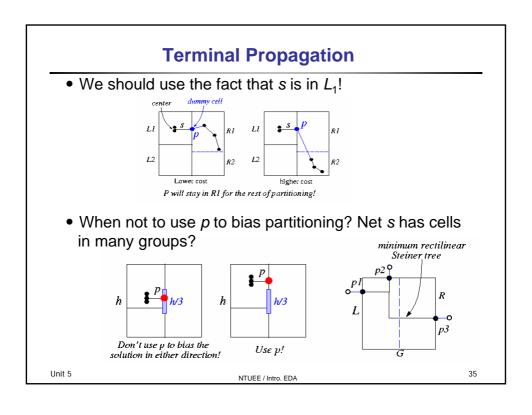
• Dunlop & Kernighan, "A procedure for placement of standard-cell VLSI circuits," *IEEE TCAD*, Jan. 1985.

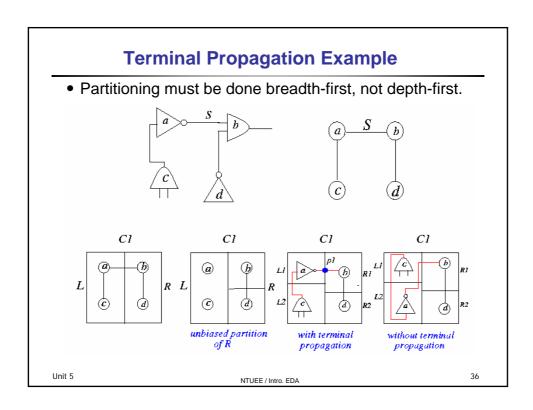
Unit 5

Unit 5

- Drawback of the original min-cut placement: Does not consider the positions of terminal pins that enter a region.
 - What happens if we swap {1, 3, 6, 9} and {2, 4, 5, 7} in the previous example?







General Procedure for Iterative Improvement

```
Algorithm: Iterative_Improvement()

1 begin

2 s \leftarrow \text{initial\_configuration}();

3 c \leftarrow \text{cost}(s);

4 while (not stop()) do

5 s' \leftarrow \text{perturb}(s);

6 c' \leftarrow \text{cost}(s');

7 if (accept(c, c'))

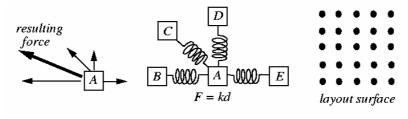
8 then s \leftarrow s';

9 end
```

Unit 5 NTUEE / Intro. EDA 37

Placement by the Force-Directed Method

- Quinn, Jr. & Breuer, "A force directed component placement procedure for printed circuit boards," *IEEE Trans. Circuits and Systems*, June 1979.
- Reduce the placement problem to solving a set of simultaneous linear equations to determine equilibrium locations for cells.
- Analogy to Hooke's law: F = kd, F: force, k: spring constant, d: distance.
- Goal: Map cells to the layout surface.



Unit 5 NTUEF / Intro EDA

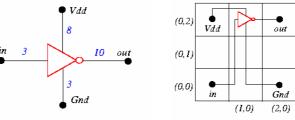
Finding the Zero-Force Target Location

- Cell i connects to several cells j's at distances d_{ij}'s by wires of weights w_{ij}'s. Total force: F_i = ∑_iw_{ij}d_{ij}
- The zero-force target location ($\hat{x_i}$, $\hat{y_i}$) can be determined by equating the *x* and *y*-components of the forces to zero:

$$\sum_{j} w_{ij} \cdot (x_j - \hat{x}_i) = 0 \quad \Rightarrow \quad \hat{x}_i = \frac{\sum_{j} w_{ij} x_j}{\sum_{j} w_{ij}}$$

$$\sum_{j} w_{ij} \cdot (y_j - \hat{y}_i) = 0 \quad \Rightarrow \quad \hat{y}_i = \frac{\sum_{j} w_{ij} y_j}{\sum_{j} w_{ij}}$$

• In the example, $\hat{x_i} = \frac{8 \times 0 + 10 \times 2 + 3 \times 0 + 3 \times 2}{8 + 10 + 3 + 3} = 1.083$ and $\hat{y_i} = 1.50$.



Unit 5

NTUEE / Intro. Eug

39

Force-Directed Placement

- Can be constructive or iterative:
 - Start with an initial placement.
 - Select a "most profitable" cell p (e.g., maximum F, critical cells) and place it in its zero-force location.
 - "Fix" placement if the zero-force location has been occupied by another cell q.
- Popular options to fix:
 - Ripple move: place p in the occupied location, compute a new zero-force location for q, ...
 - Chain move: place p in the occupied location, move q to an adjacent location, ...
 - Move p to a free location close to q.

Unit 5

NTUEE / Intro. ED

```
Algorithm: Force-Directed_Placement
2 Compute the connectivity for each cell;
3 Sort the cells in decreasing order of their connectivities into list L;
4 while (IterationCount < IterationLimit) do
      Seed \leftarrow next module from L;
      Declare the position of the seed vacant;
          while (EndRipple = FALSE) do
8
               Compute target location of the seed;
               case the target location
10
               VACANT:
11
                   Move seed to the target location and lock;
              EndRipple \leftarrow TRUE; \ AbortCount \leftarrow 0;
SAME AS PRESENT LOCATION:
12
13
14
                   EndRipple \leftarrow TRUE; AbortCount \leftarrow 0;
15
               LOCKED:
16
                   Move selected cell to the nearest vacant location;
17
                   EndRipple \leftarrow TRUE; AbortCount \leftarrow AbortCount + 1;
18
                   if (AbortCount > AbortLimit) then
19
                       Unlock all cell locations;
              \begin{array}{c} \textit{IterationCount} \leftarrow \textit{IterationCount} + 1; \\ \textbf{OCCUPIED AND NOT LOCKED}: \end{array}
19
20
21
                   Select cell as the target location for next move;
22
                   Move seed cell to target location and lock the target location;
23
                   EndRipple \leftarrow FALSE; AbortCount \leftarrow 0;
26 end
```

Unit 5 NTUEE / Intro. EDA 41

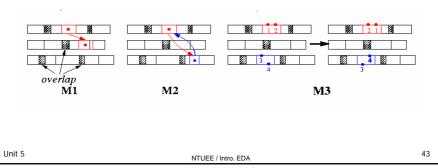
Placement by Simulated Annealing

- Sechen and Sangiovanni-Vincentelli, "The TimberWolf placement and routing package," *IEEE J. Solid-State Circuits*, Feb. 1985.
- TimberWolf: Stage 1
 - Modules are moved between different rows as well as within the same row.
 - Modules overlaps are allowed.
 - When the temperature is reached below a certain value, stage 2 begins.
- TimberWolf: Stage 2
 - Remove overlaps.
 - Annealing process continues, but only interchanges adjacent modules within the same row.

Unit 5 NTUEF / Intro EDA 42

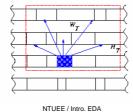
Solution Space & Neighborhood Structure

- **Solution Space:** All possible arrangements of the modules into rows, possibly with overlaps.
- Neighborhood Structure: 3 types of moves
 - $-M_1$: Displace a module to a new location.
 - $-M_2$: Interchange two modules.
 - $-M_3$: Change the orientation of a module.



Neighborhood Structure

- TimberWolf first tries to select a move between M_1 and M_2 : $Prob(M_1) = 0.8$, $Prob(M_2) = 0.2$.
- If a move of type M₁ is chosen and it is rejected, then a move of type M₃ for the same module will be chosen with probability 0.1.
- Restrictions: (1) what row for a module can be displaced? (2) what pairs of modules can be interchanged?
- Key: Range Limiter
 - At the beginning, (W_T, H_T) is big enough to contain the whole chip.
 - Window size shrinks as temperature decreases. Height & width $\propto \textit{log(T)}$.
 - Stage 2 begins when window size is so small that no inter-row module interchanges are possible.



Unit 5

Cost Function

- Cost function: $C = C_1 + C_2 + C_3$.
- C₁: total estimated wirelength.
 - $C_1 = \sum_{i \in Nets} (\alpha_i w_i + \beta_i h_i)$
 - $-\alpha_i$, β_i are horizontal and vertical weights, respectively. (α_i =1, β_i =1 \Rightarrow half perimeter of the bounding box of Net *i*.)
 - Critical nets: Increase both α_i and β_i .
 - If vertical wirings are "cheaper" than horizontal wirings, use smaller vertical weights: $\beta_i < \alpha_i$.
- C_2 : penalty function for module overlaps.

 - $C_2 = \gamma \sum_{i \neq j} O^2_{ij}$, γ: penalty weight. O_{ij} : amount of overlaps in the *x*-dimension between modules *i*
- C₃: penalty function that controls the row length.
 - $-C_2 = \delta \sum_{r \in Rows} |L_r D_r|, \delta$: penalty weight.
 - D_r : desired row length.
 - $-L_r$: sum of the widths of the modules in row r.

45

Annealing Schedule

- $T_k = r_k T_{k-1}$, k = 1, 2, 3, ...
- r_k increases from 0.8 to max value 0.94 and then decreases to 0.8.
- At each temperature, a total # of *nP* attempts is made.
- n: # of modules; P: user specified constant.
- Termination: T < 0.1.

Unit 5

