
A Road Map Through Nachos

Thomas Narten

Department of Computer Sciences

Levine Science Research Center

Duke University

Box �����

Durham� N�C� ����������

narten	cs�duke�edu

January
� ����

Abstract

Nachos is instructional software that allows students to examine� modify and exe�

cute operating system software� Nachos provides a skeletal operating system that sup�

ports threads� user�level processes� virtual memory and interrupt�driven input output

devices� Nachos is a complex piece of software and it is di�cult for beginning students
�and instructors� to easily gain on overall understanding of the various system pieces

and how they �t together�

This document provides a road map to understanding the Nachos system� It gives

a high�level overview of the source code� focusing on the big picture rather than on the

details� It is not intended as a replacement for reading the source code� Rather� it is

a companion that is intended to help students �and instructors� overcome the initial

learning curve encountered when learning and using the system�

Contents

� Introduction to Nachos �

� Nachos Machine �

��� Machine Components �

��� Interrupt Management �

��� Real�Time Clock Interrupts �

��� Address Translation �

����� Linear Page Tables �

����� Software Managed TLB �

��� Console Device �

��� Disk Device �

� Nachos Threads �

��� Mechanics of Thread Switching ��

��� Threads 	 Scheduling ��

��� Synchronization and Mutual Exclusion ��

��� Special Notes ��

� User�Level Processes ��

��� Process Creation ��

��� Creating a No
 Binary ��

��� System Calls and Exception Handling ��

��� Execution Trace of User�Level Process ��

� Nachos Filesystem ��

��� SynchDisk ��

��� FileSystem Object ��

��� OpenFile Object ��

��� File System Physical Representation ��

����� File Header ��

����� Directories ��

����� Putting It All Together ��

� Experience With Nachos Assignments ��

i

��� General Tips ��

��� Synchronization ��

��� Multiprogramming ��

��� Virtual Memory �

��� File System ��

��� Common Errors ��

� MIPS Architecture ��

ii

� Introduction to Nachos

Nachos is instructional software that allows students to study and modify a real operating
system� The only di
erence between Nachos and a �real� operating system is that Nachos
runs as a single Unix process� whereas real operating systems run on bare machines� However�
Nachos simulates the general low�level facilities of typical machines� including interrupts�
virtual memory and interrupt�driven device I�O�

The rest of this document attempts to provide a road map through Nachos� It is not
intended to replace the need for reading the source code� rather� it this document attempts
to speed up the learning process by describing �the big picture��

Section � provides an overview of the underlying machine that Nachos simulates and
runs on top of� Section 		 describes Nachos threads and the mechanics of scheduling�
synchronization and thread switching� Section � describes how user�level programs execute
as separate processes within their own private address spaces� Section � provides an overview
of the �lesystem implementation� Section � reports on experience using Nachos to teach
operating systems courses� and provides speci�c suggestions on individual assignments�

� Nachos Machine

Nachos simulates a machine that roughly approximates the MIPS architecture� The machine
has registers� memory and a cpu� In addition� an event�driven simulated clock provides a
mechanism to schedule interrupts and execute them at a later time� The simulated MIPS
machine can execute arbitrary programs� One simply loads instructions into the machine�s
memory� initializes registers �including the program counter PCReg� and then tells the ma�
chine to start executing instructions� The machine then fetches the instruction PCReg points
at� decodes it� and executes it� The process is repeated inde�nitely� until an illegal operation
is performed or a hardware interrupt is generated� When a trap or interrupt takes place� ex�
ecution of MIPS instructions is suspended� and a Nachos interrupt service routine is invoked
to deal with the condition�

Conceptually� Nachos has two modes of execution� one of which is the MIPS simulator�
Nachos executes user�level processes by loading them into the simulator�s memory� initializing
the simulator�s registers and then running the simulator� User�programs can only access the
memory associated with the simulated machine� The second mode corresponds to the Nachos
�kernel�� The kernel executes when Nachos �rst starts up� or when a user�program executes
an instruction that causes a hardware trap �e�g�� illegal instruction� page fault� system call�
etc��� In �kernel mode�� Nachos executes the way normal Unix processes execute� That
is� the statements corresponding to the Nachos source code are executed� and the memory
accessed corresponds to the memory assigned to Nachos variables�

Nachos does not have to execute user�level programs in order to perform useful things�
Nachos supports kernel threads� allowing multiple threads to execute concurrently� In this
context� Nachos behaves in a manner analogous to other thread packages� Indeed� user�level
processes are executed by having a kernel thread invoke the simulator� Thus� multipro�

�

gramming makes use of multiple threads� each user�level process has a Nachos kernel thread
associated with it to provide a context for executing the MIPS simulator�

��� Machine Components

The Nachos�MIPS machine is implemented by the Machine object� an instance of which is
created when Nachos �rst starts up� The Machine object exports a number of operations
and public variables that the Nachos kernel accesses directly� In the following� we describe
some of the important variables of the Machine object� describing their role helps explain
what the simulated hardware does�

The Nachos Machine object provides registers� physical memory� virtual memory support
as well as operations to run the machine or examine its current state� When Nachos �rst
starts up� it creates an instance of the Machine object and makes it available through the
global variable machine� The following public variables are accessible to the Nachos kernel�

registers
 An array of � registers� which include such special registers as a stack pointer� a
double register for multiplication results� a program counter� a next program counter
�for branch delays�� a register target for delayed loads� a value to be loaded on a delayed
load� and the bad virtual address after a translation fault� The registers are number
���� see the �le machine�h for symbolic names for the registers having special meaning
�e�g�� PCReg��

Although registers can be accessed directly via machine��registers�x� � the Machine
object provides special ReadRegister�� and WriteRegister�� routines for this purpose
�described in more detail below��

mainMemory
 Memory is byte�addressable and organized into ����byte pages� the same
size as disk sectors� Memory corresponding to physical address x can be accessed
in Nachos at machine��mainMemory�x� � By default� the Nachos MIPS machine has
�� pages of physical memory� The actual number of pages used is controlled by the
NumPhysPages variable in machine�h�

Virtual Memory Nachos supports VM through either a single linear page table or a
software�managed TLB �though not simultaneously�� The choice of which is in e
ect
is controlled by initializing the tlb or pageTable variables of the machine class� When
executing instructions� the Machine object uses whichever is de�ned� after verifying
that they are not both set simultaneously�

At this point� we know enough about the Machine object to explain how it executes
arbitrary user programs� First� we load the program�s instructions into the machine�s physical
memory �e�g� the machine��mainMemory variable�� Next� we initialize the machine�s page
tables and registers� Finally we invoke machine��Run��� which begins the fetch�execute
cycle for the machine�

The Machine object provides the following operations�

�

Machine�bool debug� The Machine constructor takes a single argument debug � When
debug is TRUE� the MIPS simulator executes instructions in single step mode� in�
voking the debugger after each instruction is executed� The debugger allows one to
interactively examine machine state to verify �for instance� that registers or memory
contain expected values�

By default� single�stepping is disabled� It is enabled by specifying the ��s� command
line option when starting Nachos up�

ExceptionType Translate�int virtAddr int� physAddr int size bool writing� converts
virtual address virtAddr into its corresponding physical address physAddr � Translate
examines the machine�s translation tables �described in detail in Section ���� in or�
der to perform the translation� When successful� Translate returns the corresponding
physical address in physAddr � Otherwise� it returns a code indicating the reason for
the failure �e�g�� page fault� protection violation� etc�� Whenever a translation fails� the
MIPS simulator invokes the Nachos routine RaiseException to deal with the problem�
RaiseException is responsible for handling all hardware trap conditions� When Raise�
Exception returns� the Nachos Machine assumes that the condition has been corrected
an resumes its fetch�execute cycle�

Note that from a user�level process�s perspective� traps take place in the same way as
if the program were executing on a bare machine� a trap handler is invoked to deal
with the problem� However� from the Nachos perspective� RaiseException is called via
a normal procedure call by the MIPS simulator�

OneInstruction�� does the actual work of executing an instruction� It fetches the current
instruction address from the PC register� fetches it from memory� decodes it� and �nally
executes it� Any addresses referenced as part of the fetch�execute cycle �including the
instruction address given by PCReg� are translated into physical addresses via the
Translate�� routine before physical memory is actually accessed�

Run�� �turns on� the MIPS machine� initiating the fetch�execute cycle� This routine should
only be called after machine registers and memory have been properly initialized� It
simply enters an in�nite fetch�execute loop�

The main loop in Run does three things� �� it invokes OneInstruction to actually
execute one instruction� �� it invokes the debugger� if the user has requested single�
step mode on the command line� and �� it increments a simulated clock after each
instruction� The clock� which is used to simulate interrupts� is discussed in the following
section�

int ReadRegister�int num� fetches the value stored in register num�

void WriteRegister�int num int value� places value into register num�

bool ReadMem�int addr int size int� value� Retrieves �� �� or � bytes of memory at
virtual address addr � Note that addr is the virtual address of the currently executing
user�level program� ReadMem invokes Translate before it accesses physical memory�

�

One point that should be noted is that ReadMem fails �returning FALSE�� if the
address translation fails �for whatever reason�� Thus� if the page is not present in
physical memory� ReadMem fails� ReadMem does not distinguish temporary failures
�e�g�� page not in memory� from hard errors �e�g�� invalid virtual address���

ReadMem is used �for instance� when dereferencing arguments to system calls�

bool WriteMem�int addr int size int value� writes �� �� or � bytes of value into mem�
ory at virtual address addr� The same warnings given for ReadMem apply here as well�

��� Interrupt Management

Nachos simulates interrupts by maintaining an event queue together with a simulated clock�
As the clock ticks� the event queue is examined to �nd events scheduled to take place now�
The clock is maintained entirely in software and ticks under the following conditions�

�� Every time interrupts are restored �and the restored interrupt mask has interrupts
enabled�� the clock advances one tick� Nachos code frequently disables and restores in�
terrupts for mutual exclusion purposes by making explicit calls to interrupt��SetLevel���

�� Whenever the MIPS simulator executes one instruction� the clock advances one tick�

�� Whenever the ready list is empty� the clock advances however many ticks are needed
to fast�forward the current time to that of the next scheduled event�

Whenever the clock advances� the event queue is examined and any pending interrupt
events are serviced by invoking the procedure associated with the timer event �e�g�� the
interrupt service routine�� All interrupt service routines are run with interrupts disabled�
and the interrupt service routine may not re�enable them�

Warning� in interrupt handler may not call any routines that lead to a context switch of
the current thread �e�g�� scheduler��Run�� or SWITCH�� �� Doing so may lead to deadlock�
This restriction is an artifact of the way interrupts are simulated under Nachos� and should
not be taken as an indication of the way things are done on real machines� Speci�cally�
consider the case where multiple events happen to be scheduled at exactly the same time�
If the handler for the �rst event invokes sleep �which calls SWITCH �� the others won�t be
serviced at the right time� In fact� the thread that called sleep may actually be waiting for
one of the other events that is supposed to take place now� but is delayed because of the
SWITCH � We now have a deadlock��

All routines related to interrupt management are provided by the Interrupt object� The
main routines of interest include�

�See Section � for a description of one common problem students encounter due to this�
�To correctly implement preemption� the interrupt handler invoked when a running threads quantum

expires needs to switch to another thread� This is handled by having the interrupt service routine invoke

Thread��YieldOnReturn��� which delays the actual preemption until it is safe to do so�

�

void Schedule�VoidFunctionPtr handler int arg int when IntType type� schedules
a future event to take place at time when� When it is time for the scheduled event to
take place� Nachos calls the routine handler with the single argument arg �

IntStatus SetLevel�IntStatus level� Change the interrupt mask to level � returning the
previous value� This routine is used to temporarily disable and re�enable interrupts
for mutual exclusion purposes� Only two interrupt levels are supported� IntOn and
IntO� �

OneTick�� advances the clock one tick and services any pending requests �by calling Check�
IfDue�� It is called from machine��Run�� after each user�level instruction is executed�
as well as by SetLevel when the interrupts are restored�

bool CheckIfDue�bool advanceClock� examines the event queue for events that need
servicing now� If it �nds any� it services them� It is invoked in such places as OneTick �

Idle�� �advances� to the clock to the time of the next scheduled event� It is called by the
scheduler �actually Sleep��� when there are no more threads on the ready list and we
want to �fast�forward� the time�

��� Real�Time Clock Interrupts

Nachos provides a Timer object that simulates a real time clock� generating interrupts
at regular intervals� It is implemented using the same event driven interrupt mechanism
described above� Timer supports the following operations�

Timer�VoidFunctionPtr timerHandler int callArg bool doRandom� The Timer con�
structor creates a real�time clock that interrupts every TimerTicks ��� time units�
When the timer goes o
� the Nachos simulator invokes procedure timerHandler � pass�
ing it callArg as an argument�

To add a bit of non�determinism to the system� argument doRandom speci�es that
the time between interrupts should be taken from a uniform interval between � and
�� T imerT icks�

The real�time clock can be used to provide preemption�

Note that starting Nachos with the ��rs� option creates a timer object that interrupts at
random intervals and preempts the currently running thread�

��� Address Translation

Nachos supports two types of VM architectures� linear page tables� or a software managed
TLB� While the former is simpler to program� the latter more closely corresponds to what
current machines support� Nachos supports one or the other� but not both �simultaneously��

�

����� Linear Page Tables

With linear tables� the MMU splits a virtual address into page number and page o
set
components� The page number is used to index into an array of page table entries� The
actual physical address is the concatenation of the page frame number in the page table
entry and the page o
set of the virtual address�

To use linear page tables� one simply initializes variable machine��pageTable to point
to the page table used to perform translations� In general� each user process will have its
own private page table� Thus� a process switch requires updating the pageTable variable� In
a real machine� pageTable would correspond to a special register that would be saved and
restored as part of the SWITCH�� operation� The machine variable pageTableSize indicates
the actual size of the page table�

Page table entries consist of the physical page frame number for the corresponding virtual
page� a �ag indicating whether the entry is currently valid �set by the OS� inspected by
hardware�� a �ag indicating whether the page may be written �set by OS� inspected by
hardware�� a bit indicating whether the page has been referenced �set by the hardware�
inspected and cleared by OS� and a dirty bit �set by hardware� inspected and cleared by
OS��

The Nachos machine has NumPhysPages of physical memory starting at location main�
Memory � Thus� page starts atmachine��mainMemory � while page N starts atmainMemory�
N � PageSize�

����� Software Managed TLB

�To be �lled in��

��� Console Device

Nachos provides a terminal console device and a single disk device� Nachos devices are
accessed through low�level primitives that simply initiate an I�O operation� The operation
itself is performed later� with an �operation complete� interrupt notifying Nachos when the
operation has completed�

The Console class simulates the behavior of a character�oriented CRT device� Data can
be written to the device one character at a time through the PutChar�� routine� When
a character has successfully been transmitted� a �transmit complete� interrupt takes place
and the user�supplied handler is invoked� The interrupt handler presumably checks if more
characters are waiting to be output� invoking PutChar again if appropriate�

Likewise� input characters arrive one�at�a�time� When a new character arrives� the con�
sole device generates an interrupt and the user�supplied input interrupt service routine is
invoked to retrieve the character from the device and �presumably� place it into a bu
er
from which higher�level routines �e�g�� GetChar��� can retrieve it later�

The Console object supports the following operations�

�

Console�char �readFile char �writeFile VoidFunctionPtr readAvail VoidFunctionPtr write
The constructor creates an instance of a terminal console� Argument readFile contains
the Unix �le name of where the data is to be read from� if NULL� standard input is
assumed� Likewise� argument writeFile indicates where output written to the console
is to go� if NULL� standard output is assumed� When a character becomes available for
reading� readAvail is invoked with an argument of callArg to notify the Nachos that a
character is available� The character itself is retrieved by calling Console��GetChar���
Upon return� it is assumed that the character has been retrieved and when the next
one arrives� readAvail will be called again�

void PutChar�char ch� Writes character ch to the output device� Once output has
started� it is an error to invoke PutChar�� again before the corresponding I�O com�
plete interrupt has taken place� Once the console device has written the character to
the device� it invokes the user�supplied procedure writeDone � passing it callArg as an
argument�

char GetChar�� Retrieves a character from the console� GetChar returns EOF if no new
data is available� Normally� the user would not invoke GetChar unless the availability
of new data had �rst been signalled via the readAvail�� interrupt service routine�

void CheckCharAvail�� an internal procedure used to see if new data is available for
reading�

When a console device is created by the constructor� the appropriate Unix �les �or
stdin�stdout� are opened and a timer event is scheduled to take place � time units in
the future� When the timer expires� the routine CheckCharAvail is invoked to see if any
data is present� If so� CheckCharAvail reads that character and invokes the user�supplied
input interrupt handler readAvail� It then schedules a new timer event so that the process
repeats every � time units� Thus� CheckCharAvail simply polls every � clock ticks for
new data� calling the interrupt service routine whenever data is present for processing�

Device output is initiated by calling PutChar � giving it a single character to output�
Once character output has been initiated� the device is made busy until the output complete
interrupt takes place� PutChar simply outputs the one character� sets an internal �ag to
indicate that the device is busy� and then schedules a timer interrupt to take place �
clock ticks later� When the timer expires� the state of the device is changed from busy to
idle� and the user�supplied output interrupt complete routine is invoked� This routine would
presumably invoke PutChar if additional output characters were queued awaiting output�

��� Disk Device

The Disk object simulates the behavior of a real disk� The disk has only a single platter�
with multiple tracks containing individual sectors� Each track contains the same number of
sectors� and blocks are uniquely identi�ed by their sector number� As with a real disk� the
OS initiates operations to read or write a speci�c sector� and a later interrupt indicates when
the operation has actually completed� The Nachos disk allows only one pending operation

�

at a time� the OS may initiate new operations only when the device is idle� Note that it is
the responsibility of the OS to insure that new requests are not issued while the disk is busy
servicing an earlier request�

In order to simulate typical delays in accessing a disk� the Nachos Disk object dynamically
varies the time between the initiation of an I�O operation and its corresponding I�O complete
interrupt� The actual delay depends on how long it takes to move the disk head from its
previous location to the new track� as well as the rotational delay encountered waiting for
the desired block to rotate under the read�write head�

The simulated disk contains NumTracks ���� tracks� each containing SectorsPerTrack
���� sectors� Individual sectors are SectorSize ����� bytes in size� In addition� Disk contains
a �track bu
er� cache� Immediately after seeking to a new track� the disk starts reading
sectors� placing them in the track bu
er� That way� a subsequent read request may �nd the
data already in the cache reducing access latency�

The Disk object supports the following operations�

Disk�char �name VoidFunctionPtr callWhenDone int callArg�
 This constructor
assumes that the simulated disk is kept in the Unix �le called name� If the �le does
not already exist� Nachos creates it and writes a �magic number� of x������ab into
the initial four bytes� The presence of a magic number allows Nachos to distinguish a
�le containing a Nachos simulated disk from one containing something else� Finally�
Nachos insures that the rest of the �le contains NULL sectors� All Nachos disks have
the same size� given by the formula NumSectors� SectorsPerTrack�

If the �le already exists� Nachos reads the �rst � bytes to verify that they contain the
expected Nachos �magic number�� terminating if the check fails� Note that by default
the contents of a Nachos disk is preserved across multiple Nachos sessions� allowing
users to create a Nachos �le in one session� and read it in another� However� if the
disk contains a �le system� and the �le system is left in a corrupted state by a previous
Nachos session� subsequent Nachos invocations are likely run into problems if they
don�t �rst verify that the �lesystem data structures are logically consistent�

The last two constructor arguments are used to provide an �I�O complete� interrupt
mechanism� Speci�cally� the Nachos machine signals the completion of a Disk operation
�e�g�� read or write� by invoking the procedure callWhenDone� passing it an argument
of callArg � As shown below� the SynchDisk object uses this routine to wake up a thread
that has been suspended while waiting for I�O to complete�

ReadRequest�int sectorNumber char �data�
 Is invoked to read the speci�ed sector
number into the bu
er data� In Nachos� all sectors are the same size �SectorSize��

Note that this operations returns immediately� before the transfer actually takes place�
ReadRequest schedules an interrupt to take place sometime in the future� after a time
roughly dependent on the seek distance needed to complete the operation� Only after
the interrupt takes place is it correct to start using the data�

WriteRequest�int sectorNumber char �data�
 Similar to ReadRequest � except that it
writes a single sector�

�

ComputeLatency�int newSector bool writing�
 estimates the latency required to ac�
cess the block newSector given the current position of the disk head� The routine is
used in deciding when to schedule an I�O complete interrupt when servicing a read or
write request�

� Nachos Threads

In Nachos �and many systems� a process consists of�

�� An address space� The address space includes all the memory the process is allowed to
reference� In some systems� two or more processes may share part of an address space�
but in traditional systems the contents of an address space is private to that process�
The address space is further broken down into �� Executable code �e�g�� the program�s
instructions�� �� Stack space for local variables and �� Heap space for global variables
and dynamically allocated memory �e�g�� such as obtained by the Unix malloc or C��
new operator�� In Unix� heap space is further broken down into BSS �contains variables
initialized to � and DATA sections �initialized variables and other constants��

�� A single thread of control� e�g�� the CPU executes instructions sequentially within the
process�

�� Other objects� such as open �le descriptors�

That is� a process consists of a program� its data and all the state information �memory�
registers� program counter� open �les� etc�� associated with it�

It is sometimes useful to allow multiple threads of control to execute concurrently within a
single process� These individual threads of control are called threads� By default� processes
have only a single thread associated with them� though it may be useful to have several�
All the threads of a particular process share the same address space� In contrast� one
generally thinks of processes as not sharing any of their address space with other processes�
Speci�cally� threads �like processes� have code� memory and other resources associated with
them� Although threads share many objects with other threads of that process� threads have
their own private local stack��

One big di
erence between threads and processes is that global variables are shared
among all threads� Because threads execute concurrently with other threads� they must
worry about synchronization and mutual exclusion when accessing shared memory�

Nachos provides threads� Nachos threads execute and share the same code �the Nachos
source code� and share the same global variables�

The Nachos scheduler maintains a data structure called a ready list � which keeps track
of the threads that are ready to execute� Threads on the ready list are ready to execute and

�Actually� threads technically do share their stacks with other threads in the sense that a particular

thread�s stack will still be addressable by the other threads� In general� however� it is more useful to think

of the stack as private� since each thread must have its own stack�

�

can be selected for executing by the scheduler at any time� Each thread has an associated
state describing what the thread is currently doing� Nachos� threads are in one of four states�

READY
 The thread is eligible to use the CPU �e�g� it�s on the ready list�� but another
thread happens to be running� When the scheduler selects a thread for execution� it
removes it from the ready list and changes its state from READY to RUNNING� Only
threads in the READY state should be found on the ready list�

RUNNING
 The thread is currently running� Only one thread can be in the RUNNING
state at a time� In Nachos� the global variable currentThread always points to the
currently running thread�

BLOCKED
 The thread is blocked waiting for some external event� it cannot execute until
that event takes place� Speci�cally� the thread has put itself to sleep viaThread��Sleep���
It may be waiting on a condition variable� semaphore� etc� By de�nition� a blocked
thread does not reside on the ready list�

JUST CREATED
 The thread exists� but has no stack yet� This state is a temporary
state used during thread creation� The Thread constructor creates a thread� whereas
Thread��Fork�� actually turns the thread into one that the CPU can execute �e�g�� by
placing it on the ready list��

In non�object oriented systems� operating systems maintain a data structure called a
process table� Process �thread� table entries contain all the information associated with a
process �e�g�� saved register contents� current state� etc��� The process table information is
frequently called a context block �

In contrast to other systems� Nachos does not maintain an explicit process table� Instead�
information associated with thread is maintained as �usually� private data of a Thread object
instance� Thus� where a conventional operating system keeps thread information centralized
in a single table� Nachos scatters its �thread table entries� all around memory� to get at a
speci�c thread�s information� a pointer to the thread instance is needed�

The Nachos Thread object supports the following operations�

Thread �Thread�char �debugName� The Thread constructor does only minimal ini�
tialization� The thread�s status is set to JUST CREATED� its stack is initialized to
NULL� its given the name debugName� etc�

Fork�VoidFunctionPtr func int arg� does the interesting work of thread creation� turn�
ing a thread into one that the CPU can schedule and execute�

Argument func is the address of a procedure where execution is to begin when the
thread starts executing� Argument arg is a an argument that should be passed to the
new thread� �Of course� procedure func must expect a single argument to be passed
to it if it is to access the supplied argument��

Fork allocates stack space for the new thread� initializes the registers �by saving the
initial value�s in the thread�s context block�� etc�

�

One important detail must be considered� What should happen when procedure func
returns� Since func was not called as a regular procedure call� there is no place for it
to return to� Indeed� rather than returning� the thread running func should terminate�
Fork takes care of this detail by building an initial activation record that makes this
happen �described in detail below��

void StackAllocate�VoidFunctionPtr func int arg� This routine does the dirty work
of allocating the stack and creating an initial activation record that causes execution
to appear to begin in func� The details are a somewhat complicated� Speci�cally�
StackAllocate does the following�

�� Allocate memory for the stack� The default stack size is StackSize ����� ��byte
integers�

�� Place a sentinel value at the top of the allocated stack� Whenever it switches to
a new thread� the scheduler veri�es that the sentinel value of the thread being
switched out has not changed� as might happen if a thread over�ows its stack
during execution�

�� Initialize the program counter PC to point to the routine ThreadRoot � Instead
of beginning execution at the user�supplied routine� execution actually begins in
routine ThreadRoot � ThreadRoot does the following�

�a� Calls an initialization routine that simply enables interrupts�

�b� Calls the user�supplied function� passing it the supplied argument�

�c� Calls thread��Finish��� to terminate the thread�

Having thread execution begin in ThreadRoot rather than in the user�supplied
routine makes it straightforward to terminate the thread when it �nishes� The
code for ThreadRoot is written in assembly language and is found in switch�s
Note� ThreadRoot isn�t run by the thread that calls Fork��� The newly created
thread executes the instructions in ThreadRoot when it is scheduled and starts
execution�

void Yield�� Suspend the calling thread and select a new one for execution �by calling
Scheduler��FindNextToRun���� If no other threads are ready to execute� continue run�
ning the current thread�

void Sleep�� Suspend the current thread� change its state to BLOCKED� and remove it
from the ready list� If the ready list is empty� invoke interrupt��Idle�� to wait for the
next interrupt� Sleep is called when the current thread needs to be blocked until some
future event takes place� It is the responsibility of this �future event� to wake up the
blocked thread and move it back on to the ready list�

void Finish�� Terminate the currently running thread� In particular� return such data
structures as the stack to the system� etc� Note that it is not physically possible for a
currently running thread to terminate itself properly� As the current thread executes�
it makes use of its stack� How can we free the stack while the thread is still using

��

it� The solution is to have a di�erent thread actually deallocate the data structures
of a terminated thread� Thus� Finish sets the global variable threadToBeDestroyed to
point to the current thread� but does not actually terminate it� Finish then calls Sleep�
which e
ectively terminates the thread �e�g�� it will never run again�� Later� when the
scheduler starts running another thread� the newly scheduled thread examines the
threadToBeDestroyed variable and �nishes the job�

��� Mechanics of Thread Switching

Switching the CPU from one thread to another involves suspending the current thread�
saving its state �e�g�� registers�� and then restoring the state of the thread being switched to�
The thread switch actually completes at the moment a new program counter is loaded into
PC� at that point� the CPU is no longer executing the thread switching code� it is executing
code associated with the new thread�

The routine Switch�oldThread� nextThread� actually performs a thread switch� Switch
saves all of oldThread �s state �oldThread is the thread that is executing when Switch is
called�� so that it can resume executing the thread later� without the thread knowing it was
suspended� Switch does the following�

�� Save all registers in oldThread �s context block �

�� What address should we save for the PC� That is� when we later resume running
the just�suspended thread� where do we want it to continue execution� We want
execution to resume as if the call to Switch�� had returned via the normal procedure call
mechanism� Speci�cally� we want to resume execution at the instruction immediately
following the call to Switch��� Thus� instead of saving the current PC� we place the
return address �found on the stack in the thread�s activation record� in the thread�s
context block� When the thread is resumed later� the resuming address loaded into the
PC will be the instruction immediately following the �call� instruction that invoked
Switch�� earlier�

Note� It is crucial that Switch�� appear to be a regular procedure call to whoever calls
it� That way� threads may call Switch�� whenever they want� The call will appear to
return just like a normal procedure call except that the return does not take place right
away� Only after the scheduler decides to resume execution of the switched thread will
it run again�

�� Once the current thread�s state has been saved� load new values into the registers from
the context block of the next thread�

�� At what exact point has a context switch taken place� When the current PC is replaced
by the saved PC found in the process table� Once the saved PC is loaded� Switch�� is
no longer executing� we are now executing instructions associated with the new thread�
which should be the instruction immediately following the call to Switch��� As soon
as the new PC is loaded� a context switch has taken place�

��

The routine Switch�� is written in assembly language because it is a machine�depended
routine� It has to manipulate registers� look into the thread�s stack� etc�

Note� After returning from Switch� the previous thread is no longer running� Thread
nextThread is running now� But because it also called Switch�� previously� it will return to
the �right place� �the instruction after the call to Switch���� Thus� it looks like Switch�� is
a �normal� procedure call� but in fact� a thread switch has taken place�

��� Threads � Scheduling

Threads that are ready to run are kept on the ready list � A process is in the READY state
only if it has all the resources it needs� other than the CPU� Processes blocked waiting for
I�O� memory� etc� are generally stored in a queue associated with the resource being waited
on�

The scheduler decides which thread to run next� The scheduler is invoked whenever the
current thread wishes to give up the CPU� For example� the current thread may have initiated
an I�O operation and must wait for it to complete before executing further� Alternatively�
Nachos may preempt the current thread in order to prevent one thread from monopolizing
the CPU�

The Nachos scheduling policy is simple� threads reside on a single� unprioritized ready
list� and threads are selected in a round�robin fashion� That is� threads are always appended
to the end of the ready list� and the scheduler always selects the thread at the front of the
list�

Scheduling is handled by routines in the Scheduler object�

void ReadyToRun�Thread �thread�
 Make thread ready to run and place it on the
ready list� Note that ReadyToRun doesn�t actually start running the thread� it simply
changes its state to READY and places it on the ready list� The thread won�t start
executing until later� when the scheduler chooses it�

ReadyToRun is invoked� for example� by Thread��Fork�� after a new thread has been
created�

Thread �FindNextToRun��
 Select a ready thread and return it�� FindNextToRun sim�
ply returns the thread at the front of the ready list�

void Run�Thread �nextThread�
 Do the dirty work of suspending the current thread
and switching to the new one� Note that it is the currently running thread that calls
Run��� A thread calls this routine when it no longer wishes to execute�

Run�� does the following�

�� Before actually switching to the new thread� check to see if the current thread over�
�owed its stack� This is done by placing a sentinel value at the top of the stack when

��

the thread is initially created� If the running thread ever over�ows its stack� the sen�
tinel value will be overwritten� changing its value� By checking for the sentinel value
every time we switch threads� we can catch threads over�owing their stacks�

�� Change the state of newly selected thread to RUNNING� Nachos assumes that the
calling routine �e�g� the current thread� has already changed its state to something
else� �READY� BLOCKED� etc�� before calling Run���

�� Actually switch to the next thread by invoking Switch��� After Switch returns� we
are now executing as the new thread� Note� however� that because the thread being
switched to previously called Switch from Run��� execution continues in Run�� at the
statement immediately following the call to Switch�

�� If the previous thread is terminating itself �as indicated by the threadToBeDestroyed
variable�� kill it now �after Switch���� As described in Section �� threads cannot termi�
nate themselves directly� another thread must do so� It is important to understand that
it is actually another thread that physically terminates the one that called Finish���

��� Synchronization and Mutual Exclusion

Low�level Nachos routines �including the ones discussed above� frequently disable and re�
enable interrupts to achieve mutual exclusion �e�g�� by calling Interrupt��SetLevel����

Synchronization facilities are provided through semaphores� The Semaphore object pro�
vides the following operations�

Semaphore�char� debugName int initialValue� The constructor creates a new count�
ing semaphore having an initial value of initialValue� The string debugName is also
associated with the semaphore to simplify debugging�

void P�� Decrement the semaphore�s count� blocking the caller if the count is zero�

void V�� Increment the semaphore�s count� releasing one thread if any are blocked waiting
on the count�

��� Special Notes

When Nachos �rst begins executing� it is executing as a single Unix process� Nachos turns
this single user process into a single Nachos thread� Thus� by default� Nachos executes a
single thread� When the Nachos entry point routine main returns� that thread exits as well�
However� if other threads have been created and continue to exist� the Unix process continues
executing Nachos� Only after all threads have terminated does the Unix Nachos process exit�

��

� User�Level Processes

Nachos runs user programs in their own private address space� Nachos can run any MIPS
binary� assuming that it restricts itself to only making system calls that Nachos understands�
In Unix� �a�out� �les are stored in �co
� format� Nachos requires that executables be in
the simpler �No
� format� To convert binaries of one format to the other� use the co�	no�
program� Consult the Make
le in the test directory for details�

No
�format �les consist of four parts� The �rst part� the No
 header� describes the
contents of the rest of the �le� giving information about the program�s instructions� initialized
variables and uninitialized variables�

The No
 header resides at the very start of the �le and contains pointers to the remaining
sections� Speci�cally� the No
 header contains�

no�Magic A reserved �magic� number that indicates that the �le is in No
 format� The
magic number is stored in the �rst four bytes of the �le� Before attempting to execute
a user�program� Nachos checks the magic number to be sure that the �le about to be
executed is actually a Nachos executable�

For each of the remaining sections� Nachos maintains the following information�

virtualAddr What virtual address that segment begins at �normally zero��

inFileAddr Pointer within the No
 �le where that section actually begins �so that
Nachos can read it into memory before execution begins��

size The size �in bytes� of that segment�

When executing a program� Nachos creates an address space and copies the contents
of the instruction and initialized variable segments into the address space� Note that the
uninitialized variable section does not need to be read from the �le� Since it is de�ned to
contain all zeros� Nachos simply allocates memory for it within the address space of the
Nachos process and zeros it out�

��� Process Creation

Nachos processes are formed by creating an address space� allocating physical memory for
the address space� loading the contents of the executable into physical memory� initializing
registers and address translation tables� and then invoking machine��Run�� to start execu�
tion� Run�� simply �turns on� the simulated MIPS machine� having it enter an in�nite loop
that executes instructions one at a time��

Stock Nachos assumes that only a single user program exists at a given time� Thus� when
an address space is created� Nachos assumes that no one else is using physical memory and
simply zeros out all of physical memory �e�g�� the mainMemory character array�� Nachos
then reads the binary into physical memory starting at location mainMemory and initializes
the translation tables to do a one�to�one mapping between virtual and physical addresses
�e�g�� so that any virtual address N maps directly into the physical address N�� Initialization

��

of registers consists of zeroing them all out� setting PCReg and NextPCReg to and �
respectively� and setting the stackpointer to the largest virtual address of the process �the
stack grows downward towards the heap and text�� Nachos assumes that execution of user�
programs begins at the �rst instruction in the text segment �e�g�� virtual address ��

When support for multiple user processes has been added� two other Nachos routines
are necessary for process switching� Whenever the current processes is suspended �e�g��
preempted or put to sleep�� the scheduler invokes the routine AddrSpace��SaveUserState���
in order to properly save address�space related state that the low�level thread switching
routines do not know about� This becomes necessary when using virtual memory� when
switching from one process to another� a new set of address translation tables needs to
be loaded� The Nachos scheduler calls SaveUserState�� whenever it is about to preempt
one thread and switch to another� Likewise� before switching to a new thread� the Nachos
scheduler invokes AddrSpace��RestoreUserState� RestoreUserState�� insures that the proper
address translation tables are loaded before execution resumes�

��� Creating a No	 Binary

Nachos is capable of executing a program containing arbitrary MIPS instructions� For ex�
ample� C programs in the test directory are compiled using gcc on a MIPS machine to create
��o� �les� To create an a�out binary �le� the loader prepends the instructions in test�start�s
before the code of the user program� File start�s contains initialization code that needs to
be executed before the user�s main program� Speci�cally� the very �rst instruction in start�s
calls the user�supplied main routine� whereas the second instruction invokes the Nachos Exit
system call� insuring that user processes terminate properly when their main program re�
turns� In addition� start�s contains stub modules for invoking system calls �described below��

��� System Calls and Exception Handling

User programs invoke system calls by executing the MIPS �syscall� instruction� which gen�
erates a hardware trap into the Nachos kernel� The Nachos�MIPS simulator implements
traps by invoking the Routine RaiseException��� passing it a arguments indicating the exact
cause of the trap� RaiseException� in turn� calls ExceptionHandler to take care of the speci�c
problem� ExceptionHandler is passed a single argument indicating the precise cause of the
trap�

The �syscall� instruction indicates a system call is requested� but doesn�t indicate which
system call to perform� By convention� user programs place the code indicating the particular
system call desired in register r	 before executing the �syscall� instruction� Additional
arguments to the system call �when appropriate� can be found in registers r��r � following
the standard C procedure call linkage conventions� Function �and system call� return values
are expected to be in register r	 on return�

Warning� When accessing user memory from within the exception handler �or within
Nachos in general�� user�level addresses cannot be referenced directly� Recall that user�level
processes execute in their own private address spaces� which the kernel cannot reference

��

�include �syscall�h�

int

main��

�

Halt���

�� not reached ��

	

Figure �� Source for the program halt�c

directly� Attempts to dereference pointers passed as arguments to system calls will likely lead
to problems �e�g�� segmentation faults� if referenced directly� Use ReadMem and WriteMem
to dereference pointers passed as arguments to system calls� Consult Section ��� for more
details�

��� Execution Trace of User�Level Process

Consider the simplest Nachos program� halt�c� which invokes the �halt� system call and does
nothing else� Its source code is shown in Figure �

When compiled� gcc �S generates the assembly language code shown in �gure � �line
numbers and additional comments have been added for clarity�� The only instruction that
directly relates to invoking the �halt� system call is given in line ��� The jal instruction
executes a jump that transfers control to the label �Halt�� Note that there is no label called
�Halt� in this program� The code for �Halt� can be found in the �le start�s� Lines ���� are
assembler directives that don�t actually generate any instructions� Lines ����� perform the
standard procedure call linkage operations that are performed as part of starting execution
in a new subroutine �e�g�� saving the return address and allocating space on the stack for
local variables�� Line �� is a call to a gcc�supplied library routine that Unix needs to execute
before your program normally begins execution �it is not needed in Nachos� so a dummy
routine is provided that does nothing�� Lines ����� provide the standard code for returning
from a procedure call� e
ectively undoing the e
ects of lines ����� �e�g�� fetch the saved
return address and then jump back to it��

The actual instructions for making system calls are found in start�s� Figure � shows the
subset of that �le that is used by the halt program� Again� lines ��� are assembler directives
rather than instructions� Line � is the �rst actual instruction� and simply calls the procedure
main� e�g�� the main program in halt�c� Lines ��� are executed whenever the call to main
returns� in which case we want to tell Nachos we are done via the �exit� system call�

System calls are invoked at runtime by placing a code for the system call in register �
and then executing the �syscall� machine instruction� The �syscall� instruction is a trap
instruction� meaning that the next instruction to be executed will be the �rst instruction
of the trap handler� In Nachos� this e
ectively means that execution continues now in
the procedure ExceptionHandler � Consider lines ������ the steps involved in making an

��

 �file
 �halt�c�

�

� � GNU C ���� �AL
�
� MM �� DECstation running ultrix compiled by GNU C

� � Cc
 defaults�

�

� � Cc
 arguments ��G value � �� Cpu � default� ISA �
��

� � �G �quiet �dumpbase �o

�

� gcc��compiled��

 ��gnu�compiled�c�

� �text

� �align �

 �globl main

�

� �loc

�

� �ent main

� main�

� �frame �fp�����
 � vars� �� regs� ���� args �
�� extra� �

�� �mask �xc���������

�
 �fmask �x����������

�� subu �sp��sp�� � SP �� SP�� �allocate space on stack�

�� sw ��
�����sp� � Save return address on stack

� sw �fp�
���sp� � Update FP

�� move �fp��sp � FP �� SP

�� jal ��main

�� jal Halt

�� �L
�

�� move �sp��fp � sp not trusted here

�� lw ��
�����sp�

�
 lw �fp�
���sp�

�� addu �sp��sp��

�� j ��

� �end main

Figure �� Source for the program halt�c

��

�exit� system call� Line �� places a code for �exit� in register r�� and line �� performs the
actual system call� Line ��� the �rst instruction that will be executed after the system call
simply returns to the caller� Note that the Exit system call normally won�t return �if coded
correctly��� but a return is provided anyway�

The actual steps in converting the halt�c source code into an executable program are
shown in Figure �� Line ��� generate object code from the halt�c and start�s source �les�
Line � creates an executable binary� Note that listing start�o before halt�o insures that
the code in start�s resides before that of the main program� Finally� line � translates the
executable into No
 format� making it ready to execute under Nachos�

The utility disassemble can be used to show the actual instructions in the halt binary� The
result of running disassemble on halt�co� �NOT halt� is given in Figure �� The instructions
are the same as described above� but the code is somewhat harder to understand because
the labels have been replaced with addresses�

� Nachos Filesystem

There are two versions of the Nachos �lesystem� A �stub� version is simply a front�end to
the Unix �lesystem� so that users can access �les within Nachos without having to write
their own �le system� The second version allows students to implement a �lesystem on
top of a raw disk� which is in fact a regular Unix �le that can only be accessed through
a simulated disk� The simulated disk accesses the underlying Unix �le exclusively through
operations that read and write individual sectors� Both �le systems provide the same service
and interface�

Files are accessed through several layers of objects� At the lowest level� a Disk ob�
ject provides a crude interface for initiating I�O operations for individual sectors� Above
Disk � the SynchDisk object provides synchronized access to a Disk � blocking callers until a
requested operation actually completes� In addition� SynchDisk allows multiple threads to
safely invoke disk operations concurrently� The FileSystem object handles creating� deleting�
opening and closing individual �les� Sitting alongside the FileSystem� the OpenFile object
handles the accessing of an individual �le�s contents� allowing seeks� reads� and writes� The
FileSystem��Open routine returns a �le descriptor �actually an �OpenFile � ��� that is used
to access the �le�s data� The raw Disk object was described in Section ���� The remaining
objects are discussed in detail below�

��� SynchDisk

The SynchDisk object resides above the raw disk� providing a cleaner interface to its services�
Speci�cally� it provides operations that block the calling thread until after the corresponding
I�O complete interrupt takes place� In contrast� the Disk object provides the mechanism
for initiating an I�O operation� but does not provide a convenient way of blocking the
caller until the request completes� In addition� SynchDisk provides mutual exclusion� so
that multiple threads can safely call the SynchDisk routines concurrently �recall that Disk

��

 �include �syscall�h�

� �text

� �align �

� �globl ��start

� �ent ��start

� ��start�

� jal main � Call the procedure ��main��

� move ���� � R �� �

� jal Exit �� if we return from main� exit��� ��

 �end ��start

�

� �globl Halt

 �ent Halt

� Halt�

� addiu ������SC�Halt

� syscall

� j ��

� �end Halt

��

�
 �globl Exit

�� �ent Exit

�� Exit�

� addiu ������SC�Exit

�� syscall

�� j ��

�� �end Exit

�� �� dummy function to keep gcc happy ��

�� �globl ��main

�� �ent ��main

�
 ��main�

�� j ��

�� �end ��main

Figure �� Instructions in start�s used by the program in halt�c
�

�

 gcc �G � �c �I���userprog �I���threads �c halt�c

� �lib�cpp �P �I���userprog �I���threads start�s � strt�s

� as �o start�o strt�s

 rm strt�s

� ld �N �T � start�o halt�o �o halt�coff

� ���bin�coff�noff halt�coff halt

� numsections �

� Loading � sections�

� ��text�� filepos �xa�� mempos �x�� size �x
��

� ��comment�� filepos �x���� mempos �x�� size �x�

Figure �� The output from make when compiling halt�c�

cannot service more than one request at a time�� Rather than using the Disk object directly�
most applications will �nd it appropriate to use SynchDisk instead� SynchDisk provides the
following operations�

SynchDisk�char �name�
 Constructor takes the name of Unix �le that holds the disk�s
contents�

This routine is called once at system �boot time� �e�g�� as part of Nachos initialization
process in system�cc�� and it uses the Unix �le �DISK� as its backing store� The
SynchDisk object can be accessed through the global variable synchDisk �

RequestDone��
 Interrupt service routine the underlying Disk object calls when an I�O
operation completes� Simply issues the semaphore V operation�

ReadSector�int sectorNumber char �data�
 Acquire a mutual exclusion lock� invoke
the underlying Disk��ReadSector operation and then wait on the semaphore that Re�
questDone signals when the I�O operation completes�

WriteSector�int sectorNumber char �data�
 Acquire a mutual exclusion lock� invoke
the underlying Disk��WriteSector operation and then wait on the semaphore that Re�
questDone signals when the I�O operation completes�

��� FileSystem Object

Nachos supports two di
erent �lesystems� a �stub� that simply maps Nachos �le operations
into ones the access Unix �les in the current directory� and a Nachos �le system that users
can modify� Use of the stub �lesystem makes it possible to implement paging and swapping
before implementing a Nachos �le system� The �DFILESYS STUB compilation �ag controls
which version gets used�

The FileSystem object supports the following operations�

��

Address Contents Instruction Target

�hex� �hex�

��������� �c����� jal ������d�

�������� �������� nop

��������� �c������ jal ��������

�������c� �������
 addu r����

������
�� ������� addiu r�����x�

������
� �������c syscall

������
�� ��e����� jr r�

������
c� �������� nop

��������� ������
 addiu r�����x

�������� �������c syscall

��������� ��e����� jr r�

�������c� �������� nop

� misc instructions deleted �

������c�� ��e����� jr r�

������c� �������� nop

������c�� �������� nop

������cc� �������� nop

������d�� ��bdffe� addiu sp�sp��xffffffe�

������d� afbf��
 sw r�
��x
�sp�

������d�� afbe��
� sw r����x
��sp�

������dc� �c������ jal ������c�

������e�� ��a�f��
 addu r���sp��

������e� �c����� jal ������
�

������e�� �������� nop

������ec� ��c�e��
 addu sp�r����

������f�� �fbf��
 lw r�
��x
�sp�

������f� �fbe��
� lw r����x
��sp�

������f�� ��e����� jr r�

������fc� ��bd��
� addiu sp�sp��x
�

Figure �� The disassembled output of the executable for the halt�c program�

��

FileSystem�bool format� For the stub system� this constructor �and destructor� does
nothing� the Unix �le system is used instead� For the Nachos �le system� format
indicates whether FileSystem should be re�initialized or whether the previous contents
of the �le system �from an earlier Nachos session� should be retained�

The FileSystem constructor is called once at �boot time�� It assumes that a synchDisk
instance has already been created and uses it to store the �le system�

bool Create�char �name int initialSize� creates a zero�length �le called name� If the
�le already exists� Create truncates its contents� Note that Create returns a boolean
value� either success or failure� but does not actual open a �le� it simply makes sure
that it exists and has zero�length� To actually write to a �le that has been created� a
subsequent call to Open must be made�

Argument initialSize speci�es the actual size of the �le� �Note� initialSize is ignored
in the stub �lesystem� Unix doesn�t require that a �le�s maximum size be speci�ed at
the time it is created�� For the regular �lesystem� specifying the �le�s size at creation
time simpli�es implementation� Su�cient disk sectors can be allocated in advance to
hold the entire �potential� �le contents� and appending data to the �le requires nothing
more than accessing the appropriate blocks� Of course� one possible variation for the
assignment is to implement extensible �les whose actual size grows dynamically�

OpenFile �Open�char �name� opens �le name for subsequent read or write access� In
the stub �le system� Open simply opens the Unix �le for read�write access� Note
that all �les opened under Nachos are opened with both read and write access� Thus�
the user opening the �le must have write permission for a �le even when the �le
will only be read� One consequence of this can cause confusion while implementing
multiprogramming� Nachos is unable to Exec binary �les that are not writable because
it cannot open them�

Another thing to note is that Open does not truncate a �le�s contents �it can�t since you
might be reading the �le�� However� when writing a �le� it is sometimes the case that
the �le�s existing contents should be deleted before new data is written� In Nachos�
invoking Create before Open insures that a �le is zero�length�

bool Remove�char �name� deletes �le name and frees the disk blocks associated with
that �le�

Note that in Unix� the disk sectors associated with a deleted �le are not actually
returned to the free list as long as there are any processes that still have the �le open�
Only after all open �le descriptors for a �le are closed does Unix deallocate the disk
blocks associated with the �le and return them to the free list� The Unix semantics
prevent certain types of undesirable situations� For example� deleting a binary �le
cannot cause processes paging o
 of that �le�s text segment to terminate unexpectedly
when the paging system attempts to load an instruction page from non�existent �le�

One suggested Nachos assignment is to provide Unix�style �le deletion�

��

��� OpenFile Object

The OpenFile object manages the details of accessing the contents of a speci�c �le� Opening
a �le for access returns a pointer to an OpenFile object that can be used in subsequent read
and write operations� Each OpenFile object has an associated read�write mark that keeps
track of where the previous read or write operation ended� Supported operations include�

OpenFile�int sector� opens the �le sector � Argument sector is the sector number contain�
ing the FileHeader for the �le� A FileHeader �discussed in detail below� is similar to
a Unix inode in that the low�level �le system routines know nothing about �le names�
�les are uniquely identi�ed by there FileHeader number� OpenFile returns a pointer
to an OpenFile object that is subsequently used to invoke any of remaining operations�

int ReadAt�char �into int numBytes int position� copies numBytes of data into the
bu
er into� Argument position speci�es at what o
set within the �le reading is to start�
ReadAt returns the number of bytes successfully read�

int Read�char �into int numBytes� simply invokes ReadAt � passing it the current read�write
mark� Read is used to read the �le sequentially from start to �nish� letting keeping
track of which part of the �le has already been read� and at what o
set the next read
operation is to continue� Read returns the number of bytes successfully read�

int WriteAt�char �from int numBytes int position� copies numBytes of data from
the bu
er from to the open �le� starting position bytes from the start of the �le�
WriteAt returns the number of bytes actually written�

int Write�char �from int numBytes� is used to write a �le sequentially� The �rstWrite
begins at the start of the �le� with subsequent writes beginning where the previous
operation ended� Write returns the number of bytes actually written�

int Length�� returns the actual size of the �le�

��� File System Physical Representation

Nachos places a �le system on top of an existing SynchDisk object� Before going into the
details� it is helpful to consider how �les themselves are stored�

����� File Header

Each Nachos �le has an associated FileHeader structure� The FileHeader is similar to a Unix
inode in that it contains all the essential information about a �le� such as the �le�s current
size and pointers to its physical disk blocks� Speci�cally� a Nachos� FileHeader contains the
current size of the �le in bytes� the number of sectors that have been allocated to the �le
and an array of sector numbers identifying the speci�c disk sector numbers where the �le�s
data blocks are located� Recall that when a �le is initially created� the caller speci�es the

��

size of the �le� At �le creation time� Nachos allocates enough sectors to match the requested
size� Thus� as data is appended to the �le� no sectors need be allocated� The current size
�eld indicates how much of the �le currently contains meaningful data�

Note that a FileHeader contains only �direct� pointers to the �le�s data blocks� limiting
the maximum size of a Nachos �le to just under �K bytes�

The following FileHeader operations are supported�

bool Allocate�BitMap �bitMap int �leSize�
 Find and allocate enough free sectors
for
leSize bytes of data� Nachos uses a bit vector to keep track of which sectors are
allocated and which are free� Argument bitMap is the bit map from which data blocks
are to be allocated �e�g�� the freelist��

void Deallocate�BitMap �bitMap�
 Return to the free list �e�g�� bitMap� the blocks
allocated to this �le �header�� Only the �le�s data blocks are deallocated� the sector
containing the FileHeader itself must be freed separately� This operation is invoked
when a �le is deleted from the system�

void FetchFrom�int sectorNumber�
 Read the FileHeader stored in sector sectorNum�
ber from the underlying disk�

void WriteBack�int sectorNumber� Write the FileHeader to sector number sectorNum�
ber �

int FileLength��
 Return the current size of the �le�

int ByteToSector�int o�set� Map the o
set within a �le into the actual sector number
that contains that data byte�

Because a FileHeader �ts into a single sector� the sector number containing a FileHeader
uniquely identi�es that �le� We will use fnode �for FileheaderNODE� to refer to a sector
that contains a FileHeader �

����� Directories

Nachos supports a single top�level directory� managed by the Directory object� When a �le
is created� it is added to the directory� likewise� deleting a �le results in its removal from
the directory� Directory entries themselves consist of ��lename� fnode� free �ag� triplets�
with the free �ag indicating whether that directory slot is currently allocated� The following
directory operations are supported�

Directory�int size�
 This constructor creates an �in�memory� directory object capable of
holding size entries�

void FetchFrom�OpenFile ��le�
 Fetch the directory contents stored in �le
le�

void WriteBack�OpenFile ��le�
 Flush the contents of the directory to the �le
le�

��

int Find�char �name�
 Search the directory for a �le called name� returning its fnode
number if the �le exists�

bool Add�char �name int newSector�
 Add the �le name with fnode newSector to the
directory� Note that this routine only updates the in�memory copy of the directory�
To make the directory changes permanent� WriteBack must subsequently be invoked�

bool Remove�char �name�
 Remove �le name from the directory� Note that the Remove
operator simply updates the directory� the FileHeader and data sectors associated with
name are deallocated separately� In addition� a subsequent call toWriteBack is needed
to make the changes permanent�

List�� Print out the directory contents �debugging��

Print�� Print out contents of all �les in the directory �debugging��

����� Putting It All Together

On disk� both the list of free sectors and the top�level directory are stored within regular
Nachos �les� The free list is stored as a bit map� one bit per sector �e�g�� allocated or free��
with the �le itself stored in fnode � Thus� �nding a free sector in the �lesystem requires
reading the �le associated with fnode � using the bitmap functions to locate free sector�s��
and then �ushing the �le changes back to disk �via the appropriate WriteBack routines� to
make the changes permanent�

Likewise� the top�level directory is stored in a �le associated with fnode �� Updating the
directory when creating a new �le requires reading the �le associated with fnode �� �nding
an unused directory entry� initializing it� and then writing the directory back out to disk�

When a �le system is created� the system initializes the freelist and top�level directory and
then opens the �les containing the two main data structures� Thus� the current contents of
the free list and directory �as stored on disk� can be accessed via the �OpenFile �� variables
freeMapFile and directoryFile�

When creating and modifying Nachos �les� one must be careful to keep track of what
data structures are on disk� and which ones are in memory� For example� when creating a
�le� a new FileHeader must be allocated� together with sectors to hold the data �free list
�le�� The top�level directory must also be updated� However� these changes don�t become
permanent until the updated free list and directory �les are �ushed to disk�

If one traces through the code for FileSystem��Create� one sees that all the allocations and
updates are �rst made in memory local to the calling thread� and only after all allocations
have succeeded without error are the changes made permanent by committing them to disk�
This approach greatly simpli�es error recovery when �say� there are enough free blocks to
create the �le� but the directory has no room to hold the new �le� By not �ushing to disk
the allocations that succeeded� they do not actually take e
ect� and cancelling the entire
transaction is straightforward�

��

Note also that the supplied FileSystem code assumes that only a single thread accesses
the �lesystem at any one time� Speci�cally� consider what would happen if two threads
attempted to create a �le simultaneously� One scenario would have both threads fetching
the current freemap� both updating their local copies� and then both writing them later� At
best� only one set of changes will appear on disk� At worst� the disk becomes corrupted�

No attempt has been made to reduce disk latencies by clustering related blocks in adjacent
sectors�

� Experience With Nachos Assignments

The following subsections discuss in more detail issues related to the speci�c programming
assignments� They are based on my experiences after having used Nachos in two courses� In
my experience� students are easily overwhelmed by the projects� They frequently don�t know
where to start and spend a large amount of time unproductively� The result is frustrated
students who don�t complete projects� With a bit more guidance� these same students can
complete the projects� Although it is valuable for students to tackle a large project given
only a general problem description� this only bene�ts those who actually succeed� At the
undergraduate level especially� students may lack adequate preparation�

��� General Tips

�� Use a debugger� Nachos programs simply cannot be debugged by looking at source
code or inserting print statements� Unfortunately� that is what many students do �with
obvious consequences�� I found it necessary to force students to learn to use a debugger
�e�g�� no help in o�ce hours otherwise��

�� Use of code browsing tools �e�g�� the emacs �tags� facility� greatly simpli�es the reading
and understanding of source code�

�� Students don�t always test programs well� If it works on one test case� they assume it
works for all of them� For those studying operating systems for the �rst time� designing
test cases is particularly di�cult� When grading programs� it was not uncommon for
student�supplied test programs to work� with all of my test cases failing� I found that
I got much improved submissions by supplying concrete test programs that students
had a chance to experiment with themselves�

�� The Nachos assignments included in the distribution are very general and leave out
many details� I got much better results by providing more detail about what needs
to be done and how to do it� Although students get a bene�t greatly from �guring
out things on there own� I found too many students were getting lost and frustrated�
Students with weak backgrounds are especially vulnerable� Later subsections �and
indeed� this entire document� provide examples of such additional details�

��

�� Students have a tendency to try to solve the entire problem at once� rather than
one step at a time� This is particularly problematical with Nachos� because students
often don�t understand the big picture� I found it useful to break up an assignment into
smaller standalone pieces� each building on the previous pieces� with a rough indication
of the weight for each part� There are two bene�ts� First� solving one component of an
assignment frequently leads to a better understanding of the issues necessary to solve
subsequent components� Second� students know how much credit they will receive for
the work done so far� and can better decide whether they should keep working on a
project or use their time in other ways�

��� Synchronization

Testing the correctness of the synchronization facilities is di�cult if only Nachos threads are
used because Nachos preempts threads only at well de�ned points �e�g�� when disabling or
re�enabling interrupts�� Thus� many incorrect solutions tend to work on the simple test cases
students use� Fear not� later assignments test the synchronization facilities extensively and
will uncover problems� Here are some suggestions for simplifying later debugging�

�� For the locking routines� have Acquire verify that the caller does not already hold the
lock via an ASSERT statement� One common problem occurring in later assignments
involves nested locking� where a thread already holding a lock attempts to acquire it
again� Nachos can�t always detect this deadlock condition itself �e�g� if the Console
device is in use� and students with deadlocked programs spend a long time not knowing
where to look before they realize they�ve deadlocked�

Another most common mistake students made while implementing locks is failing to
understand their semantics �even having covered them in class�� Speci�cally� students tended
to have a �ag or counter associated with condition variables� The following explanation will
hopefully clarify this point and explain why a condition variable cannot have a value�

Semaphores have a count associated with them� This count is a �memory� that allows a
semaphore to �remember� how many times the semaphore has been signalled �via P� relative
to the number of times it has been signalled �via V �� Semaphores are useful as gatekeepers
that must limit the number of persons �threads� allowed to be in a room simultaneously�
Threads enter the room enter through one door �the P operation� and leave through a second
door �the V operation�� The semaphore�s value keeps track of the number of threads in the
room at any given time� If the semaphore�s initial value is �� only one thread may be in the
room at a time� whereas an initial value of � allows the room to hold � threads�

In contrast� a condition variable has no value associated with it� If a thread invokes
Wait � it blocks no matter what� Speci�cally� it blocks regardless of how many previous
Signal operations were performed� In contrast� the semaphore P operation blocks only when
the count is non�positive� with the current value dependent on the initial counter and the
number of V operations that have been performed� One uses a semaphore �and its counter�
only when the number of P �s and V �s must balance each other� Note also that the condition

��

Signal operations wakes up one blocked thread �if one is waiting on the condition�� but has
no e
ect otherwise� If there are no threads waiting on a condition� executing Wait one time
has the same e
ect as executing it �� times �e�g�� no e
ect�� Compare this behavior with
the semaphore V operation� Even when no threads are waiting on the semaphore� the V
operation increments the semaphore�s value� which in�uences P �s behavior later�

There are times when a thread may wish to wait for some future event� but the conditions
necessary that de�ne the event can�t be described with a simple count� For example� a thread
may wish to wait for two resources to become available simultaneously� but does not wish
to hold one while it is blocked waiting for the other� In this case� a thread might wait on a
condition variable� with another thread issuing a Signal when the necessary condition �both
resources available simultaneously� becomes true� Note that only the code that calls Signal
and Wait know what the exact conditions are� Thus� the condition variable itself cannot
hold a meaningful value�

Finally� note that Nachos intends condition variables to have �Mesa�style� semantics�
In brief� when a Signal operation releases a thread� that thread can not assume that the
condition that it waited for is now true� It must �rst reassert that the necessary condition
still holds �e�g�� it must test the condition in a while loop� calling Wait again whenever the
condition is false�� This is necessary because another thread may be scheduled and execute
between the time of Signal and the running of the waiting thread� That intermediate thread
may change the state of the system so that the waited�on condition no longer holds�

��� Multiprogramming

�� The Nachos Fork and Exec routines have completely di
erent semantic from the Unix
system calls� In particular� the Nachos system calls do the following�

Exec Creates a new address space� reads a binary program into it� and then creates
a new thread �via Thread��Fork� to run it� Note that in Unix separate fork and
exec system calls are needed to achieve the same result��

Fork Creates a new thread of control executing in an existing address space� This is
a non�trivial system call to implement �for reasons discussed later��

�� When a Nachos program issues an Exec system call� the parent process is executing the
code associated with the Exec call� At some point during the Exec call� the parent will
need to invoke Thread��Fork to create the new thread that executes the child process�
Careful thought is required in deciding at what point the Fork operation should be
done� Speci�cally� after Fork � the �new� child thread can no longer access variables
associated with the parent process� For example� if the parent copies the name of the
new �le to be executed into a variable� then issues a Fork � expecting the child to open
that �le� a race condition exists� If the child runs after the parent� the parent may
already have deleted �or changed� the variable holding that �le name�

�Warning� when opening �les� Nachos opens all �les for both reading and writing� Thus� the binary being

loaded o� of disk must be writable�

��

The above race condition appears in a number of similar contexts where two processes
exchange data� The problem is that the parent and child threads need to synchronize
with each other� so that the parent doesn�t reclaim or reuse memory before the child
is �nished accessing it�

�� When the MIPS simulator �traps� to Nachos via the RaiseException routine� the
program counter �PCReg� points point to the instruction that caused the trap� That
is� the PCReg will not have been updated to point to the next instruction� This is
the correct behavior� When the fault is due to �say� a page missing� for example�
the faulting instruction will need be re�executed after the missing page is brought into
memory� If PCReg had already been updated� there would be no way of knowing which
instruction to re�execute�

On the other hand� when a user program invokes a system call via the �syscall� in�
struction� re�executing that instruction after returning from the system call leads to
an in�nite system call loop� Thus� as part of executing a system call� the exception
handler code in Nachos needs to update PCReg to point to the instruction following
the �syscall� instruction� Updating PCReg is not as trivial as �rst seems� however� due
to the possibility of delayed branches� The following code properly updates the pro�
gram counter� In particular� not properly updating NextPCReg can lead to improper
execution�

pc � machine��ReadRegister�PCReg��

machine��WriteRegister�PrevPCReg� pc��

pc � machine��ReadRegister�NextPCReg��

machine��WriteRegister�PCReg� pc��

pc � �

machine��WriteRegister�NextPCReg� pc��

Use of the following test programs greatly helped convince me that my implementation
was ��nally� correct�

ConsoleA Simple program that simply loops� writing the character �A� to the console�
Likewise� ConsoleB loops� printing the character �B��

shell The provided shell starts a process and then issues a �Join� to wait for it to ter�
minate� This test multiprogramming in a very rudimentary fashion only� because
the shell and the invoked program rarely execute concurrently in practice�

Modify the shell so that it can run jobs in background� For example� if the �rst
character of the �le is an �	�� start the process as normal� but don�t invoke a
�Join�� Instead� prompt the user for the next command�

With the modi�ed shell� run the ConsoleA and ConsoleB programs concurrently�

��� Virtual Memory

�� It is easiest to test the VM algorithms by running only a single process and have it
page against itself� It�s a lot easier to see what is happening this way� Add debug print

�

statements using the DEBUG�� routine� I used �p� for paging to turn it on� I found
it immensely useful to add debugging statements at the following points�

� when a page is reclaimed �e�g�� taken away from a process and made available to
another one�� indicate which process �address space� was forced to give up a page�
which virtual page number it gave up� and the corresponding page frame number
in physical memory�

In order to print the name of the address space that was forced to give up a page�
add a �char name� �eld to the AddrSpace object and initialize it to the name of
the Nachos binary when the space is initially created�

� Whenever a process has a page fault� print the address space that caused the
fault� which virtual page number the fault was for� and the physical page frame
that was used to satisfy the fault�

�� Reduce the amount of available physical memory to insure lots of page faults� I got
good results with �� pages of real memory� Also� the matmult program in the test
subdirectory uses quite a lot of memory� It is a good program to run with the ��x
���test�matmult� option to nachos�

Another good test is to use a modi�ed shell �the one that allows you to run a process
in background by putting a �	� character before the �le name�� Run the matmult
program in background� and then also run the console� and console� programs at the
same time� You should be seeing alternating A�s and B�s as before �if using the ��rs�
Nachos option��

�� You will need to maintain a data structure called a core map� The core map is a table
containing an entry for every physical page frame in the system� For each page frame�
a core map entry keeps track of�

� Is the page frame allocated or free�

� Which address space is using this page�

� which virtual page number within space�

� Plus possibly other �ags� such as whether the page is currently locked in memory
for I�O purposes

When the system needs to �nd a free page� but none are available� the memory manager
inspects the core map to �nd good candidate replacement pages� Of course� the memory
manager looks at the page table entry for that frame �via the �space� pointer� to
determine if a page has been used recently� is modi�ed� etc�

Start with a simple page replacement policy� I simply reclaimed frames in sequential
order starting with frame � That is� �rst reclaim � than �� etc�� wrapping around
when you get to the end of the list� This is obviously NOT an ideal policy� but it works
for the purposes of testing your implementation �in fact� by being a �bad� policy� it
tests your code surprisingly well�� Once the rest of your code is debugged� then worry
about implementing a better policy�

��

�� You need to think very carefully about mutual exclusion� For example� the page
replacement process may select frame ��� but �nd that it needs to write it to backing
store before it can be reclaimed� This will take a long time �I�O is slow�� and in the
meantime the process that was using that frame may be selected by the scheduler and
start running again� What happens when it tries to reference that frame� It will surely
notice that the page is gone� and try to reload it from backing store� Will it get the
proper copy� Will it read the page only after the page replacement object has written
it� There are all sorts of race conditions like that can potentially mess things up� So
be sure to use appropriate mutual exclusion in the paging routines�

�� You will need to maintain a �shadow� page table for each address space� The existing
page table de�ned by Nachos has a speci�c format dictated by the address translation
hardware� You will need to keep additional information about each page� thus the
shadow table� The shadow table keeps track of such things as the current state of the
page �e�g�� loaded in memory� needs to be loaded from the text or swap �le� etc��

Moreover� when you do away with the hardware page table and use the TLB� the
shadow table contains everything the standard table contains �e�g�� reference bit� dirty
bit� etc��� That is� when a program traps due to a TLB miss� the page fault handler
will look in the shadow table to �nd the appropriate mapping �loading it from backing
store �rst� if necessary�� update the TLB and then restart the faulting instruction�

In order to simplify the migration to the TLB part of this assignment� you may want
to have your paging algorithms access only the shadow page tables �rather than the
hardware page tables� when deciding which pages to reclaim� etc� That way� when the
hardware table goes away� none of the routines need to be changed� One consequence
of this approach� however� is that some information �e�g�� dirty and reference bits�
will be duplicated in both tables at the same time� Since the hardware automatically
updates its page table� but not the shadow table� you will need to synchronize the
two tables at key points before inspecting the shadow table� For example� before
checking the dirty bit for an entry in the shadow page table� make sure that the
shadow table has the must recent value for that bit� You may �nd it useful to have a
routine SyncPageTableEntry�� that synchronizes a shadow entry with its corresponding
hardware value� Note� you will probably need such a routine anyway later when doing
the TLB part of the assignment� since the Nachos hardware only updates its TLB
entries�

�� You will need to allocate backing store �swap space� for each address space� One
approach is to create a �le �e�g�� swap�PID� when the address space is created� open
it� and then use it while the process is running� The �le should be closed and removed
when the process terminates�

When a page fault takes place� there are three scenarios�

�a� The page belongs to the stack or heap section� and should be initialized to � This
is the easiest case to handle� because you only have to �nd a free page and zero
it out� There is no need for disk I�O�

��

�b� The page should be loaded from the swap �le� This simply involves reading the
page in the swap �le at the o
set corresponding to the page being accessed� For
example� page number � would correspond to an o
set of � PageSize ! � ��� !
����

�c� The page contains instructions or initialized data and should be loaded from the
original binary �le�

This is the most di�cult case� You will need to �gure out what o
set within the
text �le the desired page begins at� To simplify matters� assume that the text and
initialized data segments are laid out contiguously in the Nachos binary �le �they
are�� That way� you only need to keep track of where the text segment begins �it
doesn�t start at o
set � the NOFF header resides there� and the combined length
of the text and data segments are�

To handle the three above cases� you will need to keep two OpenFile objects with the
AddrSpace object� One for the text �le� the other for the swap �le� In addition� for each
page in an address space�s shadow page table� maintain a state variable that indicates
what state the page is in� For example� LOADFROMTEXT� LOADFROMSWAP and
ZEROFILL� The state of a page is initialized when a process is created� and changes
only if the memory manager reclaims the page� �nds it modi�ed� and writes it to
backing store�

�� You will need routines that lock a range of addresses into memory �and unlock them
later�� For example� when a program does a system call to read data from a �le�
it provides a pointer to the bu
er where it wants the �le contents placed� The Read
system call �rst reads the desired data into its own bu
er� and then copies the data into
the user bu
er using the machine��WriteMem�� operations� In order for this operation
to succeed� the pages holding the bu
er must be in memory� Thus� you will want
to lock the pages associated with the bu
er into memory before attempting to place
data in the bu
er� Once the data has been copied to the bu
er� the pages can be
unlocked again� For example� the routine LockMemory�� might take a virtual address
and length� insure that all pages corresponding to the speci�ed addresses indicated
are loaded and present in physical memory and lock them into place� While locked in
memory� the memory manager would not reclaim them�

What you must do for full credit� Please note that I will grade these in order� If part
� doesn�t work� I won�t even look at � or �� Don�t waste your time working on any
parts before completing the previous parts�

�� ��" of total grade� Get demand loading to work� That is� rather than load the
program into memory during �exec�� load individual pages as they are �rst referenced�
If a page is never referenced� it is never loaded into memory� Assume that there is
enough physical memory so that no pages ever need to be reclaimed�

�� ��" of total grade� In addition to ��� get full blown paging with backing store im�
plemented� That is� when the system runs out of physical memory� grab any page�
write it to backing store if necessary� and then reuse the page frame� Use a simple

��

policy �like the one described above�� The focus is on getting the mechanics of page
replacement�backing store to work�

�� ���" of total grade� In addition to the previous steps� implement a better page re�
placement policy� such as LRU�

�� ��" of total grade� In addition to the previous steps� use the TLB rather than
hardware page tables� �E�g�� compile with the �DUSE TLB option��

��� File System

Locking is a major pain because WriteAt calls ReadAt �on occasion�� One probably wants to
lock for both reads and writes� but if one already has the lock �while writing� and then calls
read� potential deadlock scenarios appear immediately� Here are some particularly tricky
cases�

�� It is tempting to have a single lock per �le� which one acquires as the �rst step in
beginning a read or write� However� there are cases where WriteAt also calls ReadAt �
Speci�cally� if WriteAt needs to write a partial sector� it must �rst read the sector
and then update the subset of that sector the WriteAt refers to� However� if ReadAt
attempts to acquire the same lock that WriteAt already holds� deadlock results�

�� Consider updating an directory �as part of create�� To properly update the directory�
it is read from disk� then modi�ed in memory� then written back out to disk� For
correctness� access to the directory must be locked for the duration of all operations
�not just while reading or writing�� Otherwise� two threads could attempt to update
the directory simultaneously� If both threads read the directory� modi�ed separate
in�memory copies and then wrote out the changes� only one set of changes would make
it out to disk� Note that it is insu�cient to lock the directory only during the reads
and writes� a lock must be held across both operations� Thus� acquiring locks within
ReadAt or WriteAt is insu�cient�

�� A similar scenario occurs when updating the freelist as part of removing a �le� One
must �rst read the bitmap� update it� and then �ush the changes back out to disk� The
bitmap routines FetchFrom and WriteBack call ReadAt and WriteAt respectively�

��� Common Errors

This section discusses common problems that students ran into over and over again �even
after having been warned about them��

�� The VM assignment works mostly correctly� but running matmult in background pre�
vents the shell from executing any more commands� even though it prompts the user
and seems to read the command OK�

��

What is happening� The pages �in user space� holding the arguments to the system calls
are being paged out before the system call routines copy the contents of those pages into
local variables� For example� Exec needs the name of the binary �le to run� Routine
machine��ReadMem does indeed invoke Translate to perform the translation� and if the
target page is not present in physical memory� generates a page fault �e�g�� by invoking
RaiseException�� However � ReadMem does not retry the fetch operation� instead�
it returns FALSE indicating that the operation failed� Thus� the �rst byte the user
attempts to fetch will not be retrieved� If Nachos immediately restarts the operation�
the page will now be present in memory �the probability is very high anyway�� If
ReadMem is called from a loop that fetches one character at a time� skipping the
�rst character will likely cause the wrong thing to happen �it is frequently NULL in
practice� terminating the string�� The same problem occurs with WriteMem� and can
occur with any system calls that take pointers as arguments�

One shortcut that students want to make is to simply retry the ReadMem operation
when it fails� That is� they assume that the only reason ReadMem fails is because
the target page was paged out� If the pointer is invalid �e�g�� outside of the process�s
address space�� however� retrying the operation results in the same failure� Indeed�
Nachos goes into an in�nite loop at this point�

�� Problem� value of variables �strings in particular� changes randomly�

What is happening� Dangling references� Although this is a standard C programming
problem� students repeatedly forgot to allocate space for strings� For example� as part
of the Exec system call� it is useful for debugging purposes to store the name of the �le
with the address space� This requires allocating space to hold the string and copying
that �le name into that newly allocated space� In contrast� students often simply
set a pointer to the �le name argument passed to the routine that implements Exec�
However� when that routine returns� the Exec system call completes� and the space
that held the �le name gets deallocated� Chance are good that the next system call to
be executed will reuse the same space� placing di
erent data in its contents�

� MIPS Architecture

One thing you need to be aware of is that the MIPS architecture �like many RISC archi�
tectures� has a number of instructions that do not take e
ect right away� Instructions that
fetch values from memory� for example� take so long to execute that another instruction
�that doesn�t access memory� can be executed before the memory access completes� Such
instructions are called delayed loads� the loaded value doesn�t become available right away�
The MIPS architecture executes one instruction during such load delay slots�

In many cases� the compiler can rearrange the order of instructions in order to �ll the
delay slot with useful instruction� For example� a value could be loaded a few instructions
earlier than it is actually needed� as long as the target register was not being used� When
tracing programs in Nachos� you should be aware that instructions used in calling subroutines
have a one�instruction delay� That is� the PC can be changed quickly� but the processor must

��

go to memory to fetch the instruction at the new address before it can actually execute it�
Thus� the code for calling the procedure Exit with an argument of would be done as follows�

jal Exit � Jump to procedure ��Exit��

addu r���� � r �� r� � �r� always has a value of ��

That is� the instruction that zeroes out register r� appears after the �jal� instruction�
rather than before as expected�

Table 		 describes some common instructions you may encounter�

��

