
DPLL (1962)
Davis-Putnam-Logemann-Loveland algorithm

 for satisfiability checking

 algorithm runsbasic backtracking

 each iteration, run the splitting rule:
 choosing a literal,

 assigning a truth value to it,

 simplifying the formula and

 then recursively checking if the simplified formula is

satisfiable.
 simplification 1: removing all clauses which become true

under the assignment from the formula, and

 simplification 2: removing all literals that become false from
the remaining clauses.

function DPLL(Φ) {
if Φ is a consistent set of literals then return T;

if Φ contains an empty clause then return F;

for every unit clause l in Φ
Φ=unit-propagate(l, Φ);

for every literal l that occurs pure in Φ,
Φ=pure-literal-assign(l, Φ);

l := choose-literal(Φ);

return DPLL(Φ Λ l) OR DPLL(Φ Λ not(l));

}

DPLL (1962)
Davis-Putnam-Logemann-Loveland algorithm

Enhancement by the eager use of the following rules :
 Unit propagation
 If a clause is a unit clause, i.e. it contains only a single unassigned

literal, this clause can only be satisfied by assigning the necessary
value to make this literal true.

 In practice, this often leads to deterministic cascades of units,
thus avoiding a large part of the naive search space.

 Pure literal elimination
 If a propositional variable occurs with only one polarity in the

formula, it is called pure.
Pure literals can always be assigned in a way that makes all

clauses containing them true.
Most current implementations omit it, as the effect for efficient

implementations now is negligible or, due to the overhead for
detecting purity, even negative.

DPLL (1962)
Davis-Putnam-Logemann-Loveland algorithm

An example: Prove p, (p → q), (q → r) ⊨ r
Conversion to clauses:

⇒ p, (¬p ∨ q), (¬q ∨ r) , ¬r

Unit propagation with p=true, r = false:
⇒ true, (false ∨ q), (¬q ∨ false), true
⇒ q, ¬q

Pure literal elimination :
⇒ q, ¬q

Choose literal q = true:
⇒ true, false.

Choose literal q = false:
⇒ false, true.

Thus the lemma is proven by refutation with DPLL.

DPLL (1962)
Davis-Putnam-Logemann-Loveland algorithm

False is an
empty clause

An example (another presentation):
Prove p, (p→q), (q→r) ⊨ r
Conversion to clauses as sets of literals:

⇒ {p}, {¬p, q}, {¬q, r} , {¬r}

Unit propagation with p=true, r = false:
⇒ {true}, {false, q}, {¬q, false}, {true}
⇒ {q}, {¬q} : elimination of true clause and false literal

Pure literal elimination :
⇒ {q}, {¬q}

Choosing literal q=true:
⇒ {true}, {false}
⇒ { } : elimination of true clause and false literal

DPLL (1962)
Davis-Putnam-Logemann-Loveland algorithm

