
Chapter 21: The LinuxChapter 21:  The Linux 
SystemSystem

Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition,

Chapter 21: The Linux System

Linux History 

Design Principles

Kernel Modules

Process ManagementProcess Management

Scheduling 

Memory Management y g

File Systems

Input and Output 

Interprocess Communication

Network Structure

SecuritySecurity

21.2 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition



Objectives

To explore the history of the UNIX operating system from which Linux is 
derived and the principles which Linux is designed uponderived and the principles which Linux is designed upon

To examine the Linux process model and illustrate how Linux schedules 
processes and provides interprocess communication

To look at memory management in Linux

To explore how Linux implements file systems and manages I/O devices

21.3 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

History

Linux is a modern, free operating system based on UNIX standards

First developed as a small but self contained kernel in 1991 by LinusFirst developed as a small but self-contained kernel in 1991 by Linus 
Torvalds, with the major design goal of UNIX compatibility

Its history has been one of collaboration by many users from all around 
the world corresponding almost exclusively over the Internetthe world, corresponding almost exclusively over the Internet

It has been designed to run efficiently and reliably on common PC 
hardware, but also runs on a variety of other platforms

Th Li i k l i i l i i l b iThe core Linux operating system kernel is entirely original, but it can run 
much existing free UNIX software, resulting in an entire UNIX-
compatible operating system free from proprietary code
Man ar ing Lin Distrib tions incl ding the kernel applications andMany, varying Linux Distributions including the kernel, applications, and 
management tools

21.4 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition



The Linux Kernel

Version 0.01 (May 1991) had no networking, ran only on 80386-
compatible Intel processors and on PC hardware, had extremely limitedcompatible Intel processors and on PC hardware, had extremely limited 
device-drive support, and supported only the Minix file system

Linux 1.0 (March 1994) included these new features:
Support for UNIX’s standard TCP/IP networking protocolsSupport for UNIX s standard TCP/IP networking protocols

BSD-compatible socket interface for networking programming

Device-driver support for running IP over an Ethernet

E h d fil tEnhanced file system

Support for a range of SCSI controllers for 
high-performance disk access

Extra hardware supportExtra hardware support

Version 1.2 (March 1995) was the final PC-only Linux kernel

21.5 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Linux 2.0

Released in June 1996,  2.0 added two major new capabilities:

S f l i l hi i l di f ll 64 bi i Al hSupport for multiple architectures, including a fully 64-bit native Alpha port

Support for multiprocessor architectures

Other new features included:

Improved memory-management code

Improved TCP/IP performance

Support for internal kernel threads for handling dependencies betweenSupport for internal kernel threads, for handling dependencies between 
loadable modules, and for automatic loading of modules on demand

Standardized configuration interface

A il bl f M t l 68000 i S S t d fAvailable for Motorola 68000-series processors, Sun Sparc systems, and for 
PC and PowerMac systems

2.4 and 2.6 increased SMP support, added journaling file system, preemptive 
kernel 64 bit memory supportkernel, 64-bit memory support

21.6 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition



The Linux System

Linux uses many tools developed as part of Berkeley’s BSD 
operating system MIT’s X Window System and the Free Softwareoperating system, MIT’s X  Window System, and the Free Software 
Foundation's GNU project

The min system libraries were started by the GNU project, with 
improvements provided by the Linux community

Linux networking-administration tools were derived from 4.3BSD 
code; recent BSD derivatives such as Free BSD have borrowed 
code from Linux in return

The Linux system is maintained by a loose network of developers 
collaborating over the Internet with a small number of public ftpcollaborating over the Internet, with a small number of public ftp 
sites acting as de facto standard repositories

21.7 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Linux Distributions

Standard, precompiled sets of packages, or distributions, include 
the basic Linux system system installation and managementthe basic Linux system, system installation and management 
utilities, and ready-to-install packages of common UNIX tools

The first distributions managed these packages by simply providing 
a means of unpacking all the files into the appropriate places; 
modern distributions include advanced package management

Early distributions included SLS and Slackware y

Red Hat and Debian are popular distributions from commercial 
and noncommercial sources, respectively

The RPM Package file format permits compatibilit among theThe RPM Package file format permits compatibility among the 
various Linux distributions

21.8 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition



Linux Licensing

The Linux kernel is distributed under the GNU General Public 
License (GPL) the terms of which are set out by the Free SoftwareLicense (GPL), the terms of which are set out by the Free Software 
Foundation

Anyone using Linux, or creating their own derivative of Linux, may 
not make the derived product proprietary; software released under 
the GPL may not be redistributed as a binary-only product

21.9 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Design Principles

Linux is a multiuser, multitasking system with a full set of UNIX-
compatible toolscompatible tools

Its file system adheres to traditional UNIX semantics, and it fully 
implements the standard UNIX networking model

Main design goals are speed, efficiency, and standardization

Linux is designed to be compliant with the relevant POSIX 
documents; at least two Linux distributions have achieved officialdocuments; at least two Linux distributions have achieved official 
POSIX certification

The Linux programming interface adheres to the SVR4 UNIX 
semantics rather than to BSD beha iorsemantics, rather than to BSD behavior

21.10 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition



Components of a Linux System

21.11 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Components of a Linux System (Cont)

Like most UNIX implementations, Linux is composed of three main 
bodies of code; the most important distinction between the kernelbodies of code; the most important distinction between the kernel 
and all other components

The kernel is responsible for maintaining the important abstractions 
of the operating system

Kernel code executes in kernel mode with full access to all the 
physical resources of the computerp y p

All kernel code and data structures are kept in the same single 
address space

21.12 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition



Components of a Linux System (Cont)

The system libraries define a standard set of functions through 
which applications interact with the kernel and which implementwhich applications interact with the kernel, and which implement 
much of the operating-system functionality that does not need the 
full privileges of kernel code

The system utilities perform individual specialized management 
tasks

21.13 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Kernel Modules

Sections of kernel code that can be compiled, loaded, and 
unloaded independent of the rest of the kernelunloaded independent of the rest of the kernel

A kernel module may typically implement a device driver, a file 
system, or a networking protocol

The module interface allows third parties to write and distribute, 
on their own terms, device drivers or file systems that could not 
be distributed under the GPL

Kernel modules allow a Linux system to be set up with a 
standard, minimal kernel, without any extra device drivers built in

Three components to Lin mod le s pportThree components to Linux module support:

module management 

driver registrationdriver registration

conflict resolution

21.14 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition



Module Management

Supports loading modules into memory and letting them talk to the 
rest of the kernelrest of the kernel

Module loading is split into two separate sections:

Managing sections of module code in kernel memorya ag g sec o s o odu e code e e e o y

Handling symbols that modules are allowed to reference

The module requestor manages loading requested, but currently 
l d d d l it l l l i th k l tunloaded, modules; it also regularly queries the kernel to see 

whether a dynamically loaded module is still in use, and will unload 
it when it is no longer actively needed

21.15 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Driver Registration

Allows modules to tell the rest of the kernel that a new driver has 
become availablebecome available

The kernel maintains dynamic tables of all known drivers, and 
provides a set of routines to allow drivers to be added to or 
removed from these tables at any time

Registration tables include the following items:  

Device driversDevice drivers

File systems 

Network protocols

Binary format

21.16 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition



Conflict Resolution

A mechanism that allows different device drivers to reserve 
hardware resources and to protect those resources from accidentalhardware resources and to protect those resources from accidental 
use by another driver

The conflict resolution module aims to:

Prevent modules from clashing over access to hardware 
resources

Prevent autoprobes from interfering with existing device drivers

Resolve conflicts with multiple drivers trying to access the 
same hard aresame hardware

21.17 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Management

UNIX process management separates the creation of processes 
and the running of a new program into two distinct operationsand the running of a new program into two distinct operations.

The fork system call creates a new process

A new program is run after a call to execvep g

Under UNIX, a process encompasses all the information that the 
operating system must maintain to track the context of a single 
execution of a single programexecution of a single program

Under Linux, process properties fall into three groups:  the 
process’s identity, environment, and context

21.18 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition



Process Identity

Process ID (PID).  The unique identifier for the process; used to 
specify processes to the operating system when an application makesspecify processes to the operating system when an application makes 
a system call to signal, modify, or wait for another process

Credentials.  Each process must have an associated user ID and one 
or more group IDs that determine the process’s rights to accessor more group IDs that determine the process s rights to access 
system resources and files

Personality.  Not traditionally found on UNIX systems, but under Linux 
each process has an associated personality identifier that can slightlyeach process has an associated personality identifier that can slightly 
modify the semantics of certain system calls

Used primarily by emulation libraries to request that system calls 
be compatible with certain specific flavors of UNIXbe co pa b e ce a spec c a o s o U

21.19 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Environment

The process’s environment is inherited from its parent, and is 
composed of two null terminated vectors:composed of two null-terminated vectors:

The argument vector lists the command-line arguments used to 
invoke the running program; conventionally starts with the name of 
the program itself

The environment vector is a list of “NAME=VALUE” pairs that 
associates named environment variables with arbitrary textual y
values

Passing environment variables among processes and inheriting 
variables by a process’s children are flexible means of passingvariables by a process s children are flexible means of passing 
information to components of the user-mode system software

The environment-variable mechanism provides a customization of the 
operating system that can be set on a per process basis rather thanoperating system that can be set on a per-process basis, rather than 
being configured for the system as a whole

21.20 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition



Process Context

The (constantly changing) state of a running program at any point in time

Th h d li t t i th t i t t t f th t t itThe scheduling context is the most important part of the process context; it 
is the information that the scheduler needs to suspend and restart the 
process

The kernel maintains accounting information about the resources currently 
being consumed by each process, and the total resources consumed by the 
process in its lifetime so far

The file table is an array of pointers to kernel file structures

When making file I/O system calls, processes refer to files by their index 
into this tableinto this table

21.21 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Context (Cont)

Whereas the file table lists the existing open files, the 
file-system context applies to requests to open new filesfile-system context applies to requests to open new files

The current root and default directories to be used for new file searches 
are stored here

The signal-handler table defines the routine in the process’s address 
space to be called when specific signals arrive

The virtual-memory context of a process describes the full contents of theThe virtual memory context of a process describes the full contents of the 
its private address space

21.22 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition



Processes and Threads

Linux uses the same internal representation for processes and threads; a 
thread is simply a new process that happens to share the same addressthread is simply a new process that happens to share the same address 
space as its parent

A distinction is only made when a new thread is created by the clone
t llsystem call

fork creates a new process with its own entirely new process context

clone creates a new process with its own identity, but that is allowed to p y,
share the data structures of its parent

Using clone gives an application fine-grained control over exactly what is 
shared between two threadsshared between two threads

21.23 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Scheduling

The job of allocating CPU time to different tasks within an operating system

While scheduling is normally thought of as the running and interrupting of 
processes, in Linux, scheduling also includes the running of the various 
k l t kkernel tasks

Running kernel tasks encompasses both tasks that are requested by a 
running process and tasks that execute internally on behalf of a device 
driver

As of 2.5, new scheduling algorithm – preemptive, priority-based, g g p p , p y

Real-time range

nice value

21.24 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition



Relationship Between Priorities and Time-slice 
Length

21.25 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

List of Tasks Indexed by Priority

21.26 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition



Kernel Synchronization

A request for kernel-mode execution can occur in two ways:

A i t ti t i ithA running program may request an operating system service, either 
explicitly via a system call, or implicitly, for example, when a page fault 
occurs

A device driver may deliver a hardware interrupt that causes the CPU to 
start executing a kernel-defined handler for that interrupt

Kernel synchronization requires a framework that will allow the kernel’sKernel synchronization requires a framework that will allow the kernel s 
critical sections to run without interruption by another critical section

21.27 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Kernel Synchronization (Cont)

Linux uses two techniques to protect critical sections:

1 N l k l d i tibl ( til 2 4)1. Normal kernel code is nonpreemptible (until 2.4)
– when a time interrupt is received while a process is

executing a kernel system service routine, the kernel’s 
d h d fl i t th t th h d l illneed_resched flag is set so that the scheduler will run 

once the system call has completed and control is
about to be returned to user mode

2. The second technique applies to critical sections that occur in an 
interrupt service routines

– By using the processor’s interrupt control hardware to disable y g p p
interrupts during a critical section, the kernel guarantees that it can 
proceed without the risk of concurrent access of shared data structures

21.28 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition



Kernel Synchronization (Cont)

To avoid performance penalties, Linux’s kernel uses a synchronization 
architecture that allows long critical sections to run without having interruptsarchitecture that allows long critical sections to run without having interrupts 
disabled for the critical section’s entire duration

Interrupt service routines are separated into a top half and a bottom half.

The top half is a normal interrupt service routine, and runs with 
recursive interrupts disabled

The bottom half is run, with all interrupts enabled, by a miniatureThe bottom half is run, with all interrupts enabled, by a miniature 
scheduler that ensures that bottom halves never interrupt themselves

This architecture is completed by a mechanism for disabling selected 
bottom halves while executing normal foreground kernel codebottom halves while executing normal, foreground kernel code

21.29 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Interrupt Protection Levels

Each level may be interrupted by code running at a higher 
level, but will never be interrupted by code running at the 
same or a lower level

User processes can always be preempted by another process 
when a time-sharing scheduling interrupt occurs

21.30 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition



Process Scheduling

Linux uses two process-scheduling algorithms:

A time-sharing algorithm for fair preemptive scheduling between 
multiple processes

A real-time algorithm for tasks where absolute priorities are more ea e a go o as s e e abso u e p o es a e o e
important than fairness

A process’s scheduling class defines which algorithm to apply

F ti h i Li i iti d dit b dFor time-sharing processes, Linux uses a prioritized, credit based 
algorithm

The crediting rule

priority
2

credits
 : credits +=

factors in both the process’s history and its priority

This crediting system automatically prioritizes interactive or I/O-
bound processes

21.31 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

p

Process Scheduling (Cont)

Linux implements the FIFO and round-robin real-time scheduling classes; in 
both cases each process has a priority in addition to its scheduling classboth cases, each process has a priority in addition to its scheduling class

The scheduler runs the process with the highest priority; for equal-
priority processes, it runs the process waiting the longest 

FIFO processes continue to run until they either exit or block 

A round-robin process will be preempted after a while and moved to the 
end of the scheduling queue, so that round-robing processes of equalend of the scheduling queue, so that round robing processes of equal 
priority automatically time-share between themselves

21.32 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition



Symmetric Multiprocessing

Linux 2.0 was the first Linux kernel to support SMP hardware; separate 
processes or threads can execute in parallel on separate processorsprocesses or threads can execute in parallel on separate processors

To preserve the kernel’s nonpreemptible synchronization requirements, 
SMP imposes the restriction, via a single kernel spinlock, that only one 
processor at a time may execute kernel-mode code

21.33 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Memory Management

Linux’s physical memory-management system deals with allocating and 
freeing pages groups of pages and small blocks of memoryfreeing pages, groups of pages, and small blocks of memory

It has additional mechanisms for handling virtual memory, memory mapped 
i t th dd f iinto the address space of running processes

Splits memory into 3 different zones due to hardware characteristicsSplits memory into 3 different zones due to hardware characteristics

21.34 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition



Relationship of Zones and Physical Addresses 
on 80x86

21.35 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Splitting of Memory in a Buddy Heap

21.36 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition



Managing Physical Memory

The page allocator allocates and frees all physical pages; it can 
allocate ranges of physically-contiguous pages on requestallocate ranges of physically-contiguous pages on request

The allocator uses a buddy-heap algorithm to keep track of available 
physical pages

E h ll t bl i i i d ith dj tEach allocatable memory region is paired with an adjacent 
partner

Whenever two allocated partner regions are both freed up they 
are combined to form a larger regionare combined to form a larger region

If a small memory request cannot be satisfied by allocating an 
existing small free region, then a larger free region will be 
subdivided into two partners to satisfy the requestsubdivided into two partners to satisfy the request

Memory allocations in the Linux kernel occur either statically (drivers 
reserve a contiguous area of memory during system boot time) or 
dynamically (via the page allocator)dynamically (via the page allocator)

Also uses slab allocator for kernel memory

21.37 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

21.07

21.38 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition



Virtual Memory

The VM system maintains the address space visible to each process:  It 
creates pages of virtual memory on demand and manages the loading ofcreates pages of virtual memory on demand, and manages the loading of 
those pages from disk or their swapping back out to disk as required

The VM manager maintains two separate views of a process’s address 
space:

A logical view describing instructions concerning the layout of the 
address space

The address space consists of a set of nonoverlapping regions, each 
representing a continuous, page-aligned subset of the address 
spacep

A physical view of each address space which is stored in the hardware 
page tables for the process

21.39 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Virtual Memory (Cont)

Virtual memory regions are characterized by:

Th b ki t hi h d ib f h th f iThe backing store, which describes from where the pages for a region 
come; regions are usually backed by a file or by nothing (demand-zero
memory)

The region’s reaction to writes (page sharing or copy-on-write)

The kernel creates a new virtual address spaceThe kernel creates a new virtual address space

1. When a process runs a new program with the exec system call

2. Upon creation of a new process by the fork system call

21.40 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition



Virtual Memory (Cont)

On executing a new program, the process is given a new, completely empty 
virtual-address space; the program-loading routines populate the addressvirtual-address space; the program-loading routines populate the address 
space with virtual-memory regions

Creating a new process with fork involves creating a complete copy of the 
i ti ’ i t l ddexisting process’s virtual address space

The kernel copies the parent process’s VMA descriptors, then creates a 
new set of page tables for the child

The parent’s page tables are copied directly into the child’s, with the 
reference count of each page covered being incremented

After the fork the parent and child share the same physical pages ofAfter the fork, the parent and child share the same physical pages of 
memory in their address spaces

21.41 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Virtual Memory (Cont)

The VM paging system relocates pages of memory from physical memory 
out to disk when the memory is needed for something elseout to disk when the memory is needed for something else

The VM paging system can be divided into two sections:

The pageout-policy algorithm decides which pages to write out to disk, 
and when

The paging mechanism actually carries out the transfer, and pages dataThe paging mechanism actually carries out the transfer, and pages data 
back into physical memory as needed

21.42 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition



Virtual Memory (Cont)

The Linux kernel reserves a constant, architecture-dependent region of the 
virtual address space of every process for its own internal usevirtual address space of every process for its own internal use

This kernel virtual-memory area contains two regions:

A static area that contains page table references to every available 
physical page of memory in the system, so that there is a simple 
translation from physical to virtual addresses when running kernel code

The reminder of the reserved section is not reserved for any specific 
purpose; its page-table entries can be modified to point to any other 
areas of memoryy

21.43 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Executing and Loading User Programs

Linux maintains a table of functions for loading programs; it gives each 
function the opportunity to try loading the given file when an exec systemfunction the opportunity to try loading the given file when an exec system 
call is made

The registration of multiple loader routines allows Linux to support both the 
ELF d t bi f tELF and a.out binary formats

Initially, binary-file pages are mapped into virtual memory

Only when a program tries to access a given page will a page faultOnly when a program tries to access a given page will a page fault 
result in that page being loaded into physical memory

An ELF-format binary file consists of a header followed by several page-
aligned sectionsaligned sections

The ELF loader works by reading the header and mapping the sections 
of the file into separate regions of virtual memory

21.44 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition



Memory Layout for ELF Programs

21.45 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Static and Dynamic Linking

A program whose necessary library functions are embedded directly in the 
program’s executable binary file is statically linked to its librariesprogram s executable binary file is statically linked to its libraries

The main disadvantage of static linkage is that every program generated 
t t i i f tl th t lib f timust contain copies of exactly the same common system library functions

Dynamic linking is more efficient in terms of both physical memory and disk-
space usage because it loads the system libraries into memory only once

21.46 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition



File Systems

To the user, Linux’s file system appears as a hierarchical directory tree 
obeying UNIX semanticsobeying UNIX semantics

Internally, the kernel hides implementation details and manages the multiple 
different file systems via an abstraction layer, that is, the virtual file system 
(VFS)(VFS)

The Linux VFS is designed around object-oriented principles and is 
composed of two components:

A set of definitions that define what a file object is allowed to look like

The inode-object and the file-object structures represent individual 
filesfiles

the file system object represents an entire file system

A layer of software to manipulate those objectsy j

21.47 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

The Linux Ext2fs File System

Ext2fs uses a mechanism similar to that of BSD Fast File System (ffs) 
for locating data blocks belonging to a specific filefor locating data blocks belonging to a specific file

The main differences between ext2fs and ffs concern their disk 
allocation policies

I ff th di k i ll t d t fil i bl k f 8Kb ith bl kIn ffs, the disk is allocated to files in blocks of 8Kb, with blocks 
being subdivided into fragments of 1Kb to store small files or 
partially filled blocks at the end of a file

Ext2fs does not use fragments; it performs its allocations inExt2fs does not use fragments; it performs its allocations in 
smaller units  

The default block size on ext2fs is 1Kb, although 2Kb and 4Kb 
blocks are also supportedblocks are also supported

Ext2fs uses allocation policies designed to place logically 
adjacent blocks of a file into physically adjacent blocks on disk, so 
that it can submit an I/O request for several disk blocks as athat it can submit an I/O request for several disk blocks as a 
single operation

21.48 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition



Ext2fs Block-Allocation Policies

21.49 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

The Linux Proc File System

The proc file system does not store data, rather, its contents are computed 
on demand according to user file I/O requestson demand according to user file I/O requests

proc must implement a directory structure, and the file contents within; it 
must then define a unique and persistent inode number for each directory 

d fil it t iand files it contains

It uses this inode number to identify just what operation is required 
when a user tries to read from a particular file inode or perform a lookup 
in a particular directory inode

When data is read from one of these files, proc collects the appropriate 
information, formats it into text form and places it into the requesting , p q g
process’s read buffer

21.50 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition



Input and Output

The Linux device-oriented file system accesses disk storage through two 
caches:caches:

Data is cached in the page cache, which is unified with the virtual 
memory system

Metadata is cached in the buffer cache, a separate cache indexed by 
the physical disk block

Linux splits all devices into three classes:Linux splits all devices into three classes:

block devices allow random access to completely independent, fixed 
size blocks of data

’character devices include most other devices; they don’t need to 
support the functionality of regular files

network devices are interfaced via the kernel’s networking subsystemg y

21.51 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Device-Driver Block Structure

21.52 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition



Block Devices

Provide the main interface to all disk devices in a system

The block buffer cache serves two main purposes:

it acts as a pool of buffers for active I/O

it serves as a cache for completed I/O

The request manager manages the reading and writing of buffer contents toThe request manager manages the reading and writing of buffer contents to 
and from a block device driver

21.53 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Character Devices

A device driver which does not offer random access to fixed blocks of data

A h t d i d i t i t t f f ti hi h i l tA character device driver must register a set of functions which implement 
the driver’s various file I/O operations

The kernel performs almost no preprocessing of a file read or write request 
to a character device, but simply passes on the request to the device

The main exception to this rule is the special subset of character device 
drivers which implement terminal devices, for which the kernel maintains adrivers which implement terminal devices, for which the kernel maintains a 
standard interface

21.54 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition



Interprocess Communication

Like UNIX, Linux informs processes that an event has occurred via signals

Th i li it d b f i l d th t i f tiThere is a limited number of signals, and they cannot carry information:  
Only the fact that a signal occurred is available to a process

The Linux kernel does not use signals to communicate with processes with 
are running in kernel mode, rather, communication within the kernel is 
accomplished via scheduling states and wait.queue structures

21.55 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Passing Data Between Processes

The pipe mechanism allows a child process to inherit a communication 
channel to its parent data written to one end of the pipe can be read a thechannel to its parent, data written to one end of the pipe can be read a the 
other

Sh d ff t l f t f i ti d tShared memory offers an extremely fast way of communicating; any data 
written by one process to a shared memory region can be read immediately 
by any other process that has mapped that region into its address space

To obtain synchronization, however, shared memory must be used in 
conjunction with another Interprocess-communication mechanism

21.56 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition



Shared Memory Object

The shared-memory object acts as a backing store for shared-memory 
regions in the same way as a file can act as backing store for a memory-regions in the same way as a file can act as backing store for a memory-
mapped memory region

Sh d i di t f lt t i fShared-memory mappings direct page faults to map in pages from a 
persistent shared-memory object

Shared-memory objects remember their contents even if no processes are 
currently mapping them into virtual memory

21.57 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Network Structure

Networking is a key area of functionality for Linux.

It t th t d d I t t t l f UNIX t UNIXIt supports the standard Internet protocols for UNIX to UNIX 
communications

It also implements protocols native to nonUNIX operating systems, in 
particular, protocols used on PC networks, such as Appletalk and IPX

Internally, networking in the Linux kernel is implemented by three layers ofInternally, networking in the Linux kernel is implemented by three layers of 
software:

The socket interface

Protocol drivers

Network device drivers

21.58 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition



Network Structure (Cont)

The most important set of protocols in the Linux networking system is the 
internet protocol suiteinternet protocol suite

It implements routing between different hosts anywhere on the network

On top of the routing protocol are built the UDP, TCP and ICMP 
protocols

21.59 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Security

The pluggable authentication modules (PAM) system is available under 
LinuxLinux

PAM is based on a shared library that can be used by any system 
component that needs to authenticate users

Access control under UNIX systems, including Linux, is performed through 
the use of unique numeric identifiers (uid and gid)

Access control is performed by assigning objects a protections mask, whichAccess control is performed by assigning objects a protections mask, which 
specifies which access modes—read, write, or execute—are to be granted 
to processes with owner, group, or world access

21.60 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition



Security (Cont)

Linux augments the standard UNIX setuid mechanism in two ways:

It i l t th POSIX ifi ti ’ d id h iIt implements the POSIX specification’s saved user-id mechanism, 
which allows a process to repeatedly drop and reacquire its effective uid

It has added a process characteristic that grants just a subset of the 
rights of the effective uid

Linux provides another mechanism that allows a client to selectively passLinux provides another mechanism that allows a client to selectively pass 
access to a single file to some server process without granting it any other 
privileges

21.61 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

End of Chapter 21End of Chapter 21

Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition,


