Chapter 5. Process
Scheduling

Operating System Concepts — 8" Edition, Silberschatz, Galvin and Gagne ©2009

™

""‘3_,_"._’ Chapter 5: Process Scheduling

Basic Concepts

Scheduling Criteria
Scheduling Algorithms

Thread Scheduling
Multiple-Processor Scheduling
Operating Systems Examples

Algorithm Evaluation

Operating System Concepts — 8" Edition 52 Silberschatz, Galvin and Gagne ©2009

=

N
Y ;

.l Objectives

B To introduce process scheduling, which is the basis for multiprogrammed
operating systems

To describe various process-scheduling algorithms

To discuss evaluation criteria for selecting a process-scheduling algorithm
for a particular system

Operating System Concepts — 8t Edition 5.3 Silberschatz, Galvin and Gagne ©2009

N _
2 Basic Concepts

Maximum CPU utilization obtained with multiprogramming

CPU-I/O Burst Cycle — Process execution consists of a cycle of
CPU execution and I/0O wait

® CPU burst distribution

Operating System Concepts — 8t Edition 5.4 Silberschatz, Galvin and Gagne ©2009

“%7/ Histogram of CPU-burst Times

160

140 \

120 \
3 100
N
=]

g 8o

60 \
40 \
20 \

0 8 16 24 32 40
burst duration (milliseconds)

Y

A Iy
Operating System Concepts — 8" Edition 5.5 Silberschatz, Galvin and Gagne ©2009

=
Alternating Sequence of CPU And 1/O Bursts

load store
add store CPU bhurst
read from file

wait for I/O 1/0 burst
store increment
index CPU burst
write to file

wait for I/O 1/0 burst
load store
add store CPU burst

read from file

wait for /O 1/0 burst

A Iy
Operating System Concepts — 8" Edition 5.6 Silberschatz, Galvin and Gagne ©2009

v}

2 CPU Scheduler

m Selects from among the processes in memory that are ready to execute,
and allocates the CPU to one of them

B CPU scheduling decisions may take place when a process:
1. Switches from running to waiting state
2. Switches from running to ready state
3. Switches from waiting to ready
4. Terminates
Scheduling under 1 and 4 is nonpreemptive
All other scheduling is preemptive

D

s ,h‘?r\,
Operating System Concepts — 8" Edition 5.7 Silberschatz, Galvin and Gagne ©2009

an)

X Dispatcher

m Dispatcher module gives control of the CPU to the process
selected by the short-term scheduler; this involves:

e switching context
e switching to user mode

e jumping to the proper location in the user program to restart
that program

m Dispatch latency — time it takes for the dispatcher to stop one
process and start another running

Operating System Concepts — 8t Edition 5.8 Silberschatz, Galvin and Gagne ©2009

v}

S5 Scheduling Criteria

CPU utilization — keep the CPU as busy as possible

Throughput — # of processes that complete their execution per
time unit

Turnaround time — amount of time to execute a particular process

Waiting time — amount of time a process has been waiting in the
ready queue

B Response time — amount of time it takes from when a request was
submitted until the first response is produced, not output (for time-
sharing environment)

Operating System Concepts — 8t Edition 5.9 Silberschatz, Galvin and Gagne ©2009

=

an)

“#Scheduling Algorithm Optimization Criteria

Max CPU utilization
Max throughput
Min turnaround time
Min waiting time

Min response time

Operating System Concepts — 8t Edition 5.10 Silberschatz, Galvin and Gagne ©2009

=

an)

"’},_"’First-Come, First-Served (FCFS) Scheduling

Process Burst Time
P, 24
P, 3
P 3

®m Suppose that the processes arrive in the order: P, , P, , P,
The Gantt Chart for the schedule is:

Py P, Ps

0 24 27 30
® Waiting time for P, =0; P, =24, P;=27
B Average waiting time: (0 + 24 + 27)/3 = 17

Operating System Concepts — 8t Edition 511 Silberschatz, Galvin and Gagne ©2009

ey

g FCFS Scheduling (Cont)

Suppose that the processes arrive in the order
P,,Ps;,P;
® The Gantt chart for the schedule is:

P, Ps Py

0 3 6 30
Waiting time for P, = 6;P, =0.P;=3
Average waiting time: (6 +0+ 3)/3=3
Much better than previous case

Convoy effect short process behind long process

Operating System Concepts — 8t Edition 5.12 Silberschatz, Galvin and Gagne ©2009

PN . i
“#7’Shortest-Job-First (SJF) Scheduling

B Associate with each process the length of its next CPU burst. Use these
lengths to schedule the process with the shortest time

® SJF is optimal — gives minimum average waiting time for a given set of
processes

e The difficulty is knowing the length of the next CPU request

Operating System Concepts — 8t Edition 5.13 Silberschatz, Galvin and Gagne ©2009

r o Example of SJF

Process Arrival Time Burst Time
P, 0.0 6
P, 2.0 8
P, 4.0 7
P, 5.0 3

® SJF scheduling chart

P, P, P3 P,

0 3 9 16 24
B Average waitingtime=(3+16+9+0)/4=7

Operating System Concepts — 8t Edition 5.14 Silberschatz, Galvin and Gagne ©2009

w’i'—”f' betermining Length of Next CPU Burst

® Can only estimate the length
® Can be done by using the length of previous CPU bursts, using exponential

averaging
1. t, =actual lengthof n" CPU burst
2. 7,1 =predictedvalue for the next CPU burst
3. 2,0<5a<1
4. Define: ru=at +(1-a),

Operating System Concepts — 8t Edition 5.15 Silberschatz, Galvin and Gagne ©2009

=

f.ﬁf""“i “'
“#”Prediction of the Length of the Next CPU Burst

12

T 10

CPU burst (t) 6 4 6 4 13 13 13

"guess" (1) 10 8 6 6 5 9 11 12

Operating System Concepts — 8t Edition 5.16 Silberschatz, Galvin and Gagne ©2009

=

an)

“#”/Examples of Exponential Averaging

m a=0
® Thi1 =Ty
e Recent history does not count
m o=1
* Ty =atl,
e Only the actual last CPU burst counts
m If we expand the formula, we get:
T =—at+l-a)at, -1+ ..
+H1-oaYat, ;j+..
+H1-a)" 1

® Since both a and (1 - o) are less than or equal to 1, each successive term
has less weight than its predecessor

A
— -’T}’Eﬁr‘ ,

Operating System Concepts — 8t Edition 5.17 Silberschatz, Galvin and Gagne ©2009

ey

h,,.- Priority Scheduling

A priority number (integer) is associated with each process

The CPU is allocated to the process with the highest priority (smallest
integer = highest priority)

e Preemptive
e nonpreemptive

m SJF is a priority scheduling where priority is the predicted next CPU burst
time

Problem = Starvation — low priority processes may never execute
Solution = Aging — as time progresses increase the priority of the process

Ay
— -’}Eﬁr‘ ,

Operating System Concepts — 8t Edition 5.18 Silberschatz, Galvin and Gagne ©2009

v}

577 Round Robin (RR)

® Each process gets a small unit of CPU time (time quantum),
usually 10-100 milliseconds. After this time has elapsed, the
process is preempted and added to the end of the ready queue.

m If there are n processes in the ready queue and the time
guantum is g, then each process gets 1/n of the CPU time in
chunks of at most g time units at once. No process waits more
than (n-1)q time units.

® Performance
e qlarge = FIFO

e g small = g must be large with respect to context switch,
otherwise overhead is too high

P

- ﬁ»‘l

Operating System Concepts — 8t Edition 5.19 Silberschatz, Galvin and Gagne ©2009

=

--r-al

> Example of RR with Time Quantum =4

Process Burst Time
P, 24
P, 3
P, 3

B The Gantt chartis:

Py | Py | P3| P | Py | Py P Py

0O 4 7 10 14 18 22 26 30

®m Typically, higher average turnaround than SJF, but better response

P

P -‘-. “\l

Operating System Concepts — 8t Edition 5.20 Silberschatz, Galvin and Gagne ©2009

=

“%7/ Time Quantum and Context Switch Time

process time = 10 quantum context
switches
12 0
0 10
6 1
0 6 10
1 9

Operating System Concepts — 8" Edition 5.21 Silberschatz, Galvin and Gagne ©2009

“$urnaround Time Varies With The Time Quantum

L

process | time
12.5 P 6
)

12.0 A P, 3
. \ P, 1
£ 115 P, 7
% 11.0 \
3 A4
g 105
2
& 100
o
S 95

9.0

1 2 3 4 5 6 7
time quantum

)

AN

L

Operating System Concepts — 8" Edition 5.22 Silberschatz, Galvin and Gagne ©2009

ey

"-':s i

Multilevel Queue

Operating System Concepts — 8" Edition

Ready queue is partitioned into separate queues:
foreground (interactive)
background (batch)

Each queue has its own scheduling algorithm
e foreground — RR
e background — FCFS

Scheduling must be done between the queues

e Fixed priority scheduling; (i.e., serve all from foreground then from

background). Possibility of starvation.

Time slice — each queue gets a certain amount of CPU time which it can
schedule amongst its processes; i.e., 80% to foreground in RR

20% to background in FCFS

Silberschatz, Galvin and Gagnhe ©2009

5.23

v}

(O :s’r J

=

Multilevel Queue Scheduling

Operating System Concepts — 8" Edition

highest priority

T system processes >
| interactive processes —————
— interactive editing processes —_—
| batch processes ==
m— student processes —

lowest priority

Silberschatz, Galvin and Gagne ©2009

5.24

=

-

“#77 Multilevel Feedback Queue

B A process can move between the various queues; aging can be
implemented this way

® Multilevel-feedback-queue scheduler defined by the following
parameters:

e number of queues

e scheduling algorithms for each queue

e method used to determine when to upgrade a process
e method used to determine when to demote a process

e method used to determine which queue a process will enter
when that process needs service

D

s ,h‘?r\,
Operating System Concepts — 8t Edition 5.25 Silberschatz, Galvin and Gagne ©2009

=

an)

“#7/ Example of Multilevel Feedback Queue

® Three queues:
e Q, - RR with time quantum 8 milliseconds
e Q, — RRtime quantum 16 milliseconds
e Q,-FCFS

® Scheduling

e A new job enters queue Q, which is served FCFS. When it gains CPU,
job receives 8 milliseconds. If it does not finish in 8 milliseconds, job is
moved to queue Q;.

e At Q, jobis again served FCFS and receives 16 additional milliseconds.
If it still does not complete, it is preempted and moved to queue Q,.

e

-5l

Operating System Concepts — 8t Edition 5.26 Silberschatz, Galvin and Gagne ©2009

“#77 Multilevel Feedback Queues

il

v

Y

quantum = 8

il N
> guantum = 16
»
- FCFS
Operating System Concepts — 8t Edition 5.27 Silberschatz, Galvin and Gagne ©2009

5P Thread Scheduling

Distinction between user-level and kernel-level threads

Many-to-one and many-to-many models, thread library schedules
user-level threads to run on LWP

e Known as process-contention scope (PCS) since scheduling
competition is within the process

m Kernel thread scheduled onto available CPU is system-contention
scope (SCS) — competition among all threads in system

Operating System Concepts — 8t Edition 5.28 Silberschatz, Galvin and Gagne ©2009

v}

S5 Pthread Scheduling

® API allows specifying either PCS or SCS during thread creation
e PTHREAD SCOPE PROCESS schedules threads using PCS

scheduling
e PTHREAD SCOPE SYSTEM schedules threads using SCS
scheduling.
Operating System Concepts — 8" Edition 5.29 Silberschatz, Galvin and Gagne ©2009

=

ey

r & Pthread Scheduling AP

#include <pthread.h>
#include <stdio.h>
#define NUM THREADS 5
int main(int argc, char *argv(])
{
int i
pthread t tid(NUM THREADS];
pthread attr t attr;
/* get the default attributes */
pthread attr init(&attr);
/* set the scheduling algorithm to PROCESS or SYSTEM */
pthread attr setscope(&attr, PTHREAD SCOPE SYSTEM);
/* set the scheduling policy - FIFO, RT, or OTHER */
pthread attr setschedpolicy(&attr, SCHED OTHER);
[* create the threads */
for (i=0; i < NUM THREADS; i++)
pthread create(&tid[i],&attr,runner,NULL);

Operating System Concepts — 8t Edition 5.30 Silberschatz, Galvin and Gagne ©2009

=

--r-al

& Pthread Scheduling AP

/* now join on each thread */
for (i=0;i < NUM THREADS; i++)
pthread join(tid[i], NULL);
}
/* Each thread will begin control in this function */
void *runner(void *param)

printf("l am a thread\n");
pthread exit(0);
£
G
Operating System Concepts — 8t Edition 5.31 Silberschatz, Galvin and Gagne ©2009

™.

an)

“%77 Multiple-Processor Scheduling

® CPU scheduling more complex when multiple CPUs are
available

® Homogeneous processors within a multiprocessor

B Asymmetric multiprocessing — only one processor
accesses the system data structures, alleviating the need
for data sharing

B Symmetric multiprocessing (SMP) — each processor
is self-scheduling, all processes in common ready queue,
or each has its own private queue of ready processes

® Processor affinity — process has affinity for processor
on which it is currently running

e soft affinity
e hard affinity

s =3 ’\\\[
-)’}‘}E‘,

Operating System Concepts — 8t Edition 5.32 Silberschatz, Galvin and Gagne ©2009

“#”7 NUMA and CPU Scheduling

CPU CPU
\ s
fast access % fast access
Ss
\

memory memaory

computer
Operating System Concepts — 8t Edition 5.33 Silberschatz, Galvin and Gagnl-ek ©2089
™=
‘h z’.':whi.
Lol v -
» Multicore Processors

® Recent trend to place multiple processor cores on same physical chip
m Faster and consume less power
® Multiple threads per core also growing

e Takes advantage of memory stall to make progress on another thread
while memory retrieve happens

Operating System Concepts — 8t Edition 5.34 Silberschatz, Galvin and Gagne ©2009

Ei S

“#77 Multithreaded Multicore System

C compute cycle M memory stall cycle

_thread | S M c M C M c M

time

Operating System Concepts — 8t Edition 5.35 Silberschatz, Galvin and Gagne ©2009

) _
""“”‘},_’_’ Operating System Examples

m Solaris scheduling
® Windows XP scheduling
® Linux scheduling

fa.

Operating System Concepts — 8" Edition 5.36 Silberschatz, Galvin and Gagne ©2009

’»*m'k . .
r o Solaris Dispatch Table

time return
time quantum from
priority quantum expired sleep
0 200 0 50
5 200 0 50
10 160 0 51
15 160 5 51
20 120 10 52
25 120 b 52
30 80 20 53
35 80 25 54
40 40 30 55
45 40 35 56
50 40 40 58
55 40 45 58
59 20 49 59
Operating System Concepts — 8" Edition 5.37 Silberschatz, Galvin and Gagne ©2009

/ﬂ*m'& I -
&1 Solaris Scheduling

global scheduling
priority order
L 169 4
highest first
ghes interrupt threads s
160
159
realtime (RT) threads
100
88
system (SYS) threads
60
59 | fair share (FSS) threads
fixed priority (FX) threads
timeshare (TS) threads
int i{] 1A) thread
lowest ¥ 0 interactive (1A} threads ¥ last

Operating System Concepts — 8" Edition 5.38 Silberschatz, Galvin and Gagne ©2009

—
S,‘/’ 4 . . ., .
r Windows XP Priorities
real- . above below idle
time high normal normal normal priority
time-critical 31 1% iI5 15 15 15
highest 26 15 12 10 8 6
above normal 25 14 11 9 7/ 5
normal 24 13 10 8 6 4
below normal 23 12 9 7 5 3
lowest 22 11 8 6 4 2
idle 16 1 1 1 1 1
v
Operating System Concepts — 8" Edition 5.39 Silberschatz, Galvin and Gagne ©2009
=
&.._ﬁ’-""“ﬁ, . .
7 Linux Scheduling

® Constant order O(1) scheduling time

® Two priority ranges: time-sharing and real-time

® Real-time range from 0 to 99 and nice value from 100 to 140
m (figure 5.15)

rj,ﬁﬁjr

Operating System Concepts — 8t Edition 5.40 Silberschatz, Galvin and Gagne ©2009

™

«¢%” Priorities and Time-slice length
numeric relative time
priority priority quantum

0 highest 200 ms
* real-time
* tasks
®
99
100
: other
. tasks
140 lowest 10 ms

=

.’.""—’J -
“®7/ List of Tasks Indexed According to Priorities

active
array
priority task lists
[0] O—O
[1] o—CO——=o0
[140] @)

Operating System Concepts — 8" Edition 5.42

expired
array
priority task lists
[0] oo
[1] O
[140] o0—0O

Silberschatz, Galvin and Gagne ©2009

x,--f.'"’}&f . .
N Algorithm Evaluation

® Deterministic modeling — takes a particular
predetermined workload and defines the performance of
each algorithm for that workload

Queueing models
Implementation

Operating System Concepts — 8" Edition 5.43 Silberschatz, Galvin and Gagne ©2009

=

,ﬂ’-"mj)
“%7/ Evaluation of CPU schedulers by Simulation

.) performance
simulation =5 statistics

for FCFS
FCFS

CPU 10
/0 213
actual CPU 12 performance
process —/l/0 12— simulation = statistics
execution CPU 2 for SJF
/o 147
CPU 173 SJF

trace tape

performance
simulation —> statistics
for RR (g = 14)

RR (g = 14)

fa.

Operating System Concepts — 8t Edition 5.44 Silberschatz, Galvin and Gagne ©2009

End of Chapter 5

Operating System Concepts — 8" Edition, Silberschatz, Galvin and Gagne ©2009

’.fm‘l
7 5.08

logical | | logical logical | | logical
CPU CPU CPU CPU

physical physical
CPU CPU

system bus

Operating System Concepts — 8" Edition 5.46 Silberschatz, Galvin and Gagne ©2009

.
r o In-5.7

0 10 39 42 49 61

Operating System Concepts — 8" Edition 5.47 Silberschatz, Galvin and Gagne ©2009

o
7 In-5.8

Operating System Concepts — 8" Edition 5.48 Silberschatz, Galvin and Gagne ©2009

o
hr o In-5.9

Operating System Concepts — 8" Edition 5.49 Silberschatz, Galvin and Gagne ©2009

g,/""'} -
I Dispatch Latency

avarl respanss o evant

response interval e

process made
intarrupt available
processing

——— dispatch latancy ———————m

real-time
process
exacution
— conflicts dispatch —m
—
time

fa

Operating System Concepts — 8" Edition 5.50 Silberschatz, Galvin and Gagne ©2009

™

/:f“""’“i -
x--;,_,_.-—f Java Thread Scheduling

® JVM Uses a Preemptive, Priority-Based Scheduling Algorithm

B FIFO Queue is Used if There Are Multiple Threads With the Same Priority

Operating System Concepts — 8t Edition 5.51 Silberschatz, Galvin and Gagne ©2009

=

/:f“""’“i - -
“$7” Java Thread Scheduling (cont)

JVM Schedules a Thread to Run When:

1. The Currently Running Thread EXxits the Runnable State
2. A Higher Priority Thread Enters the Runnable State

* Note — the JVM Does Not Specify Whether Threads are Time-Sliced or Not

Operating System Concepts — 8t Edition 5.52 Silberschatz, Galvin and Gagne ©2009

=

P o

& Time-Slicing

Since the JVM Doesn’'t Ensure Time-Slicing, the yield() Method
May Be Used:

while (true) {
/I perform CPU-intensive task

Thread.yield();

This Yields Control to Another Thread of Equal Priority

Silberschatz, Galvin and Gagnhe ©2009

Operating System Concepts — 8" Edition 5.53

—

2 Thread Priorities

Priority Comment

Thread.MIN_PRIORITY
Thread. MAX_PRIORITY
Thread.NORM_PRIORITY

Minimum Thread Priority
Maximum Thread Priority
Default Thread Priority

Priorities May Be Set Using setPriority() method:
setPriority(Thread.NORM_PRIORITY + 2);

Silberschatz, Galvin and Gagne ©2009

Operating System Concepts — 8" Edition 5.54

- Solaris 2 Scheduling

class-
global scheduling specific scheduler run
priority order priorities classes queue
highest first real time kernel
y o e (hreadsof
real-time
LWPs
Q-
system kernel
Q | o serice
threads
Q-
interactive & kernel
time sharing Q | o threadsof
interactive &
time-sharing
LWPs
Qr
L

lowest last

Operating System Concepts — 8t Edition 5.55 Silberschatz, Galvin and Gagne ©2009

