
正規方法：正規描述與自動驗證

王 凡 1

1

Introduction

Formal Methods

Lecture 1

Farn Wang

Dept. of Electrical Engineering

National Taiwan University

2

Specification & Verification ?

• Complete & sound specifications.

• Reducing bugs in a system.

• Making sure there are very few bugs.

Very difficult!

Competitiveness of high-tech industry!

A way to survive for the students!

A way to survive for Taiwan!

正規方法：正規描述與自動驗證

王 凡 2

3

Designed in

Italy by LV,

Gucci,

Chanel.

1-carat

diamond

Tragedy in the South Sci-Park

Hi, pretty! How do you like
our company’s new 4G,
MPEG4,MP3, 3M pixel,
Wimax, 4-band, diamond,
fashionable mobile phone ?

4

Tragedy in the South Sci-Park

正規方法：正規描述與自動驗證

王 凡 3

5

Tragedy in the South Sci-Park

6

Tragedy in the South Sci-Park

正規方法：正規描述與自動驗證

王 凡 4

7

Tragedy in the South Sci-Park

8

Tragedy in the South Sci-ParkThe junk fails
every day.
You moron
deserve this!

正規方法：正規描述與自動驗證

王 凡 5

9

Tragedy in the South Sci-Park

- sequel

Boss! I’ve
had no sleep
for 3 months
testing the
piece!

Police just
called me
to bail out
my kid.

Good job!
You just wasted
half the budget
and my career.
My wife is
divorcing
me!

10

Ahhh!
Ahhh!

Tragedy in the South Sci-Park

- sequel

Why cannot we
control the
verification

cost?

正規方法：正規描述與自動驗證

王 凡 6

11

Specifications, descriptions,

& verification

• specification:

– The user’s requirement

• description (implementation):

– The user’s description of the systems

– No strict line between description and

specification.

• verification:

– Does the description satisfy the specification ?

12

Formal specification

& automated verification

• formal specificaton:

– specification with rigorous mathematical

notations

• automated verification:

– verification with support from computer

tools.

正規方法：正規描述與自動驗證

王 凡 7

13

Why formal specifications ?

• to make the engineers/users understand the
system to design through rigorous
mathematical notations.

• to avoid
ambiguity/confusion/misunderstanding in
communication/discussion/reading.

• to specify the system precisely.

• to generate mathematical models for
automated analysis.

14

Why automated verification ?

• to somehow be able to verify complexer &
larger systems

• to liberate human from the labor-intensive
verification tasks
– to set free the creativity of human

• to avoid the huge cost of fixing early bugs in
late cycles.

• to compete with the core verification
technology of the future.

正規方法：正規描述與自動驗證

王 凡 8

15

16

Pentium Bug (1/4)

Floating-point division

• expected precision up to 18 positions

• in practice, only 4 positions

• Pentium 60MHz、90MHz

• Example:

5505001 / 294911

wrong answer: 18.66600093

expected answer: 18.6665197

正規方法：正規描述與自動驗證

王 凡 9

17

Pentium Bug (2/4)

• Only for very few number pairs

• reproducible!

• affecting large scientific computations,
statistics applications, engineering
computations, spreadsheet, simulation,
…

• may affect applications compiled with
the CPU.

18

Pentium Bug (3/4)
• discovered by Dr. Thomas R. Nicely at

Lynchburg College

– nicely@acavax.lynchburg.edu

• announced in Compuserve on 10/30/1994

• printed in media on 11/7/1994

• fixed in mid 1994, but Intel insisted

– new chips scheduled to major customers at the

end of the year.

– no replacement unless bug effects proved

individually

正規方法：正規描述與自動驗證

王 凡 10

19

Pentium Bug (4/4)

• triggered a wave of research in formal
verification

• Intel maintained a large team of formal
method. Until a few years ago, its size was a
secret.

• Now we believe computation theory could be
useful.
– Grants and funds poured in.

– Timely achievements in theory and tools.

20

THE "BUG" HEARD 'ROUND THE WORLD (1/4)

Discussion of the Software Problem Which

Delayed the First Shuttle Orbital Flight

John R. Garman
Deputy Chief

Spacecraft Software Division

NASA, Johnson Space Center

Houston, Texas

Aug 24, 1981

ACM SIGSOFT Software Engineering Notes,

Vol. 6, Nr. 5, Oct, 1981

正規方法：正規描述與自動驗證

王 凡 11

21

THE "BUG" HEARD 'ROUND THE WORLD (2/4)

Discussion of the Software Problem Which

Delayed the First Shuttle Orbital Flight

• 4/10/1981, 20 mins before the first
launch of space shuttle, the 5th backup
computer could not initialize.

• 4 General Purpose Computer (GPC)
and 1 backup computer

• FO/FS fault-tolerant

– one-fault-operate (still can vote)

– two-fault-safe (still can return safely)

22

THE "BUG" HEARD 'ROUND THE WORLD (3/4)

Discussion of the Software Problem Which

Delayed the First Shuttle Orbital Flight

• Software on the GPCs and the backup

were developed by different teams.

• Cyclic processing

• Before the launch, the program on the

GPCs had run for 30 hrs without

problems.

正規方法：正規描述與自動驗證

王 凡 12

23

THE "BUG" HEARD 'ROUND THE WORLD (4/4)

Discussion of the Software Problem Which

Delayed the First Shuttle Orbital Flight

• 1 hr later, IBM dumped the memory of
the GPCs and found out a software bug
in timing synchrony.

• Processes in the GPCs were out-of-
phase.

• The backup could not get the out-of-
phase signal and claimed the GPCs
were faulty.

24

正規方法：正規描述與自動驗證

王 凡 13

25

26

Therac-25 Incidents

• Medical linear accelerator by AECL

• Computer-controlled (DEC PDP-11)

• Dual modes of X-ray and electron
beams

• Successor to Therac-20 and

Therac-6 by AECL and CGR

• available in late 1982

• 11 Therac-25 were installed

正規方法：正規描述與自動驗證

王 凡 14

27

Therac-25 incidents (continued, 2)

• Independently developed by AECL after breaking
up with CGR

• A fault-tree safety analysis was performed with the
assumption that software was correct.

• Controlled by legacy software from Therac-20 and
Therac-6
– Therac-20 and -6 only used computer for convenience

– Get rid of hardware interlock since software never went
wrong with Therac-20 and Therac-6

• In fact, most software errors of Therac-20 and
Therac-6 had been masked by hardware
interlocks.

28

Therac-25 incidents (continued, 3)

• Error message happened so often that

technicians thought they were normal.

• Most of the errors did not hurt.

• The AECL said

– “Improper scanning was not possible!”

– “This incident was never reproted to AECL

prior to this date …” (after 10 months of a filed

lawsuit)

正規方法：正規描述與自動驗證

王 凡 15

29

Therac-25 incidents (continued, 4)

• On May 2, 1986, FDA declared Therac-25
defective and demanded CAP.

• AECL remedied something and claimed that
Therac-25 was 10,000 times safer.

• FDA believed them.

• Software errors have been identified in all these
six admitted accidents.

• Finally, the hardware interlocks were put back
in on Feb. 2, 1987.

30

Therac-25 incidents (continued, 5)

• Worst accidents series in 35-year history

of medical accelerator

• References:

– N. Leveson, C.S. Turner, An investigation of

theTherac-25 accidents, IEEE Computer, Vol.

26, Nr. 7, July 1993, pp.18-41

正規方法：正規描述與自動驗證

王 凡 16

31

GOVERNMENT NEWS GCN July 13, 1998

Software glitches leave Navy

Smart Ship dead in the water

Gregory Slabodkin, GCN Staff

32

Some more bugs (1)

• Mars climate orbiter smashed into the planet

instead of reaching a safe orbit ($165M), 1999

– Failure to convert English measures to metric values

– Software shut the engine off 100ft above the surface.

• US Vicennes mistook airbus 320 for a F-14 and

shot it down, 1st Gulf War, 1988.

– 290 people dead

– Why: Software bug - cryptic and misleading output

displayed by the tracking software

正規方法：正規描述與自動驗證

王 凡 17

33

Some more bugs (2)

Failure of the London Ambulance Service on 26 and
27 November 1992

– Load increased

– Emergencies accumulated

– System made incorrect allocations

• more than one ambulance being sent to the same incident

• the closest vehicle was not chosen for the emergency

– At 23:00 on October 28 the LAS eventually
instigated a backup procedure, after the death of at
least 20 patients

34

Some more bugs (3)
• British destroyer H.M.S. Sheffield; sunk in the Falkland Islands

war

– ship's radar warning system software allowed missile to
reach its target

• An Air New Zealand airliner crashed into an Antarctic mountain

• North American Aerospace Defense Command reported that the
U.S. was under missile attack;

– traced to faulty computer software - generated incorrect
signals

• Manned space capsule Gemini V missed its landing point by 100
miles;

– software ignored the motion of the earth around the sun

["The development of software for ballistic-missile defense,"

by H. Lin, Scientific American, vol. 253, no. 6 (Dec. 1985), p. 48]

正規方法：正規描述與自動驗證

王 凡 18

35

Some more bugs (4)

• An error in an aircraft design program contributed to
several serious air crashes

[“Software Engineering: Report on a Conference

sponsored by the NATO Science Committee, Brussels

NATO Scientific Affairs Division,” 1968, p. 121]

• Dallas/Fort Worth air-traffic system began spitting out
gibberish in the Fall of 1989 and controllers had to track
planes on paper

["Ghost in the Machine,"

Time Magazine,

Jan. 29, 1990. p. 58]

36

Some more bugs (5)

• F-18 fighter plane crashed

– due to a missing exception condition
[ACM SIGSOFT Software

Engineering Notes, vol. 6, no. 2]

• F-14 fighter plane was lost

– to uncontrollable spin, traced to tactical software
[ACM SIGSOFT Software

Engineering Notes, vol. 9, no. 5]

• Chicago cat owners were billed $5 for unlicensed dachshunds.

– A database search on "DHC" (for dachshunds) found "domestic
house cats" with shots but no license

[ACM SIGSOFT Software

Engineering Notes, vol. 12, no. 3]

正規方法：正規描述與自動驗證

王 凡 19

37

Some more bugs (6)

• CyberSitter censors "menu */ #define"

– because of the string "nu...de“

[Internet Risks Forum NewsGroup

(RISKS), vol. 19, issue 56]

• London„s Docklands Light Railway – train
stopped in the middle of nowhere due to
future station location programmed in
software

38

Some more bugs (7)
CNN.com

• Russia: Software bug made Soyuz stray.

– STAR CITY, Russia(AP) – A computer software error likely
sent a Russian spacecraft into a rare ballistic descent that
subjected the three men on board to check-crushing gravity
loads that made it hard to breathe, space experts said
Tuesday.

• Korean Air crashed in Guam and killed 228 people.

– A poorly programmed ground-based altitude warning system

• Faulty software in anti-lock brakes forced the recall of 39,000 trucks
and tractors and 6,000 school buses in 2000.

• Mars Polar lander, $165M, 1999.

– Software shut the engines off 100 feet above the surface.

• US$59.5 billions loss in economy, 0.6%GDP, April 27,

2003

正規方法：正規描述與自動驗證

王 凡 20

39

2,500,000+1,500,000 lines of codes (most in
Ada)

40

正規方法：正規描述與自動驗證

王 凡 21

41

Bugs in complex software

• They take effects only with special

event sequences.

– the number of event sequences is factorial

and super astronomical!

• It is impossible to check all traces with

test/simulation.

42

Budget appropriation

Training in Taiwan College

The rest

VERIFICATION

40％-60％

Design &

Coding

10%-20%

Design &

Coding

99%

VERIFICATION

1％

正規方法：正規描述與自動驗證

王 凡 22

43

Automated verification

- FV+simulation+testing

Competitiveness in Europe/America

• Intel、Motorola、Ericsson、Nokia、…

• Cadence、Synopsys、Mentor Graphics、…

Drawbacks of Taiwan industry

• fast/mass production to the customers

• very little automated verification tools for large-

scale system development.

44

 Testing (real wall for real cars)
 Expensive
 Low coverage
 Late in development cycles

 Simulation(virtual wall for virtual cars)
 Economic
 Low coverage
 Don’t know what you haven’t seen.

 Formal Verification
(virtual car checked)
 Expensive
 Functional completeness

100% coverage
 Automated!

With algorithms and proofs.

Three techniques in verification

正規方法：正規描述與自動驗證

王 凡 23

45

Sum of the 3 angles = 180 ?

 Testing (check all s you see)
 Expensive
 Low coverage
 Late in development cycles

 Simulation (check all s you draw)
 Economic
 Low coverage
 Don’t know what you haven’t seen.

 Formal Verification(we prove it.)
 Expensive
 Functional completeness

100% coverage

 Automated!
With algorithms and proofs.

.....

.....

46

Promise of Formal Verification (FV) ?

Use mathematics to prove the
correctness of system designs!

Advantage:
• Functional completeness

– Mechanical & exhaustive exploration of all
cases

• Automated verification
– Cut down verification cost
– Relieve us of mechanical verification tasks

正規方法：正規描述與自動驗證

王 凡 24

47

Integration of the verification techniques

• Formal verification is still infeasible in

practice.

• At the moment, we rely on the following.

– sound descipline in system design

• software engineering

– simulation/testing for easy-to-find bugs

– formal verification (automated or manuel) for

early bugs or safety-critical systems.

48

T
ra

n
s
la

to
rs

C
o

v
e
ra

g
e

A
n

a
ly

s
is

Verification Infrastructure

Verification

Engine

Proof &

Certificate

Symbolic

Simulation

Testing

(TTCN 3)

C

SDL

TTCN 3

Verilog

System

Descriptions

Mathematical

Models

Equivalence

Checking

Model

Checking

正規方法：正規描述與自動驗證

王 凡 25

49

Major desciplines (1/2)

• mode-checking

– AT&T、CMU、UC-Berkeley、Stanford、
North Carolina、Cornell、Intel、

Cadence-Berkeley

• theorem-proving

– UT-Austin、SRI、MIT、MITRE、

XEROX-PARC

50

Major desciplines (2/2)

• process algebra

– + Oxford、Cambridge、Edinburgh、
Uppsala

• formal methods

– + Oxford、IFAD、IBM UK、CRI、

Formal Systems Ltd、Praxis、CWI、
VERILOG

正規方法：正規描述與自動驗證

王 凡 26

51

Major conferences

• CAV (Computer-Aided Verification)

• FME (Formal Method Europe)

• AMAST (Algebraic Methodo. & Sw Tec.)

• TACAS (Tools & Algorithms for CAS)

• ATVA

• SAS (Static Analysis Symposium)

• FORTE(Formal Description Technique)

52

Major conferences

- with related sessions

* FOCS * STOC

* LICS * PODC

* POPL * MFCS

* STACS * RTSS

* RTAS * ICALP

* CONCUR * FORTE

* SAS * CADE

* FTRTFT * RTCSA

正規方法：正規描述與自動驗證

王 凡 27

53

Theory spectrum

expressiveness vs verification complexity

PTIME

PSPACE
EXPTIME

EXPSPACE

Undecidable
nonelementary

NP
verification

complexity

spec. language

expressiveness

54

Sources of verification complexity

• Number of system states – astronomical

– the values of all variables

– the content of program counters

– the messages in communication channels

• unbounded variable value ranges

• non-regular behaviors

– inexpressible with finite-state automata.

– stack, queue, polynomials, arithmetic,

induction

正規方法：正規描述與自動驗證

王 凡 28

55

56

The state of the art

• balance between

– specification expressiveness and

– verification complexity.

• non-regular systems  proof checking

– sound proof plans by engineers

– interaction between engineers and tools

• regular systems

– huge time/space complexity

– efficient algorithms

正規方法：正規描述與自動驗證

王 凡 29

57

Deciplines

• temporal logics

• automaton theory

• process algebrae

• first-order logics

• Petri-Net

• formal methods

• graphical languages: statechart,

modechart

• formal semantics

58

Deciplines

- temporal logics

• a branch of modal logics

– transitions between possible worlds

– two modal operators: □, ◇

□: assert for all possible worlds

◇: assert for one possible world

– the model of modal logics is Kripke structure

• In temporal logics,

□ : from now on, true for all states

◇: from now on, true for a state

directed

graphs

正規方法：正規描述與自動驗證

王 凡 30

59

Deciplines

- temporal logics

• linear-time model

• branching-time model

s
1

s
2

s
k

s
0

s
0

s
2

s
1

s
5s

4
s

3

$: there is a path

": for all paths

60

Deciplines

- temporal logics

linear-time model &

PLTL (Propositional Linear Temporal Logic)

• eventually p will be true.

◇p：liveness property

p p pp

★Amir Pnueli, 1996 Turing Award Winner

正規方法：正規描述與自動驗證

王 凡 31

61

Deciplines

- temporal logics

linear-time model & PLTL

• p and q will never be true the same time.

□  (p  q） : safety property

p q qp

62

Deciplines

- temporal logics

linear-time model and PLTL

• p is true until q is true (p until q)

pUq

p p qp psatisf
y

p p qpnot
satisfy

p p qp p  qsatisf
y

正規方法：正規描述與自動驗證

王 凡 32

63

Deciplines

- temporal logics

• satisfaction relation

– a linear-time model satisfies a PLTL formula.

• a formula defines a set of models.

• a formula is unsatisfiable if its set of models
is empty.

• check the satisfiability of P   S
– P is the implementation

– S is the specification

– The satisfiability problem is PSPACE-complete.

64

Deciplines

- temporal logics

branching-time

& CTL (Computation-tree Logic)

• for all computations, p is eventually true.

"◇p

pp

pp p

p

Inevitibility

正規方法：正規描述與自動驗證

王 凡 33

65

Deciplines

- temporal logics

branching-time

& CTL (Computation-tree Logic)

• for all computations, p is eventually true.

– there is a path along which p is eventually true.

$◇p

$ pU p

pp

pp p

p

Reachability

66

Deciplines

- temporal logics

• satisfaction relation

– a tree model satisfies a CTL formula.

• a CTL formula defines a set of models.

• a CTL formula is unsatisfiable if its set of

model is empty.

• check the satisfiability of P   S

– The satisfiability problem of CTL is

deterministic EXPTIME-complete.

正規方法：正規描述與自動驗證

王 凡 34

67

Deciplines

- model-checking

Given a model M and a temporal logic

formula P, does M satisfy P ?

• Usually M is a finite-state autoamta.

• When P is a CTL formula, the model-

checking problem is in PTIME.

68

Deciplines

- model-checking

• state-space analysis & exploration

– state-space represented as a finite Kripke

structure

– nodes: system states, possible worlds,

– arcs: state transitions

• regular behaviors

• huge state-spaces

execute

wait

finish

正規方法：正規描述與自動驗證

王 凡 35

69

Deciplines

- model-checking

0110 1001

x x

y y y y

C C C C
C

C C C

S = x ⊕ y ⊕ C
an automata

for a full adder

70

Deciplines

- model-checking

Timed automata - regular behaviors

update the missile direction every 50ms

until the target is hit.

stop
50ms

update

hitmonitor

正規方法：正規描述與自動驗證

王 凡 36

71

Deciplines

- model-checking
Timed automata - regular behaviors

update the missile direction every 50ms until the
target is hit in 500ms.

stopz=50ms

z:=0; update

monitor
x<500ms
z50ms

x:=0; z:=0

• x, z are real-value clocks.

• x, z increment at the same rate.

x、z read

zero initially

z is reset to zero in every update.

hit

72

Deciplines

- model-checking

TCTL (Timed CTL)

"□ (monitor → "◇＜500 stop)

"□ (monitor → x."◇ (x＜500  stop))

"□x. (monitor → "◇ (x＜500  stop))

正規方法：正規描述與自動驗證

王 凡 37

73

Deciplines

- model-checking

Hybrid automata volume：V

temperature：T

safe

dV/dt＝0/s

water-low

dV/dt＝50/s

T>120

T100specification:

"□ T＜130

74

Deciplines

- process algebrae

• CSP, Communicating Sequential Processes
– C.A.R. Hoare, Turing Award winner

– Communicating Sequential Processes,

Prentice-Hall, 1985

• CCS, Calculus of Communicating Systems

– Robin Milner, Turing Award winner

– Communication and Cuncurrency,

Prentice-Hall, 1989

– strong equivalence, observational equivalence,

observational congruence

正規方法：正規描述與自動驗證

王 凡 38

75

Deciplines

- process algebrae

vending machine

VM = (in5p→ choc→VM | in2p→ toffee→VM)

– action set: αVM = {in5p, choc, in2p, toffee}

• models: traces

– in5p choc in5p

– in5p choc in2p toffee in2p toffee

• process: the behavior pattern of an object

– in syntax, a set of rules

– in semantics, a set of traces

76

Deciplines

- process algebrae

operation on traces

• prefix : x→P (x then P)

– a guarded command

• recursion : P = (x→P)

or P =μX. (x→X)（least fixed-point）

• choice : P = (P1 | P2)

正規方法：正規描述與自動驗證

王 凡 39

77

Deciplines

- process algebrae

operations on traces

• catenation:
〈coin,choc〉^〈coin,toffee〉=〈coin,choc,coin,toffee〉

• restriction:
〈coin,choc,coin,toffee〉 {coin} =〈coin,coin〉

• head & tail
〈coin,choc,coin,toffee〉0 = coin
〈coin,choc,coin,toffee〉’ =〈choc,coin,toffee〉

• ordering
st = ($u.s^u = t)

• length:＃〈coin,choc,coin,toffee〉＝4

78

Deciplines

- process algebra

• (coin →STOPαVMS)

• VMCT = (coin → (choc →VMCT | toffee → VMCT))

coin

coin

coin

coin

choc

choc

toffee

toffee

正規方法：正規描述與自動驗證

王 凡 40

79

Deciplines

- process algebra

Infinite behaviors

VMCT = (coin → (choc →VMCT | toffee → VMCT))

coin

toffeechoc

80

Deciplines

- process algebrae

Operations on processes

concurrency: P||Q

• InαP∩αQ, all actions must be

synchronized.

• (c→P)||(c→Q) = (c→(P||Q))

• (c→P)||(d→Q) = STOP ; if c≠d

deadlock

正規方法：正規描述與自動驗證

王 凡 41

81

Deciplines

- process algebrae

Operations on processes

• nondeternimism: P ⊓ Q (P, Q same

priority)

P Q （P first）

• communications: (c!v→ P) || (c?v→ Q)

• concatenation: P;Q

• hiding: P/C

– all actions in P from C are hidden.

– C: a set of actions

82

Deciplines

- process algebrae

specifications
• tr : a place-holder for any trace

• specification: a requirement for process

Example:

• At any time, the count of coins to the VM is greater
than the count of chocolate pieces sold.
NOLOSS ＝(#(tr  {choc}) ó #(tr  {coin}))

• Before a piece of chocolate is out, no coin will be
input.
FAIR =((tr↓coin) ó (tr↓choc) + 1)

↓:selection

正規方法：正規描述與自動驗證

王 凡 42

83

Deciplines

- process algebra satisfaction

• P sat S

– P, a process； S, a trace specification

• Verification techniques

– Proof-checking

• laws of processes and traces

– Model-checking

• exploration in a finite space

84

Deciplines

- theorem-proving

• atoms, functions, predicates, , , , $, "

" x (Man(x)→Mortal(x))

Every man will die.

• Satisfiability problem: undecidable!

– Resolution Principle - J.A. Robinson

– proof-checking : mechanical theorem proving

– computer support, human guidance

正規方法：正規描述與自動驗證

王 凡 43

85

Deciplines

- theorem-proving

Two decidable subclasses of 1st-order
arithmetic

• Presburger Arithmetic, N, +, -, , ,,$,"

$ z" y (z<y  $ x(x+z<y))

– elementary decision procedure

• 1st-order logic with p(x) and 

"y(p(y) → $ x (y  x  q(x))
– nonelementary decision procedure

monadic

predicate

86

Deciplines

- theorem-proving

NqThm, Boyer & Moore
• A Computational Logic Handbook

Academic Press, 1988
• quantifier-free, first-order, similar to pure-Lisp
• a very famous theorem-proving environment

example : (pp. 190-197 of the book)

“a list = the reverse of the reverse of the list”
• wrong: (PROVE-LEMMA REVERSE-REVERSE (REWRITE)

(EQUAL (REVERSE (REVERSE X)) X))

• correct: (PROVE-LEMMA REVERSE-REVERSE (REWRITE)
(IMPLIES (PROPERP X)

(EQUAL (REVERSE (REVERSE X)) X)))

正規方法：正規描述與自動驗證

王 凡 44

87

Deciplines

- Petri-Nets

• C.A. Petri (1972)

• finite # of places

• tokens

• finite # of transitions
– enabled : if a token in

every source places

– firing: enabled transition

consumes a token from every

source places and put a

token to all destination places.

place

transition

token

88

Deciplines

- Petri-Nets

• equivalent to Karp & Miller’s vector

addition systems
• cannot detect the

non-existence of
events

• marking (state):

places  N

(2,1,0)

waiting

running

semaphore

正規方法：正規描述與自動驗證

王 凡 45

89

Deciplines

- Petri-Nets

computation (state sequence)

• marking sequence

• connected with

enabled transitions

– interleaving semantics

(2,1,0)

a b

b
→(1,0,1)

a
→(2,1,0)

b
→(1,0,1)

a
→………

90

Deciplines

- Petri-Nets

Verification problems

• infinite markings from an initial marking

• Reachability problem:

Is there a computation from marking M1 to marking M2 ?

– decidable but non-elementary complexity now.

• Coverability problem

• Boundedness problem
2

⋰
2

2
O(n)

正規方法：正規描述與自動驗證

王 凡 46

91

Deciplines

- Formal Methods

• originated from the industry

• first, VDM (Vienna Development Method)

• Z notation

• RAISE (Rigorous Approach to Industrial Software Engineering)

• Estelle, from the ESPRIT SEDOS project

– semantics defined with Petri-net

– ISO OSI for computer network architecture standard.

• SDL: Specification & Description Language

– CCITT Z1.00, for protocol specification

92

Deciplines

- Formal Methods VDM

• IBM research, Vienna, 1960s

• C.B.Jones & D.BjÆ rner made rigorous

definitions in 1970-1982.

• widely accepted by the industry

– with practical effect.

– comparing with other academic work

• Many software tools

– experimental or commercial

• stepwise refinement

正規方法：正規描述與自動驗證

王 凡 47

93

Deciplines

- Formal Methods VDM proof

stepwise refinement, 3 components

• direct definition

• implicit specification

– model-oriented specification

• set-theoretical notation

– predicates, sets, relations, functions, sequences

• proof obligation

direct definition→implicit specification

94

Deciplines

- Formal Methods VDM proof

stepwise refinement, 3 components

• direct definition
sumn : N→N
sumn(n) if n=0 then 0 else n +sumn(n-1)

• implicit specification
sumn (n:N) r:N
post r=n*(n+1)/2

• proof obligation

n  N sumn(n)  N  post-sumn(n,sumn(n))

正規方法：正規描述與自動驗證

王 凡 48

95

Deciplines

- Formal Methods VDM proof

stepwise refinement, 3 components

two rules

• rule 1 :

• rule 2 :

sumn(0)=0

nN; n≠0; sumn(n-1)=k

sumn(n)=n+k

96

Deciplines

- Formal Methods VDM proof (1/2)

stepwise refinement, 3 components

From n N

1. sumn(0) = 0 Rule 1

2. sumn(0)   1, 

3. 0=0*(0+1)/2 N

4. sumn(0) = 0*(0+1)/2 =-subs(3,1)

5. post-sumn(0,sumn(0)) post-sumn,4

6. sumn(0)    post-sumn(0,sumn(0))  -I(2,5)

7. from n N, sumn(n) N, post-sumn(n,sumn(n))

正規方法：正規描述與自動驗證

王 凡 49

97

Deciplines

- Formal Methods VDM proof (2/2)

stepwise refinement, 3 components

7.1 n+1≠ 0 h7,N

7.2 n+1  h7,N

7.3 sumn(n) = n*(n+1)/2 post-sumn, ih7

7.4 sumn(n+1) = n+1+n*(n+1)/2 Rule 2(7.2,7.1,7.3)

7.5 sumn(n+1)  7.4, N

7.6 sumn(n+1) = (n+1)*(n+2)/2 7.4, N

7.7 post-sumn(n+1)=(n+1)*(n+2)/2 post-sumn, 7.6

infer sumn(n+1)   post-sumn(n+1,sumn(n+1))

 -I(7.5,7.7)

infer sumn(n)   post-sumn(n,sumn(n)) N-ind(6,7)

98

Deciplines

- graphical languages

statechart

• David Harel, 1986

– science of computer programming

• developed from automaton theory

• concurrent computations,

• discrete events

• nested modules

正規方法：正規描述與自動驗證

王 凡 50

99

Deciplines

- graphical languages: statechart

Parallel modes for orthogonality

cruise

navigate

on-ground
take off

touchdown

general mode

on

standby

off

radar

switch-on

switch-off

end-warmup

abc-system

on

calibration

off
lever-on

end-
calibration

lever-
off

avionic system

100

off

update 1update 2

H

on

chime

d d

off H

on

alarm 2

d d

off H

on

alarm 1

d d

stopwatch a a a

b cb c

a a

update dated

d

b
2min. in date

2min. in time
cwait

c
time

H

Deciplines

- graphical languages: statechart
a

cb

d
⑫

a digital watch

正規方法：正規描述與自動驗證

王 凡 51

101

Deciplines

- graphical languages: modechart

• F. Jahanian, A.K. Mok, 1986

– IEEE Transactions on SE

• extended from statechart with timing

structures

• semantics defined with RTL

– RTL（real-time logic）is also proposed by

Jahanian & Mok (IEEE TC)

102

Deciplines

- graphical languages: modechart

up

down

lower
[0,∞)

[0,∞)

[20,50][20,100]

far approach

crossingpassed

[100,100][100,100]

approach

approach

passed

Gate-controller Monitor

Rail-road Crossing Control System

raise

正規方法：正規描述與自動驗證

王 凡 52

103

Deciplines

- language semantics

• operational semantics
– with an abstract machine, like Java machine

• denotational semantics
– treat program as functions, types, λ-calculus

• axiomatic semantics
– relation between the pre-condition & post-

conditions of programs

– heavily used in verification

104

Deciplines

- language semantics

Axiomatic Semantics

• sequential programs

– E.W.Dijkstra, Turing Award

A Discipline of Programming, Prentice-Hall, 1976

• distributed programs

– Chandy、Misra的UNITY

Parallel Program Design - A Foundation

Addison-Wesley, 1988

正規方法：正規描述與自動驗證

王 凡 53

105

Deciplines

- language semantics

Axiomatic Semantics

• guarded-command language

x,y:= x+y,0 if y>0

• Fairness assumption，interleaving semantics

• program composition

• precondition、postcondition

{y>0} x,y:= x+y,0 if y>0 {y=0}

• proof-checking
– 許多laws

– safety properties、liveness properties

106

Deciplines

- language semantics

Axiomatic Semantics

Example : Given N, M, compute x,y such that

• x  N＋y = M

• 0y <N

Program division
declare x,y,z,k : integer
initially x,y,z,k = 0, M, N, 1
assign z,k := 2z, 2,k if y 2×z ~

N, 1 if y < 2×z
x,y := x+k, y-z if y  2×z

end {division}

正規方法：正規描述與自動驗證

王 凡 54

107

Deciplines

- language semantics

Axiomatic Semantics

Properties: Given a program F

• p unless q iff for all s in F, {pq}s{pq}

• stable p iff p unless false

• invariant p iff stable p  (initial condition →p)

• p ensures q iff (p unless q) $s in F, {p  q}s{q}

108

Deciplines

- language semantics

Axiomatic Semantics

Properties: Given a program F, p  q iff

p ensures q

p  q

p  q, q  r

p  r

" w in W(p(w)  q)

($ w in W(p(w)))  q

正規方法：正規描述與自動驗證

王 凡 55

109

Deciplines

- language semantics

Axiomatic Semantics

Some theorems :

p unless q, q unless r

p  q unless r

p unless q

p  r unless q  r

p  q, r unless b

p  r (q  r)  b

110

Practical achievements (1/6)

first-order logic & theorem-proving

• NqThm by Boyer & Moore

• 1985 , the verification of a 4-bit CPU,
FM 8501, to the bit level

• verification of a high-level language
compiler

• A Computational Logic Handbook,
Academic Press, 1988

正規方法：正規描述與自動驗證

王 凡 56

111

Practical achievements (2/6)

Formal Methods

• occam

• IMS T800 transputer

• estimated reduction in the development

time by 12 months.

• 1990 Queen’s award!!!

– (49 recepients)

112

Practical achievements (3/6)

Formal Methods

• Z notations for the formal specifications

• IMS CICS

• estimated reduction of development

cost by 5 millions

• 1992 Queen’s award

正規方法：正規描述與自動驗證

王 凡 57

113

Practical achievements (4/6)

model-checking

• Burch, Clarke, McMillan, Dill, Hwang

• BDD symbolic manipulation

• CMU SMV, fully automatic

• Intel 32-bit ALU / 8 registers / two-layer pipeline

• state counts up to 10120

• 4 hr 20min in SUN 4

114

Practical achievements (5/6)

• Symbolic Trajectory Evaluation

• Hazelburst, Seger

• 64-bit multiplier

• simple or Wallace tree

• combinational circuits

• 800 sec. in Sparc 10/51

正規方法：正規描述與自動驗證

王 凡 58

115

Practical achievements (6/6)
First-order logic and linear hybrid automata

• Bosscher, Polak, Vaandrager

• proof-checking

• Phillip audio control network, physical layer

• voltage variations, clock rate stability

• assuming no collison, signal delay

• proving that 1/17 frequency variation is acceptable.

– The tolerance of Phillip is 5%.

• automatically checked with Henzinger’s HyTech

116

Workout 1: proof of a simple

program

Initially x = 0;

• consumer:

for (; 1;) if (x > 0) x--;

• Producer:

for (; 1;) if (x< 1) x++;

• Atomicity assumption

• Please prove that x is always no greater than

1.

正規方法：正規描述與自動驗證

王 凡 59

117

Another workout: Petrification

1. please model the two programs in the

last page as Petri-nets.

2. Please explain the following terms.

1. Safety property

2. Liveness property

3. Fairness assumption

4. Interleaving semantics

