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Introduction

Input-Output Stability (5.2)

Internal Stability (5.3)

Lyapunov Theorem (5.4)
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• Stable Systems

Bounded Input and Bounded Output (BIBO) Stability

• Unstable Systems

Small Input generates Unbounded Output

• Response of Linear Systems

Zero-State Response +   Zero-Input Response

BIBO Stability +   Marginal/Asymptotic Stability 

Input-Output Stability +   Internal Stability 

System

• Definition:
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• Bounded Signal s(t):

∃ a constant bound b < ∞, s.t. |s(t)| ≤ b, ∀t ≥0

System

• Bounded-Input-Bounded-Output (BIBO) Stable Systems:

EVERY bounded input excites a bounded output

Bounded outputs in response to ALL bounded inputs

(zero-state response only)

• An SISO causal LTI systems:

• Definition:
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unit-impulse response

Proof: “⇐”
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Proof: “⇒”

The corresponding output is unbounded at t = t1, as

⌦

Suppose

Then for the bounded input u(t) with

(Contradiction)
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• An absolutely integrable function may not approach zero!

That is,

• For example,

?
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g(t)
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Proof:

1.
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Proof:

2.
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Proof:
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: irrational

• Example 5.1: (Fig. 2.5(a))
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• Poles and Eigenvalues:

• State Equations and Transfer Function:

NTUEE-LS5-Stability-16
Feng-Li Lian © 2007BIBO of State Equation – 2

• Example 5.2: (from Example 4.4, Fig. 4.2(b) on p. 96)

One eigenvalue:  +1

No poles, BIBO stable

BIBO stable  ---(?)--- zero-input response
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• A DT SISO system:

• Boundedness of signal s[k]:

∃ a bound b < ∞, s.t. |s[k]| ≤ b, ∀k ≥0

• Bounded-Input-Bounded-Output (BIBO) Systems:

Every bounded input excites a bounded output

Bounded outputs in response to all bounded inputs

(zero-state response only)

System
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Proof:

2.
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( )

1 2
2

1
1

0

2

ˆ( )
( ) ( )

[ ]

      [ ]     1       

i

i

i

i

imi i
m

i i i i

m k
i i im

i

i

i

rr

g

r
g z

z p z p z p

g k r r k r

k p

k p

i

−

∞

⎡ ⎤
= + + +⎢ ⎥− − −⎣ ⎦

⇒ = + + +

∴ ∀< ∞ ⇔ <

∑

∑

∑



NTUEE-LS5-Stability-21
Feng-Li Lian © 2007BIBO Stability of Discrete-Time Systems

NTUEE-LS5-Stability-22
Feng-Li Lian © 2007BIBO Stability of Discrete-Time Systems

• State Equations and Transfer Function:

• Poles of a discrete transfer matrix

form a subset of the eigenvalues of any of its realizations:
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• Boundedness/Convergence of zero-input response x(t):
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Proof: algebraic equivalence transformation preserves stability

∴ < ∞ ∀ < ∞ ∀⇔      ,                            ( )(   ,  )  t tt txx

−∴ ≤ ≤ 1             and             x xP Px x

P: nonsingular

→ →⇔= =0 0And    lim                              ( ) (lim )t t tt xx 0 0

∴ Consider                                  ,  where is in Jordan form,

NTUEE-LS5-Stability-26
Feng-Li Lian © 2007Theorem 5.4 – 3

And is a block diagonal matrix with diagonal blocks like

∴ Part 2 of the Theorem is obvious (all exponential terms decay)

For Part 1, the conditions imply

either the exponential term decays to 0 (Re(e-value) < 0),

or exponential term is bounded (Re(e-value) = 0) and 

the corresponding Jordan blocks are all 1×1
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Marginally Stable

no internal stability,

try xo=[0 1 0]′
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Corollary:

Asymptotic Stability BIBO stability

⇒

⇐
?

Zero-input response Zero-state response 
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Definitions are similar to those for continuous-time systems
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Proof:

As in continuous-time case, 

use equivalence transformation and Jordan form.

Note that: 

In discrete-time case, 

for certain A it is possible that x[k] = 0, ∀ k > a constant, 

which is impossible in continuous-time case.
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Definition:

A ∈ Rn×n is called a stable matrix

If all eigenvalues of A have negative real parts.

From Sec 3.9:

• Positive definiteness of a real symmetric matrix M:

x′ M x >  0 for all x ≠ 0.

• Positive semi-definiteness of a real symmetric matrix M:

x′ M x  ≥ 0 for all x ≠ 0.
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Proof: 
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“⇒”

Proof:  

Here the main difference is that 

N is only positive semidefinite, but rank O = n
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“⇐”
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Here no sign definiteness of N and M is discussed, 

so previous proof certainly applies, 

but the uniqueness part will be proved again differently

Proof:
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Suppose M1 and M2 are two solutions, then

Integration from 0 to ∞ yields

With eAt → 0 as t → ∞,
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Note that:

As long as λi(A′) + λj(A) = λi(A) + λj(A) ≠ 0 ∀i, j 

∀N, ∃ a unique solution M, 

but the integral formula for M

does not apply when A is not stable,

even if λi(A) + λj(A) = 0 for some (i,j), 

solutions M may still exist for certain N.
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,          :  ,    : ,    , : n n m m n m− = × × ×C A B MB CM AM

where

: Right eigenvalue-eigenvector pair

: Left eigenvalue-eigenvector pair

i.e., has eigenvalues

: A linear transformation from Rn×m to Rn×m
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For the (discrete-time) Lyapunov equation, 

If λiμj ≠ 1, ∀i, j,

then unique solution M exists for all N, and 

If λiμj = 1 for some (i, j), 

then solutions M may or may not exist.
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(5.16)
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“⇒” |λi(A)| = |λi(A′)| < 1 unique solution M exists for all N

Proof:  

Similar to that for Corollary 5.5; 

Only sketch of proof is given for the case with N > 0 (as in Thm 5.5)

Also if N > 0, then
1

( ) 0    m m

m

∞

=
′ ′ ′ ′= + > ∀ ≠∑x Mx x Nx x A NA x x 0

“⇐” Let   Av = λv with v ≠ 0

> 0> 0 > 0
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Note that:

IF λi(A)λj(A) ≠ 1, ∀i, j  

∀N, ∃ a unique solution M, 

but the sum formula for M applies only when |λi(A)| < 1

IF λi(A)λj(A) = 1, for some (i,j), solutions M may still exist.
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1( )( )d d
−= − +A A I A I 1( ) ( )d

−= − +A I A I A

0.5( ) ( )d d d d
′− = − + +M A MA A I N A I

,

{s | Re(s) < 0} {z | |z| < 1}

• Relation between C.T. and D.T. Lyapunov Equations
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• Briefly Speaking,
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• In Linear Case,
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