線性系統 Linear Systems

Chapter 04 State－Space Solutions \＆Realizations

Feng－Li Lian
NTU－EE
Sep07－Jan08

Materials used in these lecture notes are adopted from
＂Linear System Theory \＆Design，＂3rd．Ed．，by C．－T．Chen（1999）
－Introduction
－Solution of LTI State Equations（4．2）
－Equivalent State Equations（4．3）
－Realizations（4．4）

- Derivative of Exponential Function:

$$
e^{\mathbf{A} t}=\quad \mathbf{I}+t \mathbf{A}+\frac{t^{2}}{2!} \mathrm{A}^{2}+\cdots
$$

$$
\frac{d}{d t} e^{\mathbf{A} t}=\mathbf{A} e^{\mathbf{A} t}=e^{\mathbf{A} t} \mathbf{A}
$$

- LTI State Equation and its Solution:

$$
\begin{aligned}
& \left\{\begin{array}{l}
\dot{\mathbf{x}}(t)=\mathrm{Ax}(t)+\mathrm{Bu}(t) \\
\mathbf{y}(t)=\mathrm{Cx}(t)+\mathrm{Du}(t)
\end{array}\right. \\
& \dot{\mathrm{x}}(t)-\quad \mathrm{Ax}(t)=\operatorname{Bu}(t) \\
& e^{-\mathbf{A} t} \dot{\mathbf{x}}(t)-e^{-\mathbf{A} t} \mathbf{A x}(t)=e^{-\mathbf{A} t} \mathbf{B u}(t) \\
& \frac{d}{d t}\left(e^{-\mathbf{A} t} \mathbf{x}(t)\right)=e^{-\mathbf{A} t} \mathbf{B u}(t) \\
& \left.e^{-\mathbf{A} \tau} \mathbf{x}(\tau)\right|_{\tau=0} ^{t}=\int_{0}^{t} e^{-\mathbf{A} \tau} \operatorname{Bu}(\tau) d \tau
\end{aligned}
$$

- LTI State Equations:

$$
\begin{aligned}
e^{-\mathbf{A} t} \mathbf{x}(t)-e^{0} \mathbf{x}(0) & =\int_{0}^{t} e^{-\mathbf{A} \tau} \mathbf{B u}(\tau) d \tau \\
e^{-\mathbf{A} t} \mathbf{x}(t) & =e^{0} \mathbf{x}(0)+\int_{0}^{t} e^{-\mathbf{A} \tau} \mathbf{B u}(\tau) d \tau \\
\mathbf{x}(t) & =e^{\mathbf{A} t} e^{\mathbf{0}} \mathbf{x}(0)+e^{\mathbf{A} t} \int_{0}^{t} e^{-\mathbf{A} \tau} \mathbf{B u}(\tau) d \tau \\
\mathbf{x}(t) & =e^{\mathbf{A} t} \mathbf{x}(0)+\int_{0}^{t} e^{\mathbf{A}(t-\tau)} \mathbf{B u}(\tau) d \tau
\end{aligned}
$$

Solution of LTI State Equations - 4

- Useful formulae:

$$
\frac{\partial}{\partial t} \int_{a(t)}^{b(t)} f(t, \tau) d \tau=\int_{a(t)}^{b}\left(\frac{\partial}{\partial t} f(t, \tau)\right) d \tau+\left.\frac{\partial b(t)}{\partial t} f(t, \tau)\right|_{\tau=b(t)}-\left.\frac{\partial a(t)}{\partial t} f(t, \tau)\right|_{\tau=a}
$$

$$
\int_{t_{0}}^{t} f(t, \tau) d \tau=\int_{t_{0}}^{t}\left(\frac{\partial}{\partial t} f(t, \tau)\right) d \tau+\left.f(t, \tau)\right|_{\tau=t}
$$

- Verification:

$$
\mathbf{x}(t)=e^{\mathbf{A} t} \mathbf{x}(0)+\int_{0}^{t} e^{\mathbf{A}(t-\tau)} \mathbf{B u}(\tau) d \tau
$$

At $t=0, \quad \mathbf{x}(0)=e^{\mathbf{A} 0} \mathbf{x}(0)=e^{0} \mathbf{x}(0)=\operatorname{Ix}(0)=\mathbf{x}(0)$

$$
\begin{aligned}
\mathbf{x}(t) & =e^{\mathbf{A} t} \mathbf{x}(0)+\int_{0}^{t} e^{\mathbf{A}(t-\tau)} \mathbf{B u}(\tau) d \tau \\
\dot{\mathbf{x}}(t) & =\frac{d}{d t}\left[e^{\mathbf{A} t} \mathbf{x}(0)+\int_{0}^{t} e^{\mathbf{A}(t-\tau)} \mathbf{B u}(\tau) d \tau\right] \\
& =\mathbf{A} e^{\mathbf{A} t} \mathbf{x}(0)+\int_{0}^{t} \mathbf{A} e^{\mathbf{A}(t-\tau)} \mathbf{B u}(\tau) d \tau+\left.e^{\mathbf{A}(t-\tau)} \mathbf{B u}(\tau)\right|_{\tau=t} \\
\dot{\mathbf{x}}(t) & =\mathbf{A}\left(e^{\mathbf{A} t} \mathbf{x}(0)+\int_{0}^{t} e^{\mathbf{A}(t-\tau)} \mathbf{B u}(\tau) d \tau\right)+e^{\mathbf{A} 0} \mathbf{B u}(t) \\
& =\mathbf{A} \mathbf{x}(t)+\mathbf{B u}(t)
\end{aligned}
$$

- Output Equation:

$$
\mathbf{y}(t)=\mathbf{C} e^{\mathbf{A} t} \mathbf{x}(0)+\mathbf{C} \int_{0}^{t} e^{\mathbf{A}(t-\tau)} \mathbf{B u}(\tau) d \tau+\mathbf{D u}(t)
$$

$$
\left\{\begin{array}{l}
\dot{\mathbf{x}}(t)=\mathrm{Ax}(t)+\mathrm{Bu}(t) \\
\mathbf{y}(t)=\mathrm{Cx}(t)+\mathrm{Du}(t)
\end{array}\right.
$$

- Laplace transform:

$$
\begin{aligned}
& \hat{\mathbf{x}}(s)=(s \mathbf{I}-\mathbf{A})^{-1}[\mathbf{x}(0)+\mathbf{B} \hat{\mathbf{u}}(s)] \\
& \hat{\mathbf{y}}(s)=\mathbf{C}(s \mathbf{I}-\mathbf{A})^{-1}[\mathbf{x}(0)+\mathbf{B} \hat{\mathbf{u}}(s)]+\mathbf{D} \hat{\mathbf{u}}(s)
\end{aligned}
$$

- How to compute
$e^{\mathbf{A} t}$
- How to compute $(s \mathbf{I}-\mathbf{A})^{-1}$

1. Use Theorem 3.5:

First, compute the eigenvalues of \mathbf{A};
Next, find a polynomial $h(\lambda)$ of deg. $n-1$, s.t. $h(\mathbf{A})=e^{\mathbf{A} t}$
2. Use Jordan Form of A:

Let $\quad \mathrm{A}=\mathrm{Q} \hat{\mathrm{A}} \mathrm{Q}^{-1}$
Then, $e^{\mathbf{A} t}=\mathbf{Q} e^{\widehat{\mathbf{A}} t} \mathbf{Q}^{-1}$

$$
e^{\mathbf{A} t}=\mathbf{I}+t \mathbf{A}+\frac{t^{2}}{2!} \mathbf{A}^{2}+\cdots=\sum_{k=0}^{\infty} \frac{1}{k!} t^{k} \mathbf{A}^{k}
$$

3. Use the infinite power series:

$$
e^{\mathbf{A} t}=\mathbf{I}+t \mathbf{A}+\frac{t^{2}}{2!} \mathbf{A}^{2}+\cdots=\sum_{k=0}^{\infty} \frac{1}{k!} t^{k} \mathbf{A}^{k}
$$

4. Use $e^{\mathbf{A} t}=\mathcal{L}^{-1}(s \mathbf{I}-\mathbf{A})^{-1}$
5. Taking the inverse of $(s \mathbf{I}-\mathbf{A})$

$$
\begin{aligned}
\mathbf{A} & =\left[\begin{array}{ll}
0 & -1 \\
1 & -2
\end{array}\right] \\
(s \mathbf{I}-\mathbf{A})^{-1} & =\left[\begin{array}{cc}
s & 1 \\
-1 & s+2
\end{array}\right]^{-1}=\frac{1}{s^{2}+2 s+1}\left[\begin{array}{cc}
s+2 & -1 \\
1 & s
\end{array}\right] \\
& =\left[\begin{array}{cc}
(s+2) /(s+1)^{2} & -1 /(s+1)^{2} \\
1 /(s+1)^{2} & s /(s+1)^{2}
\end{array}\right]
\end{aligned}
$$

2. Using Theorem 3.5

eigenvalues of \mathbf{A} are $-1,-1$

$$
\begin{array}{lll}
f(\lambda):=(s-\lambda)^{-1} & f(-1)=h(-1): & (s+1)^{-1}=\beta_{0}-\beta_{1} \\
h(\lambda)=\beta_{0}+\beta_{1} \lambda & f^{\prime}(-1)=h^{\prime}(-1): & (s+1)^{-2}=\beta_{1}
\end{array}
$$

$\Rightarrow h(\lambda)=\left[(s+1)^{-1}+(s+1)^{-2}\right]+(s+1)^{-2} \lambda$
$\Rightarrow(s \mathbf{I}-\mathbf{A})^{-1}=h(\mathbf{A})=\left[(s+1)^{-1}+(s+1)^{-2}\right] \mathbf{I}+(s+1)^{-2} \mathbf{A}$

$$
=\left[\begin{array}{cc}
(s+2) /(s+1)^{2} & -1 /(s+1)^{2} \\
1 /(s+1)^{2} & s /(s+1)^{2}
\end{array}\right]
$$

3. Using $(s \mathbf{I}-\mathbf{A})^{-1}=\mathbf{Q}(s \mathbf{I}-\hat{\mathbf{A}})^{-1} \mathbf{Q}^{-1}$ and the Jordan form for $\hat{\mathbf{A}}$

$$
\begin{aligned}
\left(s \mathbf{I}-\left[\begin{array}{lll}
\lambda & 1 & 0 \\
0 & \lambda & 1 \\
0 & 0 & \lambda
\end{array}\right]\right)^{-1} & =\left(\left[\begin{array}{ccc}
s-\lambda & -1 & 0 \\
0 & s-\lambda & -1 \\
0 & 0 & s-\lambda
\end{array}\right]\right)^{-1} \\
& =\left[\begin{array}{ccc}
(s-\lambda)^{-1} & (s-\lambda)^{-2} & (s-\lambda)^{-3} \\
0 & (s-\lambda)^{-1} & (s-\lambda)^{-2} \\
0 & 0 & (s-\lambda)^{-1}
\end{array}\right]
\end{aligned}
$$

\Rightarrow Every term of $e^{\mathbf{A} t}$ is a linear combination of $e^{\lambda_{i} t}, \quad t e^{\lambda_{i} t}, \quad t^{2} e^{\lambda_{i} t}, \cdots, \quad t^{\bar{n}_{i}-1} e^{\lambda_{i} t}, i=1,2, \cdots, m$

4. Using the infinite power series

$$
(s \mathbf{I}-\mathbf{A})^{-1}=s^{-1} \mathbf{I}+s^{-2} \mathbf{A}+s^{-3} \mathbf{A}^{2}+\cdots
$$

5. Using the Leverrier algorithm

(Problem 3.26)

$$
\begin{aligned}
\dot{\mathbf{x}}(t) & =\left[\begin{array}{ll}
0 & -1 \\
1 & -2
\end{array}\right] \mathbf{x}(t)+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u(t) \\
\mathbf{x}(t) & =e^{\mathbf{A} t} \mathbf{x}(0)+\int_{0}^{t} e^{\mathbf{A}(t-\tau)} \mathbf{B u}(\tau) d \tau \\
e^{\mathbf{A} t} & =\mathcal{L}^{-1}\left[\begin{array}{cc}
\frac{s+2}{(s+1)^{2}} & \frac{-1}{(s+1)^{2}} \\
\frac{1}{(s+1)^{2}} & \frac{s}{(s+1)^{2}}
\end{array}\right]=\left[\begin{array}{cc}
(1+t) e^{-t} & -t e^{-t} \\
t e^{-t} & (1-t) e^{-t}
\end{array}\right] \\
\mathbf{x}(t) & =\left[\begin{array}{cc}
(1+t) e^{-t} & -t e^{-t} \\
t e^{-t} & (1-t) e^{-t}
\end{array}\right] \mathbf{x}(0)+\left[\begin{array}{c}
-\int_{0}^{t}(t-\tau) e^{-(t-\tau)} u(\tau) d \tau \\
\int_{0}^{t}[1-(t-\tau)] e^{-(t-\tau)} u(\tau) d \tau
\end{array}\right]
\end{aligned}
$$

\Rightarrow Every term of $e^{\mathbf{A} t} \mathbf{x}(0)$ is a linear combination of $e^{\lambda_{i} t}, \quad t e^{\lambda_{i} t}, \quad t^{2} e^{\lambda_{i} t}, \cdots, \quad t^{\bar{n}_{i}-1} e^{\lambda_{i} t}, i=1,2, \cdots, m$

- If $\operatorname{Re}\left(\lambda_{i}\right)<0$ for all i, then every zero-input response will approach zero as $t \rightarrow \infty$
- If $\operatorname{Re}\left(\lambda_{i}\right)>0$ for some i, then part of zero-input response may grow unbounded as $t \rightarrow \infty$

$$
\Rightarrow \quad \begin{aligned}
& \text { Every term of } e^{\mathbf{A} t} \text { is a linear combination of } \\
& e^{\lambda_{i} t}, \quad t e^{\lambda_{i} t}, \quad t^{2} e^{\lambda_{i} t}, \cdots, \quad t^{\bar{n}_{i}-1} e^{\lambda_{i} t}, i=1,2, \cdots, m
\end{aligned}
$$

- If $\operatorname{Re}\left(\lambda_{i}\right) \leq 0$ for all i, and λ_{j} with $\operatorname{Re}\left(\lambda_{j}\right)=0$ has only index 1 , then zero-input response will be bounded for all t
- If $\operatorname{Re}\left(\lambda_{i}\right) \leq 0$ for all i, but some λ_{j} with $\operatorname{Re}\left(\lambda_{j}\right)=0$ has index 2 or higher, then part of zero-input response may grow unbounded as $t \rightarrow \infty$
$\Rightarrow \quad$ Every term of $e^{\mathbf{A} t}$ is a linear combination of
$e^{\lambda_{i} t}, \quad t e^{\lambda_{i} t}, \quad t^{2} e^{\lambda_{i} t}, \quad \cdots, \quad t^{\bar{n}_{i}-1} e^{\lambda_{i} t}, \quad i=1,2, \cdots, m$
- Finite difference approximation of C.T. systems

$$
\begin{aligned}
\dot{\mathbf{x}}(t) & =\mathrm{Ax}(t)+\mathrm{Bu}(t) \\
\mathbf{y}(t) & =\mathrm{Cx}(t)+\mathrm{Du}(t)
\end{aligned}
$$

$$
\dot{\mathbf{x}}(t)=\lim _{T \rightarrow 0} \frac{\mathbf{x}(t+T)-\mathbf{x}(t)}{T}=\mathbf{A x}(t)+\mathbf{B u}(t)
$$

- Approximation:

$$
\mathbf{x}(t+T)=\mathbf{x}(t)+\mathbf{A} \mathbf{x}(t) T+\mathbf{B} \mathbf{u}(t) T
$$

$$
\begin{aligned}
\mathbf{x}((k+1) T) & =(\mathbf{I}+T \mathbf{A}) \mathbf{x}(k T)+T \mathbf{B} \mathbf{u}(k T) \\
\mathbf{y}(k T) & =\mathbf{C} \mathbf{x}(k T)+\mathbf{D u}(k T)
\end{aligned}
$$

- C.T. systems with piecewise constant inputs

$$
\mathbf{u}(t)=\mathbf{u}(k T)=: \mathbf{u}[k] \quad \text { for } k T \leq t<(k+1) T
$$

(may be generated by computers)

$$
\begin{gathered}
\mathbf{u}(t)=\mathbf{u}(k T)=: \mathbf{u}[k] \quad \text { for } k T \leq t<(k+1) T \\
\mathbf{x}(t)=e^{\mathbf{A} t} \mathbf{x}(0)+\int_{0}^{t} e^{\mathbf{A}(t-\tau)} \mathbf{B u}(\tau) d \tau \\
\mathbf{x}[k]:=\mathbf{x}(k T)=e^{\mathbf{A} k T} \mathbf{x}(0)+\int_{0}^{k T} e^{\mathbf{A}(k T-\tau)} \mathbf{B u} \mathbf{u}(\tau) d \tau \\
\mathbf{x}[k+1]:=\mathbf{x}((k+1) T)=e^{\mathbf{A}(k+1) T} \mathbf{x}(0)+\int_{0}^{(k+1) T} e^{\mathbf{A}((k+1) T-\tau)} \mathbf{B} \mathbf{u}(\tau) d \tau
\end{gathered}
$$

$$
\mathbf{x}[k+1]:=\mathbf{x}((k+1) T)=e^{\mathbf{A}(k+1) T} \mathbf{x}(0)+\int_{0}^{(k+1) T} e^{\mathbf{A}((k+1) T-\tau)} \mathbf{B u}(\tau) d \tau
$$

$$
=e^{\mathbf{A} T}\left[e^{\mathbf{A} k T} \mathbf{x}(0)+\int_{0}^{k T} e^{\mathbf{A}(k T-\tau)} \mathbf{B u}(\tau) d \tau\right]
$$

$$
+\int_{k T}^{(k+1) T} e^{\mathbf{A}(k T+T-\tau)} \mathbf{B u}(\tau) d \tau
$$

$$
=e^{\mathbf{A} T} \mathbf{x}[k]+\left(\int_{0}^{T} e^{\mathbf{A} \alpha} d \alpha\right) \mathbf{B u}[k]
$$

$\mathbf{A}_{d}=e^{\mathbf{A} T}$

$$
\mathbf{B}_{d}=\left(\int_{0}^{T} e^{\mathbf{A} \tau} d \tau\right) \mathbf{B}
$$

$$
\mathbf{C}_{d}=\mathbf{C}
$$

$$
\mathbf{D}_{d}=\mathbf{D}
$$

$$
\begin{aligned}
\mathbf{x}[k+1] & =\mathbf{A}_{d} \mathbf{x}[k]+\mathbf{B}_{d} \mathbf{u}[k] \\
\mathbf{y}[k] & =\mathbf{C}_{d} \mathbf{x}[k]+\mathbf{D}_{d} \mathbf{u}[k]
\end{aligned}
$$

$$
\begin{gathered}
\mathbf{A}_{d}=e^{\mathbf{A} T} \quad \mathbf{B}_{d}=\left(\int_{0}^{T} e^{\mathbf{A} \tau} d \tau\right) \mathbf{B} \quad \mathbf{C}_{d}=\mathbf{C} \quad \mathbf{D}_{d}=\mathbf{D} \\
\int_{0}^{T}\left(\mathbf{I}+\mathbf{A} \tau+\mathbf{A}^{2} \frac{\tau^{2}}{2!}+\cdots\right) d \tau=T \mathbf{I}+\frac{T^{2}}{2!} \mathbf{A}+\frac{T^{3}}{3!} \mathbf{A}^{2}+\frac{T^{4}}{4!} \mathbf{A}^{3}+\cdots
\end{gathered}
$$

- If A is nonsingular, then

$$
\mathbf{A}^{-1}\left(T \mathbf{A}+\frac{T^{2}}{2!} \mathbf{A}^{2}+\frac{T^{3}}{3!} \mathbf{A}^{3}+\cdots+\mathbf{I}-\mathbf{I}\right)=\mathbf{A}^{-1}\left(e^{\mathbf{A} T}-\mathbf{I}\right)
$$

$$
\mathbf{B}_{d}=\mathbf{A}^{-1}\left(\mathbf{A}_{d}-\mathbf{I}\right) \mathbf{B} \quad \text { (if } \mathbf{A} \text { is nonsingular) }
$$

$$
\begin{gathered}
e^{\mathbf{A t}}=\mathbf{I}+t \mathbf{A}+\frac{t^{2}}{2!} \mathbf{A}^{2}+\cdots=\sum_{k=0}^{\infty} \frac{1}{k!} t^{k} \mathbf{A}^{k} \\
e^{\mathrm{M} T}=\mathbf{I}+T \mathbf{M}+\frac{T^{2}}{2!} \mathrm{M}^{2}+\cdots=\sum_{k=0}^{\infty} \frac{1}{k!} T^{k} \mathrm{M}^{k} \\
\mathbf{M}=\left[\begin{array}{cc}
\mathbf{A} & \mathbf{B} \\
0 & 0
\end{array}\right] \quad \mathrm{M}^{2}=\left[\begin{array}{cc}
\mathbf{A}^{2} & \mathbf{A B} \\
0 & 0
\end{array}\right] \quad \mathbf{M}^{3}=\left[\begin{array}{cc}
\mathbf{A}^{3} & \mathbf{A}^{2} \mathbf{B} \\
0 & 0
\end{array}\right] \\
\Rightarrow\left[\begin{array}{cc}
\mathbf{A}_{d} & \mathbf{B}_{d} \\
0 & \mathbf{I}
\end{array}\right]=\exp \left(\left[\begin{array}{cc}
\mathbf{A} & \mathbf{B} \\
0 & 0
\end{array}\right] T\right) \\
\mathbf{A}_{d}=e^{\mathbf{A} T} \quad \mathbf{B}_{d}=\left(\int_{0}^{T} e^{\mathbf{A} \tau} d \tau\right) \mathbf{B} \quad \mathbf{C}_{d}=\mathbf{C} \quad \mathbf{D}_{d}=\mathbf{D}
\end{gathered}
$$

$$
\begin{aligned}
\mathbf{x}[k+1] & =\mathbf{A} \mathbf{x}[k]+\mathbf{B u} \mathbf{u}[k] \\
\mathbf{y}[k] & =\mathbf{C x}[k]+\mathbf{D u} \mathbf{u} k] \\
\mathbf{x}[1] & =\mathbf{A} \mathbf{x}[0]+\mathbf{B} \mathbf{u}[0] \\
\mathbf{x}[2] & =\mathbf{A} \mathbf{x}[1]+\mathbf{B u}[1]=\mathbf{A}^{2} \mathbf{x}[0]+\mathbf{A B} \mathbf{u}[0]+\mathbf{B u}[1] \\
& \vdots \\
\mathbf{x}[k] & =\mathbf{A}^{k} \mathbf{x}[0]+\sum_{m=0}^{k-1} \mathbf{A}^{k-1-m} \mathbf{B u} \mathbf{u}[m] \\
\mathbf{y}[k] & =\mathbf{C A}^{k} \mathbf{x}[0]+\sum_{m=0}^{k-1} \mathbf{C A}^{k-1-m} \mathbf{B u}[m]+\mathbf{D u}[k]
\end{aligned}
$$

$$
\begin{aligned}
& A=Q D Q^{-1} \quad \Rightarrow A^{k}=Q D^{k} Q^{-1} \\
& D \quad\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{1} & 0 \\
0 & 0 & \lambda_{1}
\end{array}\right] \quad\left[\begin{array}{ccc}
\lambda_{1} & 1 & 0 \\
0 & \lambda_{1} & 0 \\
0 & 0 & \lambda_{1}
\end{array}\right] \quad\left[\begin{array}{ccc}
\lambda_{1} & 1 & 0 \\
0 & \lambda_{1} & 1 \\
0 & 0 & \lambda_{1}
\end{array}\right] \\
& D^{2}\left[\begin{array}{ccc}
\lambda_{1}^{2} & 0 & 0 \\
0 & \lambda_{1}^{2} & 0 \\
0 & 0 & \lambda_{1}^{2}
\end{array}\right] \quad\left[\begin{array}{ccc}
\lambda_{1}^{2} & 2 \lambda_{1} & 0 \\
0 & \lambda_{1}^{2} & 0 \\
0 & 0 & \lambda_{1}^{2}
\end{array}\right] \quad\left[\begin{array}{ccc}
\lambda_{1}^{2} & 2 \lambda_{1} & 1 \\
0 & \lambda_{1}^{2} & 2 \lambda_{1} \\
0 & 0 & \lambda_{1}^{1}
\end{array}\right] \\
& D^{k}\left[\begin{array}{ccc}
\lambda_{1}^{k} & 0 & 0 \\
0 & \lambda_{1}^{k} & 0 \\
0 & 0 & \lambda_{1}^{k}
\end{array}\right]\left[\begin{array}{ccc}
\lambda_{1}^{k} & k \lambda_{1}^{k-1} & 0 \\
0 & \lambda_{1}^{k} & 0 \\
0 & 0 & \lambda_{1}^{k}
\end{array}\right]\left[\begin{array}{ccc}
\lambda_{1}^{k} & k \lambda_{1}^{k-1} & k(k-1) \lambda_{1}^{k-2} / 2 \\
0 & \lambda_{1}^{k} & k \lambda_{1}^{k-1} \\
0 & 0 & \lambda_{1}^{k}
\end{array}\right]
\end{aligned}
$$

- λ_{1} : multiplicity $=4$, index $=3$
- λ_{2} : multiplicity $=1$, index $=1$

$$
\mathbf{A}^{k}=\mathbf{Q}\left[\begin{array}{ccccc}
\lambda_{1}^{k} & k \lambda_{1}^{k-1} & k(k-1) \lambda_{1}^{k-2} / 2 & 0 & 0 \\
0 & \lambda_{1}^{k} & k \lambda_{1}^{k-1} & 0 & 0 \\
0 & 0 & \lambda_{1}^{k} & 0 & 0 \\
0 & 0 & 0 & \lambda_{1}^{k} & 0 \\
0 & 0 & 0 & 0 & \lambda_{2}^{k}
\end{array}\right] \mathbf{Q}^{-1}
$$

> Every term of $\mathrm{A}^{k} \mathbf{x}[0] \quad$ is a linear combination of $\lambda_{i}^{k}, \quad k \lambda_{i}^{k-1}, \quad k^{2} \lambda_{i}^{k-2}, \ldots, \quad k^{\bar{n}_{i}-1} \lambda_{i}^{k-\bar{n}_{i}+1}, i=1,2, \ldots, m$.

- If $\left|\lambda_{i}\right|<1$ for all i, then

$$
\mathbf{A}^{k}=\mathbf{Q}\left[\begin{array}{ccccc}
\lambda_{1}^{k} & k \lambda_{1}^{k-1} & k(k-1) \lambda_{1}^{k-2} / 2 & 0 & 0 \\
0 & \lambda_{1}^{k} & k \lambda_{1}^{k-1} & 0 & 0 \\
0 & 0 & \lambda_{1}^{k} & 0 & 0 \\
0 & 0 & 0 & \lambda_{1}^{k} & 0 \\
0 & 0 & 0 & 0 & \lambda_{2}^{k}
\end{array}\right] \mathbf{Q}^{-1}
$$ every zero-input response will approach zero as $k \rightarrow \infty$

- If $\left|\lambda_{i}\right|>1$ for some i, then part of zero-input response may grow unbounded as $k \rightarrow \infty$
- If $\left|\lambda_{i}\right| \leq 1$ for all i, and λ_{j} with $\left|\lambda_{j}\right|=1$ has only index 1 , then zero-input response will be bounded for all k.
- If $\left|\lambda_{i}\right| \leq 1$ for all i, but some λ_{j} with $\left|\lambda_{j}\right|=1$ has index 2 or higher, then part of zero-input response may grow unbounded as $k \rightarrow \infty$.

$$
\left\{\begin{array}{cl}
\mathbf{x}[k+1] & =\mathbf{A x}[k]+\mathbf{B u}[k] \\
\mathbf{y}[k] & =\mathbf{C x}[k]+\mathbf{D u}[k]
\end{array}\right.
$$

$$
x[k+1]=a x[k]+b u[k]
$$

$$
x[k]=a^{k} x[0]+\sum_{m=0}^{k-1} a^{k-1-m} b u[m]
$$

$$
\mathbf{x}[k+1]=\mathbf{A} \mathbf{x}[k]+\mathbf{B u}[k]
$$

$$
\mathbf{x}[k]=\mathbf{A}^{k} \mathbf{x}[0]+\sum_{m=0}^{k-1} \mathbf{A}^{k-1-m} \mathbf{B u}[m]
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
\dot{\mathbf{x}}(t)=\mathrm{Ax}(t)+\mathrm{Bu}(t) \\
\mathbf{y}(t)=\mathrm{Cx}(t)+\mathrm{Du}(t)
\end{array}\right. \\
& \dot{x}(t)=a x(t)+b u(t) \quad x(t)=e^{a t} x(0)+\int_{0}^{t} e^{a(t-\tau)} b u(\tau) d \tau \\
& s \widehat{x}(s)-x(0)=a \widehat{x}(s)+b \widehat{u}(s) \\
& \widehat{x}(s)=\frac{1}{s-a} x(0)+\frac{b}{s-a} \widehat{u}(s) \\
& \dot{\mathbf{x}}(t)=\mathbf{A x}(t)+\mathbf{B u}(t) \quad \mathbf{x}(t)=e^{\mathbf{A t}} \mathbf{x}(0)+\int_{0}^{t} e^{\mathbf{A}(t-\tau)} \mathbf{B u}(\tau) d \tau \\
& s \widehat{\mathbf{x}}(s)-\mathbf{x}(0)=\mathbf{A} \widehat{\mathbf{x}}(s)+\mathbf{B} \widehat{\mathbf{u}}(s) \\
& \widehat{\mathbf{x}}(s)=(s \mathbf{I}-\mathbf{A})^{-1} \mathbf{x}(0)+(s \mathbf{I}-\mathbf{A})^{-1} \mathbf{B} \hat{\mathbf{u}}(s)
\end{aligned}
$$

$$
e^{\mathbf{A} t}=\mathbf{I}+t \mathbf{A}+\frac{t^{2}}{2!} \mathbf{A}^{2}+\cdots=\sum_{k=0}^{\infty} \frac{1}{k!} t^{k} \mathbf{A}^{k}
$$

$$
e^{\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]}=\left[\begin{array}{ll}
e^{0} & e^{0} \\
e^{0} & e^{0}
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] ?
$$

$$
e^{\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right]}=\left[\begin{array}{cc}
e^{a} & 0 \\
0 & e^{b}
\end{array}\right] ?
$$

$$
\left[\begin{array}{cc}
a & 0 \\
0 & b
\end{array}\right]^{k}=\left[\begin{array}{cc}
a^{k} & 0 \\
0 & b^{k}
\end{array}\right] ?
$$

$$
e^{\left[\begin{array}{cc}
\mathbf{A} & 0 \\
0 & \mathbf{B}
\end{array}\right]}=\left[\begin{array}{cc}
e^{\mathbf{A}} & 0 \\
0 & e^{\mathbf{B}}
\end{array}\right] ?
$$

$$
\left[\begin{array}{cc}
\mathbf{A} & \mathbf{0} \\
\mathbf{0} & \mathbf{B}
\end{array}\right]^{k}=\left[\begin{array}{cc}
\mathbf{A}^{k} & 0 \\
\mathbf{0} & \mathbf{B}^{k}
\end{array}\right] ?
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
\dot{\mathbf{x}}(t)=\mathbf{A x}(t)+\mathrm{Bu}(t) \\
\mathbf{y}(t)=\mathbf{C x}(t)+\mathrm{Du}(t)
\end{array} \quad \mathbf{x}(t)=e^{\mathbf{A} t} \mathbf{x}(0)+\int_{0}^{t} e^{\mathbf{A}(t-\tau)} \mathbf{B u}(\tau) d \tau\right. \\
& A=Q D Q^{-1} \Rightarrow e^{A t}=Q e^{D t} Q^{-1} \\
& D=\left[\begin{array}{ccc}
\lambda & 1 & 0 \\
0 & \lambda & 1 \\
0 & 0 & \lambda
\end{array}\right] \quad e^{D t}=\left[\begin{array}{ccc}
e^{\lambda t} & t e^{\lambda t} & \left(t^{2} / 2!\right) e^{\lambda t} \\
0 & e^{\lambda t} & t e^{\lambda t} \\
0 & 0 & e^{\lambda t}
\end{array}\right] \\
& \left\{\begin{array}{c}
\mathbf{x}[k+1] \\
=\mathbf{A x}[k]+\mathbf{B u}[k] \\
\mathbf{y}[k]
\end{array}=\mathbf{C x}[k]+\mathbf{D u}[k] \quad \mathbf{x}[k]=\mathbf{A}^{k} \mathbf{x}[0]+\sum_{m=0}^{k-1} \mathbf{A}^{k-1-m} \mathbf{B u}[m]\right. \\
& A=Q D Q^{-1} \quad \Rightarrow A^{k}=Q D^{k} Q^{-1} \\
& D=\left[\begin{array}{ccc}
\lambda & 1 & 0 \\
0 & \lambda & 1 \\
0 & 0 & \lambda
\end{array}\right] \quad D^{k}=\left[\begin{array}{ccc}
\lambda^{k} & k \lambda^{k-1} & (k(k-1) / 2) \lambda^{k-2} \\
0 & \lambda^{k} & k \lambda^{k-1} \\
0 & 0 & \lambda^{k}
\end{array}\right]
\end{aligned}
$$

- Example 4.3: Equivalent state equations

- Example 4.3: Equivalent state equations

$\left[\begin{array}{l}\dot{x}_{1} \\ \dot{x}_{2}\end{array}\right]=\left[\begin{array}{ll}0 & -1 \\ 1 & -1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]+\left[\begin{array}{l}1 \\ 0\end{array}\right] u$
$y=\left[\begin{array}{ll}0 & 1\end{array}\right] \mathbf{x}$
$\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{cc}1 & 0 \\ 1 & -1\end{array}\right]\left[\begin{array}{l}\bar{x}_{1} \\ \bar{x}_{2}\end{array}\right]$
$\left[\begin{array}{c}\dot{\bar{x}}_{1} \\ \dot{\bar{x}}_{2}\end{array}\right]=\left[\begin{array}{ll}-1 & 1 \\ -1 & 0\end{array}\right]\left[\begin{array}{l}\bar{x}_{1} \\ \bar{x}_{2}\end{array}\right]+\left[\begin{array}{l}1 \\ 1\end{array}\right] u$
$y=\left[\begin{array}{ll}1 & -1\end{array}\right] \overline{\mathbf{x}}$
$\left[\begin{array}{l}\bar{x}_{1} \\ \bar{x}_{2}\end{array}\right]=\left[\begin{array}{cc}1 & 0 \\ 1 & -1\end{array}\right]^{-1}\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$

$$
\left\{\begin{array} { l }
{ \dot { \mathbf { x } } (t) = \mathrm { A } \mathbf { x } (t) + \mathrm { B } \mathbf { u } (t) } \\
{ \mathbf { y } (t) = \mathrm { Cx } (t) + \mathrm { D } \mathbf { u } (t) }
\end{array} \quad \left\{\begin{array}{l}
\dot{\bar{x}}(\mathrm{t})=\overline{\mathbf{A}} \overline{\mathbf{x}}(t)+\overline{\mathbf{B}} \mathbf{u}(t) \\
\mathbf{y}(t)=\overline{\mathrm{C}} \overline{\mathbf{x}}(t)+\overline{\mathrm{D}} \mathbf{u}(t)
\end{array}\right.\right.
$$

Definition 4.1 Let \mathbf{P} be an $n \times n$ real nonsingular matrix and let $\overline{\mathbf{x}}=\mathbf{P x}$. Then the state equation,

$$
\begin{aligned}
& \dot{\mathbf{x}}(t)=\mathbf{A x}(t)+\mathbf{B u}(t) \\
& \dot{\overline{\mathbf{x}}}(t)=\overline{\mathbf{A}} \overline{\mathbf{x}}(t)+\overline{\mathbf{B}} \mathbf{u}(t) \\
& \mathbf{y}(t)=\mathbf{C x}(t)+\mathbf{D u}(t) \\
& \text { and } \\
& \mathbf{y}(t)=\overline{\mathbf{C}} \overline{\mathbf{x}}(t)+\overline{\mathbf{D}} \mathbf{u}(t)
\end{aligned}
$$

where

$$
\overline{\mathbf{A}}=\mathbf{P A P}^{-1} \quad \overline{\mathbf{B}}=\mathbf{P B} \quad \overline{\mathbf{C}}=\mathbf{C P}^{-1} \quad \overline{\mathbf{D}}=\mathbf{D}
$$

are said to be (algebraically) equivalent, and
$\overline{\mathbf{x}}=\mathbf{P x}$ is called an equivalence transformation.

Define $\quad \mathbf{P}^{-1}=\mathbf{Q}=\left[\mathbf{q}_{1}, \mathbf{q}_{2}, \cdots, \mathbf{q}_{n}\right]$
$\mathrm{AQ}=\mathrm{Q} \overline{\mathrm{A}} \quad \Longleftrightarrow i$ th column of $\overline{\mathrm{A}}$, i.e., $\overline{\mathrm{a}}_{i}$, is the representation of $A q_{i}$ w.r.t $\left\{\mathbf{q}_{1}, \mathbf{q}_{2}, \cdots, \mathbf{q}_{n}\right\}$
$\mathrm{B}=\mathrm{Q} \overline{\mathrm{B}} \quad \Longleftrightarrow i$ th column of $\overline{\mathrm{B}}$, i.e., $\overline{\mathrm{b}}_{i}$ is the representation of b_{i} w.r.t $\left\{\mathbf{q}_{1}, \mathbf{q}_{2}, \cdots, \mathbf{q}_{n}\right\}$

$$
\left[\begin{array}{c}
\mathbf{b}_{1 i} \\
\mathbf{b}_{2 i} \\
\vdots \\
\mathbf{b}_{n i}
\end{array}\right]=\left[\mathbf{q}_{1}, \mathbf{q}_{2}, \cdots, \mathbf{q}_{n}\right]\left[\begin{array}{c}
\overline{\mathbf{b}}_{1 i} \\
\overline{\mathbf{b}}_{2 i} \\
\vdots \\
\overline{\mathbf{b}}_{n i}
\end{array}\right]
$$

- Equivalent state equations
have the same eigenvalues and transfer matrix:
- Two state equations may have the same transfer matrix (and are called zero-state equivalent), but are NOT algebraically equivalent.

$$
y(t)=0.5 \cdot u(t)
$$

$$
\hat{y}(s)=0.5 \hat{u}(s)
$$

$$
\begin{aligned}
\dot{x}(t) & =x(t) \\
y(t) & =0.5 x(t)+0.5 u(t) \\
\hat{y}(s) & =0.5 \hat{u}(s)
\end{aligned}
$$

$$
\begin{gathered}
(s \mathbf{I}-\mathbf{A})^{-1}=s^{-1} \mathbf{I}+s^{-2} \mathrm{~A}+s^{-3} \mathrm{~A}^{2}+\cdots \\
\mathbf{D}+\mathbf{C}(s \mathbf{I}-\mathbf{A})^{-1} \mathrm{~B}=\overline{\mathbf{D}}+\overline{\mathbf{C}}(s \mathbf{I}-\overline{\mathbf{A}})^{-1} \overline{\mathbf{B}} \\
\Leftrightarrow \quad \\
\mathrm{D}+\mathrm{CB} s^{-1}+\mathrm{CAB} s^{-2}+\mathrm{CA}^{2} \mathrm{~B} s^{-3}+\cdots \\
=\quad \overline{\mathbf{D}}+\overline{\mathbf{C}} \overline{\mathbf{B}} s^{-1}+\overline{\mathbf{C}} \overline{\mathbf{A}} \overline{\mathbf{B}} s^{-2}+\overline{\mathbf{C}} \overline{\mathrm{A}}^{2} \overline{\mathbf{B}} s^{-3}+\cdots
\end{gathered}
$$

Theorem 4.1

Two linear time-invariant state equations $\{\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}\}$ and $\{\overline{\mathbf{A}}, \overline{\mathbf{B}}, \overline{\mathbf{C}}, \overline{\mathbf{D}}\}$ are zero-state equivalent or have the same transfer matrix if and only if $\mathbf{D}=\overline{\mathbf{D}}$ and

$$
\mathbf{C A}^{m} \mathbf{B}=\overline{\mathbf{C}} \overline{\mathbf{A}}^{m} \overline{\mathbf{B}} \quad m=0,1,2, \ldots
$$

$$
\begin{gathered}
\mathbf{A}=\left[\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{44} \\
a_{41} & a_{42} & a_{43} & a_{44}
\end{array}\right] \\
\mathbf{Q}_{1}^{-1}\left[\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{44} \\
a_{41} & a_{42} & a_{43} & a_{44}
\end{array}\right] \mathbf{Q}_{1}=\left[\begin{array}{cccc}
\lambda_{1} & 0 & 0 & 0 \\
0 & \lambda_{2} & 0 & 0 \\
0 & 0 & a+j b & 0 \\
0 & 0 & 0 & a-j b
\end{array}\right] \\
\mathbf{Q}_{1}^{-1} \mathbf{A} \mathbf{Q}_{1}=\mathbf{A}_{1}
\end{gathered}
$$

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & j & -j
\end{array}\right]\left[\begin{array}{cccc}
\lambda_{1} & 0 & 0 & 0 \\
0 & \lambda_{2} & 0 & 0 \\
0 & 0 & a+j b & 0 \\
0 & 0 & 0 & a-j b
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0.5 & -0.5 j \\
0 & 0 & 0.5 & 0.5 j
\end{array}\right]
$$

$$
\mathbf{Q}_{2}^{-1} \mathbf{A}_{1} \mathbf{Q}_{2}=\mathbf{A}_{2}
$$

$$
=\left[\begin{array}{cccc}
\lambda_{1} & 0 & 0 & 0 \\
0 & \lambda_{2} & 0 & 0 \\
0 & 0 & a & b \\
0 & 0 & -b & a
\end{array}\right]
$$

$$
\begin{gathered}
\mathbf{A}=\left[\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{44} \\
a_{41} & a_{42} & a_{43} & a_{44}
\end{array}\right] \quad \mathbf{A}_{1}=\left[\begin{array}{cccc}
\lambda_{1} & 0 & 0 & 0 \\
0 & \lambda_{2} & 0 & 0 \\
0 & 0 & a+j b & 0 \\
0 & 0 & 0 & a-j b
\end{array}\right] \quad \mathbf{A}_{2}=\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2} \\
0 & 0 \\
0 & 0 \\
\mathbf{A} & =\mathbf{P A ~ P}^{-1} \\
\mathbf{A}_{2}=\mathbf{Q}_{2}^{-1} \mathbf{Q}_{1}^{-1} \mathbf{A} \mathbf{Q}_{1} \mathbf{Q}_{2}=\overline{\mathbf{A}} \\
\mathbf{P}^{-1}=\mathbf{Q}_{1} \mathbf{Q}_{2}=\left[\begin{array}{llll}
\mathbf{q}_{1} & \mathbf{q}_{2} & \mathbf{q}_{3} & \mathbf{q}_{4}
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0.5 & -0.5 j \\
0 & 0 & 0.5 & 0.5 j
\end{array}\right] \\
=\left[\begin{array}{llll}
\mathbf{q}_{1} & \mathbf{q}_{2} & \operatorname{Re}\left(\mathbf{q}_{3}\right) & \operatorname{Im}\left(\mathbf{q}_{3}\right)
\end{array}\right]
\end{array}\right.
\end{gathered}
$$

$$
\mathbf{A}_{2}=\left[\begin{array}{cccc}
\lambda_{1} & 0 & 0 & 0 \\
0 & \lambda_{2} & 0 & 0 \\
0 & 0 & a & b \\
0 & 0 & -b & a
\end{array}\right]
$$

$\mathbf{Q}=\left[\begin{array}{ll}n & \text { L.I. eigenvectors/generalized eigenvectors }]\end{array}\right.$
$\Rightarrow \overline{\mathbf{A}}$ has the diagonal/Jordan form, which may have complex elements.

$$
\mathbf{J}:=\left[\begin{array}{cccc}
\lambda_{1} & 0 & 0 & 0 \\
0 & \lambda_{2} & 0 & 0 \\
0 & 0 & \alpha+j \beta & 0 \\
0 & 0 & 0 & \alpha-j \beta
\end{array}\right]=\mathbf{Q}^{-1} \mathbf{A} \mathbf{Q}
$$

For real $\overline{\mathbf{A}}$, the modal form may be obtained with a further equivalence transformation:

$$
\begin{aligned}
\overline{\mathbf{Q}}^{-1} \mathbf{J} \overline{\mathbf{Q}}:= & {\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & j & -j
\end{array}\right]\left[\begin{array}{cccc}
\lambda_{1} & 0 & 0 & 0 \\
0 & \lambda_{2} & 0 & 0 \\
0 & 0 & \alpha+j \beta & 0 \\
0 & 0 & 0 & \alpha-j \beta
\end{array}\right] } \\
& \cdot\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0.5 & -0.5 j \\
0 & 0 & 0.5 & 0.5 j
\end{array}\right]=\left[\begin{array}{cccc}
\lambda_{1} & 0 & 0 & 0 \\
0 & \lambda_{2} & 0 & 0 \\
0 & 0 & \alpha & \beta \\
0 & 0 & -\beta & \alpha
\end{array}\right]=: \overline{\mathbf{A}}
\end{aligned}
$$

- Combined equivalence transformation for the modal form:

$$
\begin{aligned}
\mathbf{P}^{-1} & =\mathbf{Q} \overline{\mathbf{Q}}=\left[\begin{array}{llll}
\mathbf{q}_{1} & \mathbf{q}_{2} & \mathbf{q}_{3} & \mathbf{q}_{4}
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0.5 & -0.5 j \\
0 & 0 & 0.5 & 0.5 j
\end{array}\right] \\
& =\left[\begin{array}{lll}
\mathbf{q}_{1} & \mathbf{q}_{2} \operatorname{Re}\left(\mathbf{q}_{3}\right) \operatorname{Im}\left(\mathbf{q}_{3}\right)
\end{array}\right]
\end{aligned}
$$

- Please figure out the modal form and the associated equivalence transformation for systems with generalized eigenvectors of grades larger than unity
- Special algebraically equivalent forms the canonical form \& companion canonical form:

If $\mathrm{Q}:=\left[\begin{array}{llll}\mathrm{b}_{1} & A \mathrm{~b}_{1} & \cdots & \mathbf{A}^{n-1} \mathbf{b}_{1}\end{array}\right]$ is nonsingular

Then $\overline{\mathrm{A}}=\mathrm{Q}^{-1} \mathrm{AQ}$ has the companion form

And $\overline{\mathrm{b}}_{1}=\mathrm{Q}^{-1} \mathbf{b}_{1}=\left[\begin{array}{c}1 \\ 0 \\ \vdots \\ 0\end{array}\right]$

- Magnitude scaling:
in hardware (op-amp circuit)
or software (digital computation) simulations, usually need to ensure that magnitude of all signals are not too large and not too small
$\dot{\mathbf{x}}=\left[\begin{array}{cc}-0.1 & 2 \\ 0 & -1\end{array}\right] \mathbf{x}+\left[\begin{array}{c}10 \\ 0.1\end{array}\right] u$
$y=\left[\begin{array}{ll}0.1 & -1] \mathbf{x}\end{array}\right.$
$\left|x_{1}\right|$ too large

Use state variable change to adjust the magnitudes:

$$
\begin{aligned}
& \bar{x}_{1}=\frac{20}{100} x_{1}=0.2 x_{1} \quad \bar{x}_{2}=\frac{20}{0.1} x_{2}=200 x_{2} \\
& \overline{\mathbf{x}}=\mathbf{P x} \quad \mathbf{P}=\left[\begin{array}{cc}
0.2 & 0 \\
0 & 200
\end{array}\right] \\
& \dot{\overline{\mathbf{x}}}=\left[\begin{array}{cc}
-0.1 & 0.002 \\
0 & -1
\end{array}\right] \overline{\mathbf{x}}+\left[\begin{array}{c}
2 \\
20
\end{array}\right] u \\
& y=\left[\begin{array}{lll}
1 & -0.005
\end{array}\right] \overline{\mathbf{x}}
\end{aligned}
$$

- A transfer matrix $\hat{\mathbf{G}}(\mathrm{s})$ is realizable
if there exists a finite dimensional state equation $\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\}$, a realization of $\quad \hat{\mathbf{G}}(s)$, such that $\quad \hat{\mathbf{G}}(s)=\mathbf{C}(\mathrm{sl}-\mathbf{A})^{-1} \mathbf{B}+\mathbf{D}$

$$
\hat{\mathbf{y}}(s)=\widehat{\mathrm{G}}(s) \widehat{\mathbf{u}}(s)
$$

$$
\left\{\begin{array}{l}
\dot{\mathbf{x}}(t)=\mathrm{Ax}(t)+\mathrm{Bu}(t) \\
\mathbf{y}(t)=\mathrm{Cx}(t)+\mathrm{Du}(t)
\end{array}\right.
$$

$$
\begin{aligned}
& \hat{\mathbf{y}}(s)=\widehat{\mathbf{G}}(s) \widehat{\mathbf{u}}(s) \\
& \widehat{\mathbf{y}}=\frac{n(s)}{d(s)} \widehat{\mathbf{u}} \\
& \hat{\mathbf{y}}=\frac{b_{1} s^{3}+b_{2} s^{2}+b_{3} s+b_{4}}{s^{4}+a_{1} s^{3}+a_{2} s^{2}+a_{3} s+a_{4}} \widehat{\mathbf{u}} \\
& \widehat{\mathbf{x}}_{1}=\frac{s^{3}}{d(s)} \widehat{\mathbf{u}} \\
& \hat{\mathbf{y}}=b_{1} \widehat{\mathbf{x}}_{1}+b_{2} \hat{\mathbf{x}}_{2}+b_{3} \widehat{\mathrm{x}}_{3}+b_{4} \widehat{\mathrm{x}}_{4} \\
& \widehat{\mathbf{x}}_{2}=\frac{s^{2}}{d(s)} \widehat{\mathbf{u}} \\
& s \widehat{\mathbf{x}}_{4}=\frac{s}{d(s)} \widehat{\mathbf{u}}=\widehat{\mathbf{x}}_{3} \\
& \widehat{\mathbf{x}}_{3}=\frac{s}{d(s)} \widehat{\mathbf{u}} \\
& s \widehat{\mathbf{x}}_{3}=\frac{s^{2}}{d(s)} \widehat{\mathbf{u}}=\widehat{\mathbf{x}}_{2} \\
& \widehat{\mathbf{x}}_{4}=\frac{1}{d(s)} \widehat{\mathbf{u}} \\
& s \widehat{\mathbf{x}}_{2}=\frac{s^{3}}{d(s)} \widehat{\mathbf{u}}=\widehat{\mathbf{x}}_{1}
\end{aligned}
$$

$$
\begin{aligned}
& s^{4} \widehat{\mathbf{x}}_{4}+a_{1} s^{3} \widehat{\mathbf{x}}_{4}+a_{2} s^{2} \widehat{\mathbf{x}}_{4}+a_{3} s \widehat{\mathbf{x}}_{4}+a_{4} \widehat{\mathbf{x}}_{4}=\widehat{\mathbf{u}} \\
& \quad s \widehat{\mathbf{x}}_{1}+a_{1} \widehat{\mathbf{x}}_{1}+a_{2} \widehat{\mathbf{x}}_{2}+a_{3} \widehat{\mathbf{x}}_{3}+a_{4} \widehat{\mathbf{x}}_{4}=\widehat{\mathbf{u}} \\
& \dot{\mathbf{x}}_{1}=-a_{1} \mathbf{x}_{1}-a_{2} \mathbf{x}_{2}-a_{3} \mathbf{x}_{3}-a_{4} \mathbf{x}_{4}+\mathbf{u} \\
& \dot{\mathbf{x}}_{2}=\mathbf{x}_{1} \\
& \dot{\mathbf{x}}_{3}=\mathbf{x}_{2} \\
& \dot{\mathbf{x}}_{4}=\mathbf{x}_{3}
\end{aligned}
$$

$$
\dot{\mathbf{x}}=\left[\begin{array}{cccc}
-a_{1} & -a_{2} & -a_{3} & -a_{4} \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \mathbf{x}+\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right] \mathbf{u}
$$

$$
\mathbf{y}=\left[\begin{array}{llll}
b_{1} & b_{2} & b_{3} & b_{4}
\end{array}\right] \mathbf{x}
$$

$$
\hat{\mathbf{G}}(s)=\left[\begin{array}{l}
d_{1} \\
d_{2}
\end{array}\right]+\frac{1}{s^{4}+\alpha_{1} s^{3}+\alpha_{2} s^{2}+\alpha_{3} s+\alpha_{4}}\left[\begin{array}{l}
\beta_{11} s^{3}+\beta_{12} s^{2}+\beta_{13} s+\beta_{14} \\
\beta_{21} s^{3}+\beta_{22} s^{2}+\beta_{23} s+\beta_{24}
\end{array}\right]
$$

$$
\begin{gathered}
\text { n a realization } \\
\dot{\mathbf{x}}=\left[\begin{array}{cccc}
-\alpha_{1} & -\alpha_{2} & -\alpha_{3} & -\alpha_{4} \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \mathbf{x}+\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right] u \\
\mathbf{y}=\left[\begin{array}{cccc}
\beta_{11} & \beta_{12} & \beta_{13} & \beta_{14} \\
\beta_{21} & \beta_{22} & \beta_{23} & \beta_{24}
\end{array}\right] \mathbf{x}+\left[\begin{array}{l}
d_{1} \\
d_{2}
\end{array}\right] u
\end{gathered}
$$

$$
\begin{aligned}
\hat{\mathbf{G}}(s) & =\left[\begin{array}{cc}
\frac{4 s-10}{2 s+1} & \frac{3}{s+2} \\
\frac{1}{(2 s+1)(s+2)} & \frac{s+1}{(s+2)^{2}}
\end{array}\right] \\
& =\left[\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right]+\left[\begin{array}{cc}
\frac{-12}{2 s+1} & \frac{3}{s+2} \\
\frac{1}{(2 s+1)(s+2)} & \frac{s+1}{(s+2)^{2}}
\end{array}\right]
\end{aligned}
$$

N(s)
$\begin{aligned} \hat{\mathbf{G}}_{s p}(s) & =\frac{1}{s^{3}+4.5 s^{2}+6 s+2}\left[\begin{array}{cc}-6(s+2)^{2} & 3(s+2)(s+0.5) \\ 0.5(s+2) & (s+1)(s+0.5)\end{array}\right] \\ & =\frac{1}{d(s)}(\underbrace{\left[\begin{array}{cc}-6 & 3 \\ 0 & 1\end{array}\right]}_{\mathbf{N}_{1}} s^{2}+\underbrace{\left[\begin{array}{cc}-24 & 7.5 \\ 0.5 & 1.5\end{array}\right]}_{\mathbf{N}_{2}} s+\underbrace{\left[\begin{array}{cc}-24 & 3 \\ 1 & 0.5\end{array}\right]}_{\mathbf{N}_{3}})\end{aligned}$

$$
\begin{aligned}
& \dot{\mathbf{x}}=\left[\begin{array}{cccccccc}
-4.5 & 0 & \vdots & -6 & 0 & \vdots & -2 & 0 \\
0^{-\alpha_{1} I_{2}}-4.5 & \vdots & 0^{-\alpha_{2} I_{2}}-6 & \vdots & 0 & -{ }^{-\alpha_{3} I_{2}} \\
\cdots & \cdots \\
1 & 0 & \vdots & 0 & 0 & \vdots & 0 & 0 \\
0 & 1 & \vdots & 0 & 0 & \vdots & 0 & 0 \\
\cdots & \cdots \\
0 & 0 & \vdots & 1 & 0 & \vdots & 0 & 0 \\
0 & 0 & \vdots & 0 & 1 & \vdots & 0 & 0
\end{array}\right] \mathbf{x}+\left[\begin{array}{cc}
1 & 0 \\
0 & 1 \\
\cdots & \cdots \\
0 & 0 \\
0 & 0 \\
\cdots & \cdots \\
0 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] \\
& \mathbf{y}=\left[\begin{array}{cccccccc}
-6 & 3 & \vdots & -24 & 7.5 & \vdots & -24 & 3 \\
{ }^{2} \mathbf{N}_{1} & \vdots & { }^{2} \mathbf{N}_{2} & 1.5 & \vdots & 1 & \mathbf{N}_{3} \\
0 & 1 & \vdots & 0.5
\end{array}\right] \mathbf{x}+\left[\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]
\end{aligned}
$$

Theorem 4.2

A transfer matrix $\hat{\mathbf{G}}(s)$ is realizable if and only if $\hat{\mathbf{G}}(s)$ is a proper rational matrix.

Proof:

$" \Rightarrow "$
$\hat{\mathbf{G}}_{s p}(s):=\mathbf{C}(s \mathbf{I}-\mathbf{A})^{-1} \mathbf{B}=\frac{1}{\operatorname{det}(s \mathbf{I}-\mathbf{A})} \mathbf{C}[\operatorname{Adj}(s \mathbf{I}-\mathbf{A})] \mathbf{B}:$ strictly proper
$\Rightarrow \hat{\mathbf{G}}(\infty)=\mathbf{D}$ and $\hat{\mathbf{G}}(s)$ is proper

$$
\begin{aligned}
& " \Leftarrow " \text { Let } \hat{\mathbf{G}}(s)=\hat{\mathbf{G}}(\infty)+\hat{\mathbf{G}}_{s p}(s) \\
& \qquad d(s)=s^{r}+\alpha_{1} s^{r-1}+\cdots+\alpha_{r-1} s+\alpha_{r}
\end{aligned}
$$

: monic l.c.d. of all entries of $\hat{\mathbf{G}}_{s p}(s)$

$$
\hat{\mathbf{G}}_{s p}(s)=\frac{1}{d(s)}[\mathbf{N}(s)]=\frac{1}{d(s)}\left[\mathbf{N}_{1} s^{r-1}+\mathbf{N}_{2} s^{r-2}+\cdots+\mathbf{N}_{r-1} s+\mathbf{N}_{r}\right]
$$

- Let us check the transfer matrix of the following state equation in controllable canonical form:

$$
\begin{aligned}
& \dot{\mathbf{x}}=\left[\begin{array}{ccccc}
-\alpha_{1} \mathbf{I}_{p} & -\alpha_{2} \mathbf{I}_{p} & \cdots & -\alpha_{r-1} \mathbf{I}_{p} & -\alpha_{r} \mathbf{I}_{p} \\
\mathbf{I}_{p} & \mathbf{0} & \cdots & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{I}_{p} & \cdots & \mathbf{0} & \mathbf{0} \\
\vdots & \vdots & & \vdots & \vdots \\
\mathbf{0} & \mathbf{0} & \cdots & \mathbf{I}_{p} & \mathbf{0}
\end{array}\right]_{r p \times r p} \mathbf{x}+\left[\begin{array}{c}
\mathbf{I}_{p} \\
\mathbf{0} \\
\mathbf{0} \\
\vdots \\
\mathbf{0}
\end{array}\right]_{r p \times p} \mathbf{u} \\
& \mathbf{y}=\left[\begin{array}{llll}
\mathbf{N}_{1} & \mathbf{N}_{2} & \cdots \mathbf{N}_{r-1} & \mathbf{N}_{r}
\end{array}\right] \mathbf{q}+\hat{\mathbf{G}}(\infty) \mathbf{u}
\end{aligned}
$$

- Consider

$$
\mathbf{Z}:=\left[\begin{array}{c}
\mathbf{Z}_{1} \\
\mathbf{Z}_{2} \\
\vdots \\
\mathbf{Z}_{r}
\end{array}\right]:=(s \mathbf{I}-\mathbf{A})^{-1} \mathbf{B}
$$

i.e., $\quad s \mathbf{Z}=\mathbf{A Z}+\mathbf{B}$

$$
\begin{aligned}
s \mathbf{Z}_{2} & =\mathbf{Z}_{1}, \quad s \mathbf{Z}_{3}=\mathbf{Z}_{2}, \quad \cdots, \quad s \mathbf{Z}_{r}=\mathbf{Z}_{r-1} \\
\text { i.e., } \quad \mathbf{Z}_{2} & =\frac{1}{s} \mathbf{Z}_{1}, \quad \mathbf{Z}_{3}=\frac{1}{s^{2}} \mathbf{Z}_{1}, \quad \cdots, \quad \mathbf{Z}_{r}=\frac{1}{s^{r-1}} \mathbf{Z}_{1}
\end{aligned}
$$

Also

$$
\begin{aligned}
s \mathbf{Z}_{1} & =-\alpha_{1} \mathbf{Z}_{1}-\alpha_{2} \mathbf{Z}_{2}-\cdots-\alpha_{r} \mathbf{Z}_{r}+\mathbf{I}_{p} \\
& =-\left(\alpha_{1}+\frac{\alpha_{2}}{s}+\cdots+\frac{\alpha_{r}}{s^{r-1}}\right) \mathbf{Z}_{1}+\mathbf{I}_{p}
\end{aligned}
$$

i.e., $\quad \mathbf{Z}_{1}=\frac{s^{r-1}}{d(s)} \mathbf{I}_{p}, \quad \mathbf{Z}_{2}=\frac{s^{r-2}}{d(s)} \mathbf{I}_{p}, \quad \cdots, \quad \mathbf{Z}_{r}=\frac{1}{d(s)} \mathbf{I}_{p}$
$\Rightarrow \mathbf{C}(s \mathbf{I}-\mathbf{A})^{-1} \mathbf{B}+\hat{\mathbf{G}}(\infty)=\frac{1}{d(s)}\left[\mathbf{N}_{1} s^{r-1}+\mathbf{N}_{2} s^{r-2}+\cdots+\mathbf{N}_{r}\right]+\hat{\mathbf{G}}(\infty)$
i.e., $\{\mathbf{A}, \mathbf{B}, \mathbf{C}, \hat{\mathbf{G}}(\infty)\}$ is a realization of $\hat{\mathbf{G}}(s)$

In addition to the controllable canonical form,
there is also the "observable" canonical form. See Prob. 4.9

$$
\begin{aligned}
& \hat{\mathbf{G}}(s)=\left[\begin{array}{l}
d_{1} \\
d_{2}
\end{array}\right]+\frac{1}{s^{4}+\alpha_{1} s^{3}+\alpha_{2} s^{2}+\alpha_{3} s+\alpha_{4}}\left[\begin{array}{l}
\beta_{11} s^{3}+\beta_{12} s^{2}+\beta_{13} s+\beta_{14} \\
\beta_{21} s^{3}+\beta_{22} s^{2}+\beta_{23} s+\beta_{24}
\end{array}\right] \\
& \dot{\mathbf{x}}=\left[\begin{array}{cccc}
-\alpha_{1} & -\alpha_{2} & -\alpha_{3} & -\alpha_{4} \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \mathbf{x}+\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right] u \\
& \mathbf{y}=\left[\begin{array}{llll}
\beta_{11} & \beta_{12} & \beta_{13} & \beta_{14} \\
\beta_{21} & \beta_{22} & \beta_{23} & \beta_{24}
\end{array}\right] \mathbf{x}+\left[\begin{array}{l}
d_{1} \\
d_{2}
\end{array}\right] u
\end{aligned}
$$

A multi-input LTI system is
the sum of many single-input LTI systems,
so can realize each single-input subsystem and form the sum:

$$
\hat{\mathbf{y}}(s)=\hat{\mathbf{G}}(s) \hat{\mathbf{u}}(s)=\hat{\mathbf{G}}_{c 1}(s) \hat{u}_{1}(s)+\hat{\mathbf{G}}_{c 2}(s) \hat{u}_{2}(s)+\cdots=: \hat{\mathbf{y}}_{c 1}(s)+\hat{\mathbf{y}}_{c 2}(s)+\cdots
$$

Example 4.7

$$
\hat{\mathbf{G}}(s)=\left[\begin{array}{c:c}
\frac{4 s-10}{2 s+1} & \frac{3}{s+2} \\
\frac{1}{(2 s+1)(s+2)} & \frac{s+1}{(s+2)^{2}}
\end{array}\right]
$$

$\dot{\mathbf{x}}_{1}=\mathbf{A}_{1} \mathbf{x}_{1}+\mathbf{b}_{1} u_{1}=\left[\begin{array}{cc}-2.5 & -1 \\ 1 & 0\end{array}\right] \mathbf{x}_{1}+\left[\begin{array}{l}1 \\ 0\end{array}\right] u_{1}$
$\mathbf{y}_{c 1}=\mathbf{C}_{1} \mathbf{x}_{1}+\mathbf{d}_{1} u_{1}=\left[\begin{array}{cc}-6 & -12 \\ 0 & 0.5\end{array}\right] \mathbf{x}_{1}+\left[\begin{array}{l}2 \\ 0\end{array}\right] u_{1}$

$$
\begin{aligned}
& \dot{\mathbf{x}}_{2}=\mathbf{A}_{2} \mathbf{x}_{2}+\mathbf{b}_{2} u_{2}=\left[\begin{array}{cc}
-4 & -4 \\
1 & 0
\end{array}\right] \mathbf{x}_{2}+\left[\begin{array}{l}
1 \\
0
\end{array}\right] u_{2} \\
& \mathbf{y}_{c 2}=\mathbf{C}_{2} \mathbf{x}_{2}+\mathbf{d}_{2} u_{2}=\left[\begin{array}{ll}
3 & 6 \\
1 & 1
\end{array}\right] \mathbf{x}_{2}+\left[\begin{array}{l}
0 \\
0
\end{array}\right] u_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \dot{\mathbf{x}}_{1}=\mathbf{A}_{1} \mathbf{x}_{1}+\mathbf{b}_{1} u_{1}=\left[\begin{array}{cc}
-2.5 & -1 \\
1 & 0
\end{array}\right] \mathbf{x}_{1}+\left[\begin{array}{l}
1 \\
0
\end{array}\right] u_{1} \\
& \mathbf{y}_{c 1}=\mathbf{C}_{1} \mathbf{x}_{1}+\mathbf{d}_{1} u_{1}=\left[\begin{array}{cc}
-6 & -12 \\
0 & 0.5
\end{array}\right] \mathbf{x}_{1}+\left[\begin{array}{l}
2 \\
0
\end{array}\right] u_{1} \\
& \dot{\mathbf{x}}_{2}=\mathbf{A}_{2} \mathbf{x}_{2}+\mathbf{b}_{2} u_{2}=\left[\begin{array}{cc}
-4 & -4 \\
1 & 0
\end{array}\right] \mathbf{x}_{2}+\left[\begin{array}{l}
1 \\
0
\end{array}\right] u_{2} \\
& \mathbf{y}_{c 2}=\mathbf{C}_{2} \mathbf{x}_{2}+\mathbf{d}_{2} u_{2}=\left[\begin{array}{cc}
3 & 6 \\
1 & 1
\end{array}\right] \mathbf{x}_{2}+\left[\begin{array}{l}
0 \\
0
\end{array}\right] u_{2}
\end{aligned}
$$

Overall Realization:

$$
\begin{aligned}
{\left[\begin{array}{l}
\dot{\mathbf{x}}_{1} \\
\dot{\mathbf{x}}_{2}
\end{array}\right] } & =\left[\begin{array}{cc}
\mathbf{A}_{1} & \mathbf{0} \\
\mathbf{0} & \mathbf{A}_{2}
\end{array}\right]\left[\begin{array}{l}
\mathbf{x}_{1} \\
\mathbf{x}_{2}
\end{array}\right]+\left[\begin{array}{cc}
\mathbf{b}_{1} & \mathbf{0} \\
\mathbf{0} & \mathbf{b}_{2}
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] \\
\mathbf{y} & =\mathbf{y}_{c 1}+\mathbf{y}_{c 2}=\left[\begin{array}{ll}
\mathbf{C}_{1} & \mathbf{C}_{2}
\end{array}\right] \mathbf{x}+\left[\begin{array}{ll}
\mathbf{d}_{1} & \mathbf{d}_{2}
\end{array}\right] \mathbf{u}
\end{aligned}
$$

For this case, a four-dimensional realization with this method

- Can also focus on the realizations of single-output systems, then treat LTI systems with multi-outputs as combinations of single-outputs subsystems.

Overall Realization:

$$
\dot{\mathbf{x}}=\left[\begin{array}{ccc}
\mathbf{A}_{\mathbf{1}} & & \mathbf{0} \\
& \ddots & \\
\mathbf{0} & & \mathbf{A}_{q}
\end{array}\right] \mathbf{x}+\left[\begin{array}{c}
\mathbf{B}_{1} \\
\vdots \\
\mathbf{B}_{q}
\end{array}\right] \mathbf{u}, \quad \mathbf{y}=\left[\begin{array}{lll}
\mathbf{c}_{\mathbf{1}} & & \mathbf{0} \\
& \ddots & \\
\mathbf{0} & & \mathbf{c}_{q}
\end{array}\right] \mathbf{x}+\left[\begin{array}{c}
\mathbf{d}_{\mathbf{1}} \\
\vdots \\
\mathbf{d}_{q}
\end{array}\right] \mathbf{u}
$$

- Realizations for discrete-time systems:
all discussions apply, except " s " is changed to " z ", " $x(t)$ " is changed to " $x(k)$ ", and " $d x(t) / d t$ " is changed to " $x(k+1)$ ".

