
DPLL (1962)
Davis-Putnam-Logemann-Loveland algorithm

 for satisfiability checking

 algorithm runsbasic backtracking 

 each iteration, run the splitting rule:
 choosing a literal,

 assigning a truth value to it,

 simplifying the formula and

 then recursively checking if the simplified formula is

satisfiable.
 simplification 1: removing all clauses which become true 

under the assignment from the formula, and

 simplification 2: removing all literals that become false from 
the remaining clauses.



function DPLL(Φ) {
if Φ is a consistent set of literals then return T;

if Φ contains an empty clause then return F;

for every unit clause l in Φ
Φ=unit-propagate(l, Φ);

for every literal l that occurs pure in Φ,
Φ=pure-literal-assign(l, Φ);

l := choose-literal(Φ);

return DPLL(Φ Λ l) OR DPLL(Φ Λ not(l));

}
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Enhancement by the eager use of the following rules :
 Unit propagation
 If a clause is a unit clause, i.e. it contains only a single unassigned 

literal, this clause can only be satisfied by assigning the necessary 
value to make this literal true.

 In practice, this often leads to deterministic cascades of units, 
thus avoiding a large part of the naive search space.

 Pure literal elimination
 If a propositional variable occurs with only one polarity in the 

formula, it is called pure.
Pure literals can always be assigned in a way that makes all 

clauses containing them true.
Most current implementations omit it, as the effect for efficient 

implementations now is negligible or, due to the overhead for 
detecting purity, even negative.

DPLL (1962)
Davis-Putnam-Logemann-Loveland algorithm



An example: Prove p, ( p → q), (q → r ) ⊨ r
Conversion to clauses:

⇒ p, (¬p ∨ q), (¬q ∨ r) , ¬r

Unit propagation with p=true, r = false:
⇒ true, (false ∨ q), (¬q ∨ false), true
⇒ q, ¬q

Pure literal elimination :
⇒ q, ¬q

Choose literal q = true:
⇒ true, false.

Choose literal q = false:
⇒ false, true.

Thus the lemma is proven by refutation with DPLL.
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False is an 
empty clause



An example (another presentation):
Prove p, (p→q), (q→r ) ⊨ r
Conversion to clauses as sets of literals:

⇒ {p}, {¬p, q}, {¬q, r} , {¬r}

Unit propagation with p=true, r = false:
⇒ {true}, {false, q}, {¬q, false}, {true}
⇒ {q}, {¬q} : elimination of true clause and false literal

Pure literal elimination :
⇒ {q}, {¬q}

Choosing literal q=true:
⇒ {true}, {false}
⇒ { } : elimination of true clause and false literal
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