正規描述與自動驗證

Formal Description & Automated Verification

王 凡 國立台灣大學 電機工程系

產業升級壓力下的一代

- 大前研一(未來分析家): 「台灣理!便勢只剩下五年。
- 杜書伍 (聯強圖·收收/優步) 大明性 & 勢
- · 歐陽平來產業的競爭力失產的數位內 台灣未來產業的競爭力失產的數位內

Verification (驗證)?

- 找出系統設計中的所有錯誤。
- 確認系統中已經(接近)沒有錯誤。

非常困難! 複雜系統的決勝關鍵! 各位同學的一條生路! 台灣產業的一條生路!

簡介

- 瞭解電腦系統的formal semantics
- 學習電腦輔助驗證的理論與製作

瞭解電腦系統的formal semantics Is this promor divide (a, b) { Ca How do I have while (a > 0)It checks if a is a = a-b;diviaibl I doubt it! if (a == 0) return 1; What else return 0; Well, } sometimes happens!

瞭解電腦系統的formal semantics

```
divide (a, b) {
  while (a > 0)
    a = a-b;
  if (a == 0) return 1;
  else return 0;
}
What does this
  `if' statement
  means ?
```

瞭解電腦系統的formal semantics

- When we say a program is correct, what is the behavior model of the program?
- What is the mathematics of program behaviors ?

瞭解電腦系統的formal semantics

Some incomputable problems (1/2)

- The validity of 1st-order logic formula (Hilbert's 2nd problem)
 ∃x∀y∃z(single(x) ∧ (parent(y,x)→worried(y))
- Mortal matrix problem
 Given 15 3×3 matrices, M₁, ..., M₁₅, are there
 M_{i1}× ... ×M_{im} = 0 ?
- CFL ambiguity problem

12-12

Some incomputable problems (2/2)

 Multivariable polynomial equations (Hilbert's 10th problem) Incomputable for degree ≥4. Incomputable for 36 real variables. Incomputable for 11 integer variables.

12-13

學習電腦輔助驗證的理論與製作

Goedel's incompleteness theorem:

• 任何有限規則系統,都有一個無法證明的事實。

State-space explosion problem?

- When a and b are both 32 bits long, # states $2^{32} \times 2^{32}$
- The safety analysis problem of Boolean program is PSPACEcomplete.
- The satisfiability problem of LTL is PSPACE-complete.
- The satisfiability problem of 1st-order logics is undecidable!
 No algorithm exists!
- The safety analysis problem of algorithm is undecidable!

Things to learn in the course

- State-transition models of computer systems
 - Only with mathematical models, you can build EDA tools.
- Mathematical model construction
- Verification algorithms
- Practical techniques to overcome the complexity!

Things to learn in the course

State-transition models of computer systems

• Kripke structures

Things to learn in the course

Mathematical model construction

- With REDLIB packages
- for automata with dense-time clocks

Things to learn in the course

Verification algorithms

- BDD manipulation algorithm for propositional logics
- Automata (regular expression) learning
- Linear temporal logic satisfiability checking
- Automata safety and liveneness analysis
- CTL model checking
- Automata simulation checking

Things to learn in the course

Practical techniques to overcome the complexity!

• BDD-based techniques

Course plan:

- Basic understanding of the knowledge of computer verification
- Three projects
 - use REDLIB to solve board games
 - use REDLIB to construct system model and making verification for untimed systems
 - use REDLIB to do model-based testing for timed systems

Course schedule

- 1. 9/15 Introduction
- 2. 9/22 中秋節
- 3. 9/29 Propositoinal Logic & BDD technology
- 4. 10/6 Propositoinal Logic & BDD technology
 1st project announcement
- 5. 10/13 Propositoinal Logic & BDD technology
- 6. 10/20 State Machines & Learning
- 7. 10/27 State Machines
- 8. 11/3 Temporal Logics & Symbolic Model-Checking 1st project report, 2nd project announcement

Course schedule (continued)

- 9. 11/10 Midterm Exam
- 10. 11/17 Temporal Logics & Symbolic Model-Checking
- 11. 11/24 Temporal Logics & Symbolic Model-Checking
- 12. 12/1 Embedded Systems
- 13. 12/8 Embedded Systems & Symbolic Model-Checking 2nd project report, 3rd project announcement.
- 14. 12/15 Simulation & Bisimulation
- 15. 12/22 Games
- 16. 12/29 Model-based Testing
- 17. 1/5 3rd project report
- 18. 1/12 Final Exam

課程網頁

http://cc.ee.ntu.edu.tw/~farn/courses/FMV/

助教:吳哲榮 b93901098@ntu.edu.tw

Evaluation

Two scenarios

- With paper presentation midterm: 25%, final: 30%, projects: 30%, paper presentation: 15%
- Without paper presentation midterm: 30%, final: 30%, projects:30%, homework: 10%

參考資料:

- Handbook of Logic in Computer Science: Vol. 1-2, edited by S. Abramsky (1993), Oxford.
- Handbook of Theoretical Computer Science, Vol. A & B, edited by J. van Leeuwen, Elsevier.
- Model Checking, E. Clarke, O. Grumberg, D. Peled, MIT Press
- Formal Methods for Real-Time Systems edited by C. Heitmeyer, D. Mandrioli, Wiley
- 重要論文