Davis-Putnam-Logemann-Loveland algorithm

- for satisfiability checking
- algorithm runsbasic backtracking
- each iteration, run the splitting rule:
 - choosing a literal,
 - assigning a truth value to it,
 - simplifying the formula and
 - then recursively checking if the simplified formula is satisfiable.
 - simplification 1: removing all clauses which become true under the assignment from the formula, and
 - simplification 2: removing all literals that become false from the remaining clauses.

Davis-Putnam-Logemann-Loveland algorithm

```
function DPLL(Φ) {
if \Phi is a consistent set of literals then return T;
if Φ contains an empty clause then return F;
for every unit clause I in Φ
    \Phi=unit-propagate(I, \Phi);
for every literal I that occurs pure in Φ,
    \Phi=pure-literal-assign(l, \Phi);
I := choose-literal(Φ);
return DPLL(\Phi \wedge I) OR DPLL(\Phi \wedge not(I));
```

Davis-Putnam-Logemann-Loveland algorithm

Enhancement by the eager use of the following rules:

Unit propagation

- ☐ If a clause is a *unit clause*, *i.e.* it contains only a single unassigned literal, this clause can only be satisfied by assigning the necessary value to make this literal true.
- □ In practice, this often leads to deterministic cascades of units, thus avoiding a large part of the naive search space.

Pure literal elimination

- ☐ If a <u>propositional variable</u> occurs with only one polarity in the formula, it is called *pure*.
- Pure literals can always be assigned in a way that makes all clauses containing them true.
- ☐ Most current implementations omit it, as the effect for efficient implementations now is negligible or, due to the overhead for detecting purity, even negative.

Davis-Putnam-Logemann-Loveland algorithm

An example: Prove p, $(p \rightarrow q)$, $(q \rightarrow r) \models r$

Conversion to clauses:

$$\Rightarrow p$$
, $(\neg p \ Vq)$, $(\neg q \ Vr)$, $\neg r$

Unit propagation with p=true, r = false:

 \Rightarrow true, (false $\lor q$), ($\neg q \lor false$), true

$$\Rightarrow q, \neg q$$

Pure literal elimination:

$$\Rightarrow q, \neg q$$

Choose literal *q* = *true*:

⇒ true, false.

Choose literal q = false:

 \Rightarrow false, true.

Thus the lemma is proven by refutation with DPLL.

False is an empty clause

Davis-Putnam-Logemann-Loveland algorithm

An example (another presentation):

Prove p, $(p \rightarrow q)$, $(q \rightarrow r) \models r$

Conversion to clauses as sets of literals:

 \Rightarrow {p}, { $\neg p$, q}, { $\neg q$, r}, { $\neg r$ }

Unit propagation with *p=true*, *r = false*:

- \Rightarrow {true}, {false, q}, { $\neg q$, false}, {true}
- \Rightarrow {q}, {¬q}: elimination of true clause and false literal

Pure literal elimination:

 $\Rightarrow \{q\}, \{\neg q\}$

Choosing literal *q=true*:

- \Rightarrow {true}, {false}
- ⇒ { } : elimination of true clause and false literal