Ch. 3 : Logic Coverage

Four Structures for Modeling Software

- Graphs
- Logic
- Input Space
- Syntax

Applied to:
- Source
- FSMs
- Specs
- DNF

Applied to:
- Source
- Specs
- Design
- Use cases

Applied to:
- Source
- Models
- Integ
- Input

Introduction to Software Testing (Ch 3)
Framework of logics

• **Propositional logics, Boolean logics**
 - $p, \land, \lor, \neg, \rightarrow, \ldots$
 - ex: happy \land (rain \rightarrow smoke)

• **1st-order logics**
 - $x, p(x), \land, \lor, \neg, \forall, \exists, \rightarrow, \ldots$
 - ex: $(\text{human}(\text{Socrates}) \land \forall x(\text{human}(x) \rightarrow \text{mortal}(x)))$
 $\rightarrow \text{mortal}(\text{Socrates})$

• **Higher-order logics, 2nd-order logics**
 - $x, p(x), \land, \lor, \neg, \forall, \exists, F, \rightarrow, \ldots$
 - Ex: $\exists F(F(\text{Socrates}) \land \forall x \exists y((F(x) \land \text{friend}(x,y)) \rightarrow F(y)))$
Covering Logic Expressions (3.1)

- Logic expressions show up in many situations

- Covering logic expressions is required by the US Federal Aviation Administration for safety critical software

- Logical expressions can come from many sources
 - Decisions in programs
 - FSMs and statecharts
 - Requirements

- Tests are intended to choose some subset of the total number of truth assignments to the expressions
Logic Predicates and Clauses

- A **predicate** is an expression that evaluates to a **boolean** value.
- Predicates can contain:
 - **boolean variables**
 - non-boolean variables with >, <, ==, >=, <=, !=
 - **boolean function calls**
- Internal structure is created by logical operators:
 - ¬ – the **negation** operator
 - ∧ – the **and** operator
 - ∨ – the **or** operator
 - → – the **implication** operator
 - ⊕ – the **exclusive or** operator
 - ↔ – the **equivalence** operator
- A **clause** is a predicate with no logical operators.

a non-standard term, should be called ATOM.
Semantics

- Truth table, meaning of propositional logics

<table>
<thead>
<tr>
<th>a < b</th>
<th>D</th>
<th>m >= n*o</th>
<th>((a < b) ∨ D) ∧ (m >= n*o)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

- a truth assignment,
- an interpretation,
- a row
2014/12/05 stopped here.
Examples

• \((a < b) \lor f(z) \land D \land (m \geq n \times o)\)
• Four clauses:
 – \((a < b)\) – relational expression
 – \(f(z)\) – boolean-valued function
 – \(D\) – boolean variable
 – \((m \geq n \times o)\) – relational expression
• Most predicates have few clauses
 – It would be nice to quantify that claim!
• Sources of predicates
 – Decisions in programs
 – Guards in finite state machines
 – Decisions in UML activity graphs
 – Requirements, both formal and informal
 – SQL queries: \(\{\,(a,b) \mid a \in A \land b \in B \land age(a) = age(b)\}\),
 \(\exists a \in A \exists b \in B \, age(a) = \text{agen}(b)\)
Humans have trouble translating from English to Logic

- “I am interested in SWE 637 and CS 652”
 - course = swe637 OR course = cs652
- “If you leave before 6:30 AM, take Braddock to 495, if you leave after 7:00 AM, take Prosperity to 50, then 50 to 495”
 - time < 6:30 → path = Braddock ∨ time > 7:00 → path = Prosperity
 - Hmm … this is incomplete!
 - time < 6:30 → path = Braddock ∨ time ≥ 6:30 → path = Prosperity
Testing and Covering Predicates
(3.2)

• We use predicates in testing as follows:
 – Developing a model of the software as one or more predicates
 – Requiring tests to satisfy some combination of clauses

• Abbreviations:
 – P is the set of predicates
 – p is a single predicate in P
 – C is the set of clauses in P
 – C_p is the set of clauses in predicate p
 – c is a single clause in C
Predicate and Clause Coverage

• The first (and simplest) two criteria require that each predicate and each clause be evaluated to both true and false

Predicate Coverage (PC): For each \(p \) in \(P \), \(TR \) contains two requirements: \(p \) evaluates to true, and \(p \) evaluates to false.

Clause Coverage (CC): For each \(c \) in \(C \), \(TR \) contains two requirements: \(c \) evaluates to true, and \(c \) evaluates to false.

• When predicates come from conditions on edges, this is equivalent to edge coverage

• PC does not evaluate all the clauses, so …
Predicate Coverage Example

\[(a < b) \lor D) \land (m >= n*o)\]

Predicate coverage

Predicate = true

\[
a = 5, b = 10, D = true, m = 1, n = 1, o = 1
\]

\[
= (5 < 10) \lor true \land (1 >= 1*1)
\]

\[
= true \lor true \land TRUE
\]

\[
= true
\]

Predicate = false

\[
a = 10, b = 5, D = false, m = 1, n = 1, o = 1
\]

\[
= (10 < 5) \lor false \land (1 >= 1*1)
\]

\[
= false \lor false \land TRUE
\]

\[
= false
\]
Clause Coverage Example

\((a < b) \lor D) \land (m \geq n \times o)\)

Clause coverage

<table>
<thead>
<tr>
<th>(a < b) = true</th>
<th>(a < b) = false</th>
<th>D = true</th>
<th>D = false</th>
</tr>
</thead>
<tbody>
<tr>
<td>a = 5, b = 10</td>
<td>a = 10, b = 5</td>
<td>D = true</td>
<td>D = false</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>m \geq n \times o = true</th>
<th>m \geq n \times o = false</th>
</tr>
</thead>
<tbody>
<tr>
<td>m = 1, n = 1, o = 1</td>
<td>m = 1, n = 2, o = 2</td>
</tr>
</tbody>
</table>

Two tests

1) a = 5, b = 10, D = true, m = 1, n = 1, o = 1
2) a = 10, b = 5, D = false, m = 1, n = 2, o = 2
Problems with PC and CC

• PC does not fully exercise all the clauses, especially in the presence of short circuit evaluation

• CC does not always ensure PC
 – That is, we can satisfy CC without causing the predicate to be both true and false
 – This is definitely not what we want!

• The simplest solution is to test all combinations …
Combinatorial Coverage (CoC)

- CoC requires every possible combination
- Sometimes called Multiple Condition Coverage

For each p in P, TR has test requirements for the clauses in C_p to evaluate to each possible combination of truth values.

<table>
<thead>
<tr>
<th>$a < b$</th>
<th>D</th>
<th>$m \geq n \ast o$</th>
<th>$((a < b) \lor D) \land (m \geq n \ast o)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>2</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>3</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>4</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
Combinatorial Coverage

• This is simple, neat, clean, and comprehensive …

• But quite expensive!

• 2^N tests, where N is the number of clauses
 – Impractical for predicates with more than 3 or 4 clauses

• The literature has lots of suggestions – some confusing

• The general idea is simple:

 Test each clause independently from the other clauses

• Getting the details right is hard

• What exactly does “independently” mean?

• The book presents this idea as “making clauses active” …
Active Clauses

- Clause coverage has a **weakness** : The values do not always make a difference.
- Consider the first test for **clause coverage**, which caused each clause to be true:

\[(5 < 10) \lor true \land (1 \geq 1*1)\]

- Only the first clause **counts**!
- To really test the results of a clause, the clause should be the **determining factor** in the value of the predicate.

Determination

A clause \(C_i \) in predicate \(p \), called the **major clause**, **determines** \(p \) if and only if the values of the remaining **minor clauses** \(C_j \) are such that changing \(C_i \) changes the value of \(p \).

- This is considered to **make the clause active**.
Determining Predicates (呂宗翰)

\[p = A \lor B \]

- if \(B = true \), \(p \) is always true.
- so if \(B = false \), \(A \) determines \(p \).
- if \(A = false \), \(B \) determines \(p \).

\[p = A \land B \]

- if \(B = false \), \(p \) is always false.
- so if \(B = true \), \(A \) determines \(p \).
- if \(A = true \), \(B \) determines \(p \).

- **Goal**: Find tests for each clause when the clause determines the value of the predicate
- This is formalized in **several criteria** that have subtle, but very important, differences
Active Clause Coverage (ACC) (吴家贤)

For each p in P and each major clause c_i in C_p, choose minor clauses c_j, $j \neq i$, so that c_i determines p.

TR has two requirements for each c_i: c_i evaluates to true and c_i evaluates to false.

- This is a form of MCDC (modified condition decision coverage), which is required by the FAA for safety critical software.
- **Ambiguity**: Do the minor clauses have to have the same values when the major clause is true and false?
Resolving the Ambiguity

$p = a \lor (b \land c)$

Major clause: a

- $a = true, b = false, c = true$
- $a = false, b = false, c = false$

Is this allowed?

- This question caused confusion among testers for years
- Considering this carefully leads to three separate criteria:
 - Minor clauses do not need to be the same
 - Minor clauses do need to be the same
 - Minor clauses force the predicate to become both true and false
General Active Clause Coverage (GACC)

Motivation: For each \(p \) in \(P \) and each major clause \(c_i \) in \(C_p \), choose minor clauses \(c_j, j \neq i \), so that \(c_i \) determines \(p \).

TR has two requirements for each \(c_i : c_i \) evaluates to true and \(c_i \) evaluates to false.

The values chosen for the minor clauses \(c_j \) do not need to be the same when \(c_i \) is true as when \(c_i \) is false, that is,

- \(c_j(c_i = true) = c_j(c_i = false) \) for all \(c_j \) OR
- \(c_j(c_i = true) \neq c_j(c_i = false) \) for all \(c_j \).

- This is complicated!
- It is possible to satisfy GACC without satisfying predicate coverage
- We really want to cause predicates to be both true and false!
Restricted Active Clause Coverage (RACC)

Motivation: For each p in P and each major clause c_i in C_p, choose minor clauses $c_j, j \neq i$, so that c_i determines p.

TR has two requirements for each c_i: c_i evaluates to true and c_i evaluates to false.

The values chosen for the minor clauses c_j must be the same when c_i is true as when c_i is false, that is, it is required that $c_j(c_i = true) = c_j(c_i = false)$ for all c_j.

- This has been a common interpretation by aviation developers
- RACC often leads to infeasible test requirements
- There is no logical reason for such a restriction
Correlated Active Clause Coverage (CACC)

Motivation: For each \(p \) in \(P \) and each major clause \(c_i \) in \(C_p \), choose minor clauses \(c_j, j \neq i \), so that \(c_i \) determines \(p \).

TR has two requirements for each \(c_i : c_i \) evaluates to true and \(c_i \) evaluates to false.

The values chosen for the minor clauses \(c_j \) must cause \(p \) to be true for one value of the major clause \(c_i \) and false for the other, that is, it is required that \(p(c_i = \text{true}) \neq p(c_i = \text{false}) \).

- **A more recent interpretation**
- **Implicitly** allows minor clauses to have different values
- **Explicitly** satisfies (subsumes) predicate coverage
CACC and RACC

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>(a \land (b \lor c))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>2</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>3</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>4</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

Major Clause

\(P_a \): b = true or c = true

CACC can be satisfied by choosing any of rows 1, 2, 3 AND any of rows 5, 6, 7 – a total of nine pairs.

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>(a \land (b \lor c))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>2</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>3</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>4</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

RACC

RACC can only be satisfied by row pairs (1, 5), (2, 6), or (3, 7)

Only three pairs
Inactive Clause Coverage (ICC)

- The active clause coverage criteria ensure that “major” clauses do affect the predicates.
- Inactive clause coverage takes the opposite approach – major clauses do not affect the predicates.

For each \(p \) in \(P \) and each major clause \(c_i \) in \(C_p \), choose minor clauses \(c_j, j \neq i \), so that \(c_i \) does not determine \(p \).

TR has four requirements for each \(c_i \):

1. \(c_i \) evaluates to true with \(p \) true,
2. \(c_i \) evaluates to false with \(p \) true,
3. \(c_i \) evaluates to true with \(p \) false, and
4. \(c_i \) evaluates to false with \(p \) false.
General and Restricted ICC

- Unlike ACC, the notion of correlation is not relevant
 - c_i does not determine p, so cannot correlate with p

- Predicate coverage is always guaranteed

General Inactive Clause Coverage (GICC): For each p in P and each major clause c_i in C_p, choose minor clauses c_j, $j \neq i$, so that c_i does not determine p.

The values chosen for the minor clauses c_j do not need to be the same when c_i is true as when c_i is false, that is, $c_j(c_i = \text{true}) = c_j(c_i = \text{false})$ for all c_j or $c_j(c_i = \text{true}) \neq c_j(c_i = \text{false})$ for all c_j.

Restricted Inactive Clause Coverage (RICC): For each p in P and each major clause c_i in C_p, choose minor clauses c_j, $j \neq i$, so that c_i does not determine p.

The values chosen for the minor clauses c_j must be the same when c_i is true as when c_i is false, that is, it is required that $c_j(c_i = \text{true}) = c_j(c_i = \text{false})$ for all c_j.

Logic Coverage Criteria Subsumption

- Combinatorial Clause Coverage (COC)
 - Restricted Active Clause Coverage (RACC)
 - Restricted Inactive Clause Coverage (RICC)
 - Correlated Active Clause Coverage (CACC)
 - General Active Clause Coverage (GACC)
- Clause Coverage (CC)
- Predicate Coverage (PC)
- General Inactive Clause Coverage (GICC)
Making Clauses Determine a Predicate

• Finding values for minor clauses \(c_j \) is easy for simple predicates
• But how to find values for more complicated predicates?
• Definitional approach:

\[- p_c=\text{true} \text{ is predicate } p \text{ with every occurrence of } c \text{ replaced by true} \]

\[- p_c=\text{false} \text{ is predicate } p \text{ with every occurrence of } c \text{ replaced by false} \]

\[p = ((a < b) \lor D) \land (m \geq n \times o) \]

\[p_{(a<b)=true} = (true \lor D) \land (m \geq n \times o) \]

\[= (m \geq n \times o) \]

\[p_{(a<b)=false} = (false \lor D) \land (m \geq n \times o) \]

\[= D \land (m \geq n \times o) \]
Making Clauses Determine a Predicate

• Finding values for minor clauses c_j is easy for simple predicates
• But how to find values for more complicated predicates?
• Definitional approach:
 \[p_{c=\text{true}} \] is predicate p with every occurrence of c replaced by true
 \[p_{c=\text{false}} \] is predicate p with every occurrence of c replaced by false

• To find values for the minor clauses, connect $p_{c=\text{true}}$ and $p_{c=\text{false}}$ with exclusive OR

\[p_c = p_{c=\text{true}} \oplus p_{c=\text{false}} \]

• After solving, p_c describes exactly the values needed for c to determine p
Examples

\[p = a \lor b \]

\[p_a = p_a=\text{true} \oplus p_a=\text{false} \]

\[= (\text{true} \lor b) \text{ XOR } (\text{false} \lor b) \]

\[= \text{true XOR } b \]

\[= \neg b \]

\[p = a \land b \]

\[p_a = p_a=\text{true} \oplus p_a=\text{false} \]

\[= (\text{true} \land b) \oplus (\text{false} \land b) \]

\[= b \oplus \text{false} \]

\[= b \]

\[p = a \lor (b \land c) \]

\[p_a = p_a=\text{true} \oplus p_a=\text{false} \]

\[= (\text{true} \lor (b \land c)) \oplus (\text{false} \lor (b \land c)) \]

\[= \text{true } \oplus (b \land c) \]

\[= \neg (b \land c) \]

\[= \neg b \lor \neg c \]

• “\text{NOT } b \lor \text{NOT } c”\text{ means either } b \text{ or } c \text{ can be false}\

• \text{RACC requires the same choice for both values of } a, \text{ CACC does not}
Repeated Variables

- The definitions in this chapter yield the same tests no matter how the predicate is expressed

- \((a \lor b) \land (c \lor b) == (a \land c) \lor b\)

- \((a \land b) \lor (b \land c) \lor (a \land c)\)
 - Only has 8 possible tests, not 64

- Use the simplest form of the predicate, and ignore contradictory truth table assignments
2013/12/05 stopped here.
A More Subtle Example

\[p = (a \land b) \lor (a \land \neg b) \]

\[p_a = p_{a=true} \oplus p_{a=false} \]
\[= ((true \land b) \lor (true \land \neg b)) \oplus ((false \land b) \lor (false \land \neg b)) \]
\[= (b \lor \neg b) \oplus false \]
\[= true \oplus false \]
\[= true \]

\[p = (a \land b) \lor (a \land \neg b) \]

\[p_b = p_{b=true} \oplus p_{b=false} \]
\[= ((a \land true) \lor (a \land \neg true)) \oplus ((a \land false) \lor (a \land \neg false)) \]
\[= (a \lor false) \oplus (false \lor a) \]
\[= a \oplus a \]
\[= false \]

- \textit{a} always determines the value of this predicate
- \textit{b} never determines the value – \textit{b} is \textit{irrelevant}!
Infeasible Test Requirements

- Consider the predicate:

 \[(a > b \land b > c) \lor c > a\]

- \((a > b) = true, (b > c) = true, (c > a) = true\) is infeasible

- As with graph-based criteria, infeasible test requirements have to be recognized and ignored

- Recognizing infeasible test requirements is hard, and in general, undecidable

- Software testing is inexact – engineering, not science
Logic Coverage Summary

- Predicates are often very simple—in practice, most have less than 3 clauses
 - In fact, most predicates only have one clause!
 - With only clause, PC is enough
 - With 2 or 3 clauses, CoC is practical
 - Advantages of ACC and ICC criteria significant for large predicates
 - CoC is impractical for predicates with many clauses

- Control software often has many complicated predicates, with lots of clauses

- Question … why don’t complexity metrics count the number of clauses in predicates?
Logic Expressions from Source

• Predicates are derived from **decision** statements in programs

• In programs, most predicates have **less than four** clauses
 – Wise programmers actively strive to keep predicates simple

• When a predicate only has one clause, COC, ACC, ICC, and CC all collapse to **predicate coverage** (PC)

• Applying logic criteria to program source is hard because of **reachability** and **controllability**:
 – **Reachability**: Before applying the criteria on a predicate at a particular statement, we have to **get to** that statement
 – **Controllability**: We have to **find input values** that indirectly assign values to the variables in the predicates
 – Variables in the predicates that are not inputs to the program are called **internal variables**

• These issues are illustrated through an example in the following slides ...
Thermostat (pg 1 of 2)（庭橻講）

1 // Jeff Offutt--October 2010
2 // Programmable Thermostat
3 import java.io.*;
4 class thermostat
5 {
6 private Heater myHeater;
7 // Decide whether to turn the heater on, and for how long.
8 public boolean turnHeaterOn (
9 int curTemp, /* Current temperature reading */
10 int thresholdDiff, /* Temp difference until we turn heater on */
11 Minutes timeSinceLastRun, /* Time since heater stopped */
12 Minutes minLag, /* How long I need to wait */
13 Time timeOfDay, /* current time (Hours and minutes) */
14 Day dayOfWeek, /* Monday, Tuesday, ... */
15 Settings programmedSettings [], /* User's program, by day */
16 boolean Override, /* Has user overridden the program */
17 int overTemp /* OverridingTemp */
18)
Thermostat (pg 2 of 2)（庭楘講）

19 {
20 int desiredTemp;
21 // getPeriod() translates time into Morning, Day, Evening, Night
22 desiredTemp = programmedSettings [dayOfWeek].getDesiredTemp
23 (getPeriod [TimeOfDay]);
24 if (((curTemp < desiredTemp - thresholdDiff) ||
25 (Override && curTemp < overTemp - thresholdDiff)) &&
26 timeSinceLastRun.greaterThan (minLag))
27 { // Turn on the heater
28 // How long? Assume 1 minute per degree (Fahrenheit)
29 int timeNeeded = curTemp - desiredTemp;
30 if (Override)
31 timeNeeded = curTemp - overTemp;
32 myHeater.setRunTime (timeNeeded);
33 return (true);
34 }
35 else
36 return (false);
37 } // End turnHeaterOn
38 } // End class
Two Thermostat Predicates （庭榮講）

24-26: (((curTemp < desiredTemp - thresholdDiff) || (Override && curTemp < overTemp - thresholdDiff)) && timeSinceLastRun.greaterThan (minLag))

30: (Override)

Simplify

a : curTemp < desiredTemp - thresholdDiff
b : Override
c : curTemp < overTemp - thresholdDiff
d : timeSinceLastRun.greaterThan (minLag)

24-26: (a || (b && c)) && d

30: b
Reachability for Thermostat Predicates

24-26 : True

49: \((a \lor (b \&\& c)) \&\& d\)

\[\text{curTemp} < \text{desiredTemp} - \text{thresholdDiff}\]

Need to solve for the internal variable \(\text{desiredTemp}\)

\[\text{programmedSettings [dayOfWeek].getDesiredTemp (getPeriod [TimeOfDay])}\]

\[\text{programmedSettings [Monday].setDesiredTemp (Morning, 69)}\]
Predicate Coverage \((true)\)

\[(a \| (b \&\& c)) \&\& d\]

\begin{align*}
\text{a} : & \text{true} \\
\text{b} : & \text{true} \\
\text{c} : & \text{true} \\
\text{d} : & \text{true}
\end{align*}

\begin{align*}
\text{curTemp} & < \text{desiredTemp} - \text{thresholdDiff} : \text{true} \\
\text{Override} & : \text{true} \\
\text{curTemp} & < \text{overTemp} - \text{thresholdDiff} : \text{true} \\
\text{timeSinceLastRun.greaterThan} & (\text{minLag}) : \text{true}
\end{align*}

\begin{align*}
\text{programmedSettings [Monday].setDesiredTemp} & (\text{Morning, 69}) \\
// \text{dayOfWeek} & = \text{Monday} \\
// \text{timeOfDay} & = 8:00 \\
\text{curTemp} & = 63 \\
63 & < 69 - 5 \\
\text{Override} & : \text{true} \\
\text{overTemp} & = 70 \\
63 & < 70 - 5 \\
\text{timeSinceLastRun.setValue} & (12) \\
\text{minLag} & = 10
\end{align*}
Predicate Coverage \textit{(false)}

\[(a \| (b \&\& c)) \&\& d\]

\begin{itemize}
 \item a : false
 \item b : false
 \item c : false
 \item d : false
\end{itemize}

curTemp < desiredTemp – thresholdDiff : false
Override : false
curTemp < overTemp – thresholdDiff : false
timeSinceLastRun.greaterThan (minLag) : false

programmedSettings \texttt{[Monday].setDesiredTemp} \texttt{(Morning, 69)}
// dayOfWeek = Monday
// timeOfDay = 8:00
curTemp = 66
66 < 69 – 5
Override : false
overTemp = 70
66 < 70 – 5
timeSinceLastRun.setValue (8)
minLag = 10
Correlated Active Clause Coverage (1 of 5)

\[P_a = ((a \lor (b \land c)) \land d) \oplus ((a \lor (b \land c)) \land d) \]

\[((T \lor (b \land c)) \land d) \oplus ((F \lor (b \land c)) \land d) \]

\[(T \land d) \oplus ((b \land c) \land d) \]

\[d \oplus ((b \land c) \land d) \]

\[!(b \land c) \land d \]

\[(\neg b \lor \neg c) \land d \]

Check with the logic coverage web app
http://cs.gmu.edu:8080/offutt/coverage/LogicCoverage
Correlated Active Clause Coverage (2 of 5)

Six tests needed for CACC on Thermostat

(a || (b && c)) && d

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
Correlated Active Clause Coverage (3 of 5)

curTemp desiredTemp thresholdDiff
curTemp < desiredTemp - thresholdDiff 63 69 5
!(curTemp < desiredTemp - thresholdDiff) 66 69 5

desiredTemp = programmedSettings [Monday].setDesiredTemp (Morning, 69)
dayOfWeek = Monday
timeOfDay = 8:00

Override
Override T
!Override F

curTemp overTemp thresholdDiff
curTemp < overTemp - thresholdDiff 63 70 5
!(curTemp < overTemp - thresholdDiff) 66 70 5

timeSinceLastRun minLag
timeSinceLastRun.greaterThan (minLag) 12 10
!(timeSinceLastRun.greaterThan (minLag)) 8 10

These values then need to be placed into calls to turnHeaterOn() to satisfy the 6 tests for CACC.
Correlated Active Clause Coverage (4 of 5)

desiredTemp = programmedSettings [Monday].setDesiredTemp (Morning, 69)

1. T t f t
 a = T : curTemp = 63; c = f : curTemp = 66
 turnHeaterOn (63/66, 5, 12, 10, 8:00, Monday, programmedSettings, true, 70)

2. F t f t
 turnHeaterOn (66, 5, 12, 10, 8:00, Monday, programmedSettings, true, 70)

3. f T t t
 a = f : curTemp = 66; c = t : curTemp = 63
 turnHeaterOn (63/66, 5, 12, 10, 8:00, Monday, programmedSettings, true, 70)

4. f t F f
 turnHeaterOn (66, 5, 8, 10, 8:00, Monday, programmedSettings, true, 70)

5. t t t T
 turnHeaterOn (63, 5, 12, 10, 8:00, Monday, programmedSettings, true, 70)

6. t t t F
 turnHeaterOn (63, 5, 8, 10, 8:00, Monday, programmedSettings, true, 70)
Correlated Active Clause Coverage (5 of 5)

• Tests 1 and 3 are infeasible with the values we chose
• But we can choose different values for clause c
• $curTemp$ is fixed by the solution to clause a
• $thresholdDiff$ is also fixed by the solution to clause a
• So we choose different values for $overtemp$...

1. T t f t
 turnHeaterOn (63, 5, 12, 10, 8:00, Monday, programmedSettings, true, 62)

3. f T t t
 turnHeaterOn (66, 5, 12, 10, 8:00, Monday, programmedSettings, true, 66)
Program Transformation Issues

if ((a && b) || c) {
 S1;
}
else {
 S2;
}

Transform (1)?

d = a && b;
e = d || c;
if (e) {
 S1;
}
else {
 S2;
}

Transform (2)?

if (a) {
 if (b)
 S1;
 else {
 if (c)
 S1;
 else
 S2;
 }
}
else {
 if (c)
 S1;
 else
 S2;
}

if (a) {
 if (b)
 S1;
 else {
 if (c)
 S1;
 else
 S2;
 }
}
else {
 if (c)
 S1;
 else
 S2;
}

Transform (1)?
Problems with Transformed Programs

- Maintenance is certainly harder with Transform (1)
 - Not recommended!
- Coverage on Transform (1)
 - PC on transform does not imply CACC on original
 - CACC on original does not imply PC on transform
- Coverage on Transform (2)
 - Structure used by logic criteria is “lost”
 - Hence CACC on transform 2 only requires 3 tests
 - Note: Mutation analysis (Chapter 5) addresses this problem
- Bottom Line: Logic coverage criteria are there to help you!

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>(a&b)\lor c</th>
<th>CACC</th>
<th>PC</th>
<th>CACC (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Summary: Logic Coverage for Source Code

- **Predicates** appear in decision statements
 - if, while, for, etc.
- Most predicates have less than **four clauses**
 - But some applications have predicates with many clauses
- The hard part of applying logic criteria to source is resolving the **internal variables**
- Sometimes setting variables requires calling **other methods**
- **Non-local variables** (class, global, etc.) are also input variables if they are used
- If an input variable is changed within a method, it is treated as an **internal variable** thereafter
- To maximize effect of logic coverage criteria:
 - Avoid transformations that hide predicate structure
Specifications in Software

- Specifications can be **formal** or **informal**
 - Formal specs are usually expressed *mathematically*
 - Informal specs are usually expressed in *natural language*

- Lots of **formal languages** and **informal styles** are available

- Most specification languages include **explicit logical expressions**, so it is very easy to apply logic coverage criteria

- Implicit logical expressions in natural-language specifications should be **re-written** as explicit logical expressions as part of test design
 - You will often find mistakes

- One of the most common is **preconditions** …
Preconditions

- Programmers often include **preconditions** for their methods
- The preconditions are often expressed in **comments** in method headers
- Preconditions can be in **javadoc**, “requires”, “pre”, ...

Example – Saving addresses

// name must not be empty
// state must be valid
// zip must be 5 numeric digits
// street must not be empty
// city must not be empty

Rewriting to logical expression

name != "" \(\wedge\) state in stateList \(\wedge\) zip >= 00000 \(\wedge\) zip <= 99999 \(\wedge\)
street != "" \(\wedge\) city != ""
Shortcut for Predicates in Conjunctive Normal Form

- Conjunctive clauses are connected only by the **and** operator
 - \(A \land B \land C \land \ldots \)

- Each major clause is made active by making all other clauses **true**

- ACC tests are “**all true**” and then a “**diagonal**” of false values:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td></td>
</tr>
</tbody>
</table>
Shortcut for Predicates in Disjunctive Normal Form

- Disjunctive clauses are connected only by the or operator
 \[A \lor B \lor C \lor \ldots \]
- Each major clause is made active by making all other clauses false
- ACC tests are “all false” and then a “diagonal” of true values:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td></td>
</tr>
</tbody>
</table>
Summary : Logic Coverage for Specs

- Logical specifications can come from **lots of places**:
 - Preconditions
 - Java asserts
 - Contracts (in design-by-contract development)
 - OCL conditions
 - Formal languages

- Logical specifications can describe behavior at **many levels**:
 - Methods and classes (unit and module testing)
 - Connections among classes and components
 - System-level behavior

- Many predicates in specifications are in **disjunctive** normal or **conjunctive** normal form – simplifying the computations
Covering Finite State Machines

- **FSMs are graphs**
 - nodes represent state
 - edges represent transitions among states

- Transitions often have logical expressions as guards or triggers

- As we said:

 Find a *logical expression* and cover it
Example – Subway Train

- All Doors Open
 - secondPlatform = right
 - ~emergencyStop \land ~overrideOpen \land doorsClear (all three transitions)

- Left Doors Open
 - trainSpeed = 0 \land platform=left \land (inStation \lor (emergencyStop \land overrideOpen))

- Right Doors Open
 - trainSpeed = 0 \land platform=right \land (inStation \lor (emergencyStop \land overrideOpen))

- All Doors Closed
 - secondPlatform = left
Determination of the Predicate (郭世揚)

<table>
<thead>
<tr>
<th>Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>trainSpeed = 0 ∧ platform=left ∧ (inStation ∨ (emergencyStop ∧ overrideOpen))</td>
<td></td>
</tr>
<tr>
<td>platform = left : trainSpeed = 0 ∧ (inStation ∨ (emergencyStop ∧ overrideOpen))</td>
<td></td>
</tr>
<tr>
<td>inStation : trainSpeed = 0 ∧ platform = left ∧ (¬ emergencyStop ∨ ¬ overrideOpen)</td>
<td></td>
</tr>
<tr>
<td>emergencyStop : trainSpeed = 0 ∧ platform = left ∧ (¬ inStation ∧ overrideOpen)</td>
<td></td>
</tr>
<tr>
<td>overrideOpen : trainSpeed = 0 ∧ platform = left ∧ (¬ inStation ∧ emergencyStop)</td>
<td></td>
</tr>
</tbody>
</table>
Test Truth Assignments (CACC)(鄭惟浩)

\[trainSpeed = 0 \land platform=\text{left} \land (inStation \lor (emergencyStop \land overrideOpen)) \]

<table>
<thead>
<tr>
<th></th>
<th>trainSpeed=0</th>
<th>platform=left</th>
<th>inStation</th>
<th>emergencyStop</th>
<th>overrideOpen</th>
</tr>
</thead>
<tbody>
<tr>
<td>trainSpeed = 0</td>
<td>T</td>
<td>t</td>
<td>t</td>
<td>t</td>
<td>t</td>
</tr>
<tr>
<td>trainSpeed != 0</td>
<td>F</td>
<td>t</td>
<td>t</td>
<td>t</td>
<td>t</td>
</tr>
<tr>
<td>platform = left</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>platform != left</td>
<td>t</td>
<td>F</td>
<td>t</td>
<td>t</td>
<td>t</td>
</tr>
<tr>
<td>inStation</td>
<td>t</td>
<td>t</td>
<td></td>
<td>F</td>
<td>f</td>
</tr>
<tr>
<td>\neg inStation</td>
<td>t</td>
<td>t</td>
<td>F</td>
<td>f</td>
<td>f</td>
</tr>
<tr>
<td>emergencyStop</td>
<td>t</td>
<td>t</td>
<td>f</td>
<td>T</td>
<td>t</td>
</tr>
<tr>
<td>\neg emergencyStop</td>
<td>t</td>
<td>t</td>
<td>f</td>
<td>F</td>
<td>t</td>
</tr>
<tr>
<td>overrideOpen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>overrideOpen</td>
<td>t</td>
<td>t</td>
<td>F</td>
<td>t</td>
<td>T</td>
</tr>
<tr>
<td>\neg overrideOpen</td>
<td>t</td>
<td>t</td>
<td>F</td>
<td>t</td>
<td>F</td>
</tr>
</tbody>
</table>

Note: other choices are possible
Complicating Issues

• Some buttons must be pressed **simultaneously** to have effect – so timing must be tested

• **Reachability** : The tests must reach the state where the transition starts (the prefix)

• **Exit** : Some tests must continue executing to an end state

• **Expected output** : The expected output is the state that the transition reaches for true values, or same state for false values

• **Accidental transitions** : Sometimes a false value for one transition happens to be a true value for another
 – The alternate expected output must be recognized
Reachability via weakest precondition (1/2)

- State (a) \rightarrow (b): precondition: $x < 5$; action: $x := 0$;
- State (b) \rightarrow (c): precondition: $x > y$; action: $x := 3$;
- Assume that at (c), we want to test $x > z$.
- Assume initial state is (a).

Weakest precondition:

1. The precondition of $x := 3$ to $x > z$: $x > z[x = 3] = 3 > z$
2. The precondition of $(x > y)$ to $3 > z$: $x > y && 3 > z$
3. The precondition of $x := 0$ to $x > y && 3 > z$: $0 > y && 3 > z$
4. The precondition: $(x < 5)$ to $0 > y && 3 > z$: $x < 5 && 0 > y && 3 > z$
5. So we need input of x, y, z to make $x < 5 && 0 > y && 3 > z$ true at initial state (a).
6. $x = 0$, $y = -1$, $z = 0$ as test input to check $x > z$ at (c).
Reachability via weakest precondition (2/2)

- Assume that at (c), we want to test $\cos(x)+a*b > z$.
- Assume initial state is (a).

Weakest precondition:

1. The precondition of $x:=3$ to $\cos(x)+a*b>z$: $>z[x=3] = \cos(3)+a*b>z$
2. The precondition of $(x>y)$ to $3>z$: $x>y&&\cos(3)+a*b>z$
3. The precondition of $x:=0$ to $x>y&&3>z$: $0>y&&\cos(3)+a*b>z$
4. The precondition: $(x<5)$ to $0>y&&3>z$: $x<5&&0>y&&\cos(3)+a*b>z$
5. So we need input of x, y, z to make $x<5&&0>y&&\cos(3)+a*b>z$ true at initial state (a).
6. $x=0$, $y = -1$, $z = 0$, $a=b=2$ as test input to check $x>z$ at (c).
Test Scripts

- **Test scripts** are executable sequences of value assignments

- **Mapping problem**: The names used in the FSMs may not match the names in the program
 - Sometimes a direct name-to-name mapping can be found
 - Sometimes more complicated actions must be taken to assign the appropriate values
 - *Simulation*: Directly inserting value assignments into the middle of the program

- The solution to this is implementation-specific
Summary FSM Logic Testing

- FSMs are widely used at all levels of abstraction
- Many ways to express FSMs
 - Statecharts, tables, Z, decision tables, Petri nets, …
- Predicates are usually explicitly included on the transitions
 - Guards
 - Actions
 - Often represent safety constraints
- FSMs are often used in embedded software
Introduction to Software Testing
Chapter 3.6
Disjunctive Normal Form Criteria

Paul Ammann & Jeff Offutt

http://www.cs.gmu.edu/~offutt/softwaretest/
2013/12/19 stopped here.
Disjunctive Normal Form (DNF)

- Common Representation for Boolean Functions
 - Slightly Different Notation for Operators
 - Slightly Different Terminology

- Basics:
 - A literal is a clause or the negation (overstrike) of a clause
 - Examples: \(a, \overline{a} \)
 - A term is a set of literals connected by logical “and”
 - “and” is denoted by adjacency instead of \(\land \)
 - Examples: \(ab, a\overline{b}, \overline{a}\overline{b} \) for \(a \land b, a \land \neg b, \neg a \land \neg b \)
 - A (disjunctive normal form) predicate is a set of terms connected by “or”
 - “or” is denoted by \(+ \) instead of \(\lor \)
 - Examples: \(abc + \overline{a}b + a\overline{c} \)
 - Terms are also called “implicants”
 - If a term is true, that implies the predicate is true
Disjunctive Normal Form (DNF)

Examples:
• abc + ~ab +b~c
• ab + ~b~c
• a(b+~c) not DNF \Rightarrow distributivity: ab + a~c: DNF
• ~(a+~c) not DNF \Rightarrow de Morgan’s law: ~a~~c \Rightarrow ~ac: DNF

Properties of DNF:
• a + ab \equiv a
• a + a~b \equiv a
• a~b + b \equiv a + b
Implicant Coverage (張唯霖講)

- Obvious coverage idea: Make each implicant evaluate to “true”.
 - Problem: Only tests “true” cases for the predicate.
 - Solution: Include DNF representations for negation.

Implicant Coverage (IC): Given DNF representations of a predicate \(f \) and its negation \(\overline{f} \), for each implicant in \(f \) and \(\overline{f} \), TR contains the requirement that the implicant evaluate to true.

- Example: \(f = ab + b\overline{c} \quad \overline{f} = \overline{b} + \overline{ac} \)
 - Implicants: \(\{ ab, b\overline{c}, \overline{b}, \overline{ac} \} \)
 - Possible test set: \(\{TTF, FFT\} \)
- Observation: IC is relatively weak
Improving on Implicant Coverage （Martin講）

• Additional Definitions:
 – A proper subterm is a term with one or more clauses removed
 • Example: abc has 6 proper subterms: a, b, c, ab, ac, bc
 – A prime implicant is an implicant such that no proper subterm is also an implicant (in any DNF of the predicate).
 • Example: $f = ab + abc$
 • Implicant ab is a prime implicant
 • Implicant $a\overline{bc}$ is not a prime implicant (due to proper subterm ac)
 $$-f = ab + \overline{a}bc = a(b + \overline{bc}) = a(b + c) = ab + ac$$
 – A redundant implicant is an implicant that can be removed without changing the value of the predicate
 • Example: $f = ab + ac + \overline{bc}$
 • ab is redundant
 • Predicate can be written: $ac + bc$
unique true points

• A minimal DNF representation is one with only prime, nonredundant implicants.
• A unique true point with respect to a given implicant is an assignment of truth values so that
 – the given implicant is true, and
 – all other implicants are false
• Hence a unique true point test focuses on just one implicant
• A minimal representation guarantees the existence of at least one unique true point for each implicant

Unique True Point Coverage (UTPC) : Given minimal DNF representations of a predicate f and its negation \overline{f}, TR contains a unique true point for each implicant in f and \overline{f}.
Unique True Point Example

- Consider again: \(f = ab + bc \) \(\bar{f} = \bar{b} + \bar{ac} \)
 - Implicants: \(\{ ab, bc, \bar{b}, \bar{ac} \} \)
 - Each of these implicants is prime
 - None of these implicants is redundant

- Unique true points:
 - \(ab: \{ TTT \} \)
 - \(bc: \{ FTF \} \)
 - \(\bar{b}: \{ FFF, TFF, TFT \} \)
 - \(\bar{ac}: \{ FTT \} \)

- Note that there are three possible (minimal) tests satisfying UTPC

- UTPC is fairly powerful
 - Exponential in general, but reasonable cost for many common functions
 - No subsumption relation wrt any of the ACC or ICC Criteria
Near False Points

- **A near false point** with respect to a clause c in implicant i is an assignment of truth values such that f is false, but if c is negated (and all other clauses left as is), i (and hence f) evaluates to true.

- **Relation to determination**: at a near false point, c determines f
 - Hence we should expect relationship to ACC criteria

Unique True Point and Near False Point Pair Coverage (CUTPNFP): Given a minimal DNF representation of a predicate f, for each clause c in each implicant i, TR contains a unique true point for i and a near false point for c such that the points differ only in the truth value of c.

- Note that definition only mentions f, and not \overline{f}.
- Clearly, CUTPNFP subsumes RACC
CUTPNFP Example

- Consider \(f = ab + cd \)
 - For implicant \(ab \), we have 3 unique true points: \{TTFF, TTFT, TTTF\}
 - For clause \(a \), we can pair unique true point TTFF with near false point FTFF
 - For clause \(b \), we can pair unique true point TTFF with near false point TFFF
 - For implicant \(cd \), we have 3 unique true points: \{FFTT, FTTT, TFTT\}
 - For clause \(c \), we can pair unique true point FFTT with near false point FFFT
 - For clause \(d \), we can pair unique true point FFTT with near false point FFTF
- CUTPNFP set: \{TTFF, FFTT, TFFF, FTFF, FFFT, FFFT\}
 - First two tests are unique true points; others are near false points
- Rough number of tests required: \# implicants * \# literals
DNF Fault Classes

- ENF: Expression Negation Fault \(f = ab+c \quad f' = \overline{ab}+c \)
- TNF: Term Negation Fault \(f = ab+c \quad f' = \overline{ab}+c \)
- TOF: Term Omission Fault \(f = ab+c \quad f' = ab \)
- LNF: Literal Negation Fault \(f = ab+c \quad f' = \overline{a}\overline{b}+c \)
- LRF: Literal Reference Fault \(f = ab + bcd \quad f' = ad + bcd \)
- LOF: Literal Omission Fault \(f = ab + c \quad f' = a + c \)
- LIF: Literal Insertion Fault \(f = ab + c \quad f' = ab + bc \)
- ORF+: Operator Reference Fault \(f = ab + c \quad f' = abc \)
- ORF*: Operator Reference Fault \(f = ab + c \quad f' = a + b + c \)

Key idea is that fault classes are related with respect to testing: Test sets guaranteed to detect certain faults are also guaranteed to detect additional faults.
Fault Detection Relationships

- Literal Insertion Fault (LIF)
- Term Omission Fault (TOF)
- Operator Reference Fault (ORF+)
- Literal Reference Fault (LRF)
- Literal Negation Fault (LNF)
- Term Negation Fault (TNF)
- Expression Negation Fault (ENF)
- Literal Omission Fault (LOF)
- Operator Reference Fault (ORF*)
Understanding The Detection Relationships

- Consider the TOF (Term Omission Fault) class
 - UTPC requires a unique true point for every implicant (term)
 - Hence UTPC detects all TOF faults
 - From the diagram, UTPC also detects:
 - All LNF faults (Unique true point for implicant now false)
 - All TNF faults (All true points for implicant are now false points)
 - All ORF+ faults (Unique true points for joined terms now false)
 - All ENF faults (Any single test detects this…)

- Although CUTPNFP does not subsume UTPC, CUTPNFP detects all fault classes that UTPC detects (Converse is false)

- Consider what this says about the notions of subsumption vs. fault detection

- Literature has many more powerful (and more expensive) DNF criteria
 - In particular, possible to detect entire fault hierarchy (MUMCUT)
Karnaugh Maps for Testing Logic Expressions

• Fair Warning
 – We use, rather than present, Karnaugh Maps
 – Newcomer to Karnaugh Maps probably needs a tutorial
 • Suggestion: Google “Karnaugh Map Tutorial”

• Our goal: Apply Karnaugh Maps to concepts used to test logic expressions
 – Identify when a clause determines a predicate
 – Identify the negation of a predicate
 – Identify prime implicants and redundant implicants
 – Identify unique true points
 – Identify unique true point / near false point pairs

• No new material here on testing
 – Just fast shortcuts for concepts already presented
K-Map: A clause determines a predicate

- Consider the predicate: \(f = b + \overline{a} \overline{c} + ac \)
- Suppose we want to identify when \(b \) determines \(f \)
- The dashed line highlights where \(b \) changes value
 - If two cells joined by the dashed line have different values for \(f \), then \(b \) determines \(f \) for those two cells.
 - \(b \) determines \(f \): \(\overline{a} \overline{c} + ac \) (but NOT at \(ac \) or \(\overline{a} \overline{c} \))
- Repeat for clauses \(a \) and \(c \)
K-Map: Negation of a predicate

• Consider the predicate: \(f = ab + bc \)

• Draw the Karnaugh Map for the negation
 – Identify groups
 – Write down negation: \(\bar{f} = \bar{b} + \bar{a} \bar{c} \)
K-Map: Prime and redundant implicants

• Consider the predicate: \(f = abc + abd + abcd + abcd + acd \)
• Draw the Karnaugh Map
• Implicants that are not prime: \(abd, \ abcd, \ abcd, \ acd \)
• Redundant implicant: \(abd \)
• Prime implicants
 – Three: \(ad, bcd, abc \)
 – The last is redundant
 – Minimal DNF representation
 • \(f = ad + bcd \)
K-Map: Unique True Points

- Consider the predicate: \(f = ab + cd \)
- Three unique true points for \(ab \)
 - TTFF, TTFT, TTTT
 - TTTT is a true point, but not a unique true point
- Three unique true points for \(cd \)
 - FFFT, FTTT, TFTT
- Unique true points for \(\overline{f} \)
 \(\overline{f} = \overline{a}c + \overline{b}c + \overline{a}d + \overline{b}d \)
 - FTFT, TFFT, FTTF, TFTF
- Possible UTPC test set
 - \(f \): \{TTFT, FFFT\}
 - \(\overline{f} \): \{FTFT, TFFT, FTTF, TFTF\}
K-Map: Unique True Point/Near False Point Pairs

- Consider the predicate: \(f = ab + cd \)

- For implicant \(ab \)
 - For \(a \), choose UTP, NFP pair
 - TTFF, FTFF
 - For \(b \), choose UTP, NFP pair
 - TTFT, TFFT

- For implicant \(cd \)
 - For \(c \), choose UTP, NFP pair
 - FFTT, FFFT
 - For \(d \), choose UTP, NFP pair
 - FFTT, FFTF

- Possible CUTPNFP test set
 - \{TTFF, TTFT, FFTT \ //UTPs
 FTFF, TFFT, FFFT, FFTF\} //NFPs