
DPLL (1962)
Davis-Putnam-Logemann-Loveland algorithm

 for satisfiability checking

 algorithm runsbasic backtracking

 each iteration, run the splitting rule:
 choosing a literal,

 assigning a truth value to it,

 simplifying the formula and

 then recursively checking if the simplified formula is

satisfiable.
 simplification 1: removing all clauses which become true

under the assignment from the formula, and

 simplification 2: removing all literals that become false from
the remaining clauses.

function DPLL(Φ) {
if Φ is a consistent set of literals then return T;

if Φ contains an empty clause then return F;

for every unit clause l in Φ
Φ=unit-propagate(l, Φ);

for every literal l that occurs pure in Φ,
Φ=pure-literal-assign(l, Φ);

l := choose-literal(Φ);

return DPLL(Φ Λ l) OR DPLL(Φ Λ not(l));

}

DPLL (1962)
Davis-Putnam-Logemann-Loveland algorithm

Enhancement by the eager use of the following rules :
 Unit propagation
 If a clause is a unit clause, i.e. it contains only a single unassigned

literal, this clause can only be satisfied by assigning the necessary
value to make this literal true.

 In practice, this often leads to deterministic cascades of units,
thus avoiding a large part of the naive search space.

 Pure literal elimination
 If a propositional variable occurs with only one polarity in the

formula, it is called pure.
Pure literals can always be assigned in a way that makes all

clauses containing them true.
Most current implementations omit it, as the effect for efficient

implementations now is negligible or, due to the overhead for
detecting purity, even negative.

DPLL (1962)
Davis-Putnam-Logemann-Loveland algorithm

An example: Prove p, (p → q), (q → r) ⊨ r
Conversion to clauses:

⇒ p, (¬p ∨ q), (¬q ∨ r) , ¬r

Unit propagation with p=true, r = false:
⇒ true, (false ∨ q), (¬q ∨ false), true
⇒ q, ¬q

Pure literal elimination :
⇒ q, ¬q

Choose literal q = true:
⇒ true, false.

Choose literal q = false:
⇒ false, true.

Thus the lemma is proven by refutation with DPLL.

DPLL (1962)
Davis-Putnam-Logemann-Loveland algorithm

False is an
empty clause

An example (another presentation):
Prove p, (p→q), (q→r) ⊨ r
Conversion to clauses as sets of literals:

⇒ {p}, {¬p, q}, {¬q, r} , {¬r}

Unit propagation with p=true, r = false:
⇒ {true}, {false, q}, {¬q, false}, {true}
⇒ {q}, {¬q} : elimination of true clause and false literal

Pure literal elimination :
⇒ {q}, {¬q}

Choosing literal q=true:
⇒ {true}, {false}
⇒ { } : elimination of true clause and false literal

DPLL (1962)
Davis-Putnam-Logemann-Loveland algorithm

