
1

1

Propositional Logics

Formal Methods

Lecture 2

Farn Wang

Dept. of Electrical Engineering

National Taiwan University

2

Outline

 What is verification?

 What is logic?

 Propositional Logic

 BDD for Propositional Logic
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What is Verification?

Verification involves checking a satisfaction 

relation, usually in the form of a sequent :

M ⊨φ

Where

 M is a model (or implementation)

 φ is a property (or specification)

 ⊨ is a relationship that should hold between                   

M and φ, i.e., (M,φ) ∈ ⊨

4

What is Verification?

 Verification involves:

 specifying the model / system / implementation

 specifying the property / specification

 choosing the satisfaction relation

 checking the satisfaction relation

These 4 steps are NOT independent.

Example: specify the model as a finite state machine, 
specify the property in temporal logic, use the 
satisfaction relation that the model must satisfy a 
formula in temporal logic, use model checking to check 
the satisfaction relation.
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Logic and Verification

 Different logics 
 give us different ways of expressing M and φ and 

 define the pairs that are members of ⊨. 

 Another way to say this is to say 
 that the model satisfies the property, or 

 that we can conclude the property from the model.

 Hopefully the calculation of the satisfaction relation 
is compositional in either the property or the model. 
 This decomposes the verification task.

 The model and property both describes sets of 
“behaviours”. 

 The satisfaction relation is a relation between the 
set of behaviours of the model and the set of 
behaviours of the property.

6

Models and Properties

 The term “model” is used loosely here. It may not be executable, 
and it may not be a complete description of the system’s 
behaviour. 

 The terms implementation and specification are relative terms. 

 An implementation generally contains more details than a 
specification.

 In hardware, often the model is a description of the circuit in a 
hardware description language such as VHDL or Verilog. 

 The real thing is the physical realization of the chip.

 Sometimes the model is actually a specification and the property 
is an attribute such as completeness or consistency.
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What is a Logic?

 In general, logic is about reasoning. 

 It is about the validity of arguments, 

consistency among statements (. . . ) and 

matters of truth and falsehood. 

 In a formal sense logic is concerned only with 

the form of arguments and the principles of 

valid inferencing.

8

Another definition of Logic

 logic is: the science of correct reasoning, 
valid induction or deduction. 

 Symbolic logic is a modern type of formal 
logic using special mathematical symbols for 
 propositions, 

 quantifiers, and 

 relationships 

among propositions and concerned with the 
elucidation of permissible operations upon 
such symbols.
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Induction vs Deduction

 These are two branches in the philosophical study 
of logic. 

 Induction is “the process of deriving general 
principles from particular facts or instances. ” 

 Example:
 Coffee shop burger #1 was greasy.

 Coffee shop burger #2 was greasy.

 Coffee shop burger #3 was greasy....

 Coffee shop burger #100 was greasy.

 Therefore, all coffee shop burgers are greasy. 

 In induction, conclusions are probable but not 
conclusive.

10

Induction vs Deduction

 Deduction is “the process of reasoning in which a 
conclusion follows necessarily from the stated 
premises; 
 inference by reasoning from the general to the specific. ” 

 Mathematical Induction: a method of proving 
statements about well-ordered sets. 
 The most common use of mathematical induction is for the 

natural numbers where there is a base case and an 
induction hypothesis. 

 Mathematical induction is a form of deduction because the 
conclusions are conclusive.

 We will be studying deduction and using 
mathematical induction .
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Another definition of Logic

 A branch of philosophy and mathematics that deals with the formal 
principles, methods and criteria of validity of inference, reasoning 
and knowledge. 

 Logic is concerned with what is true and how we can know whether 
something is true. 

 This involves the formalization of logical arguments and proofs in 
terms of symbols representing propositions and logical connectives. 

 The meanings of these logical connectives are expressed by a set of 
rules which are assumed to be self-evident .

 In symbolic logic, arguments and proofs are made in terms of 
symbols representing propositions and logical connectives. 

 The meanings of these begin with a set of rules or primitives which 
are assumed to be self-evident. 

 Fortunately, even from vague primitives, functions can be defined 
with precise meaning.

12

Elements of a Logic

 A logic consists of:

 syntax

 semantics

 proof procedure(s) (also called proof theory)
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Syntax and Semantics

 syntax:

 define “well-formed formula”

 semantics:

 define “⊨” (“satisfies”)

M ⊨φ (satisfaction relation)

 define φ1 ,φ2 ,φ3 ⊨ψ (“entails”, or semantic 

entailment) means from the premises
φ1 ,φ2 ,φ3 , we may conclude ψ, 

 φ1 ,φ2 ,φ3 , and ψ are all well-formed 

formulae in the logic

14

Proof Procedure

 define “├” (pronounced “proves”)

 a proof procedure is a way to calculate                          
(also called a sequent). 
 By “calculation”, we mean that there is a procedure for 

determining if          

 there may be multiple proof procedures that we will 
indicate by subscripting    , 
 e.g., the natural deduction proof procedure for propositional 

logic will be 

 for some logics, there isn’t a proof procedure that 
always terminates for any sequent

1 2 3, ,

1 2 3( , , , )

ND
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Proof Procedures

 Proof procedures are algorithms that perform 

“mechanical manipulations on strings of symbols. 

 A proof procedure does not make use of the meanings of 

sentences, 

 it only manipulates them as formal strings of symbols”.

 There may be multiple ways to prove a sequent in a 

particular proof procedure.

 A theory is the set of theorems that can be proven 

by a proof procedure.

16

Theorem Provers

 Many proof procedures rely on pattern matching, i.e., 

looking for statements that have the same form with 

appropriate substitutions (unification).

 As we work with multiple proof procedures, we will 

see that working through the steps is often very 

mechanical, i.e., the kinds of things that computers 

do well!

 Theorem provers are software tools that mechanize 

proof procedures. 

 Theorem provers can be interactive or automatic.
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Soundness and Completeness

 The semantics and the proof procedures (     and     ) 
are related in the concepts of soundness and 
completeness.
Definition. A proof procedure is sound if 

then                           .

A proof procedure is sound if it proves only tautologies.

Definition. A proof procedure is complete if 

then               .

 A proof procedure is complete if it proves every 
tautology.

 Note that in the literature, there is not consistent use 
of the symbols     and      .

1 2 3, ,

1 2 3, ,

1 2 3, ,

1 2 3, ,

18

Consistency

 Definition. A proof procedure is consistent if 

it is not possible to prove both and       , i.e.,

not both            and              .
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Propositional Logic

 Invented by George 

Boole (1815-64). “An 

Investigation of the Laws 

of Thought on which are 

founded The Mathemat-

ical Theories of Logic 

and Probabilities”.

20

Propositional Logic

Propositional logic is also called sentential logic,

i.e., the logic of sentences. It is also called

propositional calculus or sentential calculus.

 syntax (well-formed formulas)

 semantics (truth tables)

 proof theory
 axiom systems

 natural deduction

 sequent calculus
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Propositional Logic: Syntax

Its syntax consists of:

 two constant symbols: true and false

 Proposition letters

 Propositional connectives

 Brackets

22

Propositions

Definition. Proposition letters represent declarative 

sentences, i.e., sentences that are true or false. 

Sentences matching proposition letters are atomic 

(non-decomposable), meaning they don’t contain any 

of the propositional connectives.

Examples:

 It is raining outside.

 The sum of 2 and 5 equals 7.

 The value of program variable a is 42.

Sentences that are interrogative (questions), or

Imperative (commands) are not propositions.
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Using Symbols

 Because in logic, we are only concerned with 
 the structure of the argument and 

 which structures of arguments are valid, 

we “encode” the sentences in symbols to 
create a more compact and clearer 
representation of the argument. 

 We call these propositional symbols or 
proposition letters.

 DO NOT use T, F, t, or f in any font as 
symbols representing sentences!

24

Example of Using Symbols

 If the train arrives late and there are no taxis 
at the station, then John is late for his 
meeting. 

 John is not late for his meeting. 

 The train did arrive late. 

 Therefore, there were taxis at the station.
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Propositional Connectives

26

Terminology

In implication, as in

 is the premise or antecedent or hypothesis

 is the consequent or conclusion

is called the contrapositive of            .

The set of connectives          are complete in the sense 

that all the other connectives can be defined using 

them, e.g.,                                    . 

Other subsets of the binary connectives are also 

complete in the same sense.

p q
p

q

b a a b

{ , }

( )a b a b
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Well-formed formulas

 The following is an expression formed out of 

propositional symbols, brackets propositional 

connectives:

 but it’s not a formula in propositional logic! 

 Next, we make precise the notion of a well-

formed formula

( )a c b

28

Well-formed formulas

Definition. The well-formed formulae of propositional 
logic are those obtained by the following 
construction rules:

 true, false, and the proposition letters are atomic 
formulas.

 If   is an atomic formula, then   is a formula.

 If   and    are formulas, then each of the following 
are formulas:

No other expressions are formulas.

Note that this is an inductive definition, meaning the 

set is defined by basis elements, and rules to construct 

elements from elements in the set.

a a
p q

( ) ( ) ( ) ( ) ( )p p q p q p q p q
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Well-formed Formulas

 Brackets around the outermost formula are 
usually omitted.

 Brackets can be omitted using the following 
rules of precedence of operators:

Note: Some texts do not use exactly these 

rules of precedence, they rank     and     at the 

same level of precedence, and     and     , at the 

same level of precedence.

, , , ,

30

Semantics

 Semantics means “meaning”. 

 Semantics relate two worlds. Semantics provide an 
interpretation (mapping) of expressions in one world 
in terms of values in another world. Semantics are 
often a function from expressions in one world to 
expressions in another world.

 The semantics (i.e., the mapping) is often called a 
model or an interpretation. We write             to mean 
the model satisfies the formula. In propositional logic, 
models are called Boolean valuations.

 Proof procedures transform the syntax of a logic in 
ways that respect the semantics.
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Semantics of Propositional Logic

 We’ve described the syntax for propositional logic, 

which is the domain of the semantic function.

 Classical logic is two-valued. The two possible truth 

values are T, and F, which are two distinct values.

 The range of the semantic function for propositional 

logic is the set of truth values:

 Note that these truth values are distinct from the 

syntax elements true, and false.

Tr = {T,F}

32

Semantics of Propositional Logic

 Truth Values:

 There are functions on these truth values that 
correspond to the meaning of the propositional 
connectives. We overload the operators “    ”, “    ”, 
etc. to be both part of the syntax of propositional 
logic, and operations on the sets of truth values in 
our model for propositional logic.

 Truth tables are used to describe the functions of 
operations on these truth values.

Tr = {T,F}

:(Tr Tr) Tr
:Tr Tr

.etc
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Truth Tables

 These connectives are truth functional, that is given the truth 
values “of each component part of a compound sentence 
containing connectives, the truth value of the whole sentence is 
uniquely determined”.

 A truth table for any formula containing      atomic propositions 
has      lines.

n
2n

34

Boolean Valuations

 The semantics of propositional logic are an interpretation of any 
expression in propositional logic (i.e., the constants true and 
false, the proposition letters, and the propositional connectives) 
in the set       . The semantics of propositional logic are called a 
Boolean valuation.

 Definition. A Boolean valuation is a mapping v from the set of 
propositional formulas to the set meeting the conditions:

 .

 .

 for all the connectives:

 Note that :              and                   is given by the truth tables on 
the previous slide.

Tr

Tr

(true)= , (false)=v T v F
( ) ( ( ))v p v p 

( ) ( ) ( )v p q v p v q

( ( ))v p ( ) ( )v p v q
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Boolean Valuations

 Here’s an example of a Boolean valuation:

and the propositional connectives map to the corresponding 

operation on the truth values in the model.

 A Boolean valuation is uniquely determined by the values of v for 
the proposition letters. There are multiple Boolean valuations for 
propositional logic.

( ) T, ( ) F, ( ) F, (false) F, (true) Tv p v q v r v v    

(( ) )  ( ) ( )

                        ( ( ) ( )) ( )

                        (T F) F

                        F F

                        F

v p q r v p q v r

v p v q v r

    

  

  

 



36

Satisfiability

 Definition. A formula a is satisfiable if there 

is a Boolean valuation v such that

 We sometimes say that the formula “has a 

satisfying assignment” to mean that it is 

satisfiable.

 We are mostly interested in the propositional 

formulas that map to T in all the possible 

Boolean valuations (i.e., in all model).

( ) Tv a 
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Tautologies

 Definition. A propositional formula a is a 

tautology (also called valid or a theorem) if 

for every Boolean valuation v.

i.e., , a tautology is a formula that is true for 

all possible truth values of the propositional 

letters used in the formula. The last column of 

the truth table for a tautology contains all T.

 Note that a formula a is a tautology iff :       is 

not satisfiable.

( ) Tv a 

a

38

Semantic Entailment

means that if            and              and        

then            , which is equivalent to saying

is a tautology, i.e.,

1 2 3, ,   

1( ) Tv  
2( ) Tv   3( ) Tv  

( ) Tv 

1 2 3( )     

1 2 3 1 2 3( , , ) (( ) )          
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Models and Entailment

 In propositional (and predicate) logic,      is 
overloaded and has two meanings:

 relates a model to a formula, saying that         
satisfies the formula    . This is called a 

satisfaction relation.

 relates two formulas, saying that for all 
v (i.e., for all possible models), if              then  

. This is called semantic entailment.

 These two uses can be distinguished by their 
context.





 

( ) Tv 

( ) Tv  

40

Falsehood

Definition. A falsehood (contradiction) is a 

formula that is false for all possible truth 

values of the propositional symbols used in 

the formula. 

 The last column of the truth table for a 

contradiction contains all F.
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Consistency

Definition. A collection of formulas is 

consistent if the formulas can all be true 

simultaneously.

 A collection of formulas is consistent if there 

is a Boolean valuation in which all the 

formulas can be true simultaneously.

42

Consistency

 If a set of premises of an implication are not 
consistent, they can be used to prove a contradiction, 
i.e.,

or

 This is sometimes called the “false implies anything” 
problem, meaning that nothing is proven about a 
system if there are inconsistent premises. 

 It is standard practise in verification to check that 
one’s premises are not inconsistent to avoid this 
problem.

,p p q q 

, falsep p
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Example of Checking Consistency

 Sales of houses fall off if interest rates rise. 
Auctioneers are not happy if sales of houses fall off. 
Interest rates are rising. Auctioneers are happy.
 s = sales of houses fall off

 r = interest rates rise

 h = auctioneers are happy

 The formulas of the problem are:

 To check that this set of formulas is consistent, we 
check that 
 the conjunction of the formulas is satisfiable 

 i.e., there is a Boolean valuation that maps the formula to T, 

 i.e., that the conjunction of the formulas is not a 
contradiction.

, , ,r s s h r h 

44

Example of Checking Consistency

Does the following have a satisfying 

assignment?

( ) ( )r s s h r h    
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Example of Checking Consistency

 Thus, the conjunction of the formulas is a 

contradiction so this set of formulas is 

inconsistent.

 Using the proof procedures that we will talk 

about next, to prove a set of formulas is 

inconsistent, we would prove that the 

negation of the conjunction of the formulas is 

a tautology.

46

Decidability

 A question is decidable if there is an 
algorithm that will always terminate and 
deliver the correct answer to the problem 
“yes” or “no”.

 A logic is decidable if there is an algorithm to 
determine if any formula of the logic is a 
tautology (is a theorem, is valid).

 Propositional logic is decidable because we 
can always construct the truth table for the 
formula.
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Proof Procedures

 We can always determine if a formula is a tautology 

 by using truth tables to determine the value of the formula 

for every possible combination of values for its proposition 

letters, 

 but this would be very tedious since the size of the truth 

table grows exponentially .

 Proof procedures for propositional logic are alternate 

means to determine tautologies. 

 As long as the proof procedure is sound, we can use the 

proof procedure in place of truth tables to determine 

tautologies.

48

Proof Procedures for Propositional 

Logic

 There are many proof procedures for propositional 
logic. 

 Some match the human reasoning process. 

 Others are better suited to automation by computers.

Examples of proof procedures are:
 Resolution 

 Semantic Tableaux  

 Natural Deduction  

 Sequent Calculus  

 Hilbert Systems (axiom systems)  

 Davis-Putnam  

 Binary Decision Diagrams  
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Proof Procedures for Propositional 

Logic

 “. . . based on different insights into the 
processes by which one recognizes that a 
formula expresses a logical truth.”

 As an appropriate lead-in to interactive 
theorem provers, we will begin by studying 
two procedures that match human reasoning 
and are related to the way proofs are 
conducted in a theorem prover: 
 natural deduction and 

 sequent calculus.

50

Proof Styles

 A proof procedure is a set of rules we use to 

transform premises and conclusions into new 

premises and conclusions.

 A goal is a formula that we want to proof is a 

tautology. It has premises and conclusions.

 A proof is a sequence of proof rules that 

when chained together relate the premise of 

the goal to the conclusion of the goal.
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Forward and Backward Proof

 In forward proof, we work from premises to 
conclusions. 
 We apply rules that infer new formulas from premises. 

 After many steps, the final infered formulas should match 
the conclusion to have a proof.

 In backward proof, we work from conclusions to 
premises.
 We use the proof rules backwards to reduce a conclusion 

to a formula closer to the premises. 

 After many steps, the final reduced formula should match 
the premise.

 Forward proofs are easy to explain, but hard to find.

52

Hilbert Systems

 Also called axiom systems or Frege systems. 
 Axiom systems are forward reasoning. 

 Starting with known tautologies, 

 derive immediate consequences, 

 continue this until the desired formula is reached.

 In axiom systems, we use axioms and rules 
of inference (also called rules of derivation).

 The following discussion is general for all 
Hilbert systems, 
 not just those for propositional logic.
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Derivations

Definition. A derivation in a Hilbert system from a set 
S of formulas is a finite sequence   
of formulas such that each term 
 is either an axiom, 

 or is a member of S, 

 or follows from earlier terms by one of the rules of inference. 

We write:

to say that X has a derivation from S in the 
propositional Hilbert system.

1 2, , , nX X X

ph
S X

54

Proofs

Definition. A proof in a Hilbert system is a finite sequence 

of formulas such that each term is either an axiom or follows 
from earlier terms by one of the rules of inference. 

 A proof is a derivation from an empty set of formulas, i.e.,

We will write proofs 

 as a list of formulas, 

 each on its own line, and 

 refer to the line of a proof in the justification for steps.

Definition. X is a theorem of a Hilbert system if X is the last line of a 
proof. 

X is a consequence of a set S if X is the last line of a derivation 
from S.

1 2, , , nX X X

ph
X
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Hilbert System for Propositional 

Logic

 Every axiom must be a tautology. 
 Rules of inference produce tautologies from tautologies. 

 It’s not very interesting (or useful) to take all the 
tautologies as axioms,
 rather we need a finite number of axioms, 

 or at least a finite number of forms that axioms can take. 

 We call these forms axiom schemes.

 For example, all                                 and             
have the form             .

 We adopt the convention of using capital letters to 
represent formulas in axiom schemes.

,( ) ( )p p p q p q    q q 

X X

56

AL - an Axiomatic System for Prop. 

Logic

 We limit ourselves to two connectives                  , 
and rewrite any expressions involving other 
connectives in terms of these two. 
 Note that this is a complete set of operators.

 Three axiom (schemes):

 .

 .

 .

 One rule of inference:

 (modus ponens - MP) From A and            , B can be 
derived, where A and B are any well-formed formulas.

, and  

( )A B A 

( ( )) (( ) ( ))A B C A B A C     

( ) ( )A B B A   

A B
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Simple Example of a Proof

 Show

 .

 .

 .

(( ) ( )) :
ph

x y x x  

( )x y x 

Ax1 where ,A x B y

Ax2 where , ,A x B y C x

( ( )) (( ) ( ))x y x x y x x     

( ) ( )x y x x  

MP on lines 1 and 2

58

Example

 Rather than constructing particular proofs, we 

can actually construct “meta-theorems” 

(theorem schemes).

 Example: Show 
ph

A A
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Examples to Try

 Show the following:

 .

 .

 .

Note: You can reuse previous results in these proofs.

( )
ph

A A B  

{ , }
ph

A B B C A C  

( ) (( ) ( ))
ph

B C A B A C    

60

Deduction Theorem

 Theorem. In any Hilbert System with at least 

Axiom Schemes 1 and 2, and with Modus 

Ponens as the only rule of inference,           

 This result was proven by both Tarski and 

Herbrand.

{ }   iff  ( )
ph ph

S X Y S X Y 
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Use of the Deduction Theorem

 Show 

 Set out to show: 

 A premise

 premise

 B MP on 1 and 2

 . Ax1

 . MP on 3 and 4

 Now that we’ve proven                          , using the 

deduction theorem we can conclude:

{ } ( )
ph

A B A C B  

, ( ) :
ph

A B A C B 

A B

( )B C B 

C B

{ , }
ph

A B A C B 

{ } ( )
ph

A B A C B  

62

Soundness and Completeness of AL

 (Soundness) Every theorem A in AL is a 

tautology:

 (Completeness) If A is a tautology then it is a 

theorem of AL:  

 AL is consistent.

    
ph

A A

    
ph

A A
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An Aside on Monotonicity

 Definition. A monotonic logic is one where a 

valid proof cannot be invalidated by the 

addition of extra premises.

 We will only be studying monotonic logics.

 Non-monotonic logics are often useful for 

reasoning about knowledge.

64

2007/03/13 stops here.
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Proof Procedure: Natural 

Deduction

 Natural deduction is a collection of proof rules, 
each of which allows us to infer formulas from 
other formulas, eventually to get from a set of 
premises to a conclusion.

 Natural deduction is a form of forward proof. 
 Starting from the premises, we use the inference 

rules to deduce new formulas that logically follow 
from the premises. 

 We continue this process until we have deduced 
the conclusion.

66

Natural Deduction

 The notation above means that there is a 
proof using natural deduction that the 
argument with premises                and 
conclusion q is valid.

 Logical formulas     such that          are called 
theorems.

 Again, there are multiple natural deduction 
systems for propositional logic. 
 We will be following the presentation of Huth and 

Ryan.

1 2 3, , ,
ND

p p p q

1 2 3, , ,p p p


ND




34

67

Natural Deduction

 Gerhard Gentzen 

(1909–1945). Natural 

deduction was 

introduced in his paper 

Investigations into 

Logical Deduction, 

1935.

68

Inference Rules

Definition. An inference rule is a primitive valid 
argument form. 

 Each inference rule enables the elimination 
or the introduction of a logical connective.

 Most inference rules have names that 
consists of:
 a logical connective,

 a letter:

 “i” indicates that the rule introduces the connective

 “e” indicates that the rule eliminates the connective

i,  e 
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Natural Deduction

 Natural deduction is based on the idea of 
subordinate proofs. 
 We make assumptions, and then discharge the 

assumptions. 

 Subordinate proofs are indented/boxed with the first 
line in the box being the assumption made in that 
subordinate proof. 
 The first line below the indentation/box is the result of 

discharging the assumption.

 The formulas active at a stage in the proof are those 
occurring in boxes that haven’t yet been closed. 
 We can only use active formulas to derive new formulas.

 The rules come in pairs: one for introducing a 
connective and one for eliminating it.

70

Rules for Conjunction

 Above the line are the premises of the rule. 

 Below the line is the conclusion. 

 To the right of the line is the name of the rule.

 p and q may be larger formulas than proposition 

letters.

 It’s okay to just use     and not distinguish       from   e 1e 2e
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Example #1

 Show  

 premise

 r premise

 q



 We present proofs in the linear format, but a 

tree format could be used.

 Try: Show  

,
ND

p q r q r 

p q

e  1

q r i  2,3

( ) ,
ND

p q r s t q s   

72

Rules for Double Negation
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Example #2

 Show , ( )
ND

p q r p r   

74

Rules for Eliminating Implication

 Implies-elimination

This is modus ponens.

 We can also derive modus tollens:

 Example: If it is raining, then I have my umbrella up. 
I do not have my umbrella up. Therefore it is not 
raining.

  p p q
e

q




  
MT

p q q

p

 


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Example #3

 Show ,
ND

p q q p  

76

Implies Introduction

Within the box, we assume r, and

then prove q. The box marks the

scope of the temporary assumption.

Any lines in the box depend on the

assumption. The line after the box

discharges the assumption by moving

it to the LHS of the implication on

the RHS. The line after the box no

longer depends on the assumption.

Boxes may be nested.

We can only use a formula in the proof if it occurs prior to this

line in the proof and it doesn’t occur within an enclosed box

(i.e., it is active). We can copy a formula that has appeared

before as long as it is still active.
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Example #4

 Show 
ND

p p

1 assumption

2  i 1 1

p

p p 

78

Example #5

 Show ( ) (( ) ( ))
ND

q r q p p r     
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Examples to Try

 Show







( )
ND

p q r p q r   

( )
ND

p q r p q r   

( ) ( )
ND ND

p q p r q r  

80

Rules for Disjunction
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Example # 6

 Show 
ND

p q q p 

82

Rules for Negation
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Example #7

 Show ,
ND

p q p q p  

84

Derived Rule: Proof by 

Contradiction
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Law of the Excluded Middle

86

Summary of Natural Deduction

 Natural deduction for propositional logic is 

sound and complete.

 A summary of the rules can be found on an 

additional handout.
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Proof Method: Sequent Calculus

 Both natural deduction and the sequent calculus can 
be found in a paper by Gerhard Gentzen (1909-
1945). 
 We will follow the presentation of Fitting and Kelly and use 

only the connectives:

 Definition. A sequent is pair          of finite sets of 
formulas.

 We will write          , and drop the set brackets 
around the sets of formulas. 
 X will represent a single formula, where    as a set of 

formulas.

 The     is like implication. A sequent asserts: if all the 
formulas on the left of the arrow are true, then at 
least one of the formulas on the right are true.

, ,  
( , ) 

 



88

Meaning of a Sequent

We can extend Boolean valuations to describe 

the meaning of a sequent.



 When there is nothing on the LHS or RHS of 

the arrow, we assume it is the empty set of 

formulas.

 This means

( ) T if ( ) F for some  or

( ) T for some 

v v X X

v Y Y

    

 

( ) F, and ( ) ( )v v X v X 
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Axioms

 Note that having axioms we are reminded of 

Hilbert systems, but this isn’t quite the same.   

isn’t a symbol in the logic.

   ( )

flase

true

X X Id

90

Sequent Schemata

The rules of the sequent calculus are written in 

the form:

Just like in natural deduction, 

 if a formula matches the schema     , 

 then it can be replaced by one matching    .

1

2

S

S

1S

2S
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Sequent Calculus Rules

 Structural Rule (Thinning)

Thinning is like precondition strengthening and 
postcondition weakening for those familiar with that 
terminology.

 Adding formulas on the LHS of the sequent is 
adding them to a conjunction, so this is 
strengthening the LHS formulas.

 Adding formulas on the RHS of the sequent is 
adding them to a disjunction, so this is weakening 
the RHS formulas.

1 1
1 2 1 2

2 2

if  and  then : 
 

     
 

92

Sequent Calculus Rules
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Cut Rule

This a derived rule:

1 1 2 2

1 2 1 2

,      ,

, ,

X X   

   

94

Proofs in the Sequent Calculus

Definition. A proof is a tree labeled with sequents 
(generally written with the root at the bottom), such 
that: 
If node N is labeled with          , then if N is a leaf node,          

must be an axiom; 

if N has children, their labels must be the premises from which

follows by one of the rules. 

The label on the root node is the sequent that is proved.

Definition. A formula X is a theorem of the sequent 
calculus if the sequent          has a proof, i.e.,

The sequent calculus for propositional logic is both 
sound and complete.

 

 

 

X
SQ

X
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Example #1

 Show ( )A B A 

1                     ld

2 ,                Thinning

3            Implication

4 ( )  Implication

A A

A B A

A B A

A B A



 

96

Example to Try

 Show

 Show

 Show

( ) ( )P Q P Q    

( ) ( )A B B A   

( ( )) (( ) ( ))A B C A B A C     
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Sequent Calculus Rules

98

Tableau Proof Methods

see Priest, section 1.5, page 8ff, and Frost, section 4.2.5, page 186ff.

The basis of the Tableau Proof method is to find out whether a 

formula (to be proven)  leads to a contradiction with a true formula 

(like a logical axiom or proper axiom) . 

We construct a tree of formulae starting with the initial formulae (the 

true formula) and the negated conclusion, i.e. the formulae to be 

proven in negated form.

Successively split up the formulae (according to reverse inference 

rules) in order to derive simpler formulae.

Similar to resolution, branches of the tree which contain a formula and 

its negation are closed. They are "cut out".

If every branch of a tableau closes, the tableau is compete and the 

proof is done.
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Tableau Proof

see Priest, section 1.5, page 8ff

Steps to set up the Tableau (as tree):

1. Write assumption and negated conclusion under each other. 

Formulae underneath each other are conjunctive.

2. Split formulae (if necessary take out implications). 

3. Conjunctively joint sub-formulae go into the same branch of the 

tree, under each other.

4. Disjunctively joined sub-formulae go into separate sub-branches of 

the tree.

5. Compare atomic propositions in the branches.

6. If a branch contains a proposition and its negation, it will be closed. 

Write  x  on its leaves.

7. If all branches are closed, the tableau is complete. Done.

100

Tableau Proof - Rules (Priest)
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Tableau Proof (example 1)

102

Tableau Proof (example 2)
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Tableau Proof with Inverse Sequent Rules (Frost)

see Frost, section 4.2.5, page 186ff.

Steps to set up the Tableau (as table):

1. Write true formula  and to be proven conclusion  on two sides 

of a column. ( left and  right)

2. Apply inverse sequent logic rules ( inverse inference rules). 

1) E.g. substitute PQ by P and Q in same column.

2) E.g. substitute RS on the right side by adding R to the left 

side and S to the right side.

3. If the same atomic formula appears on both sides, the tableau 

closes. Done.

104

Resolution Principle

- a powerful inference rule
 Literal: either an atom (positive literal) or the 

negation of an atom (negative literal).

 Clause: (P1  P2  …  Pn)

 A wff can be represented as a set of clauses
 first translate to conjunctive normal form

Example:

(PQR)(PQR) {(PQR), (PQR)}

Note: Empty clause {} is equivalent to false.
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Resolution principle 

- Converting wffs to set of clauses

Example: (P  Q)  (R  P)

1. (P  Q)  (R  P) Definition of 

2. (P  Q)  (R  P) DeMorgan

3. (P  Q  P) (Q  R  P) Distributivity

4. (P  R)  (Q  R  P) Associativity

Usually expressed as {(P  R), (Q  R  P)}

106

Resolution Principle

Given clause sets 1  2,

1 ,  2 ├ 1  2

Examples:

 RP, PQ ├ RQ : chaining

 R, RP ├ P : modus ponens

 Chaining and modus ponens are special cases

of resolution principle.  

 PQRS, PQW ├ QRSW

resolvent
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Resolution principle

- on Clauses 

P  Q  R, P  W  Q  R

 Resolving them on Q: P  R  R  W

 Resolving them on R: P  Q  Q  W

 Since R  R and Q  Q are True, the 

value of each of these resolvents is True.

 We must resolve either on Q or on R.

 P  W is not a resolvent of the two clauses.

108

Resolution principle

- Soundness 
1 ,  2 ├ 1  2

Proof: reasoning by cases

 Case 1:  is true

 2 must true in order for {} 2 to be true.

 Case 2:  is false, 

 1 must true in order for {} 1 to be true.

 Either 1 or 2 must be true.

 1  2 must be true.
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Resolution principle

- incompleteness

Resolution principle is not complete.

 For example, P  R ⊨ P  R

 We cannot infer P  R using resolution on the 

set of clauses {P, R} (because there is 

nothing that can be resolved)

 We cannot use resolution directly to check all 

logical entailments.

110

Resolution principle 
- proof by refutation  

Instead, we refute   

1. Convert a wff  to set of clauses.

2. Convert  to a clause.

3. Let  bet the set of clauses from steps 1 

and 2.

4. Iteratively apply the principle to the clauses 

in  and add the results to  until either 

 no more resolvents can be added or 

 an empty clause is produced.
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Resolution principle 

- Completeness of Refutation
 { } will be produced if   ⊨ .

 Resolution principle is refutation complete for 

propositional calculus.

 Decidability

If 

  is a finite set of clauses and 

 ,

then resolution principle terminates without {}.

112

Work out 

 Please submit one sheet in which you argue 

why resolution principle always terminate with 

propositional calculus. 
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Resolution principle 

- a refutation tree
Given:
1. BAT_OK

2. MOVES

3. BAT_OK ∧ LIFTABLE
⊃ MOVES

Clause form of 3:

4. BAT_OK ∨ LIFTABLE

∨ MOVES
Negation of goal:
5. LIFTABLE
Perform resolution:

6. BAT_OK ∨ MOVES
(from resolving 5 with 4)

7. BAT_OK (from 6, 2)

8. Nil (from 7, 1)

Figure 14.1 A Resolution Refutation Tree

114

Resolution principle 

- refutations search strategies
 Ordering strategies

 Breadth-first strategy

 Depth-first strategy 

 with a depth bound, use backtracking.

 Unit-preference strategy

 prefer resolutions in which at least one clause is a unit 

clause.

 Refinement strategies

 Set of support

 Linear input

 Ancestry filtering
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Resolution principle 

- refinement strategies

 Set of support strategy
 Allows only those resolutions in which one of the clauses 

being resolved is in the set of support, 

 i.e., those clauses that are either clauses coming from the 
negation of the theorem to be proved or descendants of 
those clauses.

 Linear input strategy
 at least one of the clauses being resolved is a member of the

original set of clauses.

 Ancestry filtering strategy

 at least one member of the clauses being resolved either is a 
member of the original set of clauses or is an ancestor of the 
other clause being resolved.

 Refutation complete

Refutation 

complete

Not refutation 

complete

Refutation 

complete

116

Workout

 Please give an example set of clauses that 

shows the linear input strategy makes 

resolution principle incomplete with resolution 

principle.  
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Resolution principle 

- Horn clauses

 A Horn clause: a clause that has at most one 

positive literal.

 Ex: P, P  Q, P  Q  R, P  R

 Three types of Horn clauses.

 A single atom: called a “fact”

 An implication: called a “rule”

 A set of negative literals: called “goal”

 There are linear-time deduction algorithms for 

propositional Horn clauses.

118

BDD (Binary Decision Diagram) 

- Overview

 Decision trees and reduction rules

 Building already reduced diagrams

 Dynamic variable reordering

 BDD operators

 Implementations issues

 (Dis)advantages of BDDs
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Binary Decision Diagram (BDD)

 BDD: A minimal canonical form 

representation for Boolean formulas.

 Motivation:

 Too much space redundancy in traditional 

representations

 BDD is more compact than truth tables, 

conjunctive normal form, disjunctive normal 

form, binary decision trees, etc.

 BDD has a canonical form

 BDD operations are efficient

minimum size 

representatio

n (for a given 

var ordering)

unique BDD for a 

function

120

BDD (Binary Decision Tree)

function values 

determined at 

b1
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BDD (redundancy in BDT)

 Binary Decision Trees (BDT): 
 Same size as truth tables

 Lots of redundancy: Out of 8 subtrees rooted 
at b2 only 3 are distinct!!!

 Merge isomorphic subtrees  BDD

 BDD is a rooted, DAG with 2 types of 
vertices: terminal and nonterminal

 Each nonterminal v is labeled with var(v)
and has two successors: low(v) and high(v)

 Each terminal vertex is labeled 0 or 1

122

Truth Table, DNF, and CNF

 DNF (sum-of-products)

F = x1’x2x3 + x1x2’x3 + x1x2x3

 CNF (product-of-sums)

F = (x1+x2+x3) & (x1+x2+x3’) &

(x1+x2’+x3) & (x1’+x2+x3) &

(x1’+x2’+x3) 

x1 x2 x3 F

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1
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Truth Table and Decision Tree

x1

x3

x2

x3
x3x3

10

x2

110 0 0 0

x1 0 0 0 0 1 1 1 1

x2 0 0 1 1 0 0 1 1

x3 0 1 0 1 0 1 0 1

F 0 0 0 1 0 1 0 1
0 1

1010

0 1 0 1 0 1 0 1

124

BDD (Binary Decision Diagram)

minimal canonical form of Boolean functions

 minimal  efficiency (space & computation) 

 for a specific variable ordering

 Canonical form: 

unique BDD for a function

(xy) z

x

z
y

0 1

0

0

0

1

1

1

0 0 1
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BDD function evluation

x

z

y

0 1

0

0

0

1

1

1

(x y) z 
x  1

y  0

z  0

0 x


0 y


1 z

x

z

y

0 1

0

0

0

1

1

1

Using path traversal to evaluate function

126

BDD Examples

a1

a2

b1

10

b2

10

a

10

a

F = a

F = a

a

10

b

a

10

b

F = ab

F = a+b

a1

a2

b1

10

b2

F=a1b1+ a2b2 F=a1b1+a2+b2

How can we get 

these (from truth 

tables) ?
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Application to Verification

 Equivalence of combinational
circuits

 Canonicity property of BDDs: 
 if F and G are equivalent, their BDDs are 

identical (for the same ordering of variables)

10

a

b

c

F = a’bc + abc +ab’c G = ac +bc

10

a

b

c



128

Application to Verification, cont’d

 Functional test generation
 SAT, Boolean satisfiability analysis

 to test for H = 1 (0), find a path in the 
BDD to terminal 1 (0) 

 the path, expressed in function 
variables, gives a satisfying solution 
(test vector)

ab

ab’c

H

0 1

a

b

c
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Reduction of Decision Tree

Rule 1: Merging Rule: 
Nodes must be unique

Rule 2: Elimination Rule:
Redundant tests should 
not be present

a a

b b

a

b b

a

b b

130

Example of Decision Tree 

Reduction
x1

x3

x2

x3 x3x3

x2

10

x1

x3

x2

x3

x2

10

x1

x3

x2

10

BDDDecision tree reduction
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BDD Construction 

 Typically done using APPLY operator

 Reduction rules

 remove duplicate terminals

 merge duplicate nodes 

(isomorphic subgraphs)

 remove redundant nodes

 Redundant nodes:

 nodes with identical children

10

b

10

b

c

a b

fff

a b

132

BDD Construction – your first 

BDD

 Construction of a Reduced Ordered BDD

1 edge

0 edgea  b  c    f

0  0  0   0
0  0  1   0
0  1  0   0
0  1  1   1
1  0  0   0
1  0  1   1
1  1  0   0
1  1  1   1

Truth table

f = ac + bc

Decision tree

10 0 0 1 0 10

a

b

c

b

c c c

f
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BDD Construction – cont’d

10

a

b

c

b

c c c

f f

10

a

b

c

b

c

10

a

b

c

f = (a+b)c

2. Merge 

duplicate nodes

1. Remove 

duplicate terminals

3. Remove 

redundant nodes
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BDD Reduction (I) 

- from bottom up

x1

x3x3

x2
x2

0 101

0

1

0

0

0

0

11

11

x1

x3x3

x2
x2

0 1

0

1

0

0

0

0

1
1

11

at leaf level


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BDD Reduction (II) 

- from bottom up 

x1

x3

x2
x2

0 1

1

0

0

0

0

1

1
1

at level x3x1

x3x3

x2
x2

0 1

0

1

0

0

0

0

1
1

11

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BDD Reduction (III)

- from bottom up  

x1

x3

x2

0 1

1

0

0

0

1

1

at level x2x1

x3

x2
x2

0 1

1

0

0

0

0

1

1
1


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Logic Manipulation using BDDs

 Useful operators

¬

1 00 1

F F’

0 1

F(x,y)

x=b 0 1

F(y)

Restrict
– Restrict: F|x=b = F(x=b) 

where b = const

– Complement ¬ F = F’

(switch the terminal nodes)

138

Useful BDD Operators - cont’d

 Apply: F    G
where       stands for any Boolean operator (AND, OR, XOR, )

=

F G

0 1 0 1

0 1

F G





 Any logic operation can be expressed using only 

Restrict and Apply

 Efficient algorithms, work directly on BDDs
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Apply Operation

 Basic operator for efficient BDD manipulation 

(structural)

 Based on recursive Shannon expansion

F OP G = x (Fx OP Gx) + x’(Fx’ OP Gx’)

where OP = OR, AND, XOR, etc

140

B
1 
OP B

2

xi

B1
0 B1

1

0 1
xi

B2
0 B2

1

0 1

B1 B2

xi

B1
0 OP B2

0 B1
1 OPB2

1

0 1

B1 OP B2

Note that the result 

has to be reduced.
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B
1 
OP B

2

- case II

xi

B1
0 B1

1

0 1
xk

B2
0 B2

1

0 1

B1 B2

xi

B1
0 OP B2 B1

1 OPB2

0 1

B1 OP B2

xi < xk

Note that the result 

has to be reduced.
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bdd_root(x,B1,B2) { 

return(reduce(                               )); 

} 

B
1 
OP B

2

x

B1 B2

0 1
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op(B1,B2) { 

if the pair has already been processed, return the saved result. 

…/* case for terminal nodes */

else if (root(B1)== root(B2)) {  

return(reduce(bdd_root(

root(B1), op(B0
1,B

0
2), op(B1

1,B
1

2)

))); 

}

else …/* case for root(B1)!= root(B2)*/

save the result.

} 

B
1 
OP B

2 

- procedure template
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op(B1,B2) { 

if the pair has already been processed, return the saved result. 

…/* case for terminal nodes */

else if (root(B1)< root(B2)) {  

return(reduce(bdd_root(

root(B1), op(B0
1,B2), op(B1

1,B2)

))); 

}

else …/* case for root(B1)>= root(B2)*/

save the result.

} 

B
1 
OP B

2

- procedure template
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Example (I)

x3
10

0 1

x1

01

x3
10

0
1

x2

10

(x1 x3)(x2 x3)

0 1
x1

1 x3
10

0
1

x2

10


x3

10

0
1

x2

10


x3

10

01
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Example (II)

x3
10

0 1

x1

01

x3
10

0
1

x2

10

(x1 x3)(x2 x3)

0
x1

1

0
x2

0+
x3

10

01

1

x3
10

10

+
x3

10

01

1
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Example (III)

x3
10

0 1

x1

01

x3
10

0
1

x2

10

(x1 x3)(x2 x3)

0
x1

1
0 x2

x3
10

01

1

x3 1

1

0

01 10+ +
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Example (IIII)

x3
10

0 1

x1

01

x3
10

0
1

x2

10

0
x1

1
0 x2

x3
10

01

1

x3 1

1

0

1 1

(x1 x3)(x2 x3)
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Example (V)

x3
10

0 1

x1

01

x3
10

0
1

x2

10

0

x1

0
x2

x3
1

0

1

1

0

1

after reduction

(x1 x3)(x2 x3)
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B

Exchange 0 1with

x3
10

0 1

x1

10

(x1 x3)x1 x3

x3
10

0 1

x1

01
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z
i
B(z

1
,.....,z

n
)

 zi =       ;    zi = ;

 zi = 

 zi =                   

zj

0 1

10

0 1

B0 B1

zj
10

ziB0 ziB1

zi
10

B0 B1

B0 B1
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Apply Operation - AND

10

a

c

ac
a AND c

10

a 2

c

10

3

0.3

2.3a

c1.3

1.11.0

AND

= =
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Apply Operation - OR

OR

ac

10

a

c

4

5

bc

10

b

c

6

7 ==

10

a

b

c

f = ac+bc

c

4+6

0+0

a

7+5

1

0+6 b6+5

0+5

0

0+7
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Building Already Reduced Tree

assuming variable ordering

x1 < x2 < x3 < … < xn

function Build ( F, i )

if ( i  > n ) 

if (F == 0) return Node0 

else return Node1;

else

v0 = Build ( F(xi=0), i+1 );

v1 = Build ( F(xi=1), i+1 );

return CreateNode ( i, v0, v1 );
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Creating a Unique Node

assuming there is a node table and 

functions CheckExists(), Insert(), and Hash() 

function CreateNode( Var, LowF, HighF )

if ( LowF == HighF ) 

return LowF;

else if ( CheckExists( Var, LowF, HighF ) )

return the existing node;

else Insert( Var, LowF, HighF );

return the new node;
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Variable Ordering

x1

y1 y1

x2

y2
y2

10

x1 < y1 < x2 < y2               x1 < x2 < y1 < y2

x1

x2 x2

y1

y2y2

10

y1y1 y1

F(x1, x2, y1, y2) = (x1 = y1) & (x2 = y2)Subject to the variable 

orderings, BDD may have 

exponential size blow-up.

The problem of computing the 

variable ordering for the minimal 

BDD size is NP-complete.

For the multiplication function, the 

circuit is always exponential.
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Dynamic Variable Reordering

x1

x2 x2

x3 x3x3 x3

x2x2

x1

x3 x3x3 x3

x2

x1

F F F1
F0

F1F0

Variable reordering is a local operation
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BDD manipulation complexities

 Reduce(B) O(|B|log|B|)

 B1 OP B2 O(|B1||B2|)

 B O(1)

 CreateNode O(1)

 Build O(2n)

 APPLY O(|F|*|G|)

 RESTRICT O(|F|)

 COMPOSE O(|F|2 *|G|2)
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Workout for BDD

1.Please draw the BDD of ((x1) x3)  (x2  x3).  

2.Please draw the BDD of 

((x1  x3)  (x2  x3))  (((x1) x3)  (x2  x3))
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x3
10

0 1

x1

01

x3
10

0
1

x2

10

0

x1

0
x2

x3
1

0

1

1

0

1

BDD variations 

- Single-terminal  BDDs

 By omitting 0, we still 

have a representation 

of the function. 

 When there is no 

branches for a truth 

assignment, then the 

value is FALSE (0).   

 Save memory!
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a

b b

[2,4]

1

BDD variations

- Multi-terminal  BDDs (MTBDDs)

 Using decimals 

instead of binaries. 

 More intuitistic. 

 Complexer to 

implement.  

discrete a, b:0..100.

(2a 5 b[11,15])  (a [4,8]  13b20)

b

[5,5]

[6,8]

[11,15]

[11,20]

[13,20]
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Characteristic Functions: Example

 Problem: Given the set {p1, p2, p3, p4, p5, p6 }, create 
the characteristic function of the subset {p1, p3, p4} 
and represent it using BDDs

 Step 1: Introduce an encoding of the set 

p1 – p2 – p3 –

p4 – p5 – p6 –

 Step 2: Define a function over the encoding 
variables (x1, x2, x3) such that it will be equal to 1 for 
minterms encoding the subset {p1, p3, p4}.

012 xxx
012 xxx012 xxx

012 xxx 012 xxx
012 xxx



82

163

Characteristic Functions: Example 

(continued)

{p1, p3, p4} ( x0, x1, x2 ) = 

=              +              +

 Step 3: Represent 

this function as a BDD

012 xxx 012 xxx 012 xxx

x2

x0

x1

10
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Set Manipulation

Operations on combinatorial sets can be 
reduced to boolean operations on 
characteristic functions

Empty set: = 0

Union of sets: S  T= S + T

Intersection of sets: S  T= S & T

Difference of sets: S - T= S & T’

Subset relation (S  T): S - T = S & T’ = 0
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Relations for Logic Blocks

 Suppose variables (x1,x2,x3,…) and (y1,y2,y3,) are 

inputs and outputs of a logic block.

 Then, we can define a relation over variables 

(x1,x2,x3,…) and (y1,y2,y3,…). Suppose variables are 

related in the following way. Assignments (y1,y2,y3,…) 

correspond to values, which outputs take when 

values (x1,x2,x3,…) are applied at the inputs.
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Relations for Logic Blocks: 

Example 

x1 x2 x3 y1 y2

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 0 1

1 0 0 0 0

1 0 1 0 1

1 1 0 1 1

1 1 1 1 1

x1

x2

x3

y1

y2



84

167

Example (continued)

x1 x2 x3 y1 y2 F

0 0 0 0 0 1

0 0 1 0 1 1

0 1 0 0 1 1

0 1 1 0 1 1

1 0 0 0 0 1

1 0 1 0 1 1

1 1 0 1 1 1

1 1 1 1 1 1

0
other

x1

x2

x3

y1

y2

0 1
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Relations for FSMs: Example

Ins CS CSC NS NSC

0 A 00 B 10

0,1 A 00 A 00

0 B 10 B 10

1 B 10 A 00

0 C 01 B 10

1 C 01 A 00

C

B

A

0,1

0
1

0

1
0
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Example (continued)

Relation = 

i'a1‘a2‘b1b2‘+ 

a1‘a2'b1'b2' + 

i'a1a2'b1b2' + 

ia1a2'b1'b2' + 

i'a1a2'b1b2' + 

ia1a2'b1'b2' 

i

a1

b1

a2

b2

10
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Efficient Operations on BDDs

 Apply – NOT, AND, OR, EXOR, etc.

 Quantification (existential, universal)

 Replace

 Compose

 Specialized operators

 Generalized cofactor (constrain, restrict)

 Compatible projection, etc.
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Components of BDDs and Their 

Use

 Nodes (represent functions; complexity)

 Terminal nodes (constant functions)

 Edges (relationship between functions)

 Paths (true and false var. assignments)

 Cuts (variable partitions and subsets)

172

Properties of BDDs

 Canonicity

 Compactness (with some exceptions)

 Represent a variety of discrete objects

 Boolean functions

 Compositional sets

 Encodings and labelings

 Facilitate symbolic methods

 Two-level minimization

 State traversal of FSMs 

 …
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(Dis)Advantages of BDDs

 Universal (for discrete data only)

 Save memory (not always)

 Speed-up computation (not always)

 Attractive coding style (it depends…)

 Implicit computation (what about good 

old classical methods?)
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Overview

 ITE operator

 APPLY operator

 RESTRICT operator

 Derived operators

 The effect of variable ordering

 Deriving the Upper Bound on 

BDD Size for Boolean Functions 

 Dynamic variable reordering
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IF-THEN-ELSE (ITE) Operator

 Boolean operations over 2 arguments can 
be expressed as ITE of F, G, and constants

ITE( F, G, H ) = F & G + F’ & H

 Example: AND( F, G ) = ITE( F, G, 0 )

 Computation of boolean operations is based 
on the Shannon expansion

ITE(F,G,H) = ITE(x, ITE(Fx’,Gx’,Hx’), 
ITE(Fx,Gx,Gx) )

176

APPLY operator

 APPLY( F, G ) operator is a shorthand for 

any two-variable boolean operator

 APPLY is reducible to ITE

 It follows that APPLY can be computed 

recursively just like ITE

APPLY(F,G) = x’ & APPLY(Fx’,Gx’) +

x & APPLY(Fx ,Gx )
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Pseudocode for APPLY operator

function Apply( F, G )

if ( AlreadyComputed( F, G ) ) return the result;

else if ( F=={0,1} && G=={0,1} ) return oper( F, G );

else if ( Var( F ) == Var( G ) )

u = CreateNode( Var(F), Apply(Fx’,Gx’), Apply(Fx,Gx));

else if ( Var( F ) < Var( G ) )

u = CreateNode( Var(F) , Apply(Fx’,G ), Apply(Fx,G ));

else /* if ( Var( F ) > Var( G ) ) */

u = CreateNode( Var(F) , Apply(F,Gx’ ), Apply(F,Gx ));

InsertComputed( F,G,u );

return u;
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F=ac+bc+d  G=ac’+d   F+G = ?

a

d

c

b

10

a

c

d

10

+

A1

A2

A6

A3

B1

B5

B

2

A4 A5 B3 B4

A1,B1

A2,B2

A6,B2

A3,B2

A4,B3 A5,B4

A6,B5

A5,B2 A3,B4
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F=ac+bc+d  G=ac’+d  

F+G=a+bc+d

A1,B1

A2,B2

A6,B2

A3,B2

A4,B3 A5,B4

A6,B5

A5,B2 A3,B4

a

d

c

b

10

c

1 1

a

d

c

b

10
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Pseudocode for RESTRICT 

operator
function Restrict( F, var, value )

if ( AlreadyComputed( F, var, value ) ) return result;

else if ( Var( F ) > var ) return F;

else if ( Var( F ) < var )

u = CreateNode( Var(F), Restrict(Fx’, var, value), 

Restrict(Fx,  var, value) );

InsertComputed(F, var, value, u ); return u;

else /* ( Var( F ) == var */ if ( value == 0 )

return = Restrict(Fx’, var, value);

else /* ( Var( F ) == var && value == 1 ) */

return = Restrict(Fx , var, value);
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F=bc+ab’c’ F(b=1) = ?

a

c

bb

10

c c

10

a

c

bb

10

c
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Derived Operations: COMPOSE

 Given F(x) and G(y), find F(G(y))

 Using Shannon Expansion

F(x) =     x’ & Fx’ + x & Fx 

F(G(y)) = G’(y) & Fx’ + G(y) & Fx

 COMPOSE is reduced to two operations 

RESTRICT and three operations APPLY



92

183

Derived Operations: Quantification

 Given a function F(x1, x2, x3)

 Existential quantification of F w.r.t. x1 is

x1 F(x1, x2, x3) = F(0, x2, x3) + F(1, x2, x3)

 Universal quantification of F w.r.t. x1 is

x1 F(x1, x2, x3) = F(0, x2, x3) & F(1, x2, x3)

 Unique quantification of F w.r.t. x1 is

!x1 F(x1, x2, x3)  = F(0, x2, x3)  F(1, x2, x3)
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Summery of Operations on BDDs

 Apply – NOT, AND, OR, EXOR, etc.

 Restrict

 Compose (Replace)

 Quantification (existential, universal)

 Specialized operators

 Generalized cofactor (constrain, restrict)

 Compatible projection, etc.



93

185

Worst-Case Complexity

 CreateNode - O(1)

 Build - O(2n)

 APPLY - O(|F|*|G|)

 RESTRICT - O(|F|)

 COMPOSE - O(|F|2 *|G|2)
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Variable Ordering for F=a
1
b

1
+ 

a
2
b

2
a1

a2

b1

10

b2

a1<b1<a2< b2

a1

b1

a2

10

b2

a2

b1

a1<a2<b1< b2
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Dynamic Variable Reordering

x1

x2 x2

x3 x3x3 x3

x2x2

x1

x3 x3x3 x3

x2

x1

F F F1
F0

F1F0

Variable reordering is a local operation
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Existential Quantification

 Existential quantification (abstraction)

x f = f |x=0 + f |x=1

 Example: 
x (x y + z) = y + z

 Note: x f  does not depend on x (smoothing)

 Useful in symbolic image computation (sets of states)
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Existential Quantification - cont’d

 Function can be existentially quantified w.r.to a 
vector:  X = x1x2…

X f =  x1x2... f = x1 x2 ... f

 Can be done efficiently directly on a BDD

 Very useful in computing sets of states 

 Image computation: next states

 Pre-Image computation: previous states 

from a given set of initial states
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Summary

 What is verification?

 What is logic? (completeness, soundness)

 Propositional Logic (syntax, semantics, axiom 

system, natural deduction, next class: 

sequent calculus)

 BDD


