Formal Model and Verification Exercise 5: Finite state machines

- ** In the following, we assume finite-state models are non-halting and do not have a final state. Please draw the finite-state models with our model editor in REDLIB Sourceforge webpage.
- 1. Please draw a finite-state model for the following vending machine M that accepts nickels, dimes, and quarters. M accepts changes until 35 cents has been put in. It gives changes back for any amount greater than 35 cents. Then the customer can push buttons to receive a cola, a root beer, or a ginger ale.

O Disease durant of inite state was del Mathet used in our infinite hit stuing from the	
	state model M that reads in an infinite bit string from the M outputs 1 if the bit string read in so far is divisible by

- 3. Please answer the meaning of the following expressions in the state of s:(a=3, b=10, c=5)
- a. ⟨a+3*b*c,s⟩=
- b. $\langle a+3*b==c,s\rangle=$
- c. ⟨a+b*b>c,s⟩=
- d. $\langle (a+b*b>c)?a+b:b+c,s \rangle =$
- e. ((a+b*b>c)?((a<=c+b)?a+b:9):b+c,s) =

4. Please construct expressions that match the meaning in s in the following interpretation.

a.
$$\langle \neg$$
 ,s \rangle = false

b.
$$\langle \qquad \neq \qquad ,s \rangle = \textit{true}$$

c.
$$\langle \qquad \land \qquad ,s \rangle = true$$

i.
$$\langle$$
 \rightarrow ,s \rangle = false

k.
$$\langle$$
 $\rightarrow \neg$,s $\rangle = true$

- 5. Please answer the meaning of the following commands in the state of s:(a=3, b=10, c=5)
- a. $\langle a=a+b;, s \rangle =$
- b. $\langle b=a+3*b; a=c; c=3*c, s \rangle =$
- c. $\langle if(a+b^*b>c)a=(a<3)?b:c;$ else b=b+c;, s \rangle =
- d. $\langle while(a+b*b>c)a=a-c,s \rangle =$
- e. $\langle while(a+b^*b=>c)\{a=a-b; b=b-c;\}, s\rangle =$