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Basic Concept (5.1)
e Definition:

= =
e Stable Systems

=» Bounded Input and Bounded Output (BIBO) Stability

e Unstable Systems
=» Small Input generates Unbounded Output

e Response of Linear Systems

» Zero-State Response + Zero-Input Response
=» BIBO Stability + Marginal/Asymptotic Stability
» [nput-Output Stability + Internal Stability

Feng-Li Lian © 2007
NTUEE-LS5-Stability-4

Input-Output Stability (5.2)
¢ Definition:

e Bounded Signal s(t):
=» 3 a constant bound b < o, s.t. [S(t)| < b, Vt >0

e Bounded-Input-Bounded-Output (BIBO) Stable Systems:
=» EVERY bounded input excites a bounded output

=» Bounded outputs in response to ALL bounded inputs
®» (zero-state response only)

m — — out

e An SISO causal LTI systems:

y(t) = /Ot gt —71)u(r)dr = /Ot g(r) u(t — 1) dr
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unit-impulse response
Theorem 5.1 b b

A SISO system described by g(#) is BIBO stable if and only if g(#} is absolutely integrable in [0, o0}, or

f lg)ldt =M < o0
0

for some constant M.

t

Proof: “<” y(t) = '/0 g(t) u(t—71) dr
t

[0 o(r) ult—1) dr

[ o) dr
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Proof: “=”"

Suppose f lg(z)|dt =00
0

Then for the bounded input u(t) with

1 ifg(r)=0

uih.— ) = [—1 ifg(z) <0

The corresponding output is unbounded att = t;, as

1

1
y(tr) = fD SO —E)di = f E@Dldr =00

]

(Contradiction)
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e An absolutely integrable function may not approach zero!
» That s,

?
“lf)ldt <o = lim,_f(t)=0
jo| | t=

e For example,

n+(t—nn* forn—1/n*<t<n
fa—n= 4 3 = 1/n2
n—(t—nn® forn<t<n+1/n area =1/n? —

n=23,...

o » 1
Jo fOldt =3 = <o»,
but lim,_ f(t)=0 —L L i

n+1

!
EALS I o
t
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Theorem 5.2

If a system with impulse response g(1) is BIBO stable, then, as t — 0<:

1. The output excited by (¢} = a, for ¢t > 0, approaches g(0) - a.
2. The output excited by u(t) = sinw,t, fort = 0, approaches

|8(fwo)| sin(w,t+ ¥E(jw,))
where g(s) is the Laplace transform of g(t) or

g(s) = fu g(t)e " dr




Theorem 5.2 -2

Proof:
1.

y(t)
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‘/01t o(r) w(t—7) dr

Theorem 5.2 -3

Proof:

2. y(t)

9(s)

g(jw)
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o0
= /O g(T) e T dr

m .
= /0 g(1) [coswr —jsmwr] dr

= /Ooo g(t) coswr + jg(7) (—sinwt) dr
g(T) sinwg(t—7) dr

g(7)
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as t — o0

00 00
y(t) — sinwgt /0 g(7)coswgrdr — coswqt fo g(T)sinwordr
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Theorem 5.3

A SISO system with proper rational transfer function g(s) is BIBO stable if and only if every pole of
£(s) has a negative real part or, equivalently, lies inside the left-half s-plane.

Proof:
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e Example 5.1: (Fig. 2.5(a))

= !' - A af'-"s . .
gity=> a's(t —i) ) =7_——= irational
i=1 —ae
o0 > 00 if |¢| > 1
1| dt = al’ = . -
fﬂ 80l ;' | [|a.1j(1— lal) < 00 if [a] < I
Input-Output Stability: MIMO Case (5.2) Feng-L1Lian © 2007
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Theorem 5.M1

A multivariable system with impulse response matrix G(t) = [g;;(¢)] is BIBO stable if and only if
every g;;(t) is absolutely integrable in [0, 00).

Theorem 5.M3

A multivariable system with proper rational transfer matrix é(s) = [£i;(s)] is BIBO stable if and only
if every pole of every g;;(s) has a negative real part.
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e State Equations and Transfer Function:

y(s) = G(s)u(s)
G(s)=C(sI-A)"'B+D
x(t) = Ax(t) + Bu(t)
{ y(t) = Cx(t) + Du(t)

e Poles and Eigenvalues:

= 1
G = Cl|Adj(sI—A)| B+D
) det(eT = &) C (AT~ A)] B+
Therefore, { poles of G(s)} { eigenvaluses ofA}
BIBO of State Equation — 2 Feng-Li Lian © 2007
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e Example 5.2: (from Example 4.4, Fig. 4.2(b) on p. 96)

x(@)=x@)+0-u(r) y(t) = 0.5x(2) + 0.5u(t)

» One eigenvalue: +1

g(5)=05(6—-1"1.-04+05=05

» No poles, BIBO stable

=» BIBO stable ---(?)--- zero-input response
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e ADT SISO system:

k k
yikl =Y glk —mlulm] =Y glmlulk — m]
m={

m=0

e Boundedness of signal s[K]:

=®» 3 abound b <, s.t. |s[k]| < b, Yk >0

e Bounded-Input-Bounded-Output (BIBO) Systems:
=» Every bounded input excites a bounded output

=®» Bounded outputs in response to all bounded inputs
= (zero-state response only)

m — — out
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Theorem 5.D1

A discrete-time SISO system described by g[k] is BIBO stable if and only if g[k] is absolutely summable
in [0, 00) or

o0
Y lglkll < M < o0
k=0

for some constant M,

Theorem 5.D2

If a discrete-time system with impulse response sequence g[k] is BIBO stable, then, as k — 00!

1. The output excited by u[k] = a, for k = 0, approaches (1) - a.
2. The output excited by u[k] = sinw,k, fork = 0, approaches

|8 (e7)| sin(wok+ ¥E(e/™))
where g(z) is the z-transform of g[k] or

8) =) glmlz™
m=0
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Proof: d.c. gain
1. limy(t) = lim 3 ‘g(m)u(k -m) =3 "g(m)a=ay g(m)

k
= yIkl =) glm]sinw,lk — m]

m=(

k
= Z g[m](sin w,k cos w,m — cos wyk sin w,m)
m=0
k- k
= sin wyk Z glm]cosw,m — cos wyk Z glm] sin w,m

m=( m=0

[ 4] oo
ask — oo, y[k] = sinwyk Z glm]cos w,m — cos wyk Z glm]sin w,m

m={) m=0
C

Re{ g(e')} = -Im{ )} =
G(e)|cos[£G(e")] [g(e™)[sin[£g(e")]
BIBO Stability of Discrete-Time Systems NTUREL S5 20

Theorem 5.D3

A discrete-time SISO system with proper rational transfer function g(z) is BIBO stable if and only if
every pole of g(z) has a magnitude less than 1 or, equivalently, lies inside the unit circle on the z-plane.

Proof:
2 I r. r
9(z) = Y L
Z‘: z-p (z-p) (z-p)"
= g[k] = X" (g + 1k + -+ 1 K™ ok

LY okl < 0 = p| <10 Vi
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Theorem 5.MD1

A MIMO discrete-time system with impulse response sequence matrix G[k] = [g,- j [k]] is BIBO stable
if and only if every g;;[k] is absolutely summable.

Theorem 5.MD3

A MIMO discrete-time system with discrete proper rational transfer matrix G(Z) = [ﬁ; j (z)] is BIBO
stable if and only if every pole of every £;;(z) has a magnitude less than 1.
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BIBO Stability of Discrete-Time Systems

e State Equations and Transfer Function:

¥(2) = G(2)u(z)
G()=CGI-A)"'B+D

{ x[k + 1] = Ax[k] + Bulk]
ylk] = Cx[k] + Du[k]

e Poles of a discrete transfer matrix
form a subset of the eigenvalues of any of its realizations:

- 1
P L —— i - B+D
G(2) dot(ad = A}C[Adj{zl A)]B +
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e Boundedness/Convergence of zero-input response x(t):

x(t) = Ax(t) 4+ Bu(t) u(t) =0, =x(0)=x

= x(t) = Ax(t) s x(t) = eixg

Definition 5.1 The zero-input response of (5.4) or the equation X = Ax is marginally
stable or stable in the sense of Lyapunov if every finite initial state x,, excites a bounded

response. It s asymptotically stable if every finite initial state excites a bounded response,
which, in addition, approaches 0 as t — oc.

Theorem 5.4 (5.3)
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Theorem 5.4

1. The equation X = AX is marginally stable if and only if all eigenvalues of A have zero or negative
real parts and those with zero real parts are simple roots of the minimal polynomial of A.

2. The equation X = AX is asymptotically stable if and only if all eigenvalues of A have negative real
parts.
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Proof: algebraic equivalence transformation preserves stability

{ %(t) = Ax(t)+Bu(t) { %(t) = AR()+Bul)
y(t) = Cx(t)+Du(t) y(t) = Cx(t)+Du(t)
X = Px o x = Pk P: nonsingular
= X[ <[Pl and Ix[1< [P ]
[X(t)] < o0, Wt = [x(t)] < o, Wt
And lim_,X(t)=0 = lim,_,x(t)=0

. Consider x = AXx = PAP-!x , where A isin Jordan form,

Feng-Li Lian © 2007
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And ¢A! is a block diagonal matrix with diagonal blocks like

meMt pet! 2eM1 2! et 317
0 M tett et /2!
0 0 eM! ret!

L0 0 0 et

. Part 2 of the Theorem is obvious (all exponential terms decay)

For Part 1, the conditions imply

either the exponential term decays to O (Re(e-value) < 0),
or exponential term is bounded (Re(e-value) = 0) and

the corresponding Jordan blocks are all 1x1




Example 5.4 (5.3)

0O 0 0
x=10 0 |x
0 0 -1

=

|
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AN = A2\ +1)
d(\) = A(A4+1)

=» Marginally Stable

010 A) = A2 4+1)
x=|0 0 0 |x )
G5 i ®d(\) = 32O\ +1)
=®» no internal stability,
=» try X,=[0 1 0]
Feng-Li Lian © 2007
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A=QDQT
A 0 O A1 10 A 10
D 0O A O O XA O 0O N\ 1
0 0 A\ 0 0 A 0 0 A\
A— A1 0 0 A— A -1 0 A— A -1 0
A — D 0 A-XA O 0 A-X\ O 0 A-X -1
0 0] A— A 0 0 A—)\ 0 0] A— )\
AN A=A =2 (A= A1)
0 0O 010 010
0 0O 0 0O 001
D—MI 000 000 000
(D—X\I)=0 (D—-MID?=0 (D—-\ID3=0
W(A) X — A (A — A1) (A —Ap)3
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M 10 0 0
0 A 1 0 0
A=|0 0 » 0 0
0O 0 0 A 1
0 0 0 0 2
mett peMt fPeMi2l 0 0 7
0 At tet? 0 0
=0 0 M 0 0
0 0 0 N el
L 0 0 0 0 e
Asymptotic stability & BIBO stability (5.3) NTUREL S5 el 30
Corollary:
=
Asymptotic Stability ? BIBO stability
<

Zero-input response

Zero-state response
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x[k + 1] = Ax[k] + Bu[] ulk] =0, x[0] = xq

— x[k+ 1] = Ax[k] x[0] = xg

& x[k] = Akxo

Definitions are similar to those for continuous-time systems

Feng-Li Lian © 2007
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Theorem 5.D4

1. The equation X[k + 1] = Ax[k] is marginally stable if and only if all eigenvalues of A have
magnitudes less than or equal to 1 and those equal to 1 are simple roots of the minimal polynomial of
A.

2. The equation X[k + 1] = AX[k] is asymptotically stable if and only if all eigenvalues of A have
magnitudes less than 1.

Proof:
As in continuous-time case,
use equivalence transformation and Jordan form.

Note that:

In discrete-time case,
for certain A it is possible that x[k] = 0, V k > a constant,
which is impossible in continuous-time case.
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e Definition:
A € R™n |s called a stable matrix

If all eigenvalues of A have negative real parts.

From Sec 3.9:

e Positive definiteness of a real symmetric matrix M:

xMx > 0 forall x=0.

e Positive semi-definiteness of a real symmetric matrix M:

x'Mx > 0 forall x #0.
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Theorem 5.5

All eigenvalues of A have negative real parts if and only if for any given positive definite symmetric
matrix N, the Lyapunov equation

A'M+MA = —-N (5.15)

has a unique symmetric solution M and M is positive definite.
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Proof:
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Corollary 5.5

All eigenvalues of an # X n matrix A have negative real parts if and only if for any given m x n matrix
N with m < n and with the property

N
NA
rank O := rank . =n (full column rank) (5.16)
NA"-!
where O is an mm X 1 matrix, the Lyapunov equation
AM+MA = -N'N =: —N (5.17)

has a unique symmetric solution M and M is positive definite.
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Proof:
Here the main difference is that
N is only positive semidefinite, but rank O = n

11 ”
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1] ”

—
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Theorem 5.6
If all eigenvalues of A have negative real parts, then the Lyapunov equation
A'M +MA = —-N

has a unique solution for every N, and the solution can be expressed as

M=f eMINeM dt
0

Proof:

Here no sign definiteness of N and M is discussed,

S0 previous proof certainly applies,

but the uniqueness part will be proved again differently
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Suppose M, and M, are two solutions, then

A'M; — M) + (M, — M)A =0

D AMAM, - M) + (M, — Mp)Aler = j;r[e*” M; —M;)et] =0

=» Integration from O to «o yields [eAT(M; — My)e*] : =0

=2 WitheAt 5> 0ast— o, 0—-M;—M;) =0
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Note that:

As long as 1(A") + L(A) = A(A) + 4(A) =0 Vi, |
= VN, 3 a unique solution M,
but the integral formula for M
does not apply when A is not stable,
even if 4(A) + A(A) =0 for some (i,)),

solutions M may still exist for certain N.

Lyapunov Equation for Discrete-Time Systems (5.4.1) \TUEE S S5 Seaby 44

M-AMB =C, A:nxn, B:mxm, M C nxm

AM) = C where AM):=M — AMB

- A linear transformation from R™™ to R™™

Au = J;u : Right eigenvalue-eigenvector pair

vB = vu; :Left eigenvalue-eigenvector pair

A(av) =uv — AuvB = (1 — A;)uy

l.e., has eigenvalues

Me =1 — At fori=1,2,...,m;j=12,...,m
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For the (discrete-time) Lyapunov equation,

If L= 1, Vi, |,
then unique solution M exists for all N, and

If A1 =1 for some (i, J),
then solutions M may or may not exist.

Feng-Li Lian © 2007
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Theorem 5.D5

All eigenvalues of an n X n matrix A have magnitudes less than 1 if and only if for any given positive
definite symmetric matrix N or for N = N'N, where N is any given m x n matrix with m < n and
with the property in (5.16), the discrete Lyapunov equation

M-AMA=N (3.26)

has a unique symmetric solution M and M is positive definite.

rank O := rank _ =n (full column rank) (5.16)
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Proof:

Similar to that for Corollary 5.5;
Only sketch of proof is given for the case with N > 0 (as in Thm 5.5)

“=" IMA) = A(A)] <1 < unique solution M exists for all N

M= Z(A’}mNA’"‘ > Z(A’)’”NA’” — A (Z(A’)’”NA’”) A =N

Also if N >0, then x'Mx =x'Nx+> " x'(A)"NA™X >0 Vx =0

“<" Let Av=Av withv =0
> v*Nv = v*Mv — v*A'MAv
= V"MV — *V*Mvi = (1 — [A[)vV My

>0 >0 >0

Feng-Li Lian © 2007
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Theorem 5.Dé

If all eigenvalues of A have magnitudes less than 1, then the discrete Lyapunov equation
M-AMA=N
has a unique solution for every N, and the solution can be expressed as
o0
M = Z(A.ﬂ}mNAm
m=0
Note that:
IF L(AA(A) # 1, Vi, |

= VN, 3 a unique solution M,
but the sum formula for M applies only when |A,(A)| <1

IF Ai(A)2(A) = 1, for some (i,j), solutions M may still exist.
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e Relation between C.T. and D.T. Lyapunov Equations

_z—1 1+
z+1 45 1 5

{s|Re(s) <0}  G——— —{z|z<1}

h)

M, —ﬂ:,MdAd = Ny
Ad:(l"{—ﬁ)(l—ﬂ)_] l\ A=(ﬁd+[)-l{ﬂd—l)

A'My +MzA = —0.5(I — AHN;(I — A)

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

A'M +MA = —-N
A=A, —D)(A,+)* \ ‘ A, =(-A)(1+A)
M—A,MA, =-0.5(A, + N(A, +1)
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Lyapunov’s (First) Stability Theorem
e [heorem 4.1:

Let - = O be an equilbrium point for

z = f(z) (4.1)

and D C R"™ be a domain containing x = 0.
Let V. D — R be

a continuously differentiable function
such that

V(0) =0 and V(z) > 0 in D—{0} (4.2)

V(z) <0in D (4.3)

Then, x = 0 is stable.
Moreover, if V(z) <0 in D — {0} (4.4)
then x = 0 is asymptotically stable.
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Lyapunov’s (First) Stability Theorem — 2
e Briefly Speaking,

Feng-Li Lian © 2007
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Lyapunov’s (First) Stability Theorem — 3

e |In Linear Case,
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2.2: Pendulum Equation w/ Friction — 1
Using Newton's Second Law,
Write the equation of motion
/ in the tangential direction:

K 0 mll = —mgsin@ — ki

State model (let 1 = 6,25 = 6):

mg :
ry = 22
Figure 1.1: Pendulum. by = —gSin.’L']_ _ E‘LQ
l m
Equilibrium points (let 21 = 2o = 0):
(m,0)
0 = x>
0 = —Esinml—ﬁmg
l m
Equilibrium points are (nw,0),n = 0, +1,+£2, ...,
or, physically, (0,0) and (w,0).
(0,0)

Question? Which one is stable or unstable?

Feng-Li Lian © 2007
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e Consider the pendulum eqgn w/o friction
r1 = X
ro = —aSinzy

and let us study the stability of

the equilibrium point at the origin.

e A natural Lyapunov function candidate

is the energy function

V(z) =a(l—coszy)+ (1/2)z3
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Viz) =

Feng-Li Lian © 2007
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e Consider the pendulum egn with friction

r1 = T

:f:Q = —asin x1—bxo
e Again, let us try

V(x) =a(l —coszq) —I—% [ r1 T }
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V(z) =




