Model-checking Alternating-time p-calculus (AMC)
Implementation Guide with REDLIB *

Farn Wang-?

1: Dept. of Electrical Engineering, National Taiwan Unsigy
2: Graduate Institute of Electronic Engineering, Natiofealvan University

Abstract. Basic materials for Alternating-time-calculus (AMC).
Keywords: games, turn-based, AMC, logic, model-checking, expres&igs

1 Introduction

In the verification of distributed real-time systems, th@rapriate abstraction of the system
behaviors is crucial to the balance between the precisitimeofodels and the efficiency of ver-
ification. For instance, if we model how a missile is dirediediit a jet-fighter at the granularity
of sub-atomic particle interaction, then of course we hawexdremely precise model. However,
such cumbersome models can also involve too many detadlevant to the verification of the
system and likely incur infeasible and unnecessary comguésource requirement. One com-
monly used abstraction technique is to model several e@néssimultaneous happening. For
example, in figure 1, we have a system of@4M (surface-to-air missilegnd multiple hostile
jet-fighters. There are two events: the t ’ of the missile on a jet-fighter and the observations of
the ‘expl osi on’ of the hapless jet-fighter by other jet-fighters. On one hdnel ‘hi t ’ event
is an interaction between the missile and the hapless jetefigOn the other hand, right after the
‘hi t * event, the &xpl osi on’ event is broadcast to all the remaining enemy jet-fighteid a
may affect their actions afterward. In most verificatiork&gsvhat happen in the split-second
between thehi t ’ event and theéxpl osi on’ event does not matter. To the missile launcher,
what matters is when it can start tracking the next targeth@semaining jet-fighters, what mat-
ters is their reaction after the observation. Thus, it iy ordtural to model thehi t ' event and
the ‘expl osi on’ event as a simultaneous happening. Modeling them as twaratpevents
only unnecessarily adds to the verification complexity anesdnot help engineers in analyzing
the behavior of the system.

One language device designed to model simultaneous aatibue processes is thehannel
(i.e., eventin this work) concept for binary synchronizatio?] [Conceptually, the device glues
two local transitions from two different processes to modegjbal transition? Such a device

* The work is partially supported by NSC (Grant NSC 97-2220eR-129-MY3, Taiwan, ROC) and by
Research Center for Information Technology Innovationademia Sinica, Taiwan, ROC. The authors
also would like to thank Prof. Moshe Vardi for his valuablggestions.

1 Alocal transitionmodels the observation of a global state-change from a gsdna concurrent system.

2 A global transitionmodels a global state-change and could be the simultanatersdtion of several
local transitions.

lexplosion

\

o (O N, Texplosion

L=

Fig. 1. A system with one missile and 4 jet-fighters

can greatly help to improve the modularity of model desaip. In the above-mentioned SAM
example, the action that a missile hits a jet-fighter can bdeteal with an event namdd t
between the missile and the hapless jet-fighter. The lareydexgjce hi t represents the sending
(or output)synchronization operation (sync-opy the missile through the event whikhi t
represents the receiving (or input) sync-op by the hapktsghter through the same event.
Two local transitions labeled respectively with the inpgis-op and output sync-op through the
same event must happen at the same instant to make a gloisilitna. Modeling such a global
transition as two synchronized local transitions can dyesthance the modularity in model
construction.

We use an extension of binary synchronizations for flexipiti model construction. In our
extension, we allows for sync-ops like@q whereq is a place holder for the identifier of the
process that responds to this sync-op. The place-holdershesn be used for the expressive
description of the corresponding local transition.

Example 1.local transition rules with quantified place-hold&then the SAM hits a jet-fighter,
the SAM may want to make sure that the fighter is the target tilhthghe range of the missile.
Suppose is a variable that records the identity of the target. We mayehthe transition dia-
grams in figure 2 for this example synchronization. The oxgsesent operation modes of the
processes. The arcs represent local transition rules. ANerSoves from thet r acki ng mode
to thei dl e mode while the hapless jet-fighter from tha- r ange mode to theexpl oded
mode. On the arcs, we label sync-ops, triggering conditiand actions. Place-holdemrepre-
sents the identifier of the process responding to syndibp.! The hitting local transition rule of
the SAM is labeled with sync-opHi t @q¢" and triggering conditiond = ¢ Ai n-r angelg]."
|

Although the above-mentioned devices are good for binanglsyonizations between two
parties, we can use them to construct complex actions,l@gadcasting events, out of many
simultaneous process transitions. For example, in figutbel event that the missile hits one

Fig. 2. Synchronization of the locking event

jet-fighter can cause an explosion observed by the othee fbtdighters. By constructing the
following 5 local transition rules,

Lhit
O ;O /I a process transition by the missile
O?hi t 'expl osi on! expl osi on! expl osi on

;O I a process transition by the hapless jet-fighter

" .
O.expl osi on ‘O
»

?expl osi on
O > Il process transitions by the remaining jet-fighters
O’?ex pl osi on O
A
»

we can glue the five local transition rules to make a globakitaon that models the simultaneity
of thehi t event and the observations of thepl osi on event. Such a scheme allows for con-
cise and highly abstract models in which the interactiorhin4plit second between the hitting
and observation of the explosion is of no concern to the eatifin engineers. In addition, the
scheme also allows for the modular description of each paviglved in a complex synchro-
nization. A jet-fighter can be modeled without the knowledflbow many peers are involved in
the synchronization.

In this work, we discuss how to do AMC model-checking for aament game graphs con-
structed from process automatas that communicate withygyachronization described in the
above.

2 Concurrent game graphs

Definition 1. Concurrent game graphsA concurrent gamés played by many agents. Assume
that the number of agentssis and we index the agents with integérthroughm. It is formally
presented as a tuple = (m, @, qo, P, \, R, X, 0) with the following restrictionsm is the num-
ber of agents in the gamé. is a finite set of stateg, € @ is theinitial stateof G. P is a finite
set of atomic propositions. : Q — 27 is a proposition labeling function. For convenience, we
assume that tha() labeling of a state uniquely identifies the staRC @ x @ is the set of

transitions.Y is a finite alphabety : R — X™ is a labeling function that labels each transition
with a vector inX™ representing the choices of events at the transition bydkata. |

Example 2.: In figure 3, we have the graphical representation of a caratigame graph of
three players. The ovals represent states while the arossent state transitions. Thevectors

(b, b, 0]

Fig. 3. A concurrent game graph for three agents

of events of transitions are labeled inside the states. e @it down the\ values inside the
corresponding states. |
A state predicate oP is a Boolean combination of elementsih We letSH P) be the set
of state predicates d?. The satisfaction of a state predicatat a statey, in symbolsg |= 7, is
defined in a standard way.
For convenience, given a game gragh = (m,Q,q, P\ R,X,J), we denote
m, @, qo, P, \, R,), andé respectively asng, Qg, qoa, Po, A\¢, Rg, X ¢, andig.

Definition 2. Plays and play prefixes A play is an infinite path in a game graph. A play is
initial if it begins with the initial state. Given a play = ¢oq: ..., for everyk > 0, we let
(k) = qx. Also, givenh < k, we letr[h, k] denoter(h)...n(k) and~x[h,oc) denote the
infinite tail of = from w(h). A play prefixis a finite segment of a play from the beginning of the
play. For convenience, we lefx(G) be the set of initial play prefixes @¢f andpfx’(G) be the
set of initial plays ofG.]

Given a play prefiy = Gogi - - - Gn, We let|p| = n + 1. For convenience, we usast(p) to
denote the last state in i.e., p(|7| — 1).

Given a sequencd of agent indices, we lefA} be the set of agent indices i A set of
agent indices is also called agency

Definition 3. Strategies For an agent in an agency{ A} C [1,m], a (memorylessstrategy
bindingo for agents inA is a function fromQ¢ x {A} to X« such that for every € Qs and
a € {A},o(q,a) € Xg.
We letstr{4} (G) be the set of strategy binding 6ffor agency{ A}. [|
A play 7 is compatible with a strategy of an agent € [1,m] iff for every k € [0, 00),
w(n(k)) = a implieso(n[0..k]) = w(k + 1). The play is compatible with a S-binding of
agency{ A} iff for every a € { A}, the play is compatible witt(a) of a.

3 How to construct concurrent game graphs from process autoatas

Given a system ofn processes, we use integdrs .., m to respectively identify then pro-
cesses. We also upJLL to denote zero. Each process in our system models may havefa se
local variables. Fot < p < m, to access a local variable namegtof processp, we may simply
write ‘y@(p).” While in the scope of execution of processwe may use thdefault shorthand
‘y’ for ‘ y@Q(p). If the process identifier of a peer process is stored inllwagableq, then we
can also usey@(q)’ to access the local variabjeof the peer process.
Formally speaking, a sync-op of event 4eaind process identifier place-holder §etan be
viewed as a tripléd, o, ¢) with the following restrictions.
e dis the direction of the synchronizatiah="" means it is an output sync-og.='?" means
it is an input sync-op.
e o is an event name iy
e ¢ € @ is a place-holder for the identifier of the process that redpdo this sync-op. A
place-holder is quantified over the execution scope of onal lzansition rule. Thus the
same place-holder name can be used in many local transities without ambiguity in the
interpretation of the values of the place-holders.
For convenience, we shall writkr@q in place of(d, o, q) from now on. When the place-holder
of the identifier of the responding process is not used, we witg do (and(d, o,)) for sim-

plicity.

Example 3.Synchronizations with quantified place-holdeBsippose that we have processes 1
and 2 synchronizing with sync-og3, hi t ,¢) and{!, hi t , q) respectively. In the scope of the
synchronization, the formerand the latter; are interpreted respectively asand1. |

We 1etSOSEQX, @) be the set of all finite sequences of sync-op&aindQ. A variableq
is declared in a sequenfg s, ... s,] € SOSEQX, Q) if for somel < i < n, s; = (d, 0, q) for
somed ando € Y.

Given a setl of local discrete variable namesand a @edf process identifier place-holder
names, we UséAR L, Q) for the following variable reference name et {yQ(q) |y € L,q €
LUQ}.

We uselP(L, Q) as the set of all Boolean combinations of atoms of the form ¢ where
y € QUVARL,Q), ‘~'isone of<, <,=,>,>,andc € Q UN. An element inLP(L, Q) is
called alocal predicateof L and@. For examplez < 5 A y@(q) = 3 A 2Q(¢) > 2 is a local
predicate inLP({¢, z,y}, {q})-

A local predicate may contain references to local variableese identities are interpreted
with respect to the executing process. For exampl€,5 refers to a local variable. When the
inequality is used in the execution of a rule by procgshenz is to be interpreted asa(5). For

convenience, we defiriest(n, p) as the instantiation of local predicatevith respect to process
p. Inductively, it is defined as follows.

inst(n1 V n2,p) = inst(n:,p) Vinst(nz, p)

inst(—ny,p) = —inst(ny,p)

inst(y ~ ¢,p) = ylp] ~c

foreveryqg € LU Q, inst(y@Q(q) ~ ¢,p) = yQ(¢Q(p)) ~ ¢

for everyl < p’ < m,instlyQ(p’) ~ ¢,p) = yQ(p') ~ c.

We definep; Ane andn, — 1, respectively as the shorthands fai(—;) vV (—n2)) and(—n;) vV
72. iNst(n, p) falls in the class oinstantiated local predicate$or example,

inst(z <5 AyQ(q) =3 AzQ(t) > 2,5) = 2Q(5) < 5AyQ(gQ(5)) = 3 AzQ(tQ(5)) > 2

An assignmendf L andQ is “y := ¢" with y € VARL,Q) andc € NU Q. We use
ASEQL, Q) for the set of all assignment sequenced.@ndQ.

Definition 4. process rule system templates (PRSA PRSTA is givenasatupléeX, L, Q, E, e, 7,)
with the following restrictions. is a finite set of event nameé.is a finite set of local discrete
state variable names whilg is the finite set of local place-holder names for processtifiers.
For simplicity of presentation, we require thgtn L = (). E is a finite set ofocal transition
rules (rulesfor short).c : E — SOSEQX, Q) defines the sequence of sync-ops of each rule.
T : E — LP(L, Q) defines the triggering condition of each rute: £ — ASEQL, @) defines
the assignment sequence to local variables of each ruledfwenience, we require that there
isanullruleLe E suchthag(Ll) =[], 7(L) = true, andn (L) = []. [|

To specify the global states of a system, we de8ReL, m) as the set of all Boolean com-
binations of atoms of the formp@(p) ~ cwherey € LU X, 1 < p < m, ‘~'is one of
<,<,=,>,>,andc € N. An element inSRL, m) is called astate predicat®f L and X with
respect to concurreney. For examplez@(5) < 5Ay@Q(1) = 3Az@Q(3) > 2is a state-predicate.

3.1 Global transitions of a network of PRST

A PRST cannot execute its rules by its own. According to thmesgics of binary synchroniza-
tion [?], a rule can be executed if and only if all its input sync-opsdnbeen sent out by some
processes at the same time and all its output sync-ops tevbedn received by some processes
at the same time. There are several issues in defining seraliyntorrect global transitions. In
the following, we first definéransition planswvhich may not result in sensible global transitions.
Then we use examples to explain what could go wrong in theitefirand propose restrictions
to refine the definition.

Definition 5. transition plan (TP) A transition plan (TP)of a network ofm PRST is concep-
tually a function from{1, ..., m} to E and suggests the composition of a global transitioll.

A TP may not describe a consistent global transition in thatessync-ops are not responded
in the global transition. We have the following example tplain the issue.

Intuitively, we say a TP isonsistentf the following constraint is satisfied. For eaghe X,
the number of output sync-ops of event typenust match the number of input sync-ops of
event types in a TP. Letvalug?) = —1 andvalug!) = 1. For eache € E with ¢(e) =
[{di,01,q1) .. (dn,On, qn)], We letECount (e) = SUM, <;<n.0,=-Valugd;). For convenience,
if o is not used ire(e), then we leECount, (e) = 0. The intuition is as follows.

mo ms

1] ?a 3 ?b
2 la

ma > o

Fig. 4. PRTST for explaining minimality

e If ECount(e) > 0, there areECount (e) output sync-ops of event typein ¢(e).
e If ECount (e) < 0, there ar€ECount (e) input sync-ops of event typein e(e).
e If ECount (e) = 0, there is no sync-ops of event typen e(e).
The consistency constraint of TPmeans that'c € X (SUM <,<.»ECount (T'(p)) = 0).

Example 4.An inconsistent TRMe may have TRy = {1 + 2,2 «+ 9,3 «+_} for the concur-

rent system in example §; is inconsistent in that thiel ock @q issued by process 1 with rule

2is not responded by process 2 with r@le |
Here we have another example that motivates for the semaoniatraints on TPs.

Example 5.Compatibility with interleaving semanticSuppose we have the PRST in figure 4
for four processes. The TP @ = {1 + 1,2 + 2,3 + 3,4 + 4} can be partitioned into
two TPsTs = {1 + 1,2 + 2,3 1, 4+ 1}andTy = {1 + 1,2+ 1,3« 3,4« 4}.
If we allows for the atomic execution df,, it seems somewhat incompatible with the popular
interleaving semantics of concurrent systems. In this yweekneed constraints on the semantics
of global transitions to eliminate such transition plans. |
The constraints for compatibility with interleaving sertias discussed in example 5 is not
at all straightforward. One naive semantic definition is igatlow any global transition whose
TP can be broken down to two nontrivial consistent TPs. Wehuséollowing example to show
why such a naive semantics may be contradictory to an iméuitiodel that the users want to
construct.

Example 6.More on the compatibility with interleaving semanti@&ippose we have the PRST
in figure 5(a) for four processes. The TPTf= {1 + 4,2 «+ 5,3 + 6,4 « 7} can actually
be partitioned into two nontrivial consistent TPs = {1 + 4,2 + 5,3 « 1,4 «+_1} and
T = {1 «+L1,2 +1,3 < 6,4 <« T7}. It can also be partitioned & = {1 + 4,2 + L

, 31,4+ ThandTy = {1 «1,2 + 5,3 <« 6,4 +_L}. If we just examine the binary
synchronization relation among the sync-ops, we could mtmthe conclusion thaf; violates
the interleaving semantics and should not be generatedt Butlld also happen that neither of
the two decompositions in the above actually match the tiaermof the users. For example, the
users may have actually put down constraints on the quahffiecess identifier place-holders
and described the model as in figure 5(b). As can be seen, ¢he msy actually want to model
a circular synchronization with the four processes. Weatelt do not want to rule out such
synchronizations. []

J lalb |a@q7 [
M4)= gr =1
4|1 ?a?b 6 ’)a ?b 7a ?b@s
4| ?a 7b@4 g = 4
g4 =
5 lalb 5 la@qg; 'b
ms 05 = 3 >

Fig. 5. PRTST for explaining minimality

According to examples 5 and 6, we proposeoanectivityrequirement on transition func-
tions. For convenience of the definition of the requiremesmt,need the following definitions.
For each place-holderin a rule executed by procegswe introduce an auxiliary local discrete
variableg[p]. This is necessary since two rules respectively executeddprocesses may con-
tain place-holders with the same name. We assume that gigequence\, |\| is its length.
Given A, we letslen4) bemax.c g |e(e)|. For convenience of discussion, given a netwark
PRTSs, we assume the following sync-ops.

(di1,011,q1) [(di2,012,q2) | --[(dislena), T1slenA);s Gsler(A))
(do,021,q1) [(d22,022,q2) | ..[(d2slena), T2,slen(A); GslenA))

(dm,1,0m,1,q1) [{dm,2; Om .2, G2)|- - -|{dm sler(4), Tm.sler(A) s Gslen(A))

In this array for synchronization, we use the followimgx slen(A) place-holders of the process
identifiers.

¢1Q(1) Q2@(1) ---QSler(A)@(l)

1@Q(m) CI2@() QSIer(A)@(m)
In a global transition, according to the traditional senmf binary synchronization in the liter-
ature [?], a binary synchronization must happen exactly betweernrapaput-output sync-ops
in the array. Moreover, the two sync-ops cannot participatay other binary synchronization.
To explain this precisely, we use the following matrix.

Definition 6. synchronization plan matrix (SPM) An SPM compatible with a transition plan
T of a network ofm process PRTS with a common templaités anm x slen(A) 2-dimensional
matrix ¥ of integer pairs.

(Pr1,S11) [(P12,512) |- [{Prslena)s S1slera))
(Po1,521) [(P22,522) |- |{(Paslena); S2slena))

<Pm,17 Sm,1> <Pm.,27 Sm,2> cee <Pm,sler(A)a Sm,sler(A)>

(©) (d)
Fig. 6. Synchronization trees

Foreachl < h <mandl <i < slenA), ¥[h,i] = (Pn, Sh:) With the following restrictions.
P, ; records the process identifier that responds t@’theync-op in rulel’(h) issued by process
h. Sy,; records the index of sync-op i€(T'(Ps,;)) that responds to théth sync-op in rule
T'(h) issued by process. A basic requirement of an SPM is that(iP, ;, S}, ;) = (k,j), then
(Px,j; Sk,;) = (h,1). An SPM¥ is compatible witHI" if the following constraints hold.

e Foranyl < h <m,if T(h) =L, thenvl < i < slen(A)((Ph,i, Sh:) = (L,0)).

e Foranyl < h <m,if T(h) #L,thenVi > |e(T(h))|({Pn,i, Sh,i) = (L,0)).

e Foranyl < h < mandl < i < slenA), if P,; #L andS;; # 0, thenvalugd;, ;) +

valugdp, ,.s,,) =0andoy,; =op, ; s, ;- |

Definition 7. synchronization graph Given an SPMZ compatible with a TP, the synchro-
nization graphG(T, ¥) of T and? is defined as follows. The node set®fT",) is {(p,e) | 1 <
p < m,T(p) = e #L} while the edge seti&((p,), (¢,¢")) | 3n3, (Wlp,h] = (¥, 1'))}.

|

Example 7.Synchronization graphs of global transitiodssume that we have a SAM system
and 4 jet-fighters with models in figure 8. A synchronizatioapgh for TP{1 + 2,2 «
15,3 «1,4 «+1,5 «1} isin figure 6(a). A synchronization graph for TR + 6,2 «
12,3 «+ 14,4 + 10,5 + 19} is in figure 6(b). The only synchronization graph by in
example 5 is in figure 6(c) while the only triggerible synatization graph foff5 in figure 5(b)
is in figure 6(d). |

Definition 8. global transitions A global transition is a pai{T’, &) whereT is a consistent TP

and¥ is an SPM such that (T, ¥) is connected. |
Intuitively, if G(T,¥) is not connected, then we can break it into two unsynchrargiebal

transitions, just like the case in figure 6(c). As can be sées, not possible to construct a

1
@i @G
myo =\ M3
y[f]]=2 y = 0;

Fig. 7. PRTST for explaining ITR-conditions

connected synchronization graph fy. A global transition can be executed if we know both its
TP and the compatible SPM that makes the synchronizatigghgrannected.

In general, in a system, some processes may choose not wntesp a synchronization
event sent to them in a complex synchronization. With dédfiniB, we can model such non-
responding actions with dummy correspnding transitioas$ tto nothing. It is also easy to ex-
tend our language to incorporate such flexibilities, i.et, al parties have to respond to a set
of simultaneous binary synchronizations. However, thiadaially equivalent to adding those
dummy corresponding transitions in an automatic prepsingstep.

However there could batra-transition race-conditiongITR-condition) in global transi-
tions. An ITR-condition between two rules happens when tlieioof execution of the assign-
ments in the two rules may affect the result of the synchetion between the two rules. De-
pending on the intention of the users, an ITR-condition doapresent an anomaly in a model
that the users are not aware of.

Example 8.Intra-transition race-conditions (ITR-conditioBuppose we have a concurrent sys-
tem with PRTS templates depicted in figure 7. Suppose pracésdo execute rulel while
proces2 is to execute rul@. In this case, thg@(q) in rule 1 and they in rule 2 are aliases for
y@Q(2). If the assignment of rulé happens before that of ruk y@(2) = 0 after the synchro-
nization. Otherwisey@(2) = 2 after the synchronization. This isverite-write ITR-condition
between processésand2. |

In a general distributed system model, there could also bd-vaite ITR-conditions. In
our models, because the assignments are executed onlytefteiggering conditions of all the
synchronizing rules have been satisfied and because we ssitynaconstants to variables, only
write-write ITR-conditions are possible. In the semangfikition of the concurrent networks of
PRTSs, we assume that all global transitions are ITR-cmmditee. In subsectio®?, we present
algorithms to check and eliminate ITR-conditions from glbtransition characterizations.

Definition 9. statesSuppose we are given a network .of PRST with a common template
(X,L,Q, E,e,7,7). A state for the network is a valuation : {zQ(p) | z € L,1 < p <
m} +— N.

An extended state with a set(of process identifier place-holders is a state extended with
function from{qQ(p) | ¢ € Q,1 < p < m} to{1,...,m}. Given a stater and a global
transition(T, @), the extended state(T', ¥) is identical tov except that for eachh < h < m
andl < i < slen(A), if U[h,i] = (P, S), v(T,¥)(¢;@Q(h)) = P. [|

Definition 10. Concurrent game graph from a network of PRSTGivenm PRSTs with a com-
mon templaté X, L, Q, E, ¢, 7,), we define its concurrent game gratas follows.
® Mg = m.

10

Q¢ is the set of states of the network of thePRSTSs.

o, is the initial state of> and

P can be defined as the set of state inequalities that can bedefirl. for the processes.
A¢ labels elements i, on states i such that consistency among the inequalities is
maintained.

R is the set of global transitions of the network of the PRSTSs.

e Y isthe set of finite sequences of elements of the foth)e or ?(k)e wherek is an integer
that denotes the number of copies of ewefrespectively issued or received).

e i¢ : Rg — X% maps each transition to a vectorf event sequences ilg. Thep'th
componentp € [1,m], in the vector denotes the events issued by prog@sgexecuting the
global transition.

Theconcurrencyor number of processes) of the systenmis |
The general scheme of networks of process automatas akmitsef modeling of broadcast-
ing and multicasting of many generic transmission events.

Example 9.Fighters and SAM systenn figure 8, we show our PRST for the system of fighters
and SAM described in figure 1. We use intedefor the identifier of the SAM system while
integer<2, ..., m for those of then — 1 jet-fighters. The connected graph in the upper-half rep-
resents the transition-diagram of the SAM while the one élthwer-half represents that of the
fighters. The SAM has three operation mod&ls(SAM idle), ST(SAM tracking), andSD(SAM
destroyed). The SAM starts it execution form m@&le The fighters have three operation modes:
JF(jet-fighter faraway)J | R(jet-fighter in range), andEMjet-fighter in evasive maneuver). The
fighters start their execution from mod€&. The SAM and the fighters interact through events
| ock, | ockquery, bonb, andhi t . The fighters also communicate with one another through
eventexpl osi on to model the observation of the explosion at the hitting ofissite.

x is a local clock name!. is another local integer variable name that records thetiftkm
of the fighter that has been locked by the SAM. There is alsorguticit integer variable name
node that represents the operation modes of each process.

Note that the triggering condition of transitiénis a quantified predicate. Without loss of
generality, we use this as a shorthand for the disjunctidheistantiated quantified subformu-
las. In fact, our implementation does accept such quantifiedicates.

The initial condition of the concurrentgame graphimie 1] = SI Az[1] = 0AA, <, (modefp] =
JF A z[p] = 0). The invariance condition itode[1] = SI Vv npde[l] = ST V node[l] =
SD) Az[l] <1TAA, ., <,,(M0de[p] = JF v node[p] = JI RV node[p| = JEM. The destruc-
tion of the SAM is modeled with evebb b which can happen if a jet-fighter stay in mateR
for more than 13 time units. The SAM can take down a jet-fighyeracking it in one time units
with eventhi t . The SAM launcher wants to avoid being bombed.

We have also labeled each rule a bold-face number for theetience of latter discussion.
Global transitions can be flexibly constructed out of theabjrsynchronization events. For ex-
ample, to model the bombing of the a jet-fighter, the SAM syantzes with a jet-fighter through
eventborb. This may happen between the SAM process using one ri8e®HB with any jet-
fighter process using rulel. Thus in total, there could Bx (m — 1) such global transitions for
the modeling of jet-fighter bombing. But in the example, wecassfully decompose the many
global transitions into the modular descriptions of thrédSrules and one jet-fighter rule. As
the number of jet-fighter processes increases, the benefibfwiseness in modular model con-
struction with our scheme will become even more salient. |

11

!Zlock@q (Vi > 1((i # ¢ NI Rp]) — z[i] < z[q]))

(t > 1A JF[t)
(Vi > 1(JFi])) x = 0;t:= NULL

hhit@q (¢ =t A (31 Rlg] vV IEMg
z = 0;

?lockquery

?explasion ?explosion

?hit lexplosion. . . lexplosion

lexplosion

llockquery (z > 1)

lexplosion
z =0

Fig. 8. Model templates of fighters and SAM

4 Alternating-time p-calculus (AMC)

4.1 Syntax

For aturn-based game gra@tof m agents, an AMC formula is constructed with the following
syntax rule.

¢pu=p| X |d1 |1 Vo2 |lipX.p1| (A Od1

Herep is an atomic proposition itP;. X is a variable for sets of states, i.e., subsetg)ef

We require thatX is under a syntax path of even number of negation from its lidgsoint

quantifier. Formuldfp X .¢, is a least fixpoint formula that describes the minimal setshtsfies
#1(X) = X wheng; is considered a function with free variabte

12

‘A’ is a sequence of integers jih, m]. Operators of the formi4) are called astrategy quan-
tifier (SQ. Formulas starting with an SQ are defined as for ATL [1] ancdimtnat there exist
strategies of the agents {#} to enforce the development of only plays satisfyifg

A set variableX is freein an AMC formula if it is not within the scope of a fixpoint ofzgor
on X in the formula. If it is not free in a formula, then it lsoundin the formula. A formula
is well-formedand called asentencéf all its set variables are bound and all SIQs occurs in the
scope of an SQ.

For convenience, some useful shorthands follows.

true=pV (-p)
false= —true
¢1 A g2 = =((m¢1) V (—¢2))
b1 = 2 = (—¢1) V 2
ofpX.¢1(X) = -lfp X. =1 (- X)
(A)p1Ugs = fip X.(d2 V (41 A (A) O X))
(A)Op1 = (A)true Ugy
(A)8¢1 = gfpX.(¢1 A (4) O X)
[A] O ¢1 = —~(A) O =1
[A]0¢1 = ~(A)T~¢r
[A]0¢1 = ~(A)0=¢1

Given a finite sefi{, we letK be the sequence of elementsknin some dictionary order. For
turn-based games, we also hady = ([1,m] — {A})¢.

Example 10.: Consider the following formulas for a concurrent game oééagents.
(1,2)0O-risk = gfpX.((—risk) A (1,2) O X)

= —lfp X.—((—risk) A (1, > -X)
= -Ifp X.(risk v =(1,2) O -X)
= —Ifp X.(risk v =(1,2) O =X)

Yet another!
(1, 2)bootingUboot_success Ifp X.(boot_succesg (bootingA (1,2) O X))
Here is a strange formula.
gfpX.(p AlfPY.((X Aq) V (Y A —g)))
Here is another strange formula.
ofpX.(p AfRY.(((g A (1,2) O X) V (=g A (2,3) O (Y A=p))))

4.2 Semantics
Given an agency A} and two transitioriq, ¢'), (¢,¢"”) € R, we say(q, ¢') matcheggq, ¢”) in

{A},insymbols(q,¢') (¢.¢"), ifand only iffor each: € {A},6((4.4'). a) = dc((¢.4").).

An AMC subformula is interpreted with respect to an intetatien, called arenvironment
of the fixpoint variables. Given an environméhtan formulay is satisfied at a statg in symbols
G, q =¢ 9, if and only if the following inductive constraints are sdiged.

13

G,q ¢ pifandonly ifg € Q¢ andp € A(q).
G,q e X ifandonly ifq € £(X).
G, q =¢ —¢ ifand only if it is not the case that, g =¢ 1.
G,q |Ec 1V ¢o ifand only if eitherG, g =g ¢1 Or G, q =g ¢o.
G,q e IfpX.¢yifand onlyifg € (U, oy X where for allk € N, X}, is inductively defined
asX, = 0 and for eveny > 0,
X =Xpe1U{d |G, ¢ Fexox,_,) ScopeX)}.
e G,q Es (4) O ¢ if and only if there exists &g, ¢’) such that for everyg, ¢"’)
G,q" e 1.

For convenience, we lét be a null mapping, i.e., a function that is undefined on ewémgt If
q is a state and; such that for every environmeét G,q s ¢1, then we may simply write
G,q E ¢1.1f G, qoc E ¢1, then we may simply writé&? = ¢ .

2 (4,4,

5 Model-checking algorithm for AMC

We assume that all AMC sentences given to us amgositive normal form(PNF). That is, we
assume that all negation only happens right before atorojoqsition symbols.

Table 1. A model-checking algorithm for AMC angd-calclulus

mcK G, ¢) Il Assume a give-calculus sentencg with distinct fixpoint variables
Il X1,...,X, inthe decreasing order of scope sizes.
1: Let& beeny(, 1).
2: if go,c € eval(&,) then return true. else returnfalse end if

6 Procedures for precondition calculation

Basically, you need loops that evaluate the fixpoint forraula each loop iteration, you need
to iterate through all the synchronous transitions. The&kgonous transitions are indexed from
zerotored_query_sync_xtion_count () -1.

extern int red_query_sync_xtion_count(

int flag_sync_xtion_table_choice

/1 This argunment is used to choose fromthe decl ared
/1l synchronous transition table and the

/1l game synchronous transition table.

/1 There are the followi ng two val ues.

/'l RED_USE_GAME_SYNC_XTI ON

/| RED_USE_DECLARED_SYNC_ XTI ON

)

14

Table 2. An algorithm for constructing fixpoint environments

eny&,) // Assume a givem-calculus sentence with distinct fixpoint variables

Il X1,..., X, inthe decreasing order of scope sizes.

1. if i > nthen

2: return £.

3: else if X; is a least fixpoint variablthen
4: LetV befandV’ beQc.

5. whileV # V' do

6: LetV’' beV.

7: Let&’ beenE[X; — V], + 1).
8: LetV beV Ueval&’, ScopéX;)).
9: end while
10: return E[X; — V).
11: end if

Table 3. An algorithm for subformula evaluation with an environment

eval &, ¢) Il Assume a give-calculus sentence with distinct fixpoint variables
Il X1, ..., X, inthe decreasing order of scope sizes.
1: if ¢ isfalsethen
2: return 0.
3: elseif¢ is p then
4: return {q|q € Qa,p € A\c(q)}-
5: else if¢ is X orlfp X.¢; then
6: return £(X).
7: else if¢ is —¢1 then
8 retumn Q¢ — eval&, ¢).
9: else ifg is ¢1 V ¢2 then
10: return eval&, ¢1) Ueval&, ¢2).
11: elseifgis (A) O ¢1 then
A

12: return {q ‘(q,q') € Re,V(q,q¢") € Ra((q,4") = (q,4") = ¢" € eval&, ¢1)) }
13: end if

Then for each synchronous transition, you need the follgyirocedure to calculate the precon-
tions.

extern redgramred_sync_xtion_bck(

redgram ddst,

redgram dpat h,

int flag_sync_xtion_table_choice,

/1 This argunment is used to choose fromthe decl ared
/1l synchronous transition table and the

15

/1l game synchronous transition table.

/'l There are the followi ng two val ues.
/| RED_USE_GAME_SYNC_XTI ON

/| RED_USE_DECLARED_SYNC_ XTI ON

int sxi,

int flag_gane_roles,

/'l The argument consists of three flag val ues.
/'l Each flag may appear or not.

/1 The three flag val ues are

/' RED_GAME_MODL,

/| RED_GAME_SPEC,

/| RED_GAME_ENVR.

int flag time_progress,

/1 Two argunent val ues are

// RED_NO_TI ME_PROGRESS and

/1 RED_TI ME_PROGRESS.

int flag_normality,

/1 Some argunent val ues are

/| RED_NORM ZONE_NONE,

// RED_NORM ZONE_MAGNI TUDE_REDUCED, and
/| RED_NORM ZONE_CLOSURE.

int flag_action_approx,

/1 Some argunent val ues are

/| RED_NO _ACTI ON_APPROX,

/'l RED_ACTI ON_APPROX_NOXTI VE, and

/' RED_ACTI ON_APPROX_UNTI MED.

int flag_reduction,

/1 Two argunent val ues are

/1 RED_NO REDUCTI ON_| NACTI VE and

// RED_REDUCTI ON_I| NACTI VE.

int flag_state_approx,

/1 The argunent values is the bit-w se
/1 of four flag values of the following form
Il fm| fs | fe | fg.

/Il fmis for abstraction of the nodel variables
/1 and can be of the follow ng val ues:
/| RED_NOAPPROX_MODL_GAME

/| RED_OAPPROX_MODL_GAME_DI AG_MAG

/| RED_OAPPROX_MODL_GAME DI AGONAL

/| RED_OAPPROX_MODL_GAVME_MAGNI TUDE

/1 RED_OAPPROX_MODL_GAME_UNTI MED

/1 RED_OAPPROX_MODL_GAME_MODE_ONLY

/| RED_OAPPROX_MODL_GAME_NONE.

11

/1l fs is for abstraction of the specification variables

16

/1 and can be of the foll ow ng val ues:
/| RED_NOAPPROX_SPEC GAME

/| RED_OAPPROX_SPEC GAME_DI AG_MAG

/| RED_OAPPROX_SPEC_GAME_DI AGONAL

/| RED_OAPPROX_SPEC_GAME_MAGNI TUDE

/| RED_OAPPROX_SPEC_GAME_UNTI MED

/| RED_OAPPROX_SPEC GAME_MODE_ONLY

/| RED_OAPPROX_SPEC_ GAME_NONE

11

I/l fe is for abstraction of the environment variabl es
/1 and can be of the follow ng val ues:
/| RED_NOAPPROX_ENVR_GAME

/| RED_OAPPROX_ENVR GAME_DI AG_MAG

/'l RED_OAPPROX_ENVR_GAME_DI AGONAL

/1 RED_OAPPROX_ENVR_GAME_MAGNI TUDE

/1 RED_OAPPROX_ENVR_GAME_UNTI MED

/| RED_OAPPROX_ENVR_GAME_MODE_ONLY

/| RED_OAPPROX_ENVR_GAME_NONE

/11

/1l fe is for abstraction of the global variables
/1 and can be of the follow ng val ues:
/| RED_NOAPPROX_GLOBAL_GAME

/| RED_OAPPROX_GLOBAL_GAME_DI AG_NVAG
/| RED_OAPPROX_GLOBAL_GAME_DI AGONAL

/'l RED_OAPPROX_GLOBAL_GAME_NMAGNI TUDE
/| RED_OAPPROX_GLOBAL_GAME_UNTI MED

/| RED_OAPPROX_GLOBAL_GAME_MODE_ONLY
/| RED_OAPPROX_GLOBAL_GAME_NONE

int flag_symetry,

/1 Some possible argument val ues are
/'l RED_NO_SYMVETRY

/'l RED_SYMVETRY_ZONE

/| RED_SYMVETRY_DI SCRETE

/| RED_SYMVETRY_PO NTER,

/| RED_SYMVETRY_STATE

in fl ag_experi nent

)

However, you need the following procedures to query the isvefitransitions executed by each
agent.

extern int red_query _sync_xtion_party_count(

int flag_sync_xtion_table_choice,

/1 This argunment is used to choose fromthe decl ared
/1 synchronous transition table and the

/1l game synchronous transition table.

17

/'l There are the followi ng two val ues.
/'l RED_USE_GAME_SYNC_ XTI ON
/| RED_USE_DECLARED SYNC XTI ON

i nt

)

SXI

extern int red_query sync _xtion_party process(

)i

int flag_sync_xtion_table_choice,
int sxi,
int party_index

extern int red_query_sync_xtion_party_xtion(

);

int flag_sync_xtion_table_choice,
int sxi,
int party_index

extern int red_query_xtion_count();
extern int red _query xtion_ attribute(int xi, int attr);

extern int red_query_xtion_sync_attribute(int xi, int si, int attr);

| *

*

L B S I R R S I I T T

The val ues of attr can be RED XTI ON_SYNC DI RECTI ON

RED_XTI ON_SYNC_QUANTI FI ED_ADDRESS, RED XTI ON_SYNC VAR | NDEX, and

RED_ XTI ON_SYNC QFD_CORRESPONDENCE_VAR | NDEX.
The return values for attribute RED XTI ON_SYNC DI RECTI ON are
RED_XTI ON_SYNC XM T and RED_XTI ON_SYNC RECV

The return values for attribute case RED XTI ON_SYNC QUANTI FI ED_ADDRESS

can be RED_XTI ON_SYNC_NO_CORRESPONDENCE_REQUI REMENT,
RED_XTI ON_SYNC_QUANTI FI ED_CORRESPONDENCE VAR, and

RED_ XTI ON_SYNC CORRESPONDENCE EXPRESSI ON.

The return values for attribute RED XTI ON_SYNC VAR | NDEX
is the variable index for the synchronizer.

If attribute RED XTI ON_SYNC QUANTI FI ED_ADDRESS i s of val ue
RED_XTI ON_SYNC QUANTI FI ED_CORRESPONDENCE_ VAR,

then the return values for attribute

RED_XTI ON_SYNC_QFD_CORRESPONDENCE_VAR | NDEX i s t he

vari abl e index for the holder of the address of the process
corresponding to this synchronization.

O herwi se, the return value is RED FLAG UNKNOMN

18

extern char
/1 The follow ng procedure can be used to query the string for a
/1 synchronization in a transiton.
/1 To get the synchronization names of a transition with index xi,
/'l we can execute the follow ng | oop.
[+ for (i = 0;
11 i < red_query_xtion_attribute(xi, RED_XTI ON_SYNC COUNT);
11 i ++
x) |
/1 printf("\nxi:%d, si:%dd, %", xi, i,
11 red_query_string_xtion_sync(xi,i)
I),
11}
[printf("\n");
*/
xred _query_string xtion_sync(
int, // This is a transition index
int // This is a sync index in the list of synchronizations of the
/1 the transition.
)
xred_query_string xtion_sync_correspondence_exp(
int, // This is a transition index
int // This is a sync index in the list of synchronizations of the
/1 the transition.
)
extern char +*red_query_string_xtion_action(int, int);
extern char *red_query_string_xtion(int, int);

19

7 How to implement the algorithm ?

In the following, we explain how to implement procedesal) with REDLIB. We assume that
£ isimplemented as an array df . . n fixpoint variables.
Casep isfalse returnr ed_f al se().
Casep: returnr ed_di agr am(p) .
CaseX; orlfp X;.¢1: return&|[i].
Case¢, : returnr ed_not (eval&, ¢1)).
Casep; V ¢ returnr ed_or (eval €&, ¢1),eval&, ¢2)).
Case(A) O ¢1: Proceed in the following step.
— LetRbered_fal se().
— Let X beeval&, ¢1).
— Unmark all sxi from 1 to
red_query_sync_xtion_count (RED_USE DECLARED SYNC XTI ON) -1.
— Forsxi:=1to
red _query_sync_xtion_count (RED USE DECLARED SYNC XTI ON)-1,do
the following.
x If sxi has been marked, continue.
x LetSbered _true().
x For sxj := sxito
red _query_sync_xtion_count (RED USE DECLARED SYNC XTI ON) -
1, do the following.
- If sxi and sxj are not the same in A's events, continue;
- Mark sxj.
- LetS be

red _and(S, red_sync_xtion_bck(X,
red_query_di agram gl obal _i nvari ance(),
RED_USE_DECLARED_SYNC_ XTI ON
SXj ,
RED GAME_MODL | RED GAME SPEC | RED GAME_ENVR,
RED_NO TI ME_PROGRESS,
RED_NORM ZONE_NONE,
RED_NO_ACTI ON_APPROX,
RED_NO_REDUCTI ON_I NACTI VE,
0,
RED_NO SYMVETRY,
0
)).
x Let R bered_or (R,S).
— returnR.
For example, assume that we have five processes. (Ph&h() p means that for each event
combination of 2,3, all combinations of 1,4,5 must end astate. Thus we need to disjunct
the preconditions of all the event combinations of 2,3 stitijethe conjunction of all event
combinations of 1,4,5.
There are several implementation details. Specificallynegd to know how to check whether
sxi and sxj share the same event combinations with respéctYou need to use

20

red _query_sync_xtion_party_ count(
RED USE_DECLARED SYNC XTI ON, sxi

)

to get the number of processes participating in sxi. Thenngad to use
red _query_sync_xtion_party process(
RED USE DECLARED SYNC XTI ON, sxi, ipi
)

and
red_query_sync_xtion_party_ xtion(
RED_USE_DECLARED SYNC XTI ON, sxi, ipi
)

to get the process index and transition index of the ipi'thtypd hen if sxi and sxj do not have
the same participation in A, then obviously they do not siia@esame event combination. If they
have the same patrticipation, then we check for each pi in Aghdicipating in both sxi and sxj,
if their corresponding transition index share the sametsvéNote that in general, the two same
process index may not occur in the same position in the paxtov of sxi and sxj.)

Suppose that we now know party ipi of sxi and party ipj of s)§ Hre same and both in A.
Further suppose taht their corresponding transition exlare respectively xi and xj out of

red_query_sync_xtion_party_ xtion(
RED_USE_DECLARED SYNC XTI ON, sxi, ipi
)

and

red_query_sync_xtion_party_ xtion(
RED_USE_DECLARED SYNC XTI ON, sxj, ipj
)

Then we can use
red_query_xtion_attribute(xi, RED XTI ON_SYNC COUNT)
to get the event count of transition xi. Then we can use
red_query_string_xtion_sync(xi,i)
to get the string representation of the i'th event of traasiki. We can also use
red_query_string_xtion_sync_correspondence_exp(
Xi, i
)

to get the address string representation of the i'th evetraakiton xi.

References

1. R. Alur, T. A. Henzinger, and O. Kupferman. Alternatingw temporal logic. Journal of the ACM
(JACM), 49(5):672—-713, September 2002.

21

