Chapter 3: Process Concept

Operating System Concepts — 8" Edition, Silberschatz, Galvin and Gagne ©2009

=

:1"""‘£
“#7/ Chapter 3: Process-Concept

Process Concept

Process Scheduling
Operations on Processes
Interprocess Communication
Examples of IPC Systems

Communication in Client-Server Systems

fo.

Operating System Concepts — 8" Edition 3.2 Silberschatz, Galvin and Gagne ©2009

v}

"-’$ i

Objectives

To introduce the notion of a process -- a program in
execution, which forms the basis of all computation

To describe the various features of processes, including
scheduling, creation and termination, and communication

To describe communication in client-server systems

¢ X ’\\\[

Operating System Concepts — 8t Edition 3.3 Silberschatz, Galvin and Gagne ©2009

Process Concept

An operating system executes a variety of programs:
e Batch system — jobs
e Time-shared systems — user programs or tasks
Textbook uses the terms job and process almost interchangeably

Process — a program in execution; process execution must
progress in sequential fashion

A process includes:
e program counter
e stack
e data section

= X, ’\\\[

Operating System Concepts — 8t Edition 3.4 Silberschatz, Galvin and Gagne ©2009

—
S,‘/' 7 -
r Process in Memory
max
stack
heap
data
text
0
v -
Operating System Concepts — 8t Edition 35 Silberschatz, Galvin and Gagne ©2009
™
g,../-“"""“}l,
" Process State

B As a process executes, it changes state
e new: The process is being created
e running: Instructions are being executed
e waiting: The process is waiting for some event to occur
e ready: The process is waiting to be assigned to a processor
e terminated: The process has finished execution

5) -‘:‘-\. ‘;\
A 1-5&'{

Operating System Concepts — 8t Edition 3.6 Silberschatz, Galvin and Gagne ©2009

ey
&\/’ V' -
r & Diagram of Process State
admitted interrupt
I/O or event completion Ll Sl I/0O or event wait
v
Operating System Concepts — 8" Edition 3.7 Silberschatz, Galvin and Gagne ©2009

™

-
“#7’ Process Control Block (PCB)

Information associated with each process
B Process state

Program counter

CPU registers

CPU scheduling information
Memory-management information
Accounting information

I/0O status information

rj,ﬁﬁjr

Operating System Concepts — 8t Edition 3.8 Silberschatz, Galvin and Gagne ©2009

™

-
“#”’ Process Control Block (PCB)

process state
process number

program counter

registers

memory limits

list of open files

he “n
Operating System Concepts — 8t Edition 3.9 Silberschatz, Galvin and Gagne ©2009

=

—.f’"’“i . .
“#7/ CPU Switch From Process to Process

process P, operating system process P,

interrupt or system call

executing 1
b

h | save state into PCB, ‘

idle

|re|oad state from PC B,‘

ridle interrupt or system call executing

“

| save state into PCB,]

idle
L]

|re|oad state from PC Bnl

executing l[\—l

Operating System Concepts — 8t Edition 3.10 Silberschatz, Galvin and Gagne ©2009

,’.‘\""’Ja:- .
“%77 Process Scheduling Queues

Job queue - set of all processes in the system

Ready queue — set of all processes residing in main memory,
ready and waiting to execute

Device queues — set of processes waiting for an 1/0O device
Processes migrate among the various queues

Do
WS
“n A"
Operating System Concepts — 8t Edition 3.11 Silberschatz, Galvin and Gagne ©2009
=,

,:f"—’“j
%«-},_r/ Ready Queue And Various I/O Device Queues

queue header PCB; PCB,
ready head —=
queue tail N registers registers
Ld Ld
mag head
tape =
unit 0 tail
?;;g b PCB PCB PCB
unit 1 tail : " “ °
disk head
unit 0 tail
PCB;
terminal head —=
unit 0 tail
L]

W

Operating System Concepts — 8t Edition 3.12 Silberschatz, Galvin and Gagne ©2009

11‘_“1?!:. _ .
“%77 Representation of Process Scheduling

_
»| ready queue » CPU l

y

I/O queue < I/O request |«
time slice "
expired
child fork a .
executes child
interrupt wait foran |
occurs interrupt
5
4 B
Operating System Concepts — 8t Edition 3.13 Silberschatz, Galvin and Gagne ©2009
™
(o]
Wi p—/
e Schedulers

B Long-term scheduler (or job scheduler) — selects which
processes should be brought into the ready queue

m Short-term scheduler (or CPU scheduler) — selects which
process should be executed next and allocates CPU

r‘;,&‘;

Operating System Concepts — 8t Edition 3.14 Silberschatz, Galvin and Gagne ©2009

=

an)

“»77 Addition of Medium Term Scheduling

%

swap in partially executed swap out
swapped-out processes

ready queue ;K/I_JCPU » end

@ /O waiting
N

queues

Yy

Operating System Concepts — 8t Edition 3.15 Silberschatz, Galvin and Gagne ©2009

-

®m Short-term scheduler is invoked very frequently (milliseconds) =
(must be fast)

B Long-term scheduler is invoked very infrequently (seconds,
minutes) = (may be slow)

The long-term scheduler controls the degree of multiprogramming
Processes can be described as either:

e |/O-bound process — spends more time doing I/O than
computations, many short CPU bursts

e CPU-bound process — spends more time doing computations;
few very long CPU bursts

Operating System Concepts — 8t Edition 3.16 Silberschatz, Galvin and Gagne ©2009

v}

2 Context Switch

® When CPU switches to another process, the system must save the state of
the old process and load the saved state for the new process via a context
switch

Context of a process represented in the PCB

Context-switch time is overhead; the system does no useful work while
switching

® Time dependent on hardware support

D

Operating System Concepts — 8t Edition 3.17 Silberschatz, Galvin and Gagne ©2009

ey

! Process Creation

® Parent process create children processes, which, in turn create other
processes, forming a tree of processes

Generally, process identified and managed via a process identifier (pid)
Resource sharing
e Parent and children share all resources
e Children share subset of parent’s resources
e Parent and child share no resources
® Execution
e Parent and children execute concurrently
e Parent waits until children terminate

o 3 ’\\\[
_— ﬂxﬁ' :

Operating System Concepts — 8t Edition 3.18 Silberschatz, Galvin and Gagne ©2009

o Process Creation (Cont)

B Address space
e Child duplicate of parent
e Child has a program loaded into it
® UNIX examples
e fork system call creates new process

e exec system call used after a fork to replace the process’ memory
space with a new program

0

b
W
“n A"
Operating System Concepts — 8t Edition 3.19 Silberschatz, Galvin and Gagne ©2009

w“—/ Process Creation

Lal Lol

parent /w—a‘it\ resumes

0

b
W
“n A"
Operating System Concepts — 8t Edition 3.20 Silberschatz, Galvin and Gagne ©2009

=

“%7/ C Program Forking Separate Process

int main()
{
pid_t pid;
/* fork another process */
pid = fork();
if (pid < 0) { /* error occurred */
fprintf(stderr, "Fork Failed");
exit(-1);
}
else if (pid == 0) { /* child process */
execlp("/bin/ls", "Is", NULL);
}
else { /* parent process */
[* parent will wait for the child to complete */

wait (NULL);
printf ("Child Complete™);
exit(0);
}
}
Operating System Concepts — 8t Edition 3.21 Silberschatz, Galvin and Gagne ©2009

=

.’.""—’J ‘- I I
“»”7 A tree of processes on atypical Solaris

Operating System Concepts — 8t Edition 3.22 Silberschatz, Galvin and Gagne ©2009

=

gy

r & Process Termination

B Process executes last statement and asks the operating system to
delete it (exit)

e Output data from child to parent (via wait)

e Process’ resources are deallocated by operating system
® Parent may terminate execution of children processes (abort)

e Child has exceeded allocated resources

e Task assigned to child is no longer required

e If parent is exiting

» Some operating system do not allow child to continue if its
parent terminates

All children terminated - cascading termination

o = ?\‘1

Operating System Concepts — 8t Edition 3.23 Silberschatz, Galvin and Gagne ©2009

=

gy

“%7/ Interprocess Communication

Processes within a system may be independent or cooperating

Cooperating process can affect or be affected by other processes,
including sharing data

m Reasons for cooperating processes:

Information sharing

Computation speedup

Modularity

e Convenience
Cooperating processes need interprocess communication (IPC)
Two models of IPC

e Shared memory

e Message passing

s ,.‘ ?\‘1

Operating System Concepts — 8t Edition 3.24 Silberschatz, Galvin and Gagne ©2009

—
O I I
» Communications Models
process A M process A |
M E
shared ﬂ
2
process B M process B d
2 1
kernel M e kernel
(a) (b)
v
Operating System Concepts — 8% Edition 3.5 Silberschatz, Galvin and Gagnhe ©2009
=
w’"’i i
<5 Cooperating Processes

® Independent process cannot affect or be affected by the execution of
another process

m Cooperating process can affect or be affected by the execution of another
process

® Advantages of process cooperation
e Information sharing
e Computation speed-up
e Modularity
e Convenience

rj,ﬁﬁjr

Operating System Concepts — 8t Edition 3.26 Silberschatz, Galvin and Gagne ©2009

=
p—

‘w-' Producer-Consumer Problem

m Paradigm for cooperating processes, producer process
produces information that is consumed by a consumer
process

e unbounded-buffer places no practical limit on the size of
the buffer

e bounded-buffer assumes that there is a fixed buffer size

Operating System Concepts — 8t Edition 3.27 Silberschatz, Galvin and Gagne ©2009

™
g

“#” Bounded-Buffer — Shared-Memory Solution

® Shared data
#define BUFFER_SIZE 10
typedef struct {

} item;

item buffer[BUFFER_SIZE];
intin = 0;
int out = 0;
® Solution is correct, but can only use BUFFER_SIZE-1 elements

Operating System Concepts — 8t Edition 3.28 Silberschatz, Galvin and Gagne ©2009

“%77 Bounded-Buffer — Producer

while (true) {
/* Produce an item */

while (((in = (in + 1) % BUFFER SIZE count) == out)
; [* do nothing -- no free buffers */

buffer[in] = item;

in = (in + 1) % BUFFER SIZE;

Operating System Concepts — 8t Edition 3.29 Silberschatz, Galvin and Gagne ©2009

™

x.’.“‘w’“i
“#7’ Bounded Buffer — Consumer

while (true) {
while (in == out)
; I/ do nothing -- nothing to consume

// remove an item from the buffer

item = buffer[out];

out = (out + 1) % BUFFER SIZE;
return item;

}

Operating System Concepts — 8t Edition 3.30 Silberschatz, Galvin and Gagne ©2009

™
Ik" ':;’.'-f

Interprocess Communication — Message Passing

® Mechanism for processes to communicate and to synchronize their actions

B Message system — processes communicate with each other without
resorting to shared variables

m |PC facility provides two operations:
e send(message) — message size fixed or variable
e receive(message)
m [f P and Q wish to communicate, they need to:
e establish a communication link between them
e exchange messages via send/receive
B |Implementation of communication link
e physical (e.g., shared memory, hardware bus)
e logical (e.g., logical properties)

D

s ,h‘?r\,
Operating System Concepts — 8t Edition 3.31 Silberschatz, Galvin and Gagne ©2009

=

.

r & Implementation Questions

How are links established?
Can a link be associated with more than two processes?

How many links can there be between every pair of communicating
processes?

What is the capacity of a link?
Is the size of a message that the link can accommodate fixed or variable?
Is a link unidirectional or bi-directional?

Operating System Concepts — 8t Edition 3.32 Silberschatz, Galvin and Gagne ©2009

=

an)

r & Direct Communication

B Processes must name each other explicitly:
e send (P, message) — send a message to process P
e receive(Q, message) — receive a message from process Q
B Properties of communication link
e Links are established automatically
e Alink is associated with exactly one pair of communicating processes
e Between each pair there exists exactly one link
e The link may be unidirectional, but is usually bi-directional

Operating System Concepts — 8t Edition 3.33 Silberschatz, Galvin and Gagne ©2009

™=

.

r & Indirect Communication

B Messages are directed and received from mailboxes (also referred to as
ports)

e Each mailbox has a unique id
e Processes can communicate only if they share a mailbox
® Properties of communication link
e Link established only if processes share a common mailbox
e A link may be associated with many processes
e Each pair of processes may share several communication links
e Link may be unidirectional or bi-directional

Operating System Concepts — 8t Edition 3.34 Silberschatz, Galvin and Gagne ©2009

=

ey

! Indirect Communication

® Operations
e create a new mailbox
e send and receive messages through mailbox
e destroy a mailbox
® Primitives are defined as:
send(A, message) — send a message to mailbox A
receive(A, message) — receive a message from mailbox A

Operating System Concepts — 8t Edition 3.35 Silberschatz, Galvin and Gagne ©2009

b _ L
2 Indirect Communication

® Mailbox sharing
e P,, P,, and P share mailbox A
e P, sends; P, and P, receive
e Who gets the message?
m Solutions
e Allow a link to be associated with at most two processes
e Allow only one process at a time to execute a receive operation

e Allow the system to select arbitrarily the receiver. Sender is notified
who the receiver was.

Operating System Concepts — 8t Edition 3.36 Silberschatz, Galvin and Gagne ©2009

™=

.

> & Synchronization

B Message passing may be either blocking or non-blocking
B Blocking is considered synchronous

e Blocking send has the sender block until the message is
received

e Blocking receive has the receiver block until a message is
available

® Non-blocking is considered asynchronous
e Non-blocking send has the sender send the message and

continue
e Non-blocking receive has the receiver receive a valid message
or null
£
e)
fa
Operating System Concepts — 8t Edition 3.37 Silberschatz, Galvin and Gagne ©2009
=
p—
Ce W :
> Buffering

B Queue of messages attached to the link; implemented in one of three
ways

1. Zero capacity — 0 messages
Sender must wait for receiver (rendezvous)

2. Bounded capacity — finite length of n messages
Sender must wait if link full

3. Unbounded capacity — infinite length
Sender never waits

Operating System Concepts — 8t Edition 3.38 Silberschatz, Galvin and Gagne ©2009

=

an)

“»7’ Examples of IPC Systems - POSIX

® POSIX Shared Memory
e Process first creates shared memory segment

segment id = shmget(I1PC PRIVATE, size, S IRUSR | S
IWUSR) ;

e Process wanting access to that shared memory must attach to it
shared memory = (char *) shmat(id, NULL, 0);

e Now the process could write to the shared memory
sprintf(shared memory, "Writing to shared memory');

e When done a process can detach the shared memory from its address
space

shmdt(shared memory);

Py

__ S50
Operating System Concepts — 8" Edition 3.39 Silberschatz, Galvin and Gagne ©2009
™
S
»7" Examples of IPC Systems - Mach
B Mach communication is message based
e Even system calls are messages
e Each task gets two mailboxes at creation- Kernel and Notify
e Only three system calls needed for message transfer
msg_send(), msg_receive(), msg_rpc()
e Mailboxes needed for commuication, created via
port_allocate()
D

W

-5l

Operating System Concepts — 8t Edition 3.40 Silberschatz, Galvin and Gagne ©2009

=

an)

“#7/ Examples of IPC Systems — Windows XP

B Message-passing centric via local procedure call (LPC) facility
e Only works between processes on the same system

e Uses ports (like mailboxes) to establish and maintain communication
channels

e Communication works as follows:
» The client opens a handle to the subsystem’s connection port object
» The client sends a connection request

» The server creates two private communication ports and returns the
handle to one of them to the client

» The client and server use the corresponding port handle to send
messages or callbacks and to listen for replies

Operating System Concepts — 8" Edition 3.41 Silberschatz, Galvin and Gagne ©2009

=

an)

“#7/ Local Procedure Calls in Windows XP

Client Senvar
Connection
request | Connecticn Handle
- Port =
Handle Client

A

Communication Port
A

Y
Server Handle
Communication Port

L 4

Shared
Section Object 1«
(< = 256 bytes)

[
) 4
\ 4

Operating System Concepts — 8t Edition 3.42 Silberschatz, Galvin and Gagne ©2009

™

.
bl
»” Communications in Client-Server Systems

B Sockets
B Remote Procedure Calls
® Remote Method Invocation (Java)

Operating System Concepts — 8" Edition 3.43 Silberschatz, Galvin and Gagne ©2009

> Sockets

A socket is defined as an endpoint for communication
Concatenation of IP address and port

The socket 161.25.19.8:1625 refers to port 1625 on host
161.25.19.8

®m Communication consists between a pair of sockets

Operating System Concepts — 8" Edition 3.44 Silberschatz, Galvin and Gagne ©2009

..'W?N-l

s . ;

r) Socket Communication

host X
(146.86.5.20)
socket
(146.86.5.20:1625)
web server
(161.25.19.8)
socket
(161.25.19.8:80)
Operating System Concepts — 8" Edition 3.45 Silberschatz, Galvin and Gagn-e ©2089
&.‘-r‘f":ﬂ' i
e Remote Procedure Calls

B Remote procedure call (RPC) abstracts procedure calls between processes
on networked systems

Stubs — client-side proxy for the actual procedure on the server
The client-side stub locates the server and marshalls the parameters

The server-side stub receives this message, unpacks the marshalled
parameters, and peforms the procedure on the server

Operating System Concepts — 8t Edition 3.46 Silberschatz, Galvin and Gagne ©2009

(P g 4 -
o &5 b
r Execution of RPC
client messages server
user calls kernel
to send RPC
message to
procedure X
From: client
kernel ser:ds @ matqhmaker
message to e Al receives
matchmaker to Re: address message, looks
find port number for RPC X up answer
From: server
kernel places To: client matchmaker
port Pin user Port: kernel replies to client
RPC message Re: RPC X with port P
Port: P
From: client daemon
kernel sends To: server listening to
RPC Port: port P port P receives
<contents> message
From: RPC daemon
kernel receives Port: P processes
reply, p To: client request and
it to user Port: kernel processes send
<output> output

Operating System Concepts — 8" Edition

3.47

Silberschatz, Galvin and Gagnhe ©2009

Remote Method Invocation

® Remote Method Invocation (RMI) is a Java mechanism similar to RPCs

® RMI allows a Java program on one machine to invoke a method on a

remote object

JVM

Java ®-
program

Operating System Concepts — 8" Edition

3.48

JVM

-‘

remote |
object j

fa.

Silberschatz, Galvin and Gagne ©2009

.|
r o Marshalling Parameters
client remote object
val = server.someMethod(A,B) boolean someMethod (Object x, Object y)
\ { implementation of someMethod
}

., P |
stub skeleton

3 A

A, B, someMethod

boolean return value

Operating System Concepts — 8" Edition 3.49 Silberschatz, Galvin and Gagne ©2009

End of Chapter 3

Operating System Concepts — 8" Edition, Silberschatz, Galvin and Gagne ©2009

