
Model-checking Alternating-time µ-calculus (AMC)
Implementation Guide with REDLIB ?

Farn Wang1,2

1: Dept. of Electrical Engineering, National Taiwan University
2: Graduate Institute of Electronic Engineering, NationalTaiwan University

Abstract. Basic materials for Alternating-timeµ-calculus (AMC).

Keywords: games, turn-based, AMC, logic, model-checking, expressiveness

1 Introduction

In the verification of distributed real-time systems, the appropriate abstraction of the system
behaviors is crucial to the balance between the precision ofthe models and the efficiency of ver-
ification. For instance, if we model how a missile is directedto hit a jet-fighter at the granularity
of sub-atomic particle interaction, then of course we have an extremely precise model. However,
such cumbersome models can also involve too many details irrelevant to the verification of the
system and likely incur infeasible and unnecessary computing resource requirement. One com-
monly used abstraction technique is to model several eventsas a simultaneous happening. For
example, in figure 1, we have a system of anSAM (surface-to-air missile)and multiple hostile
jet-fighters. There are two events: the ‘hit’ of the missile on a jet-fighter and the observations of
the ‘explosion’ of the hapless jet-fighter by other jet-fighters. On one hand, the ‘hit’ event
is an interaction between the missile and the hapless jet-fighter. On the other hand, right after the
‘hit’ event, the ‘explosion’ event is broadcast to all the remaining enemy jet-fighters and
may affect their actions afterward. In most verification tasks, what happen in the split-second
between the ‘hit’ event and the ‘explosion’ event does not matter. To the missile launcher,
what matters is when it can start tracking the next target. Tothe remaining jet-fighters, what mat-
ters is their reaction after the observation. Thus, it is only natural to model the ‘hit’ event and
the ‘explosion’ event as a simultaneous happening. Modeling them as two separate events
only unnecessarily adds to the verification complexity and does not help engineers in analyzing
the behavior of the system.

One language device designed to model simultaneous actionsin two processes is thechannel
(i.e., eventin this work) concept for binary synchronization [?]. Conceptually, the device glues
two local transitions1 from two different processes to model aglobal transition.2 Such a device

? The work is partially supported by NSC (Grant NSC 97-2221-E-002-129-MY3, Taiwan, ROC) and by
Research Center for Information Technology Innovation, Academia Sinica, Taiwan, ROC. The authors
also would like to thank Prof. Moshe Vardi for his valuable suggestions.

1 A local transitionmodels the observation of a global state-change from a process in a concurrent system.
2 A global transitionmodels a global state-change and could be the simultaneous interaction of several

local transitions.

Fig. 1.A system with one missile and 4 jet-fighters

can greatly help to improve the modularity of model descriptions. In the above-mentioned SAM
example, the action that a missile hits a jet-fighter can be modeled with an event namedhit
between the missile and the hapless jet-fighter. The language device!hit represents the sending
(or output)synchronization operation (sync-op)by the missile through the event while?hit
represents the receiving (or input) sync-op by the hapless jet-fighter through the same event.
Two local transitions labeled respectively with the input sync-op and output sync-op through the
same event must happen at the same instant to make a global transition. Modeling such a global
transition as two synchronized local transitions can greatly enhance the modularity in model
construction.

We use an extension of binary synchronizations for flexibility in model construction. In our
extension, we allows for sync-ops like !σ@q whereq is a place holder for the identifier of the
process that responds to this sync-op. The place-holders can then be used for the expressive
description of the corresponding local transition.

Example 1.local transition rules with quantified place-holdersWhen the SAM hits a jet-fighter,
the SAM may want to make sure that the fighter is the target and still in the range of the missile.
Supposet is a variable that records the identity of the target. We may have the transition dia-
grams in figure 2 for this example synchronization. The ovalsrepresent operation modes of the
processes. The arcs represent local transition rules. The SAM moves from thetrackingmode
to theidle mode while the hapless jet-fighter from thein-range mode to theexploded
mode. On the arcs, we label sync-ops, triggering conditions, and actions. Place-holderq repre-
sents the identifier of the process responding to sync-op !hit. The hitting local transition rule of
the SAM is labeled with sync-op “!hit@q" and triggering condition “q = t ∧ in-range[q]."

�

Although the above-mentioned devices are good for binary synchronizations between two
parties, we can use them to construct complex actions, e.g.,broadcasting events, out of many
simultaneous process transitions. For example, in figure 1,the event that the missile hits one

2

A local transition of the locked jet-fighter:

A local transition of the SAM:

tracking

idle

in-range exploded
?hit

!hit@q (q = t ∧ in-range[q])

t := NULL;

Fig. 2. Synchronization of the locking event

jet-fighter can cause an explosion observed by the other three jet-fighters. By constructing the
following 5 local transition rules,

?explosion

?explosion

?explosion

!hit
// a process transition by the missile

// a process transition by the hapless jet-fighter
?hit !explosion !explosion !explosion

// process transitions by the remaining jet-fighters

we can glue the five local transition rules to make a global transition that models the simultaneity
of thehit event and the observations of theexplosion event. Such a scheme allows for con-
cise and highly abstract models in which the interaction in the split second between the hitting
and observation of the explosion is of no concern to the verification engineers. In addition, the
scheme also allows for the modular description of each partyinvolved in a complex synchro-
nization. A jet-fighter can be modeled without the knowledgeof how many peers are involved in
the synchronization.

In this work, we discuss how to do AMC model-checking for concurrent game graphs con-
structed from process automatas that communicate with binary synchronization described in the
above.

2 Concurrent game graphs

Definition 1. Concurrent game graphsA concurrent gameis played by many agents. Assume
that the number of agents ism and we index the agents with integers1 throughm. It is formally
presented as a tupleG = 〈m,Q, q0, P, λ,R,Σ, δ〉 with the following restrictions.m is the num-
ber of agents in the game.Q is a finite set of states.q0 ∈ Q is theinitial stateof G. P is a finite
set of atomic propositions.λ : Q 7→ 2P is a proposition labeling function. For convenience, we
assume that theλ() labeling of a state uniquely identifies the state.R ⊆ Q × Q is the set of

3

transitions.Σ is a finite alphabet.δ : R 7→ Σm is a labeling function that labels each transition
with a vector inΣm representing the choices of events at the transition by the agents. �

Example 2.: In figure 3, we have the graphical representation of a concurrent game graph of
three players. The ovals represent states while the arcs represent state transitions. Theδ vectors

u′

{p}
w′

{q}

∅
w

∅

v

∅

u

[b, b, c]

[a, b, c]
[a, c, a]

[a, b, c]

[b, b, b] [a, c, c]

[a, b, c]

[a, a, c]

[a, b, c]

[a, c, a]

Fig. 3. A concurrent game graph for three agents

of events of transitions are labeled inside the states. We also put down theλ values inside the
corresponding states. �

A state predicate ofP is a Boolean combination of elements inP . We letSP(P) be the set
of state predicates ofP . The satisfaction of a state predicateη at a stateq, in symbolsq |= η, is
defined in a standard way.

For convenience, given a game graphG = 〈m,Q, q0, P, λ,R,Σ, δ〉, we denote
m,Q, q0, P, λ,R,Σ, andδ respectively asmG, QG, q0A, PG, λG, RG, ΣG, andδG.

Definition 2. Plays and play prefixes A play is an infinite path in a game graph. A play is
initial if it begins with the initial state. Given a playπ = q̄0q̄1 . . ., for everyk ≥ 0, we let
π(k) = q̄k. Also, givenh ≤ k, we letπ[h, k] denoteπ(h) . . . π(k) andπ[h,∞) denote the
infinite tail of π from π(h). A play prefixis a finite segment of a play from the beginning of the
play. For convenience, we letpfx(G) be the set of initial play prefixes ofG andpfxω(G) be the
set of initial plays ofG. �

Given a play prefixρ = q̄0q̄1 . . . q̄n, we let|ρ| = n + 1. For convenience, we uselast(ρ) to
denote the last state inπ, i.e.,ρ(|π| − 1).

Given a sequenceA of agent indices, we let{A} be the set of agent indices inA. A set of
agent indices is also called anagency.

4

Definition 3. Strategies For an agenta in an agency{A} ⊆ [1,m], a (memoryless) strategy
bindingσ for agents inA is a function fromQG × {A} toΣG such that for everyq ∈ QG and
a ∈ {A}, σ(q, a) ∈ ΣG.

We letstr{A}(G) be the set of strategy binding ofG for agency{A}. �

A play π is compatible with a strategyσ of an agenta ∈ [1,m] iff for every k ∈ [0,∞),
ω(π(k)) = a impliesσ(π[0..k]) = π(k + 1). The play is compatible with a S-bindingΣ of
agency{A} iff for every a ∈ {A}, the play is compatible withΣ(a) of a.

3 How to construct concurrent game graphs from process automatas

Given a system ofm processes, we use integers1, . . . ,m to respectively identify them pro-
cesses. We also useNULL to denote zero. Each process in our system models may have a set of
local variables. For1 ≤ p ≤ m, to access a local variable named ‘y’ of processp, we may simply
write ‘y@(p).’ While in the scope of execution of processp, we may use thedefault shorthand
‘y’ for ‘ y@(p).’ If the process identifier of a peer process is stored in local variableq, then we
can also use ‘y@(q)’ to access the local variabley of the peer process.

Formally speaking, a sync-op of event setΣ and process identifier place-holder setQ can be
viewed as a triple〈d, σ, q〉 with the following restrictions.
• d is the direction of the synchronization.d =‘!’ means it is an output sync-op.d =‘?’ means

it is an input sync-op.
• σ is an event name inΣ.
• q ∈ Q is a place-holder for the identifier of the process that responds to this sync-op. A

place-holder is quantified over the execution scope of one local transition rule. Thus the
same place-holder name can be used in many local transition rules without ambiguity in the
interpretation of the values of the place-holders.

For convenience, we shall writedσ@q in place of〈d, σ, q〉 from now on. When the place-holder
of the identifier of the responding process is not used, we maywrite dσ (and〈d, σ, 〉) for sim-
plicity.

Example 3.Synchronizations with quantified place-holdersSuppose that we have processes 1
and 2 synchronizing with sync-ops〈?,hit, q〉 and〈!,hit, q〉 respectively. In the scope of the
synchronization, the formerq and the latterq are interpreted respectively as2 and1. �

We letSOSEQ(Σ,Q) be the set of all finite sequences of sync-ops ofΣ andQ. A variableq
is declared in a sequence[s1s2 . . . sn] ∈ SOSEQ(Σ,Q) if for some1 ≤ i ≤ n, si = 〈d, σ, q〉 for
somed andσ ∈ Σ.

Given a setL of local discrete variable namesand a setQ of process identifier place-holder
names, we useVAR(L,Q) for the following variable reference name setL∪{y@(q) | y ∈ L, q ∈
L ∪Q}.

We useLP(L,Q) as the set of all Boolean combinations of atoms of the formy ∼ c where
y ∈ Q ∪ VAR(L,Q), ‘∼’ is one of≤, <,=, >,≥, andc ∈ Q ∪ N. An element inLP(L,Q) is
called alocal predicateof L andQ. For example,x ≤ 5 ∧ y@(q) = 3 ∧ x@(t) > 2 is a local
predicate inLP({t, x, y}, {q}).

A local predicate may contain references to local variableswhose identities are interpreted
with respect to the executing process. For example,x ≤ 5 refers to a local variablex. When the
inequality is used in the execution of a rule by process5, thenx is to be interpreted asx@(5). For

5

convenience, we defineinst(η, p) as the instantiation of local predicateη with respect to process
p. Inductively, it is defined as follows.
• inst(η1 ∨ η2, p) ≡ inst(η1, p) ∨ inst(η2, p)
• inst(¬η1, p) ≡ ¬inst(η1, p)
• inst(y ∼ c, p) ≡ y[p] ∼ c
• for everyq ∈ L ∪Q, inst(y@(q) ∼ c, p) ≡ y@(q@(p)) ∼ c
• for every1 ≤ p′ ≤ m, inst(y@(p′) ∼ c, p) ≡ y@(p′) ∼ c.

We defineη1∧η2 andη1 → η2 respectively as the shorthands for¬((¬η1)∨ (¬η2)) and(¬η1)∨
η2. inst(η, p) falls in the class ofinstantiated local predicates. For example,

inst(x ≤ 5 ∧ y@(q) = 3 ∧ x@(t) > 2, 5) ≡ x@(5) ≤ 5 ∧ y@(q@(5)) = 3 ∧ x@(t@(5)) > 2

An assignmentof L andQ is “y := c;" with y ∈ VAR(L,Q) and c ∈ N ∪ Q. We use
ASEQ(L,Q) for the set of all assignment sequences ofL andQ.

Definition 4. process rule system templates (PRST)A PRSTA is given as a tuple〈Σ,L,Q,E, ε, τ, π〉
with the following restrictions.Σ is a finite set of event names.L is a finite set of local discrete
state variable names whileQ is the finite set of local place-holder names for process identifiers.
For simplicity of presentation, we require thatQ ∩ L = ∅. E is a finite set oflocal transition
rules (rules for short).ε : E 7→ SOSEQ(Σ,Q) defines the sequence of sync-ops of each rule.
τ : E 7→ LP(L,Q) defines the triggering condition of each rule.π : E 7→ ASEQ(L,Q) defines
the assignment sequence to local variables of each rule. Forconvenience, we require that there
is a null rule⊥∈ E such thatε(⊥) = [], τ(⊥) = true, andπ(⊥) = []. �

To specify the global states of a system, we defineSP(L,m) as the set of all Boolean com-
binations of atoms of the formy@(p) ∼ c wherey ∈ L ∪ X , 1 ≤ p ≤ m, ‘∼’ is one of
≤, <,=, >,≥, andc ∈ N. An element inSP(L,m) is called astate predicateof L andX with
respect to concurrencym. For example,x@(5) ≤ 5∧y@(1) = 3∧x@(3) > 2 is a state-predicate.

3.1 Global transitions of a network of PRST

A PRST cannot execute its rules by its own. According to the semantics of binary synchroniza-
tion [?], a rule can be executed if and only if all its input sync-ops have been sent out by some
processes at the same time and all its output sync-ops have also been received by some processes
at the same time. There are several issues in defining semantically correct global transitions. In
the following, we first definetransition planswhich may not result in sensible global transitions.
Then we use examples to explain what could go wrong in the definition and propose restrictions
to refine the definition.

Definition 5. transition plan (TP) A transition plan (TP)of a network ofm PRST is concep-
tually a function from{1, . . . ,m} toE and suggests the composition of a global transition.�

A TP may not describe a consistent global transition in that some sync-ops are not responded
in the global transition. We have the following example to explain the issue.

Intuitively, we say a TP isconsistentif the following constraint is satisfied. For eachσ ∈ Σ,
the number of output sync-ops of event typeσ must match the number of input sync-ops of
event typeσ in a TP. Letvalue(?) = −1 and value(!) = 1. For eache ∈ E with ε(e) =
[〈d1, σ1, q1〉 . . . 〈dn, σn, qn〉], we letECountσ(e) = SUM1≤i≤n;σi=σvalue(di). For convenience,
if σ is not used inε(e), then we letECountσ(e) = 0. The intuition is as follows.

6

1 3

4

2

m0 m3

m1 m2

?a ?b

!b

!a

Fig. 4. PRTST for explaining minimality

• If ECountσ(e) > 0, there areECountσ(e) output sync-ops of event typeσ in ε(e).
• If ECountσ(e) < 0, there areECountσ(e) input sync-ops of event typeσ in ε(e).
• If ECountσ(e) = 0, there is no sync-ops of event typeσ in ε(e).

The consistency constraint of TPT means that∀σ ∈ Σ(SUM1≤p≤mECountσ(T (p)) = 0).

Example 4.An inconsistent TPWe may have TPg1 = {1← 2, 2← 9, 3←⊥} for the concur-
rent system in example 9.g1 is inconsistent in that the!lock@q issued by process 1 with rule
2 is not responded by process 2 with rule9. �

Here we have another example that motivates for the semanticconstraints on TPs.

Example 5.Compatibility with interleaving semanticsSuppose we have the PRST in figure 4
for four processes. The TP ofT2 = {1 ← 1, 2 ← 2, 3 ← 3, 4 ← 4} can be partitioned into
two TPsT3 = {1 ← 1, 2 ← 2, 3 ←⊥, 4 ←⊥} andT4 = {1 ←⊥, 2 ←⊥, 3 ← 3, 4 ← 4}.
If we allows for the atomic execution ofT2, it seems somewhat incompatible with the popular
interleaving semantics of concurrent systems. In this work, we need constraints on the semantics
of global transitions to eliminate such transition plans. �

The constraints for compatibility with interleaving semantics discussed in example 5 is not
at all straightforward. One naive semantic definition is to disallow any global transition whose
TP can be broken down to two nontrivial consistent TPs. We usethe following example to show
why such a naive semantics may be contradictory to an intuitive model that the users want to
construct.

Example 6.More on the compatibility with interleaving semanticsSuppose we have the PRST
in figure 5(a) for four processes. The TP ofT5 = {1 ← 4, 2 ← 5, 3 ← 6, 4 ← 7} can actually
be partitioned into two nontrivial consistent TPsT6 = {1 ← 4, 2 ← 5, 3 ←⊥, 4 ←⊥} and
T7 = {1 ←⊥, 2 ←⊥, 3 ← 6, 4 ← 7}. It can also be partitioned asT8 = {1 ← 4, 2 ←⊥
, 3 ←⊥, 4 ← 7} andT9 = {1 ←⊥, 2 ← 5, 3 ← 6, 4 ←⊥}. If we just examine the binary
synchronization relation among the sync-ops, we could run into the conclusion thatT5 violates
the interleaving semantics and should not be generated. Butit could also happen that neither of
the two decompositions in the above actually match the intention of the users. For example, the
users may have actually put down constraints on the quantified process identifier place-holders
and described the model as in figure 5(b). As can be seen, the users may actually want to model
a circular synchronization with the four processes. We certainly do not want to rule out such
synchronizations. �

7

(b)(a)

m4 m7

m5 m6

?a ?b ?a ?b

m4 m7

m5 m6

?a ?b@q6
q6 = 4

4 6 6

!a !b7

!a !b5

!a@q7 !b7

!a@q7 !b5

q4 = 2
?a ?b@q44

q7 = 1

q5 = 3

Fig. 5. PRTST for explaining minimality

According to examples 5 and 6, we propose aconnectivityrequirement on transition func-
tions. For convenience of the definition of the requirement,we need the following definitions.
For each place-holderq in a rule executed by processp, we introduce an auxiliary local discrete
variableq[p]. This is necessary since two rules respectively executed bytwo processes may con-
tain place-holders with the same name. We assume that given asequenceλ, |λ| is its length.
GivenA, we letslen(A) bemaxe∈E |ε(e)|. For convenience of discussion, given a networkm

PRTSs, we assume the following sync-ops.

〈d1,1, σ1,1, q1〉 〈d1,2, σ1,2, q2〉 . . . 〈d1,slen(A), σ1,slen(A), qslen(A)〉
〈d2,1, σ2,1, q1〉 〈d2,2, σ2,2, q2〉 . . . 〈d2,slen(A), σ2,slen(A), qslen(A)〉
...

...
...

〈dm,1, σm,1, q1〉 〈dm,2, σm,2, q2〉 . . . 〈dm,slen(A), σm,slen(A), qslen(A)〉

In this array for synchronization, we use the followingm× slen(A) place-holders of the process
identifiers.

q1@(1) q2@(1) . . . qslen(A)@(1)
...

... . . .
...

q1@(m) q2@(m) . . . qslen(A)@(m)

In a global transition, according to the traditional semantics of binary synchronization in the liter-
ature [?], a binary synchronization must happen exactly between a pair of input-output sync-ops
in the array. Moreover, the two sync-ops cannot participatein any other binary synchronization.
To explain this precisely, we use the following matrix.

Definition 6. synchronization plan matrix (SPM) An SPM compatible with a transition plan
T of a network ofm process PRTS with a common templateA is anm× slen(A) 2-dimensional
matrixΨ of integer pairs.

〈P1,1, S1,1〉 〈P1,2, S1,2〉 . . . 〈P1,slen(A), S1,slen(A)〉
〈P2,1, S2,1〉 〈P2,2, S2,2〉 . . . 〈P2,slen(A), S2,slen(A)〉
...

...
...

〈Pm,1, Sm,1〉 〈Pm,2, Sm,2〉 . . . 〈Pm,slen(A), Sm,slen(A)〉

8

(1,1)

(2,2)

(3,3)

(4,4)

(c)

(2,15)(1,2)

(b)(a)

(1,6) (2,12) (3,14)

(4,10)
(5,19)

(1,4)

(2,5)

(3,7)

(4,6)

(d)

Fig. 6.Synchronization trees

For each1 ≤ h ≤ m and1 ≤ i ≤ slen(A), Ψ [h, i] = 〈Ph,i, Sh,i〉 with the following restrictions.
Ph,i records the process identifier that responds to thei’th sync-op in ruleT (h) issued by process
h. Sh,i records the index of sync-op inε(T (Ph,i)) that responds to thei’th sync-op in rule
T (h) issued by processh. A basic requirement of an SPM is that if〈Ph,i, Sh,i〉 = 〈k, j〉, then
〈Pk,j , Sk,j〉 = 〈h, i〉. An SPMΨ is compatible withT if the following constraints hold.
• For any1 ≤ h ≤ m, if T (h) =⊥, then∀1 ≤ i ≤ slen(A)(〈Ph,i, Sh,i〉 = 〈⊥, 0〉).
• For any1 ≤ h ≤ m, if T (h) 6=⊥, then∀i > |ε(T (h))|(〈Ph,i, Sh,i〉 = 〈⊥, 0〉).
• For any1 ≤ h ≤ m and1 ≤ i ≤ slen(A), if Ph,i 6=⊥ andSh,i 6= 0, thenvalue(dh,i) +

value(dPh,i,Sh,i
) = 0 andσh,i = σPh,i,Sh,i

. �

Definition 7. synchronization graph Given an SPMΨ compatible with a TPT , thesynchro-
nization graphG(T, Ψ) of T andΨ is defined as follows. The node set ofG(T, Ψ) is{(p, e) | 1 ≤
p ≤ m,T (p) = e 6=⊥} while the edge set is{((p, e), (p′, e′)) | ∃h∃h′, (Ψ [p, h] = 〈p′, h′〉)}.

�

Example 7.Synchronization graphs of global transitionsAssume that we have a SAM system
and 4 jet-fighters with models in figure 8. A synchronization graph for TP{1 ← 2, 2 ←
15, 3 ←⊥, 4 ←⊥, 5 ←⊥} is in figure 6(a). A synchronization graph for TP{1 ← 6, 2 ←
12, 3 ← 14, 4 ← 10, 5 ← 19} is in figure 6(b). The only synchronization graph forT2 in
example 5 is in figure 6(c) while the only triggerible synchronization graph forT5 in figure 5(b)
is in figure 6(d). �

Definition 8. global transitions A global transition is a pair〈T, Ψ〉 whereT is a consistent TP
andΨ is an SPM such thatG(T, Ψ) is connected. �

Intuitively, if G(T, Ψ) is not connected, then we can break it into two unsynchronized global
transitions, just like the case in figure 6(c). As can be seen,it is not possible to construct a

9

1 2

m0 m2 m3

!msg@q (y[q] > 2) ?msg (y < 4)

y[q] = 2; y = 0;
m1

Fig. 7.PRTST for explaining ITR-conditions

connected synchronization graph forT2. A global transition can be executed if we know both its
TP and the compatible SPM that makes the synchronization graph connected.

In general, in a system, some processes may choose not to respond to a synchronization
event sent to them in a complex synchronization. With definition 8, we can model such non-
responding actions with dummy correspnding transitions that do nothing. It is also easy to ex-
tend our language to incorporate such flexibilities, i.e., not all parties have to respond to a set
of simultaneous binary synchronizations. However, this isactually equivalent to adding those
dummy corresponding transitions in an automatic preprocessing step.

However there could beintra-transition race-conditions(ITR-condition) in global transi-
tions. An ITR-condition between two rules happens when the order of execution of the assign-
ments in the two rules may affect the result of the synchronization between the two rules. De-
pending on the intention of the users, an ITR-condition could represent an anomaly in a model
that the users are not aware of.

Example 8.Intra-transition race-conditions (ITR-condition)Suppose we have a concurrent sys-
tem with PRTS templates depicted in figure 7. Suppose process1 is to execute rule1 while
process2 is to execute rule2. In this case, they@(q) in rule 1 and they in rule 2 are aliases for
y@(2). If the assignment of rule1 happens before that of rule2, y@(2) = 0 after the synchro-
nization. Otherwise,y@(2) = 2 after the synchronization. This is awrite-write ITR-condition
between processes1 and2. �

In a general distributed system model, there could also be read-write ITR-conditions. In
our models, because the assignments are executed only afterthe triggering conditions of all the
synchronizing rules have been satisfied and because we only assign constants to variables, only
write-write ITR-conditions are possible. In the semantic definition of the concurrent networks of
PRTSs, we assume that all global transitions are ITR-condition free. In subsection??, we present
algorithms to check and eliminate ITR-conditions from global transition characterizations.

Definition 9. statesSuppose we are given a network ofm PRST with a common template
〈Σ,L,Q,E, ε, τ, π〉. A state for the network is a valuationν : {x@(p) | x ∈ L, 1 ≤ p ≤
m} 7→ N.

An extended stateν with a setQ of process identifier place-holders is a state extended with
function from{q@(p) | q ∈ Q, 1 ≤ p ≤ m} to {1, . . . ,m}. Given a stateν and a global
transition〈T, Ψ〉, the extended stateν〈T, Ψ〉 is identical toν except that for each1 ≤ h ≤ m

and1 ≤ i ≤ slen(A), if Ψ [h, i] = 〈P, S〉, ν〈T, Ψ〉(qi@(h)) = P . �

Definition 10. Concurrent game graph from a network of PRSTsGivenmPRSTs with a com-
mon template〈Σ,L,Q,E, ε, τ, π〉, we define its concurrent game graphG as follows.
• mG = m.

10

• QG is the set of states of the network of them PRSTs.
• q0,G is the initial state ofG and
• PG can be defined as the set of state inequalities that can be defined onL for the processes.
• λG labels elements inPG on states inQG such that consistency among the inequalities is

maintained.
• RG is the set of global transitions of the network of the PRSTs.
• ΣG is the set of finite sequences of elements of the form:!(k)e or ?(k)e wherek is an integer

that denotes the number of copies of evente (respectively issued or received).
• δG : RG 7→ Σm

G maps each transition to a vector ofm event sequences inΣG. Thep’th
component,p ∈ [1,m], in the vector denotes the events issued by processp in executing the
global transition.

Theconcurrency(or number of processes) of the system ism. �

The general scheme of networks of process automatas allows for the modeling of broadcast-
ing and multicasting of many generic transmission events.

Example 9.Fighters and SAM systemIn figure 8, we show our PRST for the system of fighters
and SAM described in figure 1. We use integer1 for the identifier of the SAM system while
integers2, . . . ,m for those of them− 1 jet-fighters. The connected graph in the upper-half rep-
resents the transition-diagram of the SAM while the one in the lower-half represents that of the
fighters. The SAM has three operation modes:SI(SAM idle),ST(SAM tracking), andSD(SAM
destroyed). The SAM starts it execution form modeSI. The fighters have three operation modes:
JF(jet-fighter faraway),JIR(jet-fighter in range), andJEM(jet-fighter in evasive maneuver). The
fighters start their execution from modeJF. The SAM and the fighters interact through events
lock, lockquery, bomb, andhit. The fighters also communicate with one another through
eventexplosion to model the observation of the explosion at the hitting of a missile.

x is a local clock name.t is another local integer variable name that records the identifier
of the fighter that has been locked by the SAM. There is also an implicit integer variable name
mode that represents the operation modes of each process.

Note that the triggering condition of transition2 is a quantified predicate. Without loss of
generality, we use this as a shorthand for the disjunction ofthe instantiated quantified subformu-
las. In fact, our implementation does accept such quantifiedpredicates.

The initial condition of the concurrent game graph ismode[1] = SI∧x[1] = 0∧
∧

1<p≤m(mode[p] =
JF ∧ x[p] = 0). The invariance condition is(mode[1] = SI ∨ mode[1] = ST ∨ mode[1] =
SD)∧ x[1] ≤ 1∧

∧
1<p≤m(mode[p] = JF∨mode[p] = JIR∨ mode[p] = JEM). The destruc-

tion of the SAM is modeled with eventbomb which can happen if a jet-fighter stay in modeJIR
for more than 13 time units. The SAM can take down a jet-fighterby tracking it in one time units
with eventhit. The SAM launcher wants to avoid being bombed.

We have also labeled each rule a bold-face number for the convenience of latter discussion.
Global transitions can be flexibly constructed out of the binary synchronization events. For ex-
ample, to model the bombing of the a jet-fighter, the SAM synchronizes with a jet-fighter through
eventbomb. This may happen between the SAM process using one rule of3, 5, 8 with any jet-
fighter process using rule11. Thus in total, there could be3× (m−1) such global transitions for
the modeling of jet-fighter bombing. But in the example, we successfully decompose the many
global transitions into the modular descriptions of three SAM rules and one jet-fighter rule. As
the number of jet-fighter processes increases, the benefit for conciseness in modular model con-
struction with our scheme will become even more salient. �

11

1
2

3

6

7

4

8

10

9

15 14

16

11

5

12
13

17

18 19

ST

JF

?explosion

x ≤ 1

x ≤ 1

!hit@q (q = t ∧ (JIR[q] ∨ JEM[q]))

x := 0;

SD

?lockquery

(t > 1 ∧ JF[t])

x := 0; t := NULL

?bomb

SI
x ≤ 1

!lock@q (∀i > 1((i 6= q ∧ JIR[p]) → x[i] ≤ x[q]))

x := 0;

?bomb

(∀i > 1(JF[i]))

?bomb

JEMx := 0;

!explosion...
!explosion

?hit

x := 0;

JIR

?explosion

!lockquery (x > 1)

?explosion

?hit !explosion. . . !explosion

x := 0;

(x > 13)
!bomb

?lock

Fig. 8. Model templates of fighters and SAM

4 Alternating-time µ-calculus (AMC)

4.1 Syntax

For a turn-based game graphG ofm agents, an AMC formulaφ is constructed with the following
syntax rule.

φ ::= p | X | ¬φ1 | φ1 ∨ φ2 | lfpX.φ1 | 〈A〉 © φ1

Herep is an atomic proposition inPG. X is a variable for sets of states, i.e., subsets ofQG.
We require thatX is under a syntax path of even number of negation from its least fixpoint
quantifier. FormulalfpX.φ1 is a least fixpoint formula that describes the minimal set that satisfies
φ1(X) = X whenφ1 is considered a function with free variableX .

12

‘A’ is a sequence of integers in[1,m]. Operators of the form〈A〉 are called astrategy quan-
tifier (SQ). Formulas starting with an SQ are defined as for ATL [1] and mean that there exist
strategies of the agents in{A} to enforce the development of only plays satisfyingψ.

A set variableX is free in an AMC formula if it is not within the scope of a fixpoint operator
onX in the formula. If it is not free in a formula, then it isboundin the formula. A formula
is well-formedand called asentenceif all its set variables are bound and all SIQs occurs in the
scope of an SQ.

For convenience, some useful shorthands follows.

true≡ p ∨ (¬p)
false≡ ¬true

φ1 ∧ φ2 ≡ ¬((¬φ1) ∨ (¬φ2))
φ1 ⇒ φ2 ≡ (¬φ1) ∨ φ2

gfpX.φ1(X) ≡ ¬lfpX.¬φ1(¬X)
〈A〉φ1Uφ2 ≡ lfpX.(φ2 ∨ (φ1 ∧ 〈A〉 ©X))
〈A〉♦φ1 ≡ 〈A〉true Uφ1
〈A〉�φ1 ≡ gfpX.(φ1 ∧ 〈A〉 ©X)
[A]© φ1 ≡ ¬〈A〉 © ¬φ1
[A]♦φ1 ≡ ¬〈A〉�¬φ1
[A]�φ1 ≡ ¬〈A〉♦¬φ1

Given a finite setK, we letK be the sequence of elements inK in some dictionary order. For
turn-based games, we also have[A]ψ

def
= 〈[1,m]− {A}〉ψ.

Example 10.: Consider the following formulas for a concurrent game of three agents.

〈1, 2〉�¬risk≡ gfpX.((¬risk) ∧ 〈1, 2〉 ©X)
≡ ¬lfpX.¬((¬risk) ∧ 〈1, 2〉 © ¬X)
≡ ¬lfpX.(risk∨ ¬〈1, 2〉 © ¬X)
≡ ¬lfpX.(risk∨ ¬〈1, 2〉 © ¬X)

Yet another!

〈1, 2〉bootingUboot_success≡ lfpX.(boot_success∨ (booting∧ 〈1, 2〉 ©X))

Here is a strange formula.

gfpX.(p ∧ lfpY.((X ∧ q) ∨ (Y ∧ ¬q)))

Here is another strange formula.

gfpX.(p ∧ lfpY.(((q ∧ 〈1, 2〉 ©X) ∨ (¬q ∧ 〈2, 3〉 © (Y ∧ ¬p))))
�

4.2 Semantics

Given an agency{A} and two transition(q, q′), (q, q′′) ∈ RG, we say(q, q′) matches(q, q′′) in

{A}, in symbols(q, q′)
A
≡ (q, q′′), if and only if for eacha ∈ {A}, δG((q, q′), a) = δG((q, q

′′), a).
An AMC subformula is interpreted with respect to an interpretation, called anenvironment,

of the fixpoint variables. Given an environmentE , an formulaψ is satisfied at a stateq, in symbols
G, q |=E ψ, if and only if the following inductive constraints are satisfied.

13

• G, q |=E p if and only if q ∈ QG andp ∈ λ(q).
• G, q |=E X if and only if q ∈ E(X).
• G, q |=E ¬φ1 if and only if it is not the case thatG, q |=E φ1.
• G, q |=E φ1 ∨ φ2 if and only if eitherG, q |=E φ1 orG, q |=E φ2.
• G, q |=E lfpX.φ1 if and only if q ∈

⋃
k∈N

Xk where for allk ∈ N,Xk is inductively defined
asX0 = ∅ and for everyk > 0,

Xk = Xk−1 ∪ {q′ | G, q′ |=E[X 7→Xk−1] Scope(X)}.

• G, q |=E 〈A〉 © φ1 if and only if there exists a(q, q′) such that for every(q, q′′)
A
≡ (q, q′),

G, q′′ |=E φ1.
For convenience, we let∅ be a null mapping, i.e., a function that is undefined on everything. If
q is a state andφ1 such that for every environmentE , G, q |=E φ1, then we may simply write
G, q |= φ1. If G, q0G |= φ1, then we may simply writeG |= φ1.

5 Model-checking algorithm for AMC

We assume that all AMC sentences given to us are inpositive normal form(PNF). That is, we
assume that all negation only happens right before atomic proposition symbols.

Table 1.A model-checking algorithm for AMC andµ-calclulus

mck(G,ψ) // Assume a givenµ-calculus sentenceψ with distinct fixpoint variables
// X1, . . . , Xn in the decreasing order of scope sizes.

1: LetE beenv(∅, 1).
2: if q0,G ∈ eval(E , ψ) then return true. else return false. end if

6 Procedures for precondition calculation

Basically, you need loops that evaluate the fixpoint formulas. In each loop iteration, you need
to iterate through all the synchronous transitions. The synchronous transitions are indexed from
zero tored_query_sync_xtion_count()-1.

extern int red_query_sync_xtion_count(
int flag_sync_xtion_table_choice
// This argument is used to choose from the declared
// synchronous transition table and the
// game synchronous transition table.
// There are the following two values.
// RED_USE_GAME_SYNC_XTION
// RED_USE_DECLARED_SYNC_XTION
);

14

Table 2.An algorithm for constructing fixpoint environments

env(E , i) // Assume a givenµ-calculus sentenceψ with distinct fixpoint variables
// X1, . . . , Xn in the decreasing order of scope sizes.

1: if i > n then
2: return E .
3: else ifXi is a least fixpoint variablethen
4: LetV be∅ andV ′ beQG.
5: while V 6= V ′ do
6: LetV ′ beV .
7: LetE ′ beenv(E [Xi 7→ V], i+ 1).
8: LetV beV ∪ eval(E ′,Scope(Xi)).
9: end while

10: return E [Xi 7→ V].
11: end if

Table 3.An algorithm for subformula evaluation with an environment

eval(E , φ) // Assume a givenµ-calculus sentenceψ with distinct fixpoint variables
// X1, . . . , Xn in the decreasing order of scope sizes.

1: if φ is falsethen
2: return ∅.
3: else ifφ is p then
4: return {q | q ∈ QG, p ∈ λG(q)}.
5: else ifφ isX or lfpX.φ1 then
6: return E(X).
7: else ifφ is¬φ1 then
8: return QG − eval(E , φ1).
9: else ifφ is φ1 ∨ φ2 then

10: return eval(E , φ1) ∪ eval(E , φ2).
11: else ifφ is 〈A〉 © φ1 then

12: return
{

q
∣

∣

∣
(q, q′) ∈ RG,∀(q, q

′′) ∈ RG((q, q
′)

A
≡ (q, q′′) ⇒ q′′ ∈ eval(E , φ1))

}

.

13: end if

Then for each synchronous transition, you need the following procedure to calculate the precon-
tions.

extern redgram red_sync_xtion_bck(
redgram ddst,
redgram dpath,
int flag_sync_xtion_table_choice,
// This argument is used to choose from the declared
// synchronous transition table and the

15

// game synchronous transition table.
// There are the following two values.
// RED_USE_GAME_SYNC_XTION
// RED_USE_DECLARED_SYNC_XTION
int sxi,
int flag_game_roles,
// The argument consists of three flag values.
// Each flag may appear or not.
// The three flag values are
// RED_GAME_MODL,
// RED_GAME_SPEC,
// RED_GAME_ENVR.
int flag_time_progress,
// Two argument values are
// RED_NO_TIME_PROGRESS and
// RED_TIME_PROGRESS.
int flag_normality,
// Some argument values are
// RED_NORM_ZONE_NONE,
// RED_NORM_ZONE_MAGNITUDE_REDUCED, and
// RED_NORM_ZONE_CLOSURE.
int flag_action_approx,
// Some argument values are
// RED_NO_ACTION_APPROX,
// RED_ACTION_APPROX_NOXTIVE, and
// RED_ACTION_APPROX_UNTIMED.
int flag_reduction,
// Two argument values are
// RED_NO_REDUCTION_INACTIVE and
// RED_REDUCTION_INACTIVE.
int flag_state_approx,
// The argument values is the bit-wise
// of four flag values of the following form:
// fm | fs | fe | fg.
// fm is for abstraction of the model variables
// and can be of the following values:
// RED_NOAPPROX_MODL_GAME
// RED_OAPPROX_MODL_GAME_DIAG_MAG
// RED_OAPPROX_MODL_GAME_DIAGONAL
// RED_OAPPROX_MODL_GAME_MAGNITUDE
// RED_OAPPROX_MODL_GAME_UNTIMED
// RED_OAPPROX_MODL_GAME_MODE_ONLY
// RED_OAPPROX_MODL_GAME_NONE.
//
// fs is for abstraction of the specification variables

16

// and can be of the following values:
// RED_NOAPPROX_SPEC_GAME
// RED_OAPPROX_SPEC_GAME_DIAG_MAG
// RED_OAPPROX_SPEC_GAME_DIAGONAL
// RED_OAPPROX_SPEC_GAME_MAGNITUDE
// RED_OAPPROX_SPEC_GAME_UNTIMED
// RED_OAPPROX_SPEC_GAME_MODE_ONLY
// RED_OAPPROX_SPEC_GAME_NONE
//
// fe is for abstraction of the environment variables
// and can be of the following values:
// RED_NOAPPROX_ENVR_GAME
// RED_OAPPROX_ENVR_GAME_DIAG_MAG
// RED_OAPPROX_ENVR_GAME_DIAGONAL
// RED_OAPPROX_ENVR_GAME_MAGNITUDE
// RED_OAPPROX_ENVR_GAME_UNTIMED
// RED_OAPPROX_ENVR_GAME_MODE_ONLY
// RED_OAPPROX_ENVR_GAME_NONE
//
// fe is for abstraction of the global variables
// and can be of the following values:
// RED_NOAPPROX_GLOBAL_GAME
// RED_OAPPROX_GLOBAL_GAME_DIAG_MAG
// RED_OAPPROX_GLOBAL_GAME_DIAGONAL
// RED_OAPPROX_GLOBAL_GAME_MAGNITUDE
// RED_OAPPROX_GLOBAL_GAME_UNTIMED
// RED_OAPPROX_GLOBAL_GAME_MODE_ONLY
// RED_OAPPROX_GLOBAL_GAME_NONE
int flag_symmetry,
// Some possible argument values are
// RED_NO_SYMMETRY,
// RED_SYMMETRY_ZONE,
// RED_SYMMETRY_DISCRETE,
// RED_SYMMETRY_POINTER,
// RED_SYMMETRY_STATE.
int flag_experiment
);

However, you need the following procedures to query the events of transitions executed by each
agent.

extern int red_query_sync_xtion_party_count(
int flag_sync_xtion_table_choice,
// This argument is used to choose from the declared
// synchronous transition table and the
// game synchronous transition table.

17

// There are the following two values.
// RED_USE_GAME_SYNC_XTION
// RED_USE_DECLARED_SYNC_XTION
int sxi
);

extern int red_query_sync_xtion_party_process(
int flag_sync_xtion_table_choice,
int sxi,
int party_index

);

extern int red_query_sync_xtion_party_xtion(
int flag_sync_xtion_table_choice,
int sxi,
int party_index

);

extern int red_query_xtion_count();
extern int red_query_xtion_attribute(int xi, int attr);

extern int red_query_xtion_sync_attribute(int xi, int si, int attr);
/* The values of attr can be RED_XTION_SYNC_DIRECTION,

* RED_XTION_SYNC_QUANTIFIED_ADDRESS, RED_XTION_SYNC_VAR_INDEX, and

* RED_XTION_SYNC_QFD_CORRESPONDENCE_VAR_INDEX.

* The return values for attribute RED_XTION_SYNC_DIRECTION are

* RED_XTION_SYNC_XMIT and RED_XTION_SYNC_RECV.

* The return values for attribute case RED_XTION_SYNC_QUANTIFIED_ADDRESS

* can be RED_XTION_SYNC_NO_CORRESPONDENCE_REQUIREMENT,

* RED_XTION_SYNC_QUANTIFIED_CORRESPONDENCE_VAR, and

* RED_XTION_SYNC_CORRESPONDENCE_EXPRESSION.

* The return values for attribute RED_XTION_SYNC_VAR_INDEX

* is the variable index for the synchronizer.

*
* If attribute RED_XTION_SYNC_QUANTIFIED_ADDRESS is of value

* RED_XTION_SYNC_QUANTIFIED_CORRESPONDENCE_VAR,

* then the return values for attribute

* RED_XTION_SYNC_QFD_CORRESPONDENCE_VAR_INDEX is the

* variable index for the holder of the address of the process

* corresponding to this synchronization.

* Otherwise, the return value is RED_FLAG_UNKNOWN.

*/

18

extern char
// The following procedure can be used to query the string for a
// synchronization in a transiton.
// To get the synchronization names of a transition with index xi,
// we can execute the following loop.
/* for (i = 0;
// i < red_query_xtion_attribute(xi, RED_XTION_SYNC_COUNT);
// i++
//) {
// printf("\nxi:%1d, si:%1d, %s", xi, i,
// red_query_string_xtion_sync(xi,i)
//);
// }
// printf("\n");

*/

*red_query_string_xtion_sync(
int, // This is a transition index
int // This is a sync index in the list of synchronizations of the

// the transition.
),

*red_query_string_xtion_sync_correspondence_exp(
int, // This is a transition index
int // This is a sync index in the list of synchronizations of the

// the transition.
);

extern char *red_query_string_xtion_action(int, int);
extern char *red_query_string_xtion(int, int);

19

7 How to implement the algorithm ?

In the following, we explain how to implement procedureeval() with REDLIB. We assume that
E is implemented as an array of1 . . . n fixpoint variables.
• Caseφ is false: returnred_false().
• Casep: returnred_diagram(p).
• CaseXi or lfpXi.φ1: returnE [i].
• Case¬φ1 : returnred_not(eval(E , φ1)).
• Caseφ1 ∨ φ2: returnred_or(eval(E , φ1), eval(E , φ2)).
• Case〈A〉 © φ1: Proceed in the following step.
− LetR bered_false().
− LetX beeval(E , φ1).
− Unmark all sxi from 1 to

red_query_sync_xtion_count(RED_USE_DECLARED_SYNC_XTION)-1.
− For sxi := 1 to

red_query_sync_xtion_count(RED_USE_DECLARED_SYNC_XTION)-1,do
the following.
∗ If sxi has been marked, continue.
∗ Let S bered_true().
∗ For sxj := sxi to
red_query_sync_xtion_count(RED_USE_DECLARED_SYNC_XTION)-
1, do the following.
· If sxi and sxj are not the same in A’s events, continue;
· Mark sxj.
· LetS be

red_and(S, red_sync_xtion_bck(X,
red_query_diagram_global_invariance(),
RED_USE_DECLARED_SYNC_XTION
sxj,
RED_GAME_MODL | RED_GAME_SPEC | RED_GAME_ENVR,
RED_NO_TIME_PROGRESS,
RED_NORM_ZONE_NONE,
RED_NO_ACTION_APPROX,
RED_NO_REDUCTION_INACTIVE,
0,
RED_NO_SYMMETRY,
0

)).
∗ LetR bered_or(R,S).

− returnR.
For example, assume that we have five processes. Then〈2, 3〉© pmeans that for each event
combination of 2,3, all combinations of 1,4,5 must end at ap state. Thus we need to disjunct
the preconditions of all the event combinations of 2,3 subject to the conjunction of all event
combinations of 1,4,5.

There are several implementation details. Specifically, weneed to know how to check whether
sxi and sxj share the same event combinations with respect toA. You need to use

20

red_query_sync_xtion_party_count(
RED_USE_DECLARED_SYNC_XTION, sxi

)

to get the number of processes participating in sxi. Then youneed to use

red_query_sync_xtion_party_process(
RED_USE_DECLARED_SYNC_XTION, sxi, ipi

)

and

red_query_sync_xtion_party_xtion(
RED_USE_DECLARED_SYNC_XTION, sxi, ipi

)

to get the process index and transition index of the ipi’th party. Then if sxi and sxj do not have
the same participation in A, then obviously they do not sharethe same event combination. If they
have the same participation, then we check for each pi in A that participating in both sxi and sxj,
if their corresponding transition index share the same events. (Note that in general, the two same
process index may not occur in the same position in the party vector of sxi and sxj.)

Suppose that we now know party ipi of sxi and party ipj of sxj are the same and both in A.
Further suppose taht their corresponding transition indices are respectively xi and xj out of

red_query_sync_xtion_party_xtion(
RED_USE_DECLARED_SYNC_XTION, sxi, ipi

)

and

red_query_sync_xtion_party_xtion(
RED_USE_DECLARED_SYNC_XTION, sxj, ipj

)

Then we can use

red_query_xtion_attribute(xi, RED_XTION_SYNC_COUNT)

to get the event count of transition xi. Then we can use

red_query_string_xtion_sync(xi,i)

to get the string representation of the i’th event of transition xi. We can also use

red_query_string_xtion_sync_correspondence_exp(
xi, i

)

to get the address string representation of the i’th event oftransiton xi.

References

1. R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logic.Journal of the ACM
(JACM), 49(5):672–713, September 2002.

21

