IR R pEFHRE

Formal Description & Automated Verification

A XA B RA T H- N

o L - (AXAIF) ¢
%‘c}’_’ff/"l‘i"_ff o

cccccc

Verification (2%) ?
. |

o 35l SR et 4 i -

® FETL f LY = g (HRT) R M-

2L Fap |
FERE b Bl B 4]
ENLY - e e -

el e

]

C]
o By f2 T %% % sLeformal semantics
o By Tl Btk it

B 2 7 "R ¢ sveformal semantics

divide (a, b) {
while (a > 0)
a=a-b;
if (@==0) return 1,
else return O;
Well,

e O
} sometlmesg
happens!

By i3 7 "% % fueformal semantics

Seriously, what

does “a=a-b;
means ?

divide (a, b) {
while (a > 0)
a = a-b;

If (@a==0) return 1,
else return O;

}

B f2 7 "w & Yueformal semantics

e When we say a program is correct, what is
the behavior model of the program ?

e What is the mathematics of program
behaviors ?

By i3 7 "% % fueformal semantics

divide (a, b) {

while (a > 0)

a = a-b;
If (@a==0)return 1;
else return 0O; a>0

}

Some incomputable problems (1/2)

The validity of 1st-order logic formula

(Hilbert’s 2" problem)
IxVy3z(single(x) A (parent(y,x)->worried(y))

Mortal matrix problem

Given 15 3x3 matrices, My, ..., M5, are there

Mix ... xM,, =0 ?

CFL ambiguity problem

12-12

Some incomputable problems (2/2)
|

e Multivariable polynomial equations
(Hilbert’s 10" problem)
Incomputable for degree >4.
Incomputable for 36 real variables.
Incomputable for 11 integer variables.

12-13

B 7 W p s Il sk 4 (T
T

Goedel’s incompleteness theorem:

o TG rURR G G- BEREEP HEF -

State-space explosion problem ?
e When a and b are both 32 bits long, # states
2324232
e The safety analysis problem of Boolean program is PSPACE-
complete.
e The satisfiability problem of LTL is PSPACE-complete.
e The satisfiability problem of 15%-order logics is undecidable!
- No algorithm exists!
e The safety analysis problem of algorithm is undecidable!

Things to learn in the course
|

e State-transition models of computer systems

- Only with mathematical models, you can build
EDA tools.

e Mathematical model construction
e Verification algorithms

e Practical techniques to overcome the
complexity!

Things to learn in the course
|

State-transition models of computer systems
e Kripke structures

Things to learn in the course
C]
Mathematical model construction
e With REDLIB packages
e for automata with dense-time clocks

Things to learn in the course
.
Verification algorithms

e BDD manipulation algorithm for propositional
logics

e Automata (regular expression) learning

e Linear temporal logic satisfiability checking

e Automata safety and liveneness analysis

e CTL model checking

e Automata simulation checking

Things to learn in the course

Practical techniques to overcome the
complexity!
e BDD-based techniques

Course plan :

e Basic understanding of the knowledge of
computer verification

e Three projects
- use REDLIB to solve board games

- use REDLIB to construct system model and making
verification for untimed systems

- use REDLIB to do model-based testing for timed
systems

10

Course schedule
C]

B 0N =

g = e» O

9/15
9/22
9/29 Propositoinal Logic & BDD technology
10/6 Propositoinal Logic & BDD technology

Introduction
¢ k&

1st project announcement

10/13 Propositoinal Logic & BDD technology

10/20 State Machines & Learning

10/27 State Machines

11/3 Temporal Logics & Symbolic Model-Checking

1st project report, 2nd project announcement

Course schedule (continued)
L |

9.
10.
11.
12.
13.

14.
15.
16.
17.
18.

11/10 Midterm Exam

11/17 Temporal Logics & Symbolic Model-Checking

11/24 Temporal Logics & Symbolic Model-Checking

12/1 Embedded Systems

12/8 Embedded Systems & Symbolic Model-Checking
2nd project report, 3rd project announcement.

12/15 Simulation & Bisimulation

12/22 Games

12/29 Model-based Testing

1/5 3rd project report

1/12 Final Exam

11

S
.

http://cc.ee.ntu.edu.tw/~farn/courses/FMV/

Pt R AT
093901098 @ntu.edu.tw

Evaluation
e

Two scenarios

e With paper presentation
midterm: 25%, final: 30%, projects: 30%,
paper presentation: 15%

e Without paper presentation
midterm: 30%, final: 30%, projects:30%,
homework: 10%

12

http://cc.ee.ntu.edu.tw/~farn/courses/FMV/

YR

Handbook of Logic in Computer Science: Vol. 1-2, edited
by S. Abramsky (1993), Oxford.

Handbook of Theoretical Computer Science, Vol. A & B,
edited by J. van Leeuwen, Elsevier.

Model Checking, E. Clarke, O. Grumberg, D. Peled, MIT
Press

Formal Methods for Real-Time Systems
edited by C. Heitmeyer, D. Mandrioli, Wiley

13

