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Specification & Verification ?

• Complete & sound specifications.

• Reducing bugs in a system.

• Making sure there are very few bugs.

Very difficult!

Competitiveness of high-tech industry!

A way to survive for the students!

A way to survive for Taiwan!



正規方法：正規描述與自動驗證

王 凡 2

3

Designed in 

Italy by LV, 

Gucci, 

Chanel. 

1-carat 

diamond

Tragedy in the South Sci-Park

Hi, pretty!  How do you like 
our company’s new 4G, 
MPEG4,MP3, 3M pixel, 
Wimax, 4-band, diamond, 
fashionable mobile phone ? 

4

Tragedy in the South Sci-Park
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Tragedy in the South Sci-Park
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Tragedy in the South Sci-Park
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Tragedy in the South Sci-Park

8

Tragedy in the South Sci-ParkThe junk fails 
every day.  
You moron 
deserve this!
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Tragedy in the South Sci-Park

- sequel

Boss!  I’ve 
had no sleep 
for 3 months 
testing the 
piece!

Police just 
called me 
to bail out 
my kid. 

Good job!  
You just wasted 
half the budget 
and my career. 
My wife is 
divorcing 
me!

10

Ahhh!
Ahhh!

Tragedy in the South Sci-Park

- sequel

Why cannot we 
control the 
verification 

cost?
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Specifications, descriptions, 

& verification

• specification:

– The user’s requirement

• description (implementation): 

– The user’s description of the systems

– No strict line between description and 

specification. 

• verification: 

– Does the description satisfy the specification ? 

12

Formal specification 

& automated verification

• formal specificaton:

– specification with rigorous mathematical 

notations

• automated verification:

– verification with support from computer 

tools. 
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Why formal specifications ?

• to make the engineers/users understand the 
system to design through rigorous 
mathematical notations.  

• to avoid 
ambiguity/confusion/misunderstanding in 
communication/discussion/reading. 

• to specify the system precisely. 

• to generate mathematical models for 
automated analysis.  

14

Why automated verification ?

• to somehow be able to verify complexer & 
larger systems

• to liberate human from the labor-intensive 
verification tasks
– to set free the creativity of human

• to avoid the huge cost of fixing early bugs in 
late cycles. 

• to compete with the core verification 
technology of the future. 
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Pentium Bug (1/4)

Floating-point division

• expected precision up to 18 positions

• in practice, only 4 positions

• Pentium 60MHz、90MHz

• Example:

5505001 / 294911

wrong answer:     18.66600093

expected answer: 18.6665197
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Pentium Bug (2/4)

• Only for very few number pairs

• reproducible!

• affecting large scientific computations, 
statistics applications, engineering 
computations, spreadsheet, simulation, 
…

• may affect applications compiled with 
the CPU.

18

Pentium Bug (3/4)
• discovered by Dr. Thomas R. Nicely at 

Lynchburg College

– nicely@acavax.lynchburg.edu

• announced in Compuserve on 10/30/1994

• printed in media on 11/7/1994

• fixed in mid 1994, but Intel insisted 

– new chips scheduled to major customers at the 

end of the year. 

– no replacement unless bug effects proved 

individually
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Pentium Bug (4/4)

• triggered a wave of research in formal 
verification

• Intel maintained a large team of formal 
method.  Until a few years ago, its size was a 
secret. 

• Now we believe computation theory could be 
useful. 
– Grants and funds poured in. 

– Timely achievements in theory and tools.  

20

THE "BUG" HEARD 'ROUND THE WORLD (1/4)

Discussion of the Software Problem Which 

Delayed the First Shuttle Orbital Flight

John R. Garman
Deputy Chief

Spacecraft Software Division

NASA, Johnson Space Center

Houston, Texas

Aug 24, 1981

ACM SIGSOFT Software Engineering Notes, 

Vol. 6, Nr. 5, Oct, 1981
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THE "BUG" HEARD 'ROUND THE WORLD (2/4)

Discussion of the Software Problem Which 

Delayed the First Shuttle Orbital Flight

• 4/10/1981, 20 mins before the first 
launch of space shuttle, the 5th backup 
computer could not initialize.

• 4 General Purpose Computer (GPC) 
and 1 backup computer

• FO/FS fault-tolerant

– one-fault-operate (still can vote)

– two-fault-safe (still can return safely)

22

THE "BUG" HEARD 'ROUND THE WORLD (3/4)

Discussion of the Software Problem Which 

Delayed the First Shuttle Orbital Flight

• Software on the GPCs and the backup 

were developed by different teams. 

• Cyclic processing

• Before the launch, the program on the 

GPCs had run for 30 hrs without 

problems. 
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THE "BUG" HEARD 'ROUND THE WORLD (4/4)

Discussion of the Software Problem Which 

Delayed the First Shuttle Orbital Flight

• 1 hr later, IBM dumped the memory of 
the GPCs and found out a software bug 
in timing synchrony.  

• Processes in the GPCs were out-of-
phase.

• The backup could not get the out-of-
phase signal and claimed the GPCs 
were faulty.  

24
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Therac-25 Incidents

• Medical linear accelerator by AECL

• Computer-controlled (DEC PDP-11)

• Dual modes of X-ray and electron 
beams

• Successor to Therac-20 and 

Therac-6 by AECL and CGR

• available in late 1982

• 11 Therac-25 were installed 
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Therac-25 incidents (continued, 2)

• Independently developed by AECL after breaking 
up with CGR

• A fault-tree safety analysis was performed with the 
assumption that software was correct.

• Controlled by legacy software from Therac-20 and 
Therac-6 
– Therac-20 and -6 only used computer for convenience

– Get rid of hardware interlock since software never went 
wrong with Therac-20 and Therac-6

• In fact, most software errors of Therac-20 and 
Therac-6 had been masked by hardware 
interlocks.  

28

Therac-25 incidents (continued, 3)

• Error message happened so often that 

technicians thought they were normal.

• Most of the errors did not hurt.

• The AECL said 

– “Improper scanning was not possible!” 

– “This incident was never reproted to AECL 

prior to this date …” (after 10 months of a filed 

lawsuit)
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Therac-25 incidents (continued, 4)

• On May 2, 1986, FDA declared Therac-25 
defective and demanded CAP. 

• AECL remedied something and claimed that 
Therac-25 was 10,000 times safer.

• FDA believed them.

• Software errors have been identified in all these 
six admitted accidents.

• Finally, the hardware interlocks were put back 
in on Feb. 2, 1987.  

30

Therac-25 incidents (continued, 5)

• Worst accidents series in 35-year history 

of medical accelerator

• References:

– N. Leveson, C.S. Turner, An investigation of 

theTherac-25 accidents, IEEE Computer, Vol. 

26, Nr. 7, July 1993, pp.18-41
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GOVERNMENT NEWS                           GCN July 13, 1998

Software glitches leave Navy 

Smart Ship dead in the water

Gregory Slabodkin, GCN Staff

32

Some more bugs (1)

• Mars climate orbiter smashed into the planet 

instead of reaching a safe orbit ($165M), 1999

– Failure to convert English measures to metric values

– Software shut the engine off 100ft above the surface.

• US Vicennes mistook airbus 320 for a F-14 and 

shot it down, 1st Gulf War, 1988.  

– 290 people dead

– Why: Software bug - cryptic and misleading output 

displayed by the tracking software
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Some more bugs (2)

Failure of the London Ambulance Service on 26 and 
27 November 1992

– Load increased

– Emergencies accumulated

– System made incorrect allocations

• more than one ambulance being sent to the same incident

• the closest vehicle was not chosen for the emergency

– At 23:00 on October 28 the LAS eventually 
instigated a backup procedure, after the death of at 
least 20 patients

34

Some more bugs (3)
• British destroyer H.M.S. Sheffield; sunk in the Falkland Islands 

war

– ship's radar warning system software allowed missile to 
reach its target

• An Air New Zealand airliner crashed into an Antarctic mountain

• North American Aerospace Defense Command reported that the 
U.S. was under missile attack; 

– traced to faulty computer software - generated incorrect  
signals

• Manned space capsule Gemini V missed its landing point by 100 
miles; 

– software ignored the motion of the earth around the sun

["The development of software for ballistic-missile defense," 

by H. Lin, Scientific American, vol. 253, no. 6 (Dec. 1985), p. 48]
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Some more bugs (4)

• An error in an aircraft design program contributed to 
several serious air crashes

[“Software Engineering: Report on a Conference 

sponsored by the NATO Science Committee, Brussels 

NATO Scientific Affairs Division,” 1968, p. 121] 

• Dallas/Fort Worth air-traffic system began spitting out 
gibberish in the Fall of 1989 and controllers had to track 
planes on paper

["Ghost in the Machine," 

Time Magazine, 

Jan. 29, 1990. p. 58]

36

Some more bugs (5)

• F-18 fighter plane crashed 

– due to a missing exception condition
[ACM SIGSOFT Software 

Engineering Notes, vol. 6, no. 2]

• F-14 fighter plane was lost 

– to uncontrollable spin, traced to tactical software
[ACM SIGSOFT Software 

Engineering Notes, vol. 9, no. 5]

• Chicago cat owners were billed $5 for unlicensed dachshunds. 

– A database search on "DHC" (for dachshunds) found "domestic 
house cats" with shots but no license

[ACM SIGSOFT Software 

Engineering Notes, vol. 12, no. 3]              
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Some more bugs (6)

• CyberSitter censors "menu */ #define"

– because of the string "nu...de“ 

[Internet Risks Forum NewsGroup 

(RISKS), vol. 19, issue 56]

• London„s Docklands Light Railway – train 
stopped in the middle of nowhere due to 
future station location programmed in 
software              

38

Some more bugs (7)
CNN.com

• Russia: Software bug made Soyuz stray.  

– STAR CITY, Russia(AP) – A computer software error likely 
sent a Russian spacecraft into a rare ballistic descent that 
subjected the three men on board to check-crushing gravity 
loads that made it hard to breathe, space experts said 
Tuesday. 

• Korean Air crashed in Guam and killed 228 people. 

– A poorly programmed ground-based altitude warning system 

• Faulty software in anti-lock brakes forced the recall of 39,000 trucks 
and tractors and 6,000 school buses in 2000. 

• Mars Polar lander, $165M, 1999.  

– Software shut the engines off 100 feet above the surface. 

• US$59.5 billions loss in economy, 0.6%GDP, April 27, 

2003
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2,500,000+1,500,000 lines of codes (most in 
Ada)

40
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Bugs in complex software

• They take effects only with special 

event sequences.  

– the number of event sequences is factorial 

and super astronomical!

• It is impossible to check all traces with 

test/simulation.  

42

Budget appropriation

Training in Taiwan College

The rest

VERIFICATION

40％-60％

Design &

Coding

10%-20%

Design &

Coding

99%

VERIFICATION

1％
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Automated verification

- FV+simulation+testing

Competitiveness in Europe/America

• Intel、Motorola、Ericsson、Nokia、…

• Cadence、Synopsys、Mentor Graphics、…

Drawbacks of Taiwan industry

• fast/mass production to the customers

• very little automated verification tools for large-

scale system development. 

44

 Testing (real wall for real cars)
 Expensive 
 Low coverage
 Late in development cycles

 Simulation(virtual wall for virtual cars)
 Economic 
 Low coverage
 Don’t know what you haven’t seen.

 Formal Verification
(virtual car checked)
 Expensive
 Functional completeness

100% coverage
 Automated!

With algorithms and proofs.

Three techniques in verification
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Sum of the 3 angles = 180 ?

 Testing (check all s you see)
 Expensive 
 Low coverage
 Late in development cycles

 Simulation (check all s you draw)
 Economic 
 Low coverage
 Don’t know what you haven’t seen.

 Formal Verification(we prove it.)
 Expensive
 Functional completeness

100% coverage

 Automated!
With algorithms and proofs.

.....

.....

46

Promise of Formal Verification (FV) ?

Use mathematics to prove the 
correctness of system designs!

Advantage:
• Functional completeness 

– Mechanical & exhaustive exploration of all 
cases

• Automated verification 
– Cut down verification cost 
– Relieve us of mechanical verification tasks
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Integration of the verification techniques

• Formal verification is still infeasible in 

practice.  

• At the moment, we rely on the following.

– sound descipline in system design 

• software engineering

– simulation/testing for easy-to-find bugs

– formal verification (automated or manuel) for 

early bugs or safety-critical systems.

48
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Major desciplines (1/2)

• mode-checking 

– AT&T、CMU、UC-Berkeley、Stanford、
North Carolina、Cornell、Intel、

Cadence-Berkeley

• theorem-proving

– UT-Austin、SRI、MIT、MITRE、

XEROX-PARC

50

Major desciplines (2/2)

• process algebra

– + Oxford、Cambridge、Edinburgh、
Uppsala

• formal methods

– + Oxford、IFAD、IBM UK、CRI、

Formal Systems Ltd、Praxis、CWI、
VERILOG
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Major conferences

• CAV (Computer-Aided Verification)

• FME (Formal Method Europe)

• AMAST (Algebraic Methodo. & Sw Tec.)

• TACAS (Tools & Algorithms for CAS)

• ATVA

• SAS (Static Analysis Symposium)

• FORTE(Formal Description Technique)

52

Major conferences 

- with related sessions

* FOCS * STOC

* LICS * PODC

* POPL * MFCS

* STACS * RTSS

* RTAS * ICALP 

* CONCUR * FORTE

* SAS * CADE

* FTRTFT * RTCSA



正規方法：正規描述與自動驗證

王 凡 27

53

Theory spectrum

expressiveness vs verification  complexity

PTIME

PSPACE
EXPTIME

EXPSPACE

Undecidable
nonelementary

NP
verification 

complexity

spec. language

expressiveness

54

Sources of verification complexity

• Number of system states – astronomical

– the values of all variables

– the content of program counters

– the messages in communication channels

• unbounded variable value ranges

• non-regular behaviors 

– inexpressible with finite-state automata.

– stack, queue, polynomials, arithmetic, 

induction
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The state of the art

• balance between 

– specification expressiveness and 

– verification complexity. 

• non-regular systems  proof checking

– sound proof plans by engineers

– interaction between engineers and tools

• regular systems

– huge time/space complexity 

– efficient algorithms
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Deciplines 

• temporal logics

• automaton theory

• process algebrae

• first-order logics

• Petri-Net

• formal methods

• graphical languages: statechart, 

modechart

• formal semantics 

58

Deciplines 

- temporal logics 

• a branch of modal logics

– transitions between possible worlds

– two modal operators: □, ◇

□: assert for all possible worlds

◇: assert for one possible world

– the model of modal logics is Kripke structure

• In temporal logics, 

□ : from now on, true for all states

◇: from now on, true for a state

directed 

graphs
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Deciplines 

- temporal logics

• linear-time model

• branching-time model 

s
1

s
2

s
k

s
0

s
0

s
2

s
1

s
5s

4
s

3

$ : there is a path

": for all paths

60

Deciplines 

- temporal logics

linear-time model & 

PLTL (Propositional Linear Temporal Logic)

• eventually p will be true.

◇p：liveness property

p p pp

★Amir Pnueli, 1996 Turing Award Winner
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Deciplines 

- temporal logics

linear-time model & PLTL

• p and q will never be true the same time.

□  (p  q） : safety property

p q qp

62

Deciplines 

- temporal logics

linear-time model and PLTL

• p is true until q is true (p until q)

pUq

p p qp psatisf
y

p p qpnot 
satisfy

p p qp p  qsatisf
y
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Deciplines 

- temporal logics

• satisfaction relation

– a linear-time model satisfies a PLTL formula.

• a formula defines a set of models. 

• a formula is unsatisfiable if its set of models 
is empty.  

• check the satisfiability of P   S
– P is the implementation 

– S is the specification

– The satisfiability problem is PSPACE-complete.

64

Deciplines 

- temporal logics

branching-time 

& CTL (Computation-tree Logic)

• for all computations, p is eventually true.

"◇p

pp

pp p

p

Inevitibility
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Deciplines 

- temporal logics

branching-time 

& CTL (Computation-tree Logic)

• for all computations, p is eventually true.

– there is a path along which p is eventually true.

$◇p

$ pU p

pp

pp p

p

Reachability

66

Deciplines 

- temporal logics

• satisfaction relation

– a tree model satisfies a CTL formula.

• a CTL formula defines a set of models.

• a CTL formula is unsatisfiable if its set of 

model is empty. 

• check the satisfiability of P   S

– The satisfiability problem of CTL is 

deterministic EXPTIME-complete.  
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Deciplines 

- model-checking

Given a model M and a temporal logic 

formula P, does M satisfy P ? 

• Usually M is a finite-state autoamta. 

• When P is a CTL formula, the model-

checking problem is in PTIME.  

68

Deciplines 

- model-checking

• state-space analysis & exploration

– state-space represented as a finite Kripke 

structure

– nodes: system states, possible worlds, 

– arcs: state transitions 

• regular behaviors

• huge state-spaces

execute

wait

finish
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Deciplines 

- model-checking

0110 1001

x x

y y y y

C C C C
C

C C C

S = x ⊕ y ⊕ C
an automata 

for a full adder

70

Deciplines 

- model-checking

Timed automata - regular behaviors 

update the missile direction every 50ms 

until the target is hit. 

stop
50ms

update

hitmonitor
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Deciplines 

- model-checking
Timed automata - regular behaviors 

update the missile direction every 50ms until the 
target is hit in 500ms.

stopz=50ms

z:=0; update

monitor
x<500ms
z50ms

x:=0; z:=0

• x, z are real-value clocks. 

• x, z increment at the same rate.

x、z read 

zero initially

z is reset to zero in every update.

hit

72

Deciplines 

- model-checking

TCTL  (Timed CTL)

"□ (monitor → "◇＜500 stop)

"□ (monitor → x."◇ (x＜500  stop))

"□x. (monitor → "◇ (x＜500  stop))
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Deciplines 

- model-checking

Hybrid automata   volume：V

temperature：T

safe

dV/dt＝0/s

water-low

dV/dt＝50/s

T>120

T100specification: 

"□ T＜130

74

Deciplines 

- process algebrae

• CSP, Communicating Sequential Processes
– C.A.R. Hoare, Turing Award winner

– Communicating Sequential Processes,

Prentice-Hall, 1985

• CCS, Calculus of Communicating Systems

– Robin Milner, Turing Award winner

– Communication and Cuncurrency,

Prentice-Hall, 1989

– strong equivalence, observational equivalence, 

observational congruence
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Deciplines 

- process algebrae

vending machine

VM = (in5p→ choc→VM | in2p→ toffee→VM)

– action set: αVM = {in5p, choc, in2p, toffee}

• models: traces

– in5p  choc  in5p

– in5p choc in2p toffee in2p toffee

• process: the behavior pattern of an object

– in syntax, a set of rules

– in semantics, a set of  traces

76

Deciplines 

- process algebrae

operation on traces

• prefix :  x→P  (x then P)

– a guarded command

• recursion : P = (x→P)  

or P =μX. (x→X)（least fixed-point）

• choice : P = ( P1 | P2 )
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Deciplines 

- process algebrae

operations on traces

• catenation: 
〈coin,choc〉^〈coin,toffee〉=〈coin,choc,coin,toffee〉

• restriction: 
〈coin,choc,coin,toffee〉 {coin} =〈coin,coin〉

• head & tail
〈coin,choc,coin,toffee〉0  = coin
〈coin,choc,coin,toffee〉’ =〈choc,coin,toffee〉

• ordering
st = ($u.s^u = t)

• length:＃〈coin,choc,coin,toffee〉＝4

78

Deciplines 

- process algebra

• (coin →STOPαVMS )

• VMCT = (coin → ( choc →VMCT | toffee → VMCT ))

coin

coin

coin

coin

choc

choc

toffee

toffee
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Deciplines 

- process algebra

Infinite behaviors

VMCT = (coin → ( choc →VMCT | toffee → VMCT ))

coin

toffeechoc

80

Deciplines 

- process algebrae

Operations on processes

concurrency: P||Q

• InαP∩αQ, all actions must be 

synchronized. 

• (c→P)||(c→Q) = (c→(P||Q))

• (c→P)||(d→Q) = STOP ; if c≠d

deadlock
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Deciplines 

- process algebrae

Operations on processes

• nondeternimism: P ⊓ Q  (P, Q same 

priority)

P Q （P first）

• communications: (c!v→ P) || (c?v→ Q)

• concatenation: P;Q

• hiding: P/C 

– all actions in P from C are hidden.  

– C: a set of actions

82

Deciplines 

- process algebrae

specifications
• tr : a place-holder for any trace

• specification: a requirement for process 

Example: 

• At any time, the count of coins to the VM is greater 
than the count of chocolate pieces sold. 
NOLOSS ＝(#(tr  {choc}) ó #(tr  {coin}))

• Before a piece of chocolate is out, no coin will be 
input. 
FAIR =((tr↓coin) ó (tr↓choc) + 1)

↓:selection
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Deciplines 

- process algebra satisfaction

• P sat S

– P, a process； S, a trace specification

• Verification techniques

– Proof-checking

• laws of processes and traces

– Model-checking

• exploration in a finite space

84

Deciplines 

- theorem-proving

• atoms, functions, predicates, , , , $, "

" x (Man(x)→Mortal(x))

Every man will die.

• Satisfiability problem: undecidable! 

– Resolution Principle - J.A. Robinson

– proof-checking : mechanical theorem proving

– computer support, human guidance
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Deciplines 

- theorem-proving

Two decidable subclasses of 1st-order 
arithmetic

• Presburger Arithmetic, N, +, -, , ,,$,"

$ z" y (z<y  $ x(x+z<y))

– elementary decision procedure

• 1st-order logic with p(x) and 

"y(p(y) → $ x (y  x  q(x))
– nonelementary decision procedure

monadic

predicate

86

Deciplines 

- theorem-proving

NqThm, Boyer & Moore
• A Computational Logic Handbook

Academic Press, 1988
• quantifier-free, first-order, similar to pure-Lisp
• a very famous theorem-proving environment

example : (pp. 190-197 of the book)

“a list = the reverse of the reverse of the list”
• wrong:  (PROVE-LEMMA REVERSE-REVERSE (REWRITE)

(EQUAL (REVERSE (REVERSE X)) X))

• correct: (PROVE-LEMMA REVERSE-REVERSE (REWRITE)
(IMPLIES (PROPERP X)

(EQUAL (REVERSE (REVERSE X)) X)))
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Deciplines 

- Petri-Nets

• C.A. Petri (1972) 

• finite # of places

• tokens

• finite # of transitions 
– enabled : if a token in 

every source places

– firing: enabled transition 

consumes a token from every 

source places and put a 

token to all destination places. 

place

transition

token

88

Deciplines 

- Petri-Nets

• equivalent to Karp & Miller’s vector 

addition systems
• cannot detect the 

non-existence of 
events

• marking (state): 

places  N

(2,1,0)

waiting

running

semaphore
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89

Deciplines 

- Petri-Nets

computation (state sequence)

• marking sequence

• connected with 

enabled transitions 

– interleaving semantics

(2,1,0)

a b

b
→(1,0,1)

a
→(2,1,0)

b
→(1,0,1)

a
→………

90

Deciplines 

- Petri-Nets

Verification problems 

• infinite markings from an initial marking

• Reachability problem: 

Is there a computation from marking M1 to marking M2 ?

– decidable but non-elementary complexity now.  

• Coverability problem

• Boundedness problem 
2          

⋰
2

2
O(n)
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Deciplines 

- Formal Methods

• originated from the industry

• first, VDM (Vienna Development Method)

• Z notation

• RAISE (Rigorous Approach to Industrial Software Engineering)

• Estelle, from the ESPRIT SEDOS project 

– semantics defined with Petri-net

– ISO OSI for computer network architecture standard.

• SDL: Specification & Description Language

– CCITT Z1.00, for protocol specification

92

Deciplines 

- Formal Methods VDM

• IBM research, Vienna, 1960s

• C.B.Jones & D.BjÆ rner made rigorous 

definitions in 1970-1982. 

• widely accepted by the industry 

– with practical effect.  

– comparing with other academic work

• Many software tools

– experimental or commercial

• stepwise refinement
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Deciplines 

- Formal Methods VDM proof

stepwise refinement, 3 components

• direct definition

• implicit specification

– model-oriented specification

• set-theoretical notation

– predicates, sets, relations, functions, sequences

• proof obligation

direct definition→implicit specification

94

Deciplines 

- Formal Methods VDM proof

stepwise refinement, 3 components

• direct definition
sumn : N→N
sumn(n) if n=0 then 0 else n +sumn(n-1)

• implicit specification
sumn (n:N)  r:N
post r=n*(n+1)/2

• proof obligation

n  N sumn(n)  N  post-sumn(n,sumn(n))
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Deciplines 

- Formal Methods VDM proof

stepwise refinement, 3 components

two rules

• rule 1 :

• rule 2 :

sumn(0)=0

nN; n≠0; sumn(n-1)=k

sumn(n)=n+k

96

Deciplines 

- Formal Methods VDM proof (1/2)

stepwise refinement, 3 components

From n N

1. sumn(0) = 0 Rule 1

2. sumn(0)                                                                   1, 

3. 0=0*(0+1)/2                                                                      N

4. sumn(0) = 0*(0+1)/2                                         =-subs(3,1)

5. post-sumn(0,sumn(0))                                        post-sumn,4

6. sumn(0)     post-sumn(0,sumn(0))                    -I( 2,5)

7. from n N, sumn(n) N, post-sumn(n,sumn(n))
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Deciplines 

- Formal Methods VDM proof (2/2)

stepwise refinement, 3 components

7.1   n+1≠ 0                                                                     h7,N

7.2   n+1                                                                      h7,N

7.3   sumn(n) = n*(n+1)/2                                 post-sumn, ih7

7.4   sumn(n+1) = n+1+n*(n+1)/2 Rule 2(7.2,7.1,7.3)

7.5   sumn(n+1)                                                         7.4, N

7.6   sumn(n+1) = (n+1)*(n+2)/2                                   7.4, N

7.7   post-sumn(n+1)=(n+1)*(n+2)/2               post-sumn, 7.6

infer sumn(n+1)    post-sumn(n+1,sumn(n+1)) 

 -I( 7.5,7.7)

infer sumn(n)    post-sumn(n,sumn(n))             N-ind(6,7)

98

Deciplines 

- graphical languages

statechart

• David Harel, 1986

– science of computer programming

• developed from automaton theory

• concurrent computations, 

• discrete events

• nested modules
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Deciplines 

- graphical languages: statechart

Parallel modes for orthogonality

cruise

navigate

on-ground
take off

touchdown

general mode

on

standby

off

radar

switch-on

switch-off

end-warmup

abc-system

on

calibration

off
lever-on

end-
calibration

lever-
off

avionic system

100

off

update 1update 2

H

on

chime

d d

off H

on

alarm 2

d d

off H

on

alarm 1

d d

stopwatch a a a

b cb c

a a

update dated

d

b
2min. in date

2min. in time
cwait

c
time

H

Deciplines 

- graphical languages: statechart
a

cb

d
⑫

a digital watch
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Deciplines 

- graphical languages: modechart

• F. Jahanian, A.K. Mok, 1986

– IEEE Transactions on SE

• extended from statechart with timing 

structures

• semantics defined with RTL

– RTL（real-time logic）is also proposed by 

Jahanian & Mok (IEEE TC)

102

Deciplines 

- graphical languages: modechart

up

down

lower
[0,∞)

[0,∞)

[20,50][20,100]

far approach

crossingpassed

[100,100][100,100]

approach

approach

passed

Gate-controller Monitor

Rail-road Crossing Control System

raise



正規方法：正規描述與自動驗證

王 凡 52

103

Deciplines 

- language semantics

• operational semantics
– with an abstract machine, like Java machine 

• denotational semantics
– treat program as functions, types, λ-calculus

• axiomatic semantics
– relation between the pre-condition & post-

conditions of programs

– heavily used in verification

104

Deciplines 

- language semantics

Axiomatic Semantics

• sequential programs

– E.W.Dijkstra, Turing Award

A Discipline of Programming, Prentice-Hall, 1976

• distributed programs

– Chandy、Misra的UNITY

Parallel Program Design - A Foundation

Addison-Wesley, 1988
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Deciplines 

- language semantics

Axiomatic Semantics

• guarded-command language

x,y:= x+y,0 if y>0

• Fairness assumption，interleaving semantics

• program composition

• precondition、postcondition

{y>0} x,y:= x+y,0 if y>0 {y=0}

• proof-checking
– 許多laws

– safety properties、liveness properties

106

Deciplines 

- language semantics

Axiomatic Semantics

Example : Given N, M, compute x,y such that

• x  N＋y = M

• 0y <N

Program division
declare x,y,z,k : integer
initially x,y,z,k = 0, M, N, 1
assign z,k := 2z, 2,k if y  2×z ~

N, 1 if y < 2×z 
x,y := x+k, y-z if y   2×z 

end {division}
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Deciplines 

- language semantics

Axiomatic Semantics

Properties: Given a program F

• p unless q iff for all s in F, {pq}s{pq}

• stable p iff p unless false

• invariant p iff stable p  (initial condition →p)

• p ensures q iff (p unless q) $s in F, {p  q}s{q}

108

Deciplines 

- language semantics

Axiomatic Semantics

Properties: Given a program F,  p  q iff

p ensures q

p  q

p  q, q  r

p  r

" w in W(p(w)  q)

($ w in W(p(w)))  q
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Deciplines 

- language semantics

Axiomatic Semantics

Some theorems :  

p unless q, q unless r

p  q unless r

p unless q

p  r unless q  r

p  q, r unless b

p  r ( q  r )  b

110

Practical achievements (1/6)

first-order logic & theorem-proving

• NqThm by Boyer & Moore

• 1985 , the verification of a 4-bit CPU,  
FM 8501, to the bit level

• verification of a high-level language 
compiler 

• A Computational Logic Handbook, 
Academic Press, 1988
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Practical achievements (2/6)

Formal Methods

• occam

• IMS T800 transputer

• estimated reduction in the development 

time by 12 months.

• 1990  Queen’s award!!! 

– (49 recepients)

112

Practical achievements (3/6)

Formal Methods

• Z notations for the formal specifications

• IMS CICS

• estimated reduction of development 

cost by 5 millions

• 1992 Queen’s award
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Practical achievements (4/6)

model-checking

• Burch, Clarke, McMillan, Dill, Hwang

• BDD symbolic manipulation

• CMU SMV, fully automatic

• Intel 32-bit ALU / 8 registers / two-layer pipeline

• state counts up to 10120

• 4 hr 20min in SUN 4

114

Practical achievements (5/6)

• Symbolic Trajectory Evaluation

• Hazelburst, Seger

• 64-bit multiplier

• simple or Wallace tree

• combinational circuits

• 800 sec. in Sparc 10/51
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Practical achievements (6/6)
First-order logic and linear hybrid automata

• Bosscher, Polak, Vaandrager

• proof-checking

• Phillip audio control network, physical layer

• voltage variations, clock rate stability

• assuming no collison, signal delay

• proving that 1/17 frequency variation is acceptable.  

– The tolerance of Phillip is 5%.

• automatically checked with Henzinger’s HyTech

116

Workout 1: proof of a simple 

program

Initially x = 0; 

• consumer: 

for (; 1; ) if (x > 0) x--; 

• Producer: 

for (; 1; ) if (x< 1) x++; 

• Atomicity assumption

• Please prove that x is always no greater than 

1. 
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Another workout: Petrification

1. please model the two programs in the 

last page as Petri-nets.

2. Please explain the following terms. 

1. Safety property

2. Liveness property

3. Fairness assumption

4. Interleaving semantics


