DPLL (1962)

Davis-Putnam-Logemann-Loveland algorithm

for satisfiability checking
algorithm runsbasic backtracking

each iteration, run the splitting rule:

choosing a literal,

assigning a truth value to it,

simplifying the formula and

then recursively checking if the simplified formula is

satisfiable.

simplification 1: removing all clauses which become true
under the assignment from the formula, and

simplification 2: removing all literals that become false from
the remaining clauses.



DPLL (1962)

Davis-Putnam-Logemann-Loveland algorithm

function DPLL(®D) {

if @ is a consistent set of literals then return T,
if @ contains an empty clause then return F;
for every unit clause lin ©
d=unit-propagate(l, ®);
for every literal | that occurs pure in @,
®=pure-literal-assign(l, ®);
| := choose-literal(®);
return DPLL(® A 1) OR DPLL(® A not(l));



DPLL (1962)

Davis-Putnam-Logemann-Loveland algorithm

Enhancement by the eager use of the following rules :

If a clause is a unit clause, i.e. it contains only a single unassigned
literal, this clause can only be satisfied by assigning the necessary
value to make this literal true.

In practice, this often leads to deterministic cascades of units,
thus avoiding a large part of the naive search space.

If a occurs with only one polarity in the
formula, it is called pure.

Pure literals can always be assigned in a way that makes all
clauses containing them true.

Most current implementations omit it, as the effect for efficient
implementations now is negligible or, due to the overhead for
detecting purity, even negative.



DPLL (1962)

Davis-Putnam-Logemann-Loveland algorithm

An example: Provep, (p>q), (g >r) Er
Conversion to clauses:
=p, (-p Vq),(-q Vr), -r
Unit propagation with p=true, r = false:
= true, (false V q), (-q V' false), true
=4q,-q
Pure literal elimination :
=4q, ~q
Choose literal g = true:
= true, false:

Choose literal g = false:
= fals€, true.

Thus the lemma is proven by refutation with DPLL.




DPLL (1962)

Davis-Putnam-Logemann-Loveland algorithm

An example (another presentation):

Prove p, (b—>q), (q—=>r) Er
Conversion to clauses as sets of literals:
= {p}, {-p, a}, {-q, r}, {-r}
Unit propagation with p=true, r = false:
= {true}, {false, g}, {-q, false}, {true}
= {q}, {-q} : elimination of true clause and false literal
Pure literal elimination :
= {q}, {-q}
Choosing literal g=true:

= {true}, {false}
= { } : elimination of true clause and false literal




