L R

- u

-

Lecture 1

Farn Wang
Dept. of Electrical Engineering
National Taiwan University

Specification & Verification ?

« Complete & sound specifications.
* Reducing bugs in a system.
» Making sure there are very few bugs.

Very difficult!
Competitiveness of high-tech industry!
A way to survive for the students!

A way to survive for Taiwan!

L R

Hi, pretty! How do you like
our company's new 46, _
MPEG4 ,MP3, 3M pixel,

Wimax, 4-band, diamond, 2d in
fashionable mobile phone ? LV

Juuul,
Chanel.
1-carat

| diamond

L R

L R

: <V L
every day.
You moron

~__deserve this!

LY R R

Boss! I've .
had no slee GOOC! job!
for 3 mont You just wasted

testing the half the budget

piece! {MY wife is
: divorcing
mel

Police just
called me
to bail out
my kid.

Wy cannot we
4 control the
A verification

‘ cost?
$

Q O

10

L R

* specification:
— The user’s requirement
» description (implementation):
— The user’s description of the systems

— No strict line between description and
specification.

 verification:
— Does the description satisfy the specification ?

11

 formal specificaton:

— specification with rigorous mathematical
notations

* automated verification:

— verification with support from computer
tools.

12

L R

* to make the engineers/users understand the
system to design through rigorous
mathematical notations.

* to avoid
ambiguity/confusion/misunderstanding in
communication/discussion/reading.

* to specify the system precisely.

» to generate mathematical models for
automated analysis.

13

+ to somehow be able to verify complexer &
larger systems

* to liberate human from the labor-intensive
verification tasks
— to set free the creativity of human

+ to avoid the huge cost of fixing early bugs in
late cycles.

» to compete with the core verification
technology of the future.

14

L R

-'.i‘ -
=
‘o

.rl

L 8 -k

1
!
|

ud
55
B

o | i -
S o el e il
T

Floating-point division
» expected precision up to 18 positions
* in practice, only 4 positions
* Pentium 60MHz -~ 90MHz
« Example:
5505001 / 294911
wrong answer: 18.66600093

expected answer: 18.6665197 16

- u

LY R R

» Only for very few number pairs
* reproducible!
« affecting large scientific computations,

statistics applications, engineering
computations, spreadsheet, simulation,

» may affect applications compiled with
the CPU.

17

« discovered by Dr. Thomas R. Nicely at
Lynchburg College
— nicely@acavax.lynchburg.edu
« announced in Compuserve on 10/30/1994
* printed in media on 11/7/1994
* fixed in mid 1994, but Intel insisted

— new chips scheduled to major customers at the
end of the year.

— no replacement unless bug effects proved

individual|¥ 18

- u

L R

- u

* triggered a wave of research in formal
verification

* Intel maintained a large team of formal
method. Until a few years ago, its size was a
secret.

* Now we believe computation theory could be
useful.

— Grants and funds poured in.
— Timely achievements in theory and tools.

19

THE "BUG" HEARD 'ROUND THE WORLD (1/4)

John R. Garman

Deputy Chief

Spacecraft Software Division

NASA, Johnson Space Center

Houston, Texas

Aug 24, 1981

ACM SIGSOFT Software Engineering Notes,
Vol. 6, Nr. 5, Oct, 1981

20

10

L R

THE "BUG" HEARD 'ROUND THE WORLD (2/4)

» 4/10/1981, 20 mins before the first
launch of space shuttle, the 5th backup
computer could not initialize.

» 4 General Purpose Computer (GPC)
and 1 backup computer

« FO/FS fault-tolerant
— one-fault-operate (still can vote)
— two-fault-safe (still can return safely)

21

THE "BUG" HEARD 'ROUND THE WORLD (3/4)
Di
eved the i shutte oot ignt
« Software on the GPCs and the backup
were developed by different teams.

» Cyclic processing

» Before the launch, the program on the
GPCs had run for 30 hrs without
problems.

22

- u

11

L R

THE "BUG" HEARD 'ROUND THE WORLD (4/4)

« 1 hr later, IBM dumped the memory of
the GPCs and found out a software bug
in timing synchrony.

* Processes in the GPCs were out-of-
phase.

» The backup could not get the out-of-
phase signal and claimed the GPCs
were faulty.

23

French Guyana, June 4, 1996
$800 million software failure

12

L R

» Medical linear accelerator by AECL
» Computer-controlled (DEC PDP-11)

» Dual modes of X-ray and electron
beams

nd
» Successor to Therac-20 an deg:\h on
Therac-6 by A?:fg diw fo orn

. avallatgeaﬂ
. 11 Ther&m L. ta&d&
6/19%°

987

26

L R

* Independently developed by AECL after breaking
up with CGR
+ A fault-tree safety analysis was performed with the
assumption that software was correct.
» Controlled by legacy software from Therac-20 and
Therac-6
— Therac-20 and -6 only used computer for convenience
— Get rid of hardware interlock since software never went
wrong with Therac-20 and Therac-6
* In fact, most software errors of Therac-20 and
Therac-6 had been masked by hardware
interlocks.

27

« Error message happened so often that
technicians thought they were normal.

« Most of the errors did not hurt.
« The AECL said

— “Improper scanning was not possible!”

— “This incident was never reproted to AECL
prior to this date ...” (after 10 months of a filed
lawsuit)

28

14

L R

- u

* On May 2, 1986, FDA declared Therac-25
defective and demanded CAP.

» AECL remedied something and claimed that
Therac-25 was 10,000 times safer.
* FDA believed them.

» Software errors have been identified in all these
six admitted accidents.

+ Finally, the hardware interlocks were put back
in on Feb. 2, 1987.

29

« Worst accidents series in 35-year history
of medical accelerator

» References:

— N. Leveson, C.S. Turner, An investigation of
theTherac-25 accidents, IEEE Computer, Vol.
26, Nr. 7, July 1993, pp.18-41

30

15

L R

GOVERNMENT NEWS GCN July 13, 1998
: | ki ff
Gregory Slabod .m,‘\ Gt\.‘gl Sta
\C

» Mars climate orbiter smashed into the planet
instead of reaching a safe orbit ($165M), 1999
— Failure to convert English measures to metric values
— Software shut the engine off 100ft above the surface.
» US Vicennes mistook airbus 320 for a F-14 and
shot it down, 1st Gulf War, 1988.
— 290 people dead

— Why: Software bug - cryptic and misleading output
displayed by the tracking software

32

16

L R

Failure of the London Ambulance Service on 26 and
27 November 1992
— Load increased
— Emergencies accumulated
— System made incorrect allocations
* more than one ambulance being sent to the same incident
« the closest vehicle was not chosen for the emergency
— At 23:00 on October 28 the LAS eventually
instigated a backup procedure, after the death of at
least 20 patients

33

« British destroyer H.M.S. Sheffield; sunk in the Falkland Islands
war
— ship's radar warning system software allowed missile to
reach its target
» An Air New Zealand airliner crashed into an Antarctic mountain
« North American Aerospace Defense Command reported that the
U.S. was under missile attack;
— traced to faulty computer software - generated incorrect
signals
« Manned space capsule Gemini V missed its landing point by 100
miles;
— software ignored the motion of the earth around the sun

["The development of software for ballistic-missile defense,"
by H. Lin, Scientific American, vol. 253, no. 6 (Dec. 1985)3f. 48]

17

L R

« Anerror in an aircraft design program contributed to
several serious air crashes
[“Software Engineering: Report on a Conference
sponsored by the NATO Science Committee, Brussels
NATO Scientific Affairs Division,” 1968, p. 121]

« Dallas/Fort Worth air-traffic system began spitting out
gibberish in the Fall of 1989 and controllers had to track
planes on paper

['Ghost in the Machine,"
Time Magazine,
Jan. 29, 1990. p. 58]

35

« F-18 fighter plane crashed

— due to a missing exception condition
[ACM SIGSOFT Software
Engineering Notes, vol. 6, no. 2]

» F-14 fighter plane was lost

— to uncontrollable spin, traced to tactical software
[ACM SIGSOFT Software
Engineering Notes, vol. 9, no. 5]

« Chicago cat owners were billed $5 for unlicensed dachshunds.

— A database search on "DHC" (for dachshunds) found "domestic

house cats" with shots but no license
[ACM SIGSOFT Software
Engineering Notes, vol. 12, no. 3]

36

18

L R

 CyberSitter censors "menu */ #define"
— because of the string '""nu...de*
[Internet Risks Forum NewsGroup
(RISKS), vol. 19, issue 56]

» London‘s Docklands Light Railway — train
stopped in the middle of nowhere due to
future station location programmed in
software

37

CNN.com
 Russia: Software bug made Soyuz stray.

— STAR CITY, Russia(AP) — A computer software error likely
sent a Russian spacecraft into a rare ballistic descent that
subjected the three men on board to check-crushing gravity
loads that made it hard to breathe, space experts said
Tuesday.

« Korean Air crashed in Guam and killed 228 people.
— A poorly programmed ground-based altitude warning system

 Faulty software in anti-lock brakes forced the recall of 39,000 trucks
and tractors and 6,000 school buses in 2000.

« Mars Polar lander, $165M, 1999.
— Software shut the engines off 100 feet above the surface.

e US$59.5 billions loss in economy, 0.6%GDP, April 27,
2003 38

19

L R

- e - o
- B e AP s S
== e ;t_tg.,.;‘— Vi 2 -v“" &

$4 billion development effort
> 507% system integration & validation cost

2,500,000+1,500,000:lines of codes (most in
Ada)

400 horses
100 microprocessors

VEIVT I A 03
’[:TKN;‘ ﬂlil.?t*{;)

L R

» They take effects only with special
event sequences.

—the number of event sequences is factorial
and super astronomical!

* Itis impossible to check all traces with
test/simulation.

Design &
Coding
10%-20%

H T
VERIFICATION Design & 3000 BB £
1 Coding N engineer
42
[—— .

21

L R

Competitiveness in Europe/Ameri
* Intel ~ Motorola ~ Erics
 Cadence - S

aiwan industry

mass production to the cus cnind!

* very little automated verification tools for large-
scale system development.

43

® Testing (real wall for real cars)
B Expensive
B Low coverage
B Late in development cycles
® Simulation(virtual wall for virtual car:
B _Economic
B Low coverage
B Don't know what you haven't seen.
® Formal Verification

(virtual car checked)
B Expensive
B Functional completeness
#100% coverage
B Automated!
® With algorithms and proofs. 44

L R

Sumofthe 3 angles <1507
NTL

® Testing (check all As you see)
.. Expensive

B Low coverage
B Late in development cycles

® Simulation (check all As you draw)

A Vg ' = Economic

L1y

B Low coverage
B Don't know what you haven't seen.

® Formal Verification(we prove it.)

< > B Expensive
‘ B Functional completeness
4100% coverage
B Automated!

@ With algorithms and proofs. 45

Promise of Formal Verification (FV) ?

Use mathematics to prove the
correctness of system designs!

Advantage:

* Functional completeness

- Mechanical & exhaustive exploration of all
cases

- Automated verification
- Cut down verification cost
- Relieve us of mechanical verification tasks

46

23

L R

« Formal verification is still infeasible in
practice.
« At the moment, we rely on the following.

— sound descipline in system design
* software engineering
— simulation/testing for easy-to-find bugs
— formal verification (automated or manuel) for
early bugs or safety-critical systems.

47

|
System Mathematical
Descriptions Models

24

L R

» mode-checking

— AT&T ~ CMU ~ UC-Berkeley -~ Stanford -
North Carolina ~ Cornell ~ Intel ~

Cadence-Berkeley
» theorem-proving
— UT-Austin ~ SRI ~ MIT ~ MITRE -
XEROX-PARC

49

* process algebra
— + Oxford ~ Cambridge ~ Edinburgh -
Uppsala
» formal methods
— + Oxford ~ IFAD ~ IBM UK ~ CRI -

Formal Systems Ltd - Praxis ~ CWI ~
VERILOG

50

25

LY R R

« CAV (Computer-Aided Verification)
FME (Formal Method Europe)

AMAST (Algebraic Methodo. & Sw Tec.)
TACAS (Tools & Algorithms for CAS)
ATVA

SAS (Static Analysis Symposium)
FORTE(Formal Description Technique)

51

* FOCS * STOC
*LICS * PODC
* POPL * MFCS
* STACS * RTSS
* RTAS * |CALP
* CONCUR * FORTE
* SAS * CADE

*FTRTFT *RTCSA 52

26

L R

spec. language
expressiveness

Undecidable
nonelementary
EXPSPACE

\g%s (esé\\le

of® PSPACE

NP verification

complexity .
5

* Number of system states — astronomical
— the values of all variables
— the content of program counters
— the messages in communication channels

» unbounded variable value ranges
* non-regular behaviors

— inexpressible with finite-state automata.

— stack, queue, polynomials, arithmetic,
induction >

27

I PR

1011 sTar's : i,

* balance between
— specification expressiveness and
— verification complexity.
* non-regular systems - proof checking
— sound proof plans by engineers
— interaction between engineers and tools
* regular systems
— huge time/space complexity

— efficient algorithms 56

28

L R

» temporal logics

« automaton theory
* process algebrae
« first-order logics
» Petri-Net
 formal methods

 graphical languages: statechart,
modechart

« a branch of modal logics
— transitions between possible worlds
— two modal operators: [], &
[_]: assert for all possible worlds
>: assert for one possible world
— the model of modal logics is Kripke structure

* In temporal logics,
[]: from now on, true for all states

ﬁ: from now onI true for a state %8

29

L R

* |linear-time model

o—0—-0— - ®— -

 branching-time model

3 : there is a path

5
V: for all paths A \

/

linear-time model &

PLTL (Propositional Linear Temporal Logic)
 eventually p will be true.

<>p liveness property

O—O—0— - Q— -

% Amir Pnueli, 1996 Turing Award Winner

s

30

L R

linear-time model & PLTL
» p and q will never be true the same time.

[]— (p A () :safety property

61

linear-time model and PLTL
* pistrue until g is true (p until)

pUq

satisf Q ‘Q \Q \0 \@ -
y
satisf Q Q Q @ @ -

y

" O—0—0—0—0— -

satisfy

by
~
[nd

31

L R

- Ju

« satisfaction relation
— a linear-time model satisfies a PLTL formula.

« a formula defines a set of models.

« a formula is unsatisfiable if its set of models
IS empty.

 check the satisfiability of P A =S
— P is the implementation
— S is the specification
— The satisfiability problem is PSPACE-complete.

branching-time

& CTL (Computation-tree Logic)

« for all computations, p is eventually true.
vOp

Inevitibility

32

L R

branching-time
& CTL (Computation-tree Logic)

« for all computations, p is eveni@jly true.
— there is a path along which p is ¢

3op
3-pU p ai
Reachability
] .

» satisfaction relation
— a tree model satisfies a CTL formula.
 a CTL formula defines a set of models.

 a CTL formula is unsatisfiable if its set of
model is empty.

» check the satisfiability of P A =S

— The satisfiability problem of CTL is
deterministic EXPTIME-complete.
|

Mo

33

L R

Mo

Given a model M and a temporal logic
formula P, does M satisfy P ?

» Usually M is a finite-state autoamta.

« When P is a CTL formula, the model-
checking problem is in PTIME.

67

« state-space analysis & exploration

— state-space represented as a finite Kripke
structure

— nodes: system states, possible worlds,

— arcs: state transitions -
. —
* regular behaviors f
* huge state-spaces

68

34

L R

an automata s =X @ v @ |:

for a full adder

Timed automata - regular behaviors

update the missile direction every 50ms
until the target is hit.

() — @

update

70

35

L R

Timed automata - regular behaviors

update the missile direction every 50ms until the
target is hit in 500ms.

z:=0; update

TCTL (Timed CTL)

VL] (monitor — V<> 5, Stop)

V[(monitor — x.V> (x<500 A stop))
V[Ix. (monitor — V<> (x<500 A stop))

36

I PR

Hybrid automata volume : V
temperature : T

T>120
specmcatlon T<100

T<130

« CSP, Communicating Sequential Processes
— C.A.R. Hoare, Turing Award winner
— Communicating Sequential Processes,
Prentice-Hall, 1985
» CCS, Calculus of Communicating Systems
— Robin Milner, Turing Award winner
— Communication and Cuncurrency,
Prentice-Hall, 1989
— strong equivalence, observational equivalence,

observational congruence 74

37

L R

vending machine
VM = (in5p— choc—VM | in2p— toffee— VM)
— action set: aVM = {in5p, choc, in2p, toffee}
* models: traces
— in5p choc in5p
— in5p choc in2p toffee in2p toffee
 process: the behavior pattern of an object
— in syntax, a set of rules

— in semantics, a set of traces 75

operation on traces

 prefix : x—P (xthen P)
—a guarded command
* recursion : P = (x—P)

or P =uX. (x—X) (least fixed-point)
» choice : P=(P,|P,)

76

Mo

38

L R

operations on traces
« catenation:
(coin,choc) * (coin,toffee) = (coin,choc,coin,toffee)

 restriction:
(coin,chac,coin,toffee) /{coin} = ('coin,coin)

* head & tall

(coin,choc,coin,toffee) ; = coin
(coin,choc,coin,toffee) *= (choc,coin,toffee)

» ordering
st = (Aushu =t)

 length: # (coin,choc,coin,toffee)} =4

7

* (coin -STOP,,,/5)
. coin ‘

* VMCT = (coin — (choc —VMCT | toffee — VMCT))

39

L R

Infinite behaviors
VMCT = (coin — (choc —VMCT | toffee — VMCT))

coin

choc offee

79
.
.
.

Operations on processes
concurrency: P||Q

* InaPNaQ, all actions must be
synchronized.

* (c—P)[l(c—Q) = (c—(P||Q))
* (c—P)||(d—Q) =STOP ; if c#d
deadlock

40

L R

Operations on processes
* nondeternimism: P 1 Q (P, Q same
priority)
POQ (P first)
« communications: (clv— P) || (c?v— Q)
* concatenation: P;Q
* hiding: P/C
—all actions in P from C are hidden.
- —C:asetofactions .

81

specifications
 tr: a place-holder for any trace
» specification: a requirement for process

Example:
« At any time, the count of coins to the VM is greater
than the count of chocolate pieces sold.
NOLOSS =(#(tr /{choc}) 6 #(tr /{coin}))
- Before a piece of chocolate is out, no coin will be
Input.
FEIR =((tr|coin) 6 (tr|choc) + 1)
l:selection

82

41

L R

* PsatS
— P, aprocess ; S, atrace specification

« Verification techniques
— Proof-checking
* laws of processes and traces
— Model-checking
+ exploration in a finite space

83

« atoms, functions, predicates, v, A, —, 3, V
V' x (Man(x)—Mortal(x))
Every man will die.
« Satisfiability problem: undecidable!
— Resolution Principle - J.A. Robinson

— proof-checking : mechanical theorem proving
— computer support, human guidance

84

42

L R

Two decidable subclasses of 1st-order
arithmetic

* Presburger Arithmetic, N, +, -, v, A,—,3,V
AzV y (z<y v IX(X+z<y))

— elementary decision procedure

 1st-order logic with p(x)_and <

Vy(p(y) = I x (Y <x A g(x

— nonelementary decision procedure

NgThm, Boyer & Moore
* A Computational Logic Handbook
Academic Press, 1988
» quantifier-free, first-order, similar to pure-Lisp
» avery famous theorem-proving environment

example : (pp. 190-197 of the book)

“a list = the reverse of the reverse of the list”
wrong: (PROVE-LEMMA REVERSE-REVERSE (REWRITE)
(EQUAL (REVERSE (REVERSE X)) X))

correct: (PROVE-LEMMA REVERSE-REVERSE (REWRITE)
(IMPLIES (PROPERP X)
(EQUAL (REVERSE (REVERSE X)) X)))

86

43

I PR

N transition

I token I

* C.A. Petri (1972)
« finite # of places
place
* finite # of transitions \

— enabled : if a token in
every source places

— firing: enabled transition
consumes a token from every
source places and put a
token to all destination places.

h

» equivalent to Karp & Miller’s vector
addition systems

« cannot detect the waiting
non-existence of
events \

« marking (state)':

places — N l
(2,1,0)

running

88

L R

computation (state sequence)
* marking sequence
» connected with

I h

d
enabled transitions l
— interleaving semantics

21,00 51,010%2,1,051,01)%.........

89
.
.
.

Verification problems
* infinite markings from an initial marking

» Reachability problem:
Is there a computation from marking M1 to marking M2 ?

— decidable but non-elementary complexity now.
» Coverability problem
* Boundedness problem

45

L R

« originated from the industry

first, VDM (Vienna Development Method)
Z notation

RAISE (Rigorous Approach to Industrial Software Engineering)

Estelle, from the ESPRIT SEDOS project
— semantics defined with Petri-net
— ISO OSI for computer network architecture standard.

» SDL.: Specification & Description Language
s G Z L 0ulai0 0co) specification |1

* |[BM research, Vienna, 1960s

« C.B.Jones & D.Bj&rner made rigorous
definitions in 1970-1982.

» widely accepted by the industry

— with practical effect.

— comparing with other academic work
« Many software tools

— experimental or commercial

-+ stepwise refinement

92

Mo

LY R R

stepwise refinement, 3 components
« direct definition
 implicit specification

— model-oriented specification

* set-theoretical notation
— predicates, sets, relations, functions, sequences

« proof obligation
direct definition—implicit specification

93

stepwise refinement, 3 components

* direct definition

sumn : N>N

sumn(n) if n=0then 0 else n +sumn(n-1)
« implicit specification

sumn (n:N) r:N

post r=n*(n+1)/2

» proof obligation
neN sumn(n) € N A post-sumn(n,sumn(n))

94

s

L R

stepwise refinement, 3 components
two rules
* rulel:

sumn(0)=0

e rule 2 :NeN; n#0; sumn(n-1)=k
sumn(n)=n+k

95

stepwise refinement, 3 components

FromneN

1.sumn(0) =0 Rule 1
2.sumn(0) e N I, N

3. 0=0*(0+1)/2 N

4. sumn(0) = 0*(0+1)/2 =-subs(3,1)

5. post-sumn(0,sumn(0)) post-sumn,4
6. sumn(0) € N A post-sumn(0,sumn(0)) A-1(2,5)

7. from ne N, sumn(n) € N, post-sumn(n,sumn(n))

96

48

L R

stepwise refinement, 3 components

71 nt+i#0 h7,N
72 n+tle N h7,N
7.3 sumn(n) = n*(n+1)/2 post-sumn, ih7
7.4 sumn(n+1) = n+1+n*(n+1)/2 Rule 2(7.2,7.1,7.3)
75 sumn(n+l)e N 7.4, N
7.6 sumn(n+1) = (n+1)*(n+2)/2 7.4, N
7.7 post-sumn(n+1)=(n+1)*(n+2)/2 post-sumn, 7.6
infer sumn(n+1) e N A post-sumn(n+1,sumn(n+1))

A-1(7.5,7.7)
infer sumn(n) e N A post-sumn(n,sumn(n)) N-ind(G,Q7
|

statechart

 David Harel, 1986
— science of computer programming

developed from automaton theory
concurrent computations,

discrete events

nested modules

98

A

[Y LR R

Parallel modes for orthogonality

general mode radar

cruise .
switch-on
navigate (toho
touchdown - switch-off standby

end-warmup
take off
on-ground

abc—system

of f

lever-on

NS Ca|ibration
off

end-
“ calibration

2min. in time

2min. in date

stopwatch

update 2

update 1

50

L R

* F. Jahanian, A.K. Mok, 1986

— |[EEE Transactions on SE

« extended from statechart with timing
structures
« semantics defined with RTL

— RTL (real-time logic) is also proposed by
Jahanian & Mok (IEEE TC)

101

Rail-road Crossing Control System

Gate-control ler Monitor

®approach [0, o0)
lower far approach

®approach

[20, 100] [20. 50] [100, 100] [100, 100]

mE.... B B

102

51

L R

Mo

* operational semantics

— with an abstract machine, like Java machine

» denotational semantics

— treat program as functions, types, A-calculus

e axiomatic semantics

— relation between the pre-condition & post-
conditions of programs

memdicidbebseddanierificaion,

Axiomatic Semantics

 sequential programs
— E.W.Dijkstra, Turing Award
A Discipline of Programming, Prentice-Hall, 1976
« distributed programs
— Chandy - MisrafivUNITY

Parallel Program Design - A Foundation
Addison-Wesley, 1988

104

52

LY R R

Mo

Axiomatic Semantics
» guarded-command language

X,y:=x+y,0 if y>0
Fairness assumption » interleaving semantics
program composition
precondition ~ postcondition

{y>0} x,y:= x+y,0 if y>0 {y=0}

proof-checking
— ZFF4%Z|aws
— safety properties ~ liveness properties

105

Axiomatic Semantics

Example : Given N, M, compute X,y such that
s XxN+y=M

« 0 y<N

Program division

declare x,y,z,k : integer
initially x,y,z,k =0, M, N

, 1
assign zk := 2z, 2.k ify> 2xz ~
N, 1 ify <2xz
XY = xtk,y-z ify>2xz
end {division} 106
|

53

L R

- Ju

Axiomatic Semantics

Properties: Given a program F

» punless q iff for all sin F, {pA—-q}s{pvaq}

« stable p iff p unless false

* invariant p iff stable p A (initial condition —p)

« pensures q iff (p unless g)A3sinF, {p A =q}s{q}

107

Axiomatic Semantics
Properties: Given a program F, p =2 q iff
p ensures q pP>q gq-=>r
p—>q p>r

v winW(pWw) 2 q)
(3 winW(p(w))) 2 q

108

54

L R

Axiomatic Semantics
Some theorems :

p unless g, q unless r p unless g

pV gunlessr pVvrunlessqVvr

p—>q,runlessb

pATr (gATr)vhb

109

first-order logic & theorem-proving
* NqThm by Boyer & Moore

» 1985 , the verification of a 4-bit CPU,
FM 8501, to the hit level

« verification of a high-level language
compiler

» A Computational Logic Handbook,
Academic Press, 1988

110

55

L R

Formal Methods
e occam
« IMS T800 transputer

« estimated reduction in the development
time by 12 months.

* 1990 Queen’s award!!!
— (49 recepients)

111

Formal Methods

« Z notations for the formal specifications
* IMS CICS

« estimated reduction of development
cost by 5 millions

* 1992 Queen’s award

112

Mo

L R

model-checking

* Burch, Clarke, McMillan, Dill, Hwang

BDD symbolic manipulation

CMU SMV, fully automatic

Intel 32-bit ALU / 8 registers / two-layer pipeline
state counts up to 10120

4 hr 20min in SUN 4

113

Symbolic Trajectory Evaluation
Hazelburst, Seger

64-bit multiplier

simple or Wallace tree
combinational circuits

800 sec. in Sparc 10/51

114

57

L R

First-order logic and linear hybrid automata

Bosscher, Polak, Vaandrager

proof-checking

Phillip audio control network, physical layer
voltage variations, clock rate stability

assuming no collison, signal delay

proving that 1/17 frequency variation is acceptable.
— The tolerance of Phillip is 5%.

automatically checked with Henzinger’'s HyTech

115

Initially x = 0;

s consumer:

for (; 1;) if (x > 0) x--;

* Producer:

for (; 1;) if (x< 1) x++;

+ Atomicity assumption

» Please prove that x is always no greater than
1.

116

58

L R

1. please model the two programs in the
last page as Petri-nets.

2. Please explain the following terms.
Safety property

Liveness property

Fairness assumption

Interleaving semantics

> wnh e

117

