
Chapter 19: Real-Time Systems

Operating System Concepts - 8th Edition,

Silberschatz, Galvin and Gagne ©2009

Chapter 19: Real-Time Systems

- System Characteristics
- Features of Real-Time Systems
- Implementing Real-Time Operating Systems
- Real-Time CPU Scheduling
- An Example: VxWorks 5.x

Objectives

- To explain the timing requirements of real-time systems
- To distinguish between hard and soft real-time systems
- To discuss the defining characteristics of real-time systems
- To describe scheduling algorithms for hard real-time systems

Operating System Concepts – 8th Edition

19.3

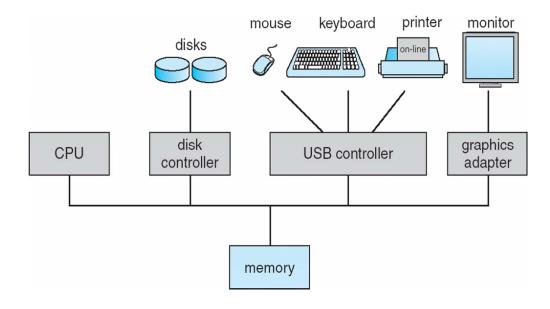
- A real-time system requires that results be produced within a specified deadline period
- An embedded system is a computing device that is part of a larger system (I.e. automobile, airliner)
- A safety-critical system is a real-time system with catastrophic results in case of failure
- A hard real-time system guarantees that real-time tasks be completed within their required deadlines
- A soft real-time system provides priority of real-time tasks over non real-time tasks

System Characteristics

- Single purpose
- Small size
- Inexpensively mass-produced
- Specific timing requirements

Operating System Concepts – 8th Edition

19.5


System-on-a-Chip

- Many real-time systems are designed using system-on-a-chip (SOC) strategy
- SOC allows the CPU, memory, memory-management unit, and attached peripheral ports (I.e. USB) to be contained in a single integrated circuit

Bus-Oriented System

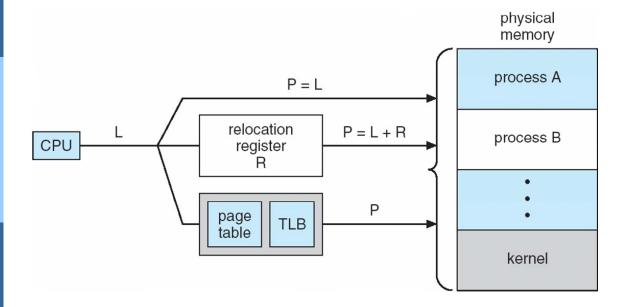
Operating System Concepts – 8th Edition

19.7

Features of Real-Time Kernels

- Most real-time systems do not provide the features found in a standard desktop system
- Reasons include
 - Real-time systems are typically single-purpose
 - Real-time systems often do not require interfacing with a user
 - Features found in a desktop PC require more substantial hardware that what is typically available in a real-time system

- Address translation may occur via:
- (1) Real-addressing mode where programs generate actual addresses
- (2) Relocation register mode
- (3) Implementing full virtual memory



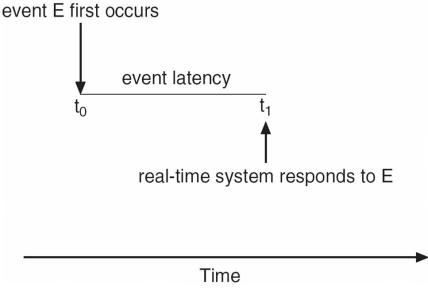
Operating System Concepts – 8th Edition

19.9

Address Translation

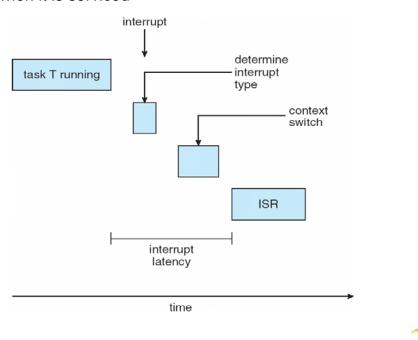
Implementing Real-Time Systems

- In general, real-time operating systems must provide:
 - (1) Preemptive, priority-based scheduling
 - (2) Preemptive kernels
 - (3) Latency must be minimized


Operating System Concepts - 8th Edition

19.11

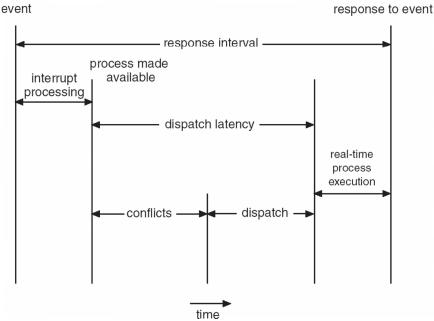
Minimizing Latency


Event latency is the amount of time from when an event occurs to when it is serviced.

Interrupt Latency

Interrupt latency is the period of time from when an interrupt arrives at the CPU to when it is serviced

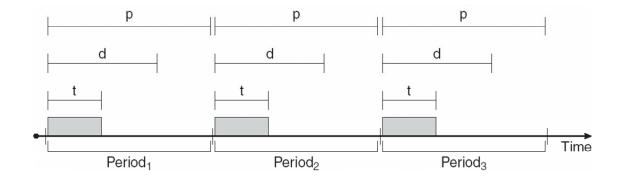
Operating System Concepts – 8th Edition


19.13

Silberschatz, Galvin and Gagne ©2009

Dispatch Latency

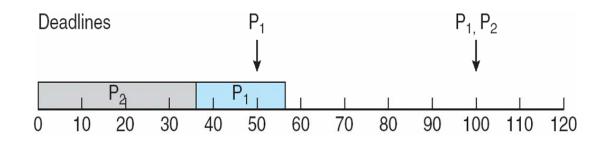
Dispatch latency is the amount of time required for the scheduler to stop one process and start another



Silberschatz, Galvin and Gagne ©2009

Real-Time CPU Scheduling

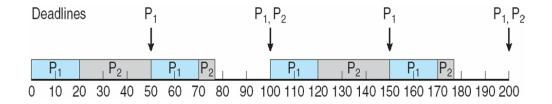
- Periodic processes require the CPU at specified intervals (periods)
- **p** is the duration of the period
- **d** is the deadline by when the process must be serviced
- **t** is the processing time


Operating System Concepts – 8th Edition

19.15

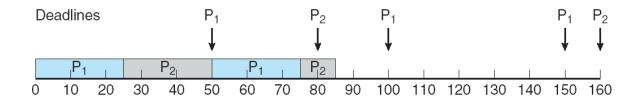
Silberschatz, Galvin and Gagne ©2009

Scheduling of tasks when P₂ has a higher priority than P₁



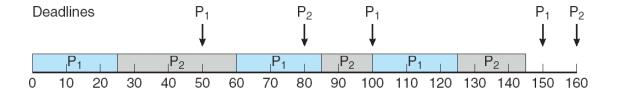
Rate Montonic Scheduling

- A priority is assigned based on the inverse of its period
- Shorter periods = higher priority;
- Longer periods = lower priority
- P₁ is assigned a higher priority than P₂.


Operating System Concepts – 8th Edition

19.17

Missed Deadlines with Rate Monotonic Scheduling



Priorities are assigned according to deadlines:

the earlier the deadline, the higher the priority; the later the deadline, the lower the priority

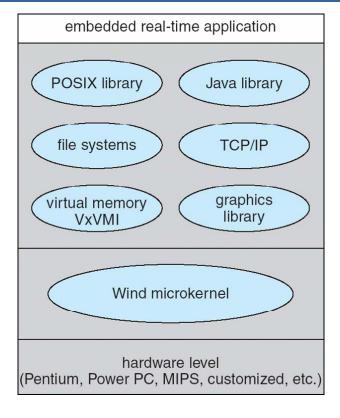
Operating System Concepts – 8th Edition

19.19

- T shares are allocated among all processes in the system
- An application receives **N** shares where **N** < **T**
- This ensures each application will receive N/T of the total processor time

Pthread Scheduling

- The Pthread API provides functions for managing real-time threads
- Pthreads defines two scheduling classes for real-time threads:
 (1) SCHED_FIFO threads are scheduled using a FCFS strategy with a FIFO queue. There is no time-slicing for threads of equal priority
 - (2) SCHED_RR similar to SCHED_FIFO except time-slicing occurs for threads of equal priority


Operating System Concepts – 8th Edition

19.21

VxWorks 5.0

Wind Microkernel

- The Wind microkernel provides support for the following:
 - (1) Processes and threads
 - (2) preemptive and non-preemptive round-robin scheduling
 - (3) manages interrupts (with bounded interrupt and dispatch latency times)
 - (4) shared memory and message passing interprocess communication facilities

Operating System Concepts – 8th Edition

19.23

Silberschatz, Galvin and Gagne ©2009

End of Chapter 19

