
Chapter 5: ProcessChapter 5:  Process 
SchedulingScheduling 

Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition,

Chapter 5: Process Scheduling

Basic Concepts

Scheduling Criteria 

Scheduling Algorithms

Thread SchedulingThread Scheduling

Multiple-Processor Scheduling

Operating Systems Examples

Algorithm Evaluation

5.2 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition



Objectives

To introduce process scheduling, which is the basis for multiprogrammed 
operating systemsoperating systems

To describe various process-scheduling algorithms

To discuss evaluation criteria for selecting a process-scheduling algorithm 
for a particular system

5.3 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Basic Concepts

Maximum CPU utilization obtained with multiprogramming

CPU–I/O Burst Cycle – Process execution consists of a cycle of 
CPU execution and I/O wait

CPU burst distribution

5.4 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition



Histogram of CPU-burst Times

5.5 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Alternating Sequence of CPU And I/O Bursts

5.6 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition



CPU Scheduler

Selects from among the processes in memory that are ready to execute, 
and allocates the CPU to one of themand allocates the CPU to one of them

CPU scheduling decisions may take place when a process:

1. Switches from running to waiting state

2. Switches from running to ready state

3. Switches from waiting to ready

4. Terminates

Scheduling under 1 and 4 is nonpreemptive

All other scheduling is preemptiveAll other scheduling is preemptive

5.7 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Dispatcher

Dispatcher module gives control of the CPU to the process 
selected by the short-term scheduler; this involves:

switching context

switching to user modeswitching to user mode

jumping to the proper location in the user program to restart 
that program

Dispatch latency – time it takes for the dispatcher to stop one 
process and start another running

5.8 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition



Scheduling Criteria

CPU utilization – keep the CPU as busy as possible

Throughput – # of processes that complete their execution per 
time unit

Turnaround time – amount of time to execute a particular processp p

Waiting time – amount of time a process has been waiting in the 
ready queue

Response time amount of time it takes from when a request wasResponse time – amount of time it takes from when a request was 
submitted until the first response is produced, not output  (for time-
sharing environment)

5.9 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Scheduling Algorithm Optimization Criteria

Max CPU utilization

Max throughput

Min turnaround time 

Min waiting time 

Min response time

5.10 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition



First-Come, First-Served (FCFS) Scheduling

Process Burst Time

P1 24

P2 3

P 3P3 3

Suppose that the processes arrive in the order: P1 , P2 , P3  
The Gantt Chart for the schedule is:

P1 P2 P3

Waiting time for P1 = 0; P2 = 24; P3 = 27

24 27 300

Average waiting time:  (0 + 24 + 27)/3 = 17

5.11 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

FCFS Scheduling (Cont)

Suppose that the processes arrive in the order

P P PP2 , P3 , P1

The Gantt chart for the schedule is:

P1P3P2

Waiting time for P1 = 6; P2 = 0; P3 = 3

Average waiting time: (6 + 0 + 3)/3 = 3

63 300

Average waiting time:   (6 + 0 + 3)/3 = 3

Much better than previous case

Convoy effect short process behind long processy p g p

5.12 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition



Shortest-Job-First (SJF) Scheduling

Associate with each process the length of its next CPU burst.  Use these 
lengths to schedule the process with the shortest timelengths to schedule the process with the shortest time

SJF is optimal – gives minimum average waiting time for a given set of 
processes

The difficulty is knowing the length of the next CPU request

5.13 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Example of SJF

Process Arrival Time Burst Time

P 0 0 6P1 0.0 6

P2 2.0 8

P3 4 0 7P3 4.0 7

P4 5.0 3

SJF scheduling chart

P4 P3P1
P2

Average waiting time = (3 + 16 + 9 + 0) / 4 = 7

3 160 9 24

Average waiting time = (3 + 16 + 9 + 0) / 4 = 7

5.14 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition



Determining Length of Next CPU Burst

Can only estimate the length

C b d b i th l th f i CPU b t i ti lCan be done by using the length of previous CPU bursts, using exponential 
averaging

b tCPUfl tht l1 tht

103

burst  CPU next the for value predicted   2.

burst  CPU of length  actual  1.

≤≤
=

=

+τ 1n

th
n nt

:Define  4.

10 ,  3. ≤≤αα
( ) .11 nnn t ταατ −+==

5.15 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Prediction of the Length of the Next CPU Burst

5.16 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition



Examples of Exponential Averaging

α =0

=τn+1 = τn

Recent history does not count

α =1

τn+1 = α tn
Only the actual last CPU burst counts

If we expand the formula we get:If we expand the formula, we get:

τn+1 = α tn+(1 - α)α tn -1 + …

+(1 - α )j α tn -j + …j

+(1 - α )n +1 τ0

Since both α and (1 - α) are less than or equal to 1, each successive term 
has less weight than its predecessor

5.17 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Priority Scheduling

A priority number (integer) is associated with each process

Th CPU i ll t d t th ith th hi h t i it ( ll tThe CPU is allocated to the process with the highest priority (smallest 
integer ≡ highest priority)

Preemptive

nonpreemptive

SJF is a priority scheduling where priority is the predicted next CPU burst 
timetime

Problem ≡ Starvation – low priority processes may never execute

Solution ≡ Aging – as time progresses increase the priority of the processg g p g p y p

5.18 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition



Round Robin (RR)

Each process gets a small unit of CPU time (time quantum), 
usually 10-100 milliseconds.  After this time has elapsed, the 
process is preempted and added to the end of the ready queue.

If there are n processes in the ready queue and the timeIf there are n processes in the ready queue and the time 
quantum is q, then each process gets 1/n of the CPU time in 
chunks of at most q time units at once.  No process waits more 
than (n-1)q time units.( )q

Performance

q large ⇒ FIFO

q small ⇒ q must be large with respect to context switch, 
otherwise overhead is too high

5.19 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Example of RR with Time Quantum = 4

Process Burst TimeProcess Burst Time

P1 24

P2 3

P3 3

The Gantt chart is:The Gantt chart is: 

P P P P P P P P

T i ll hi h t d th SJF b t b tt

P1 P2 P3 P1 P1 P1 P1 P1

0 4 7 10 14 18 22 26 30

Typically, higher average turnaround than SJF, but better response

5.20 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition



Time Quantum and Context Switch Time

5.21 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Turnaround Time Varies With The Time Quantum

5.22 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition



Multilevel Queue

Ready queue is partitioned into separate queues:
foreground (interactive)foreground (interactive)
background (batch)

Each queue has its own scheduling algorithm

foreground – RR

background – FCFS

Scheduling must be done between the queuesScheduling must be done between the queues

Fixed priority scheduling; (i.e., serve all from foreground then from 
background).  Possibility of starvation.

Time slice – each queue gets a certain amount of CPU time which it can 
schedule amongst its processes; i.e., 80% to foreground in RR

20% to background in FCFS20% to background in FCFS 

5.23 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Multilevel Queue Scheduling

5.24 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition



Multilevel Feedback Queue

A process can move between the various queues; aging can beA process can move between the various queues; aging can be 
implemented this way

Multilevel-feedback-queue scheduler defined by the following 
parameters:parameters:

number of queues

scheduling algorithms for each queueg g q

method used to determine when to upgrade a process

method used to determine when to demote a process

method used to determine which queue a process will enter 
when that process needs service

5.25 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Example of Multilevel Feedback Queue

Three queues: 

Q RR ith ti t 8 illi dQ0 – RR with time quantum 8 milliseconds

Q1 – RR time quantum 16 milliseconds

Q2 – FCFSQ2 FCFS

Scheduling

A new job enters queue Q0 which is served FCFS. When it gains CPU, 
job receives 8 milliseconds.  If it does not finish in 8 milliseconds, job is 
moved to queue Q1.

At Q1 job is again served FCFS and receives 16 additional milliseconds.  Q1 j g
If it still does not complete, it is preempted and moved to queue Q2.

5.26 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition



Multilevel Feedback Queues

5.27 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Thread Scheduling

Di ti ti b t l l d k l l l th dDistinction between user-level and kernel-level threads

Many-to-one and many-to-many models, thread library schedules 
user-level threads to run on LWP

Known as process-contention scope (PCS) since scheduling 
competition is within the process

Kernel thread scheduled onto available CPU is system-contention 
scope (SCS) – competition among all threads in system

5.28 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition



Pthread Scheduling

API ll if i ith PCS SCS d i th d tiAPI allows specifying either PCS or SCS during thread creation

PTHREAD SCOPE PROCESS schedules threads using PCS 
scheduling

PTHREAD SCOPE SYSTEM schedules threads using SCS 
scheduling.

5.29 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Pthread Scheduling API

#include <pthread.h>
#include <stdio.h>
#define NUM THREADS 5
int main(int argc, char *argv[])
{

int i;int i;
pthread t tid[NUM THREADS];
pthread attr t attr;
/* get the default attributes */
pthread attr init(&attr);
/* set the scheduling algorithm to PROCESS or SYSTEM */
pthread attr setscope(&attr, PTHREAD SCOPE SYSTEM);
/* set the scheduling policy FIFO RT or OTHER *//* set the scheduling policy - FIFO, RT, or OTHER */
pthread attr setschedpolicy(&attr, SCHED OTHER);
/* create the threads */
for (i = 0; i < NUM THREADS; i++)

pthread create(&tid[i],&attr,runner,NULL);

5.30 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition



Pthread Scheduling API

/* no join on each thread *//* now join on each thread */

for (i = 0; i < NUM THREADS; i++)

pthread join(tid[i], NULL);

}

/* Each thread will begin control in this function */

void *runner(void *param)void runner(void param)

{ 

printf("I am a thread\n");

pthread exit(0);

}

5.31 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Multiple-Processor Scheduling

CPU scheduling more complex when multiple CPUs are g p p
available

Homogeneous processors within a multiprocessor

A t i lti i lAsymmetric multiprocessing – only one processor 
accesses the system data structures, alleviating the need 
for data sharing

Symmetric multiprocessing  (SMP) – each processor 
is self-scheduling, all processes in common ready queue, 
or each has its own private queue of ready processes

Processor affinity – process has affinity for processor 
on which it is currently running

soft affinitysoft affinity

hard affinity

5.32 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition



NUMA and CPU Scheduling

5.33 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Multicore Processors

Recent trend to place multiple processor cores on same physical chip

F t d lFaster and consume less power

Multiple threads per core also growing

Takes advantage of memory stall to make progress on another threadTakes advantage of memory stall to make progress on another thread 
while memory retrieve happens

5.34 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition



Multithreaded Multicore System

5.35 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Operating System Examples

Solaris schedulingSolaris scheduling

Windows XP scheduling

Linux scheduling

5.36 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition



Solaris Dispatch Table 

5.37 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Solaris Scheduling

5.38 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition



Windows XP Priorities

5.39 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Linux Scheduling

Constant order O(1) scheduling time

Two priority ranges: time-sharing and real-time

Real-time range from 0 to 99 and nice value from 100 to 140

(figure 5 15)(figure 5.15)

5.40 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition



Priorities and Time-slice length

5.41 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

List of Tasks Indexed According to Priorities

5.42 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition



Algorithm Evaluation

Deterministic modeling – takes a particular 
predetermined workload and defines the performance of 
each algorithm  for that workload

Queueing modelsQueue g ode s

Implementation

5.43 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Evaluation of CPU schedulers by Simulation

5.44 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition



End of Chapter 5End of Chapter 5

Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition,

5.08

5.46 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition



In-5.7

5.47 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

In-5.8

5.48 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition



In-5.9

5.49 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Dispatch Latency

5.50 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition



Java Thread Scheduling

JVM U P ti P i it B d S h d li Al ithJVM Uses a Preemptive, Priority-Based Scheduling Algorithm

FIFO Queue is Used if There Are Multiple Threads With the Same Priority

5.51 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Java Thread Scheduling (cont)

JVM Schedules a Thread to Run When:

1. The Currently Running Thread Exits the Runnable State

2 A Higher Priority Thread Enters the Runnable State2. A Higher Priority Thread Enters the Runnable State

* Note – the JVM Does Not Specify Whether Threads are Time-Sliced or Not

5.52 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition



Time-Slicing

Since the JVM Doesn’t Ensure Time-Slicing, the yield() Method 

May Be Used:

while (true) {while (true) {

// perform CPU-intensive task

. . .

Thread.yield();

}

This Yields Control to Another Thread of Equal Priority

5.53 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Thread Priorities

Priority Comment

Thread.MIN_PRIORITY Minimum Thread Priority

Th d MAX PRIORITY M i Th d P i itThread.MAX_PRIORITY Maximum Thread Priority

Thread.NORM_PRIORITY Default Thread Priority

Priorities May Be Set Using setPriority() method:

setPriority(Thread.NORM_PRIORITY + 2);

5.54 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition



Solaris 2 Scheduling

5.55 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition


