Fall 2007

線性系統 Linear Systems

Chapter 06
Controllability & Observability

Feng-Li Lian NTU-EE Sep07 – Jan08

Materials used in these lecture notes are adopted from "Linear System Theory & Design," 3rd. Ed., by C.-T. Chen (1999)

Outline

- Introduction
- Controllability (6.2)
- Observability (6.3)
- Canonical Decomposition (6.4)
- Conditions in Jordan-Form Equations (6.5)
- Discrete-Time State Equations (6.6)
- Controllability after Sampling (6.7)

1 input: u

2 states: x_1 , x_2

1 output: *y*

The state x_2 is NOT "controllable" by the input u

The state x_1 is NOT "observable" at the output $y = -x_2 + 2u$

Controllability and observability reveal

the internal structure of the system (model)

Controllability (6.2)

Feng-Li Lian © 2007 NTUEE-LS6-CtrbObsv-4

Definition 6.1 $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}$ or the pair (\mathbf{A}, \mathbf{B}) is said to be controllable if for any initial state $\mathbf{x}(0) = \mathbf{x}_0$ and any final state \mathbf{x}_1 , there exists an input that transfers \mathbf{x}_0 to \mathbf{x}_1 in a finite time. Otherwise (\mathbf{A}, \mathbf{B}) is said to be uncontrollable.

Un-Controllable Examples:

if
$$x(0) = 0$$
,

then x(t) = 0, $\forall t \ge 0$, no matter what u(t) is

if
$$x_1(0) = x_2(0)$$
,

then $x_1(t) = x_2(t), \forall t \geq 0$, no matter what u(t) is

Controllability - 3

Feng-Li Lian © 2007 NTUEE-LS6-CtrbObsv-6

Controllable Example:

$$\begin{cases} \dot{\mathbf{x}}(t) = \mathbf{A} \mathbf{x}(t) + \mathbf{B} \mathbf{u}(t) \\ \mathbf{v}(t) = \mathbf{C} \mathbf{x}(t) + \mathbf{D} \mathbf{u}(t) \end{cases}$$

$$\mathbf{A}_{p} = \begin{bmatrix} -6 & 0 & -6 \\ 0 & 0 & \frac{3}{5} \\ \frac{5}{3} & -\frac{5}{3} & 0 \end{bmatrix} \quad \mathbf{B}_{p} = \begin{bmatrix} 6 \\ 0 \\ 0 \end{bmatrix} \quad \mathbf{C}_{p} = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} \quad \mathbf{D}_{p} = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$$

$$\mathbf{A}_c = \left[egin{array}{cccc} 0 & 1 & 0 \ 0 & 0 & 1 \ -6 & -11 & -6 \end{array}
ight] \;\; \mathbf{B}_c = \left[egin{array}{cccc} 0 \ 0 \ 6 \end{array}
ight] \;\;\; \mathbf{C}_c = \left[\; 1 \;\; 0 \;\; 0 \;
ight] \;\; \mathbf{D}_c = \left[\; 0 \;
ight] \;\;\;$$

$$\begin{bmatrix} \mathbf{A}_d = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -3 \end{bmatrix} \quad \mathbf{B}_d = \begin{bmatrix} 3 \\ -6 \\ 3 \end{bmatrix} \mathbf{C}_d = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \quad \mathbf{D}_d = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} \dot{\mathbf{x}}(t) = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 3 \\ -6 \\ 3 \end{bmatrix} \mathbf{u}(t) \\ \dot{\mathbf{y}}(t) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} 0 \end{bmatrix} \mathbf{u}(t) \\ \dot{\mathbf{x}}_1 = -1 x_1 + 3 u \\ \dot{\mathbf{x}}_2 = -2 x_2 - 6 u \\ \dot{\mathbf{x}}_3 = -3 x_3 + 3 u \\ \dot{\mathbf{y}} = x_1 \end{cases}$$

Controllability – 5: Controllable Representation

$$\begin{cases} \dot{\mathbf{x}}(t) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 6 \end{bmatrix} \mathbf{u}(t) \\ \dot{\mathbf{y}}(t) = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} & \mathbf{x}(t) & + \begin{bmatrix} 0 \\ 0 \end{bmatrix} \mathbf{u}(t) \\ \dot{x}_1 = & x_2 \\ \dot{x}_2 = & x_3 \\ \dot{x}_3 = -6 x_1 & -11 x_2 & -6 x_3 & + 6 u \\ y = & x_1 \end{cases}$$

$$\begin{cases} \dot{\mathbf{x}}(t) = \begin{bmatrix} -6 & 0 & -6 \\ 0 & 0 & \frac{3}{5} \\ \frac{5}{3} & -\frac{5}{3} & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 6 \\ 0 \\ 0 \end{bmatrix} \mathbf{u}(t) \\ \mathbf{y}(t) = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} 0 \end{bmatrix} \mathbf{u}(t) \\ \dot{x}_1 = -6 x_1 + -6 x_3 + 6 u \\ \dot{x}_2 = \frac{3}{5} x_3 \\ \dot{x}_3 = \frac{5}{3} x_1 + -\frac{5}{3} x_2 \\ y = x_2 \end{cases}$$

Theorem 6.1 (6.2)

Feng-Li Lian © 2007 NTUEE-LS6-CtrbObsv-10

Theorem 6.1

The following statements are equivalent.

- 1. The n-dimensional pair (A, B) is controllable.
- 2. The $n \times n$ matrix

$$\mathbf{W}_c(t) = \int_0^t e^{\mathbf{A}\tau} \mathbf{B} \mathbf{B}' e^{\mathbf{A}'\tau} d\tau = \int_0^t e^{\mathbf{A}(t-\tau)} \mathbf{B} \mathbf{B}' e^{\mathbf{A}'(t-\tau)} d\tau$$

is nonsingular for any t > 0.

3. The $n \times np$ controllability matrix

$$C = [\mathbf{B} \mathbf{A} \mathbf{B} \mathbf{A}^2 \mathbf{B} \cdots \mathbf{A}^{n-1} \mathbf{B}]$$

has rank n (full row rank).

- **4.** The $n \times (n+p)$ matrix $[\mathbf{A} \lambda \mathbf{I} \ \mathbf{B}]$ has full row rank at every eigenvalue, λ , of \mathbf{A} .
- 5. If, in addition, all eigenvalues of A have negative real parts, then the unique solution of

$$\mathbf{A}\mathbf{W}_c + \mathbf{W}_c \mathbf{A}' = -\mathbf{B}\mathbf{B}'$$

is positive definite. The solution is called the controllability Gramian and can be expressed as

$$\mathbf{W}_{c} = \int_{0}^{\infty} e^{\mathbf{A}\tau} \mathbf{B} \mathbf{B}' e^{\mathbf{A}'\tau} d\tau$$

Theorem 6.2 - 3

Feng-Li Lian © 2007 NTUEE-LS6-CtrbObsv-12

Proof:

Theorem 6.2 – 8	Feng-Li Lian © 200 NTUEE-LS6-CtrbObsv-1
Proof:	
Theorem 6.2 – 9	Feng-Li Lian © 200
	NTUEE-LS6-CtrbObsv-1
Proof:	

Proof:

"For stable A,
$$\mathbf{W}_c(t)$$
 nonsingular, $\forall t > 0 \Leftrightarrow \mathbf{A}\mathbf{W}_c + \mathbf{W}_c\mathbf{A}' = -\mathbf{B}\mathbf{B}'$ has a unique P.D. sol. $\mathbf{W}_c(\infty)$ "

Example 6.2 (6.2)

Feng-Li Lian © 2007 NTUEE-LS6-CtrbObsv-20

$$\dot{\mathbf{x}} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 5 & 0 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ 1 \\ 0 \\ -2 \end{bmatrix} \mathbf{u}$$

$$y = [1 \ 0 \ 0 \ 0]\mathbf{x}$$

$$C = [\mathbf{B} \ \mathbf{A}\mathbf{B} \ \mathbf{A}^2\mathbf{B} \ \mathbf{A}^3\mathbf{B}] = \begin{bmatrix} 0 & 1 & 0 & 2 \\ 1 & 0 & 2 & 0 \\ 0 & -2 & 0 & -10 \\ -2 & 0 & -10 & 0 \end{bmatrix}$$

rank = 4

$$\dot{\mathbf{x}} = \begin{bmatrix} -0.5 & 0 \\ 0 & -1 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0.5 \\ 1 \end{bmatrix} u$$

$$\rho([\mathbf{B} \ \mathbf{AB}]) = \rho \begin{bmatrix} 0.5 & -0.25 \\ 1 & -1 \end{bmatrix} = 2$$

Example 6.3 – 2

$$\mathbf{W}_c(t_1) = \int_0^{t_1} e^{\mathbf{A} \, \tau} \, \mathbf{B} \, \mathbf{B}^{\mathsf{T}} \, e^{\mathbf{A}^{\mathsf{T}} \, \tau} \, d\tau$$

$$\mathbf{W}_{c}(2) = \int_{0}^{2} \left(\begin{bmatrix} e^{-0.5\tau} & 0 \\ 0 & e^{-\tau} \end{bmatrix} \begin{bmatrix} 0.5 \\ 1 \end{bmatrix} [0.5 \ 1] \begin{bmatrix} e^{-0.5\tau} & 0 \\ 0 & e^{-\tau} \end{bmatrix} \right) d\tau$$
$$= \begin{bmatrix} 0.2162 & 0.3167 \\ 0.3167 & 0.4908 \end{bmatrix}$$

$$\mathbf{u}(t) = -\mathbf{B}^{\mathsf{T}} e^{\mathbf{A}^{\mathsf{T}} (t_1 - t)} \mathbf{W}_c^{-1}(t_1) \left[e^{\mathbf{A} t_1} \mathbf{x}_0 - \mathbf{x}_1 \right]$$

$$u_1(t) = -[0.5 \ 1] \begin{bmatrix} e^{-0.5(2-t)} & 0 \\ 0 & e^{-(2-t)} \end{bmatrix} \mathbf{W}_c^{-1}(2) \begin{bmatrix} e^{-1} & 0 \\ 0 & e^{-2} \end{bmatrix} \begin{bmatrix} 10 \\ -1 \end{bmatrix}$$
$$= -58.82e^{0.5t} + 27.96e^t$$

"Larger" u_1 transfers $\mathbf{x}(0) = [10 - 1]'$ to $\mathbf{x}(2) = \mathbf{0}$ in 2 seconds, &

"Smaller" u_2 transfers $\mathbf{x}(0) = [10 - 1]'$ to $\mathbf{x}(4) = \mathbf{0}$ in 4 seconds.

Note: Given the same $\mathbf{x}(0)$, t_1 , and $\mathbf{x}(t_1)$, the formula in Theorem 6.1

for $\mathbf{u}(\cdot)$ gives the minimal energy control than other $\mathbf{u}(\cdot)$:

$$\int_{t_0}^{t_1} \bar{\mathbf{u}}'(t)\bar{\mathbf{u}}(t) dt \ge \int_{t_0}^{t_1} \mathbf{u}'(t)\mathbf{u}(t) dt$$

Controllability Index (6.2.1)

$$\dot{\mathbf{x}} = \mathbf{A} \mathbf{x} + \mathbf{B} \mathbf{u}$$

$$+\begin{bmatrix} \mathbf{b_1} & \mathbf{b_2} & \cdots & \mathbf{b_p} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_p \end{bmatrix}$$

$$+ b_1 u_1 + b_2 u_2 + \cdots + b_p u_p$$

Given a controllable pair (A, B) $\in \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times p}$ and rank B = p

$$C = [\mathbf{b}_1 \cdots \mathbf{b}_p : \mathbf{A}\mathbf{b}_1 \cdots \mathbf{A}\mathbf{b}_p : \cdots : \mathbf{A}^{n-1}\mathbf{b}_1 \cdots \mathbf{A}^{n-1}\mathbf{b}_p]$$

•···· search for *n* L.I. columns from left to right •·····

Controllability Index – 3

Feng-Li Lian © 2007 NTUEE-LS6-CtrbObsv-26

$$\{\mathbf{b}_{i}, \mathbf{A}\mathbf{b}_{i}, \mathbf{A}^{2}\mathbf{b}_{i}, \dots, \mathbf{A}^{\mu_{i}-1}\mathbf{b}_{i}, i = 1, 2, \dots, p\}$$

is a set of *n* L.I. columns, and the set

 $\{\mu_1, \mu_2, ..., \mu_p\}$ with $\mu_1 + \mu_2 + \cdots + \mu_p = n$ is the set of controllability indices

 $\mu = \max\{\mu_1, \mu_2, ..., \mu_p\}$ is called the controllability index of (**A**, **B**)

$$\rho(C_{\mu}) = \rho([\mathbf{B} \ \mathbf{A}\mathbf{B} \ \cdots \ \mathbf{A}^{\mu-1}\mathbf{B}]) = n$$

If $\mu_1 = \mu_2 = \cdots = \mu_p$, then $n/p = \mu$.

If $\mu_i = 1$ for all $i \neq i_0$, then $\mu = \mu_{i_0} = n - (p - 1)$

If \overline{n} is the degree of the minimal polynomial of A,

then $\mathbf{A}^{\overline{n}} = \tilde{\alpha}_1 \mathbf{A}^{\overline{n}-1} + \tilde{\alpha}_2 \mathbf{A}^{\overline{n}-2} + \cdots + \tilde{\alpha}_{\overline{n}}$

and $\mathbf{A}^{\overline{n}}\mathbf{B} = \tilde{\alpha}_1 \mathbf{A}^{\overline{n}-1}\mathbf{B} + \tilde{\alpha}_2 \mathbf{A}^{\overline{n}-2}\mathbf{B} + \cdots + \tilde{\alpha}_{\overline{n}}\mathbf{B}.$

Thus $\mu \leq \overline{n}$.

$$n/p \le \mu \le \min(\bar{n}, n-p+1)$$

Corollary 6.1 (6.2.1)

Feng-Li Lian © 2007 NTUEE-LS6-CtrbObsv-28

Corollary 6.1

The n-dimensional pair (A, B) is controllable if and only if the matrix

$$C_{n-p+1} := [\mathbf{B} \ \mathbf{A} \mathbf{B} \ \cdots \ \mathbf{A}^{n-p} \mathbf{B}]$$

where $\rho(\mathbf{B}) = p$, has rank n or the $n \times n$ matrix $C_{n-p+1}C'_{n-p+1}$ is nonsingular.

$$\dot{\mathbf{x}} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 3 & 0 & 0 & 2 \\ 0 & 0 & 0 & 1 \\ 0 & -2 & 0 & 0 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix} \mathbf{u}$$

$$\mathbf{y} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \mathbf{x}$$

$$\mu_1 = \mu_2 = \mu = 2$$

Theorem 6.2 (6.2.1)

Feng-Li Lian © 2007 NTUEE-LS6-CtrbObsv-30

Theorem 6.2

The controllability property is invariant under any equivalence transformation.

Proof:

Theorem	6.3	(6.2.1)	
THEOTETH	0.0	(0.2.1)	

Feng-Li Lian © 2007 NTUEE-LS6-CtrbObsv-31

Theorem 6.3

The set of the controllability indices of (A, B) is invariant under any equivalence transformation and any reordering of the columns of B.

Proof:

Observability (6.3)

Feng-Li Lian © 2007 NTUEE-LS6-CtrbObsv-32

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}$$

$$y = Cx + Du$$

Definition 6.01 The state equation above is said to be observable if for any unknown initial state $\mathbf{x}(0)$, there exists a finite $t_1 > 0$ such that the knowledge of the input \mathbf{u} and the output \mathbf{y} over $[0, t_1]$ suffices to determine uniquely the initial state $\mathbf{x}(0)$. Otherwise, the equation is said to be unobservable.

Un-Observable Examples:

if
$$u(t) = 0$$
, $\forall t \ge 0$,

then y(t) = 0, $\forall t \ge 0$, no matter what x(0) is

if
$$u(t) = 0$$
, $\forall t \ge 0$
and $x_2(0) = 0$,

then y(t) = 0, $\forall t \ge 0$, no matter what $x_1(0)$ is

Observability - 3

Feng-Li Lian © 2007 NTUEE-LS6-CtrbObsv-34

Observable Example:

$$\begin{pmatrix}
\dot{\mathbf{x}}(t) = \mathbf{A} \mathbf{x}(t) + \mathbf{B} \mathbf{u}(t) \\
\mathbf{v}(t) = \mathbf{C} \mathbf{x}(t) + \mathbf{D} \mathbf{u}(t)
\end{pmatrix}$$

$$\mathbf{A}_c = \left[egin{array}{cccc} 0 & 1 & 0 \ 0 & 0 & 1 \ -6 & -11 & -6 \end{array}
ight] \;\; \mathbf{B}_c = \left[egin{array}{cccc} 0 \ 0 \ 6 \end{array}
ight] \;\;\; \mathbf{C}_c = \left[\; 1 \;\; 0 \;\; 0 \;
ight] \;\; \mathbf{D}_c = \left[\; 0 \;\;
ight] \;\;\;$$

$$\mathbf{A}_{d} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -3 \end{bmatrix} \quad \mathbf{B}_{d} = \begin{bmatrix} 3 \\ -6 \\ 3 \end{bmatrix} \mathbf{C}_{d} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \quad \mathbf{D}_{d} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} \dot{\mathbf{x}}(t) = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 3 \\ -6 \\ 3 \end{bmatrix} \mathbf{u}(t) \\ \mathbf{y}(t) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} 0 \end{bmatrix} \mathbf{u}(t) \\ \dot{x}_1 = -1 x_1 + 3 u \\ \dot{x}_2 = -2 x_2 - 6 u \\ \dot{x}_3 = -3 x_3 + 3 u \\ y = x_1 \end{cases}$$

Observability – 5: Controllable Representation

$$\begin{cases} \dot{\mathbf{x}}(t) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 6 \end{bmatrix} \mathbf{u}(t) \\ \dot{\mathbf{y}}(t) = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} & \mathbf{x}(t) & + \begin{bmatrix} 0 \\ 0 \end{bmatrix} \mathbf{u}(t) \\ \dot{x}_1 = & x_2 \\ \dot{x}_2 = & x_3 \\ \dot{x}_3 = -6 x_1 & -11 x_2 & -6 x_3 & + 6 u \\ y = & x_1 \end{cases}$$

$$\begin{cases} \dot{\mathbf{x}}(t) = \begin{bmatrix} -6 & 0 & -6 \\ 0 & 0 & \frac{3}{5} \\ \frac{5}{3} & -\frac{5}{3} & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 6 \\ 0 \\ 0 \end{bmatrix} \mathbf{u}(t) \\ \mathbf{y}(t) = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} & \mathbf{x}(t) & + \begin{bmatrix} 0 \end{bmatrix} \mathbf{u}(t) \\ \dot{x}_1 = -6 x_1 & + -6 x_3 & + 6 u \\ \dot{x}_2 = & \frac{3}{5} x_3 \\ \dot{x}_3 = & \frac{5}{3} x_1 & + -\frac{5}{3} x_2 \\ y = & x_2 \end{cases}$$

Observability – 7

Feng-Li Lian © 2007 NTUEE-LS6-CtrbObsv-38

$$\mathbf{y}(t) = \mathbf{C}e^{\mathbf{A}t}\mathbf{x}(0) + \mathbf{C}\int_0^t e^{\mathbf{A}(t-\tau)}\mathbf{B}\mathbf{u}(\tau) d\tau + \mathbf{D}\mathbf{u}(t)$$

the only unknown

Re-write:

$$\mathbf{C}e^{\mathbf{A}t}\mathbf{x}(0) = \bar{\mathbf{y}}(t) := \mathbf{y}(t) - \mathbf{C}\int_0^t e^{\mathbf{A}(t-\tau)}\mathbf{B}\mathbf{u}(\tau) d\tau - \mathbf{D}\mathbf{u}(t)$$

total response - zero-state response

→ Observability involves only zero-input response, and is decided by A and C

$$\underbrace{\mathbf{C}e^{\mathbf{A}t}\mathbf{x}(0)}_{q\times n} = \underline{\bar{\mathbf{y}}(t)} \quad \text{: Linear equations}$$

$$q\times n \text{ (known)} \qquad n\times 1 \text{ (unknown)} \qquad q\times 1 \text{ (known)}$$

Because $\mathbf{x}(0)$ generates $\bar{\mathbf{y}}(t)$, the linear equations always have solutions, and the problem is to determine $\mathbf{x}(0)$ uniquely

For q < n, need $\bar{y}(t)$ at an interval of t to find the unique solution.

Theorem 6.4 (6.3)

Feng-Li Lian © 2007 NTUEE-LS6-CtrbObsv-40

Theorem 6.4

The system (A, B, C, D) is observable if and only if the $n \times n$ matrix

$$\mathbf{W}_o(t) = \int_0^t e^{\mathbf{A}'\tau} \mathbf{C}' \mathbf{C} e^{\mathbf{A}\tau} d\tau$$

is nonsingular for any t > 0.

Proof:

"
—"

Theorem 6.4 – 2	Feng-Li Lian © 2007 NTUEE-LS6-CtrbObsv-41
- " ⇒ "	-
	-
	-
	-
	_
	-
	_
	_
	-
7	Fong Lilian @ 2007
Theorem 6.5 (6.3)	Feng-Li Lian © 2007 NTUEE-LS6-CtrbObsv-42
Theorem 6.5 (Theorem of duality)	
The pair (A, B) is controllable if and only if the pair (A', B')	is observable.
-	_
Proof:	
-	

The following statements are equivalent.

- 1. The n-dimensional pair (A, C) is observable.
- 2. The $n \times n$ matrix

$$\mathbf{W}_o(t) = \int_0^t e^{\mathbf{A}'\tau} \mathbf{C}' \mathbf{C} e^{\mathbf{A}\tau} d\tau$$

is nonsingular for any t > 0.

3. The $nq \times n$ observability matrix

$$O = \begin{bmatrix} \mathbf{C} \\ \mathbf{CA} \\ \vdots \\ \mathbf{CA}^{n-1} \end{bmatrix}$$

has rank n (full column rank). This matrix can be generated by calling obsv in MATLAB.

4. The $(n+q) \times n$ matrix

$$\begin{bmatrix} \mathbf{A} - \lambda \mathbf{I} \\ \mathbf{C} \end{bmatrix}$$

has full column rank at every eigenvalue, λ , of A.

5. If, in addition, all eigenvalues of A have negative real parts, then the unique solution of

$$\mathbf{A}'\mathbf{W}_o + \mathbf{W}_o\mathbf{A} = -\mathbf{C}'\mathbf{C}$$

is positive definite. The solution is called the observability Gramian and can be expressed as

$$\mathbf{W}_o = \int_0^\infty e^{\mathbf{A}'\tau} \mathbf{C}' \mathbf{C} e^{\mathbf{A}\tau} d\tau$$

Observability Index (6.3.1)

Feng-Li Lian © 2007 NTUEE-LS6-CtrbObsv-44

Given an observable pair (A, C) $\in \mathbb{R}^{n \times n} \times \mathbb{R}^{q \times n}$ and rank C = q

$$\begin{bmatrix} \mathbf{C} \\ \mathbf{CA} \\ \vdots \\ \mathbf{CA}^{n-1} \end{bmatrix}$$

$$\{\mathbf{c}_{i},\mathbf{c}_{i}\mathbf{A},\mathbf{c}_{i}\mathbf{A}^{2}, ...,\mathbf{c}_{i}\mathbf{A}^{v_{i}-1}, i=1, 2, ..., q\}$$

is a set of n L.I. rows, and the set $\{v_1, v_2, ..., v_q\}$ with $v_1 + v_2 + \cdots + v_q = n$ is the set of observability indices

Search for n L.I. rows from top to bottom

 $v = \max\{v_1, v_2, ..., v_q\}$ is called the observability index of (A, C), and is the least integer such that

$$\rho(O_{\nu}) := \begin{bmatrix} \mathbf{C} \\ \mathbf{C}\mathbf{A} \\ \mathbf{C}\mathbf{A}^{2} \\ \vdots \\ \mathbf{C}\mathbf{A}^{\nu-1} \end{bmatrix} = n \quad \text{also, } n/q \le \nu \le \min(\bar{n}, n-q+1)$$

Observability Index - 2

Feng-Li Lian © 2007 NTUEE-LS6-CtrbObsv-45

Corollary 6.01

The n-dimensional pair (A, C) is observable if and only if the matrix

$$O_{n-q+1} = \begin{bmatrix} \mathbf{C} \\ \mathbf{C}\mathbf{A} \\ \vdots \\ \mathbf{C}\mathbf{A}^{n-q} \end{bmatrix}$$

where $\rho(\mathbb{C})=q$, has rank n or the $n\times n$ matrix $O'_{n-q+1}O_{n-q+1}$ is nonsingular.

Theorem 6.02

The observability property is invariant under any equivalence transformation.

Theorem 6.03

The set of the observability indices of (A, C) is invariant under any equivalence transformation and any reordering of the rows of C.

Observability Index – 3

Feng-Li Lian © 2007 NTUEE-LS6-CtrbObsv-46

An Alternative Way to Decide x(0)

Differentiate $Ce^{At}\mathbf{x}(0) = \bar{\mathbf{y}}(t)$ repeatedly and set t = 0 to get

$$\begin{bmatrix} \mathbf{C} \\ \mathbf{C}\mathbf{A} \\ \vdots \\ \mathbf{C}\mathbf{A}^{\nu-1} \end{bmatrix} \mathbf{x}(0) = \begin{bmatrix} \tilde{\mathbf{y}}(0) \\ \dot{\tilde{\mathbf{y}}}(0) \\ \vdots \\ \tilde{\mathbf{y}}^{(\nu-1)}(0) \end{bmatrix} \quad \text{or} \quad O_{\nu}\mathbf{x}(0) = \tilde{\mathbf{y}}(0)$$

$$O_{\nu}\mathbf{x}(0) = \tilde{\mathbf{y}}(0)$$

The linear equations have solutions because $\tilde{\mathbf{y}}(0)$ is generated by $\mathbf{x}(0)$, and have a unique sol.

$$\mathbf{x}(0) = \left[O_{\nu}' O_{\nu} \right]^{-1} O_{\nu}' \tilde{\mathbf{y}}(0)$$

if and only if (A, C) is observable (rank $O_v = n$) But the method is not very practical, because derivatives of $\mathbf{v}(0)$ are needed

Canonical Decomposition (6.4)

Feng-Li Lian © 2007 NTUEE-LS6-CtrbObsv-48

The Example:

$$\begin{cases} \dot{\mathbf{x}}(t) = \mathbf{A} \mathbf{x}(t) + \mathbf{B} \mathbf{u}(t) \\ \mathbf{y}(t) = \mathbf{C} \mathbf{x}(t) + \mathbf{D} \mathbf{u}(t) \end{cases}$$

$$\mathbf{A}_c = \left[egin{array}{cccc} 0 & 1 & 0 \ 0 & 0 & 1 \ -6 & -11 & -6 \end{array}
ight] \;\; \mathbf{B}_c = \left[egin{array}{cccc} 0 \ 0 \ 6 \end{array}
ight] \;\;\; \mathbf{C}_c = \left[\; 1 \;\; 0 \;\; 0 \;
ight] \;\; \mathbf{D}_c = \left[\; 0 \;
ight] \;\;$$

$$\begin{bmatrix} \mathbf{A}_d = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -3 \end{bmatrix} \quad \mathbf{B}_d = \begin{bmatrix} 3 \\ -6 \\ 3 \end{bmatrix} \mathbf{C}_d = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \quad \mathbf{D}_d = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Canonical Decomposition – 2

Feng-Li Lian © 2007 NTUEE-LS6-CtrbObsv-49

$$\begin{cases} \dot{\bar{\mathbf{x}}} = \bar{\mathbf{A}} \, \bar{\mathbf{x}} + \bar{\mathbf{B}} \, \mathbf{u} \\ \mathbf{y} = \bar{\mathbf{C}} \, \bar{\mathbf{x}} + \bar{\mathbf{D}} \, \mathbf{u} \end{cases}$$

$$\bar{\mathbf{x}} = \mathbf{P} \mathbf{x}$$

$$\begin{cases} \dot{\mathbf{x}} = \mathbf{A} \mathbf{x} + \mathbf{B} \mathbf{u} \\ \mathbf{y} = \mathbf{C} \mathbf{x} + \mathbf{D} \mathbf{u} \end{cases}$$

$$ar{\mathbf{A}} = \mathbf{P} \, \mathbf{A} \, \mathbf{P}^{-1}$$
 $ar{\mathbf{B}} = \mathbf{P} \, \mathbf{B}$
 $ar{\mathbf{C}} = \mathbf{C} \, \mathbf{P}^{-1}$
 $ar{\mathbf{D}} = \mathbf{D}$

$$\begin{array}{rcl} \overline{\mathcal{C}} & = & \mathbf{P} \, \mathcal{C} \\ \overline{\mathcal{O}} & = & \mathcal{O} \, \mathbf{P}^{-1} \end{array}$$

$$\mathbf{x}_{c} = \mathbf{P}_{cp} \mathbf{x}_{p} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0.6 \\ 1 & -1 & 0 \end{bmatrix} \mathbf{x}_{p}$$

$$\mathbf{x}_{d} = \mathbf{P}_{dp} \mathbf{x}_{p} = \begin{bmatrix} 0.5 & 2.5 & 1.5 \\ -1 & -2 & -2.4 \\ 0.5 & 0.5 & 0.9 \end{bmatrix} \mathbf{x}_{p}$$

$$\mathbf{x}_{c} = \mathbf{P}_{cd} \mathbf{x}_{d} = \begin{bmatrix} 1 & 1 & 1 \\ -1 & -2 & -3 \\ 0.5 & 4 & 9 \end{bmatrix} \mathbf{x}_{d}$$

$$\mathbf{x}_d = \mathbf{P}_{dp} \mathbf{x}_p = \begin{bmatrix} 0.5 & 2.5 & 1.5 \\ -1 & -2 & -2.4 \\ 0.5 & 0.5 & 0.9 \end{bmatrix} \mathbf{x}_p$$

$$\mathbf{x}_c = \mathbf{P}_{cd} \mathbf{x}_d = \begin{bmatrix} 1 & 1 & 1 \\ -1 & -2 & -3 \\ 0.5 & 4 & 9 \end{bmatrix} \mathbf{x}_d$$

- Stability
- Controllability
- Observability are preserved

Canonical Decomposition - 3

Feng-Li Lian © 2007 NTUEE-LS6-CtrbObsv-50

With appropriate equivalence transformations,

we may obtain new state equations with following property

$$\overline{\mathbf{X}} = \begin{bmatrix} \overline{\mathbf{X}}_{co} \\ \overline{\mathbf{X}}_{c\overline{o}} \\ \overline{\mathbf{X}}_{\overline{c}o} \end{bmatrix} \longleftarrow \begin{array}{l} \text{controllable} & \text{and observable part} \\ \text{controllable} & \text{and unobservable part} \\ \text{controllable} & \text{controllable and observable} & \text{part} \\ \overline{\mathbf{X}}_{\overline{c}o} \end{bmatrix} \longleftarrow \begin{array}{l} \text{uncontrollable and unobservable part} \\ \text{uncontrollable} & \text{and unobservable} & \text{part} \\ \end{array}$$

$$\left\{ \begin{array}{ll} \dot{\bar{\mathbf{x}}} &=& \bar{\mathbf{A}} \; \bar{\mathbf{x}} + \bar{\mathbf{B}} \; \mathbf{u} \\ \mathbf{y} &=& \bar{\mathbf{C}} \; \bar{\mathbf{x}} + \bar{\mathbf{D}} \; \mathbf{u} \end{array} \right.$$

$$ar{\mathbf{x}} = \mathbf{P} \mathbf{x}$$
 $\left\{ ar{\mathbf{x}} = \mathbf{A} \mathbf{x} + \mathbf{B} \mathbf{u} \right.$
 $\left\{ ar{\mathbf{A}} = \mathbf{P} \mathbf{A} \mathbf{P}^{-1} \right.$
 $\mathbf{B} = \mathbf{P} \mathbf{B}$
 $\mathbf{C} = \mathbf{C} \mathbf{P}^{-1}$
 $\mathbf{C} = \mathbf{P} \mathbf{C}$
 $\mathbf{D} = \mathbf{D}$
 $\mathbf{C} = \mathbf{C} \mathbf{P}^{-1}$

Theorem 6.6 (6.4)

Feng-Li Lian © 2007 NTUEE-LS6-CtrbObsv-52

Theorem 6.6

Consider the n-dimensional state equation (A, B, C, D) with

$$\rho(C) = \rho([\mathbf{B} \ \mathbf{AB} \ \cdots \ \mathbf{A}^{n-1}\mathbf{B}]) = n_1 < n$$

We form the $n \times n$ matrix

$$\mathbf{P}^{-1} := [\mathbf{q}_1 \ \cdots \ \mathbf{q}_{n_1} \cdots \ \mathbf{q}_n]$$

where the first n_1 columns are any n_1 linearly independent columns of C, and the remaining columns can arbitrarily be chosen as long as \mathbf{P} is nonsingular. Then the equivalence transformation $\bar{\mathbf{x}} = \mathbf{P}\mathbf{x}$ or $\mathbf{x} = \mathbf{P}^{-1}\bar{\mathbf{x}}$ will transform $(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})$ into

$$\begin{bmatrix} \dot{\bar{\mathbf{x}}}_c \\ \dot{\bar{\mathbf{x}}}_{\bar{c}} \end{bmatrix} = \begin{bmatrix} \bar{\mathbf{A}}_c & \bar{\mathbf{A}}_{12} \\ \mathbf{0} & \bar{\mathbf{A}}_{\bar{c}} \end{bmatrix} \begin{bmatrix} \bar{\mathbf{x}}_c \\ \bar{\mathbf{x}}_{\bar{c}} \end{bmatrix} + \begin{bmatrix} \bar{\mathbf{B}}_c \\ \mathbf{0} \end{bmatrix} \mathbf{u}$$
$$\mathbf{y} = [\bar{\mathbf{C}}_c \ \bar{\mathbf{C}}_{\bar{c}}] \begin{bmatrix} \bar{\mathbf{x}}_c \\ \bar{\mathbf{x}}_{\bar{c}} \end{bmatrix} + \mathbf{D}\mathbf{u}$$

where $\bar{\mathbf{A}}_c$ is $n_1 \times n_1$ and $\bar{\mathbf{A}}_{\bar{c}}$ is $(n-n_1) \times (n-n_1)$, and the n_1 -dimensional subequation

$$\dot{\bar{\mathbf{x}}}_c = \bar{\mathbf{A}}_c \bar{\mathbf{x}}_c + \bar{\mathbf{B}}_c \mathbf{u}$$

$$\bar{\mathbf{y}} = \bar{\mathbf{C}}_c \bar{\mathbf{x}}_c + \mathbf{D}\mathbf{u}$$

is controllable and has the same transfer matrix as (A, B, C, D).

Proof:

Proof:
$$\left\{ \mathbf{q}_{1}, \, \cdots, \, \mathbf{q}_{n_{i}} \right\} \subset \left\{ b_{1}, \, b_{2}, \, \cdots, \, b_{p}, \, \mathbf{A}b_{1}, \, \cdots, \, \mathbf{A}b_{p}, \, \mathbf{A}^{2}b_{1}, \, \cdots, \, \mathbf{A}^{2}b_{p}, \, \cdots, \, \mathbf{A}^{n-1}b_{p} \right\}$$

$$\operatorname{rank} \left[\mathbf{q}_{1} \, \cdots \, \mathbf{q}_{n_{i}} \right] = \operatorname{rank} \left[b_{1}, \, b_{2}, \, \cdots, \, b_{p}, \, \mathbf{A}b_{1}, \, \cdots, \, \mathbf{A}b_{p}, \, \mathbf{A}^{2}b_{1}, \, \cdots, \, \mathbf{A}^{2}b_{p}, \, \cdots, \, \mathbf{A}^{n-1}b_{p} \right]$$

$$\operatorname{span} \left[\mathbf{q}_{1} \, \cdots \, \mathbf{q}_{n_{i}} \right] = \operatorname{span} \left[b_{1}, \, b_{2}, \, \cdots, \, b_{p}, \, \mathbf{A}b_{1}, \, \cdots, \, \mathbf{A}b_{p}, \, \mathbf{A}^{2}b_{1}, \, \cdots, \, \mathbf{A}^{2}b_{p}, \, \cdots, \, \mathbf{A}^{n-1}b_{p} \right]$$

$$\left\{ \mathbf{q}_{n_{1}+1}, \, \cdots, \, \mathbf{q}_{n_{1}} \right\} \subset \operatorname{span} \left[\mathbf{q}_{1} \, \cdots \, \mathbf{q}_{n_{1}} \right]$$

$$\left\{ \mathbf{q}_{n_{1}+1}, \, \cdots, \, \mathbf{q}_{n} \right\} \not \in \operatorname{span} \left[\mathbf{q}_{1} \, \cdots \, \mathbf{q}_{n_{1}} \right]$$

$$\left\{ \mathbf{q}_{n_{1}+1}, \, \cdots, \, \mathbf{q}_{n} \right\} \not \in \operatorname{span} \left[\mathbf{q}_{1} \, \cdots \, \mathbf{q}_{n_{1}} \right]$$

$$\left\{ \mathbf{q}_{n_{1}+1}, \, \cdots, \, \mathbf{q}_{n} \right\} \not \in \operatorname{span} \left[\mathbf{q}_{1} \, \cdots \, \mathbf{q}_{n_{1}} \right]$$

$$\left\{ \mathbf{p}_{n_{1}+1}, \, \cdots, \, \mathbf{q}_{n_{1}} \right\} \not \in \operatorname{span} \left[\mathbf{q}_{1} \, \cdots \, \mathbf{q}_{n_{1}} \right]$$

$$\left\{ \mathbf{p}_{n_{1}+1}, \, \cdots, \, \mathbf{q}_{n_{1}} \right\} \not \in \operatorname{span} \left[\mathbf{q}_{1} \, \cdots \, \mathbf{q}_{n_{1}} \right]$$

$$\left\{ \mathbf{p}_{n_{1}+1}, \, \cdots, \, \mathbf{q}_{n_{1}} \right\} \not \in \operatorname{span} \left[\mathbf{q}_{1} \, \cdots \, \mathbf{q}_{n_{1}} \right]$$

Theorem 6.6 – 2

Feng-Li Lian © 2007 NTUEE-LS6-CtrbObsv-54

Proof:

$$\mathbf{A} \left[\mathbf{q}_{1} \cdots \mathbf{q}_{n_{1}} \mathbf{q}_{n_{1}+1} \cdots \mathbf{q}_{n} \right] = \left[\mathbf{q}_{1} \cdots \mathbf{q}_{n_{1}} \mathbf{q}_{n_{1}+1} \cdots \mathbf{q}_{n} \right] \overline{\mathbf{A}}$$

$$= [\mathbf{A}\mathbf{q}_{1} \cdots \mathbf{A}\mathbf{q}_{n_{1}} \mathbf{A}\mathbf{q}_{n_{1}+1} \cdots \mathbf{A}\mathbf{q}_{n}] = [\mathbf{q}_{1} \cdots \mathbf{q}_{n_{1}} \mathbf{q}_{n_{1}+1} \cdots \mathbf{q}_{n}] \begin{bmatrix} * \cdots * * \cdots * \\ \vdots & \vdots & \vdots \\ * \cdots * * * \cdots * \\ 0 \cdots 0 * \cdots * \\ \vdots & \vdots & \vdots \\ 0 \cdots 0 * \cdots * \end{bmatrix}$$

$$\mathbf{B} = [\mathbf{q}_{1} \cdots \mathbf{q}_{n_{1}} \mathbf{q}_{n_{1}+1} \cdots \mathbf{q}_{n}] \, \mathbf{\bar{B}} = [\mathbf{q}_{1} \cdots \mathbf{q}_{n_{1}} \mathbf{q}_{n_{1}+1} \cdots \mathbf{q}_{n}] \begin{bmatrix} * & \cdots & * \\ \vdots & & \vdots \\ * & \cdots & * \\ 0 & \cdots & 0 \\ \vdots & & \vdots \\ 0 & \cdots & 0 \end{bmatrix}$$

$$\mathbf{B} = [\mathbf{b}_{1} \cdots \mathbf{b}_{p}]$$

Proof:

$$\overline{\mathbf{C}} = \mathbf{C} \left[\mathbf{q}_1 \cdots \mathbf{q}_{n_1} \mathbf{q}_{n_1+1} \cdots \mathbf{q}_n \right] = \begin{bmatrix} * & \cdots & * & * & \cdots & * \\ \vdots & & \vdots & \vdots & & \vdots \\ * & \cdots & * & * & \cdots & * \end{bmatrix}$$

The controllability matrix of the new state equations is

$$\bar{C} = \begin{bmatrix} \bar{\mathbf{B}}_c & \bar{\mathbf{A}}_c \bar{\mathbf{B}}_c & \cdots & \bar{\mathbf{A}}_c^{n_1} \bar{\mathbf{B}}_c & \cdots & \bar{\mathbf{A}}_c^{n-1} \bar{\mathbf{B}}_c \\ \mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} & \cdots & \mathbf{0} \end{bmatrix}$$

Theorem 6.6 - 4

Feng-Li Lian © 2007 NTUEE-LS6-CtrbObsv-56

 $\bar{\mathbf{y}} = \bar{\mathbf{C}}_c \bar{\mathbf{x}}_c + \mathbf{D}\mathbf{u}$

Proof:

Thus $\rho(C) = \rho(\bar{C}) = n_1$ implies that (\bar{A}_c, \bar{B}_c) is controllable

$$\begin{bmatrix} \dot{\bar{\mathbf{x}}}_c \\ \dot{\bar{\mathbf{x}}}_{\bar{c}} \end{bmatrix} = \begin{bmatrix} \bar{\mathbf{A}}_c & \bar{\mathbf{A}}_{12} \\ \mathbf{0} & \bar{\mathbf{A}}_{\bar{c}} \end{bmatrix} \begin{bmatrix} \bar{\mathbf{x}}_c \\ \bar{\mathbf{x}}_{\bar{c}} \end{bmatrix} + \begin{bmatrix} \bar{\mathbf{B}}_c \\ \mathbf{0} \end{bmatrix} \mathbf{u}$$
$$\mathbf{y} = [\bar{\mathbf{C}}_c \ \bar{\mathbf{C}}_{\bar{c}}] \begin{bmatrix} \bar{\mathbf{x}}_c \\ \bar{\mathbf{x}}_{\bar{c}} \end{bmatrix} + \mathbf{D}\mathbf{u}$$

Transfer Matrix:

$$\mathbf{M} = (s\mathbf{I} - \bar{\mathbf{A}}_c)^{-1} \bar{\mathbf{A}}_{12} (s\mathbf{I} - \bar{\mathbf{A}}_{\bar{c}})^{-1}$$

$$\begin{split} & \left[\bar{\mathbf{C}}_{c} \ \bar{\mathbf{C}}_{\bar{c}} \right] \left[\begin{matrix} s\mathbf{I} - \bar{\mathbf{A}}_{c} & -\bar{\mathbf{A}}_{12} \\ \mathbf{0} & s\mathbf{I} - \bar{\mathbf{A}}_{\bar{c}} \end{matrix} \right]^{-1} \left[\begin{matrix} \bar{\mathbf{B}}_{c} \\ \mathbf{0} \end{matrix} \right] + \mathbf{D} \\ & = \left[\bar{\mathbf{C}}_{c} \ \bar{\mathbf{C}}_{\bar{c}} \right] \left[\begin{matrix} (s\mathbf{I} - \bar{\mathbf{A}}_{c})^{-1} & \mathbf{M} \\ \mathbf{0} & (s\mathbf{I} - \bar{\mathbf{A}}_{\bar{c}})^{-1} \end{matrix} \right] \left[\begin{matrix} \bar{\mathbf{B}}_{c} \\ \mathbf{0} \end{matrix} \right] + \mathbf{D} \\ & = \bar{\mathbf{C}}_{c} (s\mathbf{I} - \bar{\mathbf{A}}_{c})^{-1} \bar{\mathbf{B}}_{c} + \mathbf{D} \end{split}$$

$$\dot{\bar{\mathbf{x}}}_{c} = \bar{\mathbf{A}}_{c} \bar{\mathbf{x}}_{c} + \bar{\mathbf{B}}_{c} \mathbf{\mathbf{u}} \end{split}$$

In the new state equations

$$\begin{bmatrix} \dot{\bar{\mathbf{x}}}_c \\ \dot{\bar{\mathbf{x}}}_{\bar{c}} \end{bmatrix} = \begin{bmatrix} \bar{\mathbf{A}}_c & \bar{\mathbf{A}}_{12} \\ \mathbf{0} & \bar{\mathbf{A}}_{\bar{c}} \end{bmatrix} \begin{bmatrix} \bar{\mathbf{x}}_c \\ \bar{\mathbf{x}}_{\bar{c}} \end{bmatrix} + \begin{bmatrix} \bar{\mathbf{B}}_c \\ \mathbf{0} \end{bmatrix} \mathbf{u}$$

The state space is divided into a subspace for $\bar{\mathbf{x}}_c$ (dim. = n_1) And a subspace for $\bar{\mathbf{x}}_{\bar{c}}$ (dim. = n_1);

 $\bar{\mathbf{x}}_c$ is controllable by \mathbf{u} , while $\bar{\mathbf{x}}_{\bar{c}}$ is not controllable

After dropping the uncontrollable subspace,

$$\dot{\bar{\mathbf{x}}}_c = \bar{\mathbf{A}}_c \bar{\mathbf{x}}_c + \bar{\mathbf{B}}_c \mathbf{u}$$

$$\bar{\mathbf{y}} = \bar{\mathbf{C}}_c \bar{\mathbf{x}}_c + \mathbf{D}\mathbf{u}$$

becomes a controllable realization of smaller dimension which is zero-state equivalent to (A, B, C, D)

Example 6.8 (6.4)

Feng-Li Lian © 2007 NTUEE-LS6-CtrbObsv-58

$$\dot{\mathbf{x}} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} u \qquad y = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \mathbf{x}$$

Because rank $\mathbf{B} = 2$, use $C_2 = [\mathbf{B} \ \mathbf{AB}]$ to check controllability:

$$\rho(C_2) = \rho([\mathbf{B} \ \mathbf{AB}]) = \rho \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix} = 2 < 3 \qquad \text{: uncontrollable}$$

Choose
$$\mathbf{P}^{-1} = \mathbf{Q} := \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

$$\bar{\mathbf{A}} = \mathbf{P}\mathbf{A}\mathbf{P}^{-1} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & : & 0 \\ 1 & 1 & : & 0 \\ ... & ... & ... & ... \\ 0 & 0 & : & 1 \end{bmatrix}$$

$$\bar{\mathbf{A}} = \mathbf{P}\mathbf{A}\mathbf{P}^{-1} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & \vdots & 0 \\ 1 & 1 & \vdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \vdots & 1 \end{bmatrix}$$

$$\bar{\mathbf{B}} = \mathbf{PB} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ \dots & \dots \\ 0 & 0 \end{bmatrix}$$

$$\bar{\mathbf{C}} = \mathbf{C}\mathbf{P}^{-1} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 2 & \vdots & 1 \end{bmatrix}$$

A two-dimensional controllable realization:

$$\dot{\bar{\mathbf{x}}}_c = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \bar{\mathbf{x}}_c + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \mathbf{u} \qquad y = \begin{bmatrix} 1 & 2 \end{bmatrix} \bar{\mathbf{x}}_c$$

Theorem 6.06

an © 2007 rbObsv-60

Consider the n-dimensional state equation (A, B, C, D) with

$$\rho(O) = \rho \begin{bmatrix} \mathbf{C} \\ \mathbf{CA} \\ \vdots \\ \mathbf{CA}^{n-1} \end{bmatrix} = n_2 < n$$

We form the $n \times n$ matrix

$$\mathbf{P} = \begin{bmatrix} \mathbf{p}_1 \\ \vdots \\ \mathbf{p}_{n_2} \\ \vdots \\ \mathbf{p}_n \end{bmatrix}$$

where the first n_2 rows are any n_2 linearly independent rows of O, and the remaining rows can be chosen arbitrarily as long as **P** is nonsingular. Then the equivalence transformation $\bar{\mathbf{x}} = \mathbf{P}\mathbf{x}$ will transform (A, B, C, D) into

$$\begin{bmatrix} \dot{\bar{x}}_{o} \\ \dot{\bar{x}}_{\bar{o}} \end{bmatrix} = \begin{bmatrix} \bar{A}_{o} & \mathbf{0} \\ \bar{A}_{21} & \bar{A}_{\bar{o}} \end{bmatrix} \begin{bmatrix} \bar{x}_{o} \\ \bar{x}_{\bar{o}} \end{bmatrix} + \begin{bmatrix} \bar{B}_{o} \\ \bar{B}_{\bar{o}} \end{bmatrix} \mathbf{u}$$

$$\mathbf{y} = [\bar{\mathbf{C}}_{o} \ \mathbf{0}] \begin{bmatrix} \bar{\mathbf{x}}_{o} \\ \bar{\mathbf{x}}_{\bar{o}} \end{bmatrix} + \mathbf{D}\mathbf{u}$$

where $\bar{\bf A}_o$ is $n_2 \times n_2$ and $\bar{\bf A}_{\bar{o}}$ is $(n-n_2) \times (n-n_2)$, and the n_2 -dimensional subequation

$$\dot{\bar{\mathbf{x}}}_o = \bar{\mathbf{A}}_c \bar{\mathbf{x}}_o + \bar{\mathbf{B}}_o \mathbf{u}$$
$$\bar{\mathbf{y}} = \bar{\mathbf{C}}_o \bar{\mathbf{x}}_o + \mathbf{D} \mathbf{u}$$

is observable and has the same transfer matrix as (A, B, C, D).

$$\overline{\mathbf{X}} = \begin{bmatrix} \overline{\mathbf{X}}_{co} \\ \overline{\mathbf{X}}_{c\overline{o}} \\ \overline{\mathbf{X}}_{\overline{co}} \end{bmatrix} \longleftarrow \begin{array}{l} \text{controllable} & \text{and observable part} \\ \text{controllable} & \text{and unobservable part} \\ \hline \mathbf{X}_{\overline{co}} \end{bmatrix} \longleftarrow \begin{array}{l} \text{uncontrollable and observable} & \text{part} \\ \hline \mathbf{X}_{\overline{co}} \end{bmatrix} \longleftarrow \begin{array}{l} \text{uncontrollable and unobservable part} \\ \end{array}$$

Theorem 6.7 (6.4)

Feng-Li Lian © 2007 NTUEE-LS6-CtrbObsv-62

Theorem 6.7

Every state-space equation can be transformed, by an equivalence transformation, into the following canonical form

$$\begin{bmatrix} \dot{\bar{\mathbf{x}}}_{co} \\ \dot{\bar{\mathbf{x}}}_{c\bar{o}} \\ \dot{\bar{\mathbf{x}}}_{\bar{c}\bar{o}} \\ \dot{\bar{\mathbf{x}}}_{\bar{c}\bar{o}} \end{bmatrix} = \begin{bmatrix} \bar{\mathbf{A}}_{co} & \mathbf{0} & \bar{\mathbf{A}}_{13} & \mathbf{0} \\ \bar{\mathbf{A}}_{21} & \bar{\mathbf{A}}_{c\bar{o}} & \bar{\mathbf{A}}_{23} & \bar{\mathbf{A}}_{24} \\ \mathbf{0} & \mathbf{0} & \bar{\mathbf{A}}_{\bar{c}o} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \bar{\mathbf{A}}_{43} & \bar{\mathbf{A}}_{\bar{c}\bar{o}} \end{bmatrix} \begin{bmatrix} \bar{\mathbf{x}}_{co} \\ \bar{\mathbf{x}}_{c\bar{o}} \\ \bar{\mathbf{x}}_{\bar{c}o} \\ \bar{\mathbf{x}}_{\bar{c}\bar{o}} \end{bmatrix} + \begin{bmatrix} \bar{\mathbf{B}}_{co} \\ \bar{\mathbf{B}}_{c\bar{o}} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix} \mathbf{u}$$

$$\mathbf{y} = [\bar{\mathbf{C}}_{co} & \mathbf{0} \ \bar{\mathbf{C}}_{\bar{c}o} & \mathbf{0}]\bar{\mathbf{x}} + \mathbf{D}\mathbf{u}$$

$$(6.45)$$

where the vector $\bar{\mathbf{x}}_{co}$ is controllable and observable, $\bar{\mathbf{x}}_{c\bar{o}}$ is controllable but not observable, $\bar{\mathbf{x}}_{\bar{c}o}$ is observable but not controllable, and $\bar{\mathbf{x}}_{\bar{c}\bar{o}}$ is neither controllable nor observable. Furthermore, the state equation is zero-state equivalent to the controllable and observable state equation

$$\dot{\bar{\mathbf{x}}}_{co} = \bar{\mathbf{A}}_{co}\bar{\mathbf{x}}_{co} + \bar{\mathbf{B}}_{co}\mathbf{u}$$

$$\mathbf{y} = \bar{\mathbf{C}}_{co}\bar{\mathbf{x}}_{co} + \mathbf{D}\mathbf{u}$$

and has the transfer matrix

$$\hat{\mathbf{G}}(s) = \bar{\mathbf{C}}_{co}(s\mathbf{I} - \bar{\mathbf{A}}_{co})^{-1}\bar{\mathbf{B}}_{co} + \mathbf{D}$$

I/O stability only determined by the controllable and observable parts

Kalman Decomposition

$$\dot{\mathbf{x}} = \begin{bmatrix} 0 & -0.5 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & -0.5 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0.5 \\ 0 \\ 0 \\ 0 \end{bmatrix} u \qquad \dot{\mathbf{x}}_c = \begin{bmatrix} 0 & -0.5 \\ 1 & 0 \end{bmatrix} \mathbf{x}_c + \begin{bmatrix} 0.5 \\ 0 \end{bmatrix} u$$

$$y = \begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix} \mathbf{x} + u$$

$$\dot{\mathbf{x}}_c = \begin{bmatrix} 0 & -0.5 \\ 1 & 0 \end{bmatrix} \mathbf{x}_c + \begin{bmatrix} 0.5 \\ 0 \end{bmatrix} u$$
$$y = \begin{bmatrix} 0 & 0 \end{bmatrix} \mathbf{x}_c + u$$

Conditions in Jordan-Form Equations (6.5)

Feng-Li Lian © 2007 NTUEE-LS6-CtrbObsv-64

$$\dot{\mathbf{x}} = \mathbf{J}\mathbf{x} + \mathbf{B}\mathbf{x}$$

$$y = Cx$$

Without loss of generality, consider only the case

$$\mathbf{J} = \begin{bmatrix} \mathbf{J}_{11} & \mathbf{J}_{ordan} & \mathbf{0} \\ \mathbf{J}_{12} & \mathbf{for} \ \lambda_1 \\ \mathbf{J}_{13} & \mathbf{J}_{21} \\ \mathbf{0} & \mathbf{J}_{ordan} \ \mathbf{blocks} \\ \mathbf{for} \ \lambda_2 \\ \end{bmatrix},$$

$$\mathbf{B} = \begin{bmatrix} \mathbf{B}_{11} \\ \mathbf{B}_{12} \\ \mathbf{B}_{13} \\ \mathbf{B}_{21} \\ \mathbf{B}_{22} \end{bmatrix}$$

 $\boldsymbol{C} = \begin{bmatrix} \boldsymbol{C}_{11} & \boldsymbol{C}_{12} & \boldsymbol{C}_{13} & \boldsymbol{C}_{21} & \boldsymbol{C}_{22} \end{bmatrix}$

the last row of \mathbf{B}_{ij} is denoted as **b_{lij}**

the first column of \mathbf{C}_{ii} is denoted as \mathbf{c}_{fii}

Theorem 6.8 (6.5)

Theorem 6.8

- 1. The state equation (J, B, C) is controllable if and only if the three row vectors $\{\mathbf{b}_{l11}, \mathbf{b}_{l12}, \mathbf{b}_{l13}\}$ are linearly independent and the two row vectors $\{\mathbf{b}_{l21}, \mathbf{b}_{l22}\}$ are linearly independent.
- 2. The state equation (J, B, C) is observable if and only if the three column vectors $\{c_{f11}, c_{f12}, c_{f13}\}$ are linearly independent and the two column vectors $\{c_{f21}, c_{f22}\}$ are linearly independent.

Proof:

(for a case where λ_1 has only 2 blocks & λ_2 has only 1 block)

1. Use the controllability condition

$$rank[J-sIB] = rank[sI-JB] = n$$
, for $s = \lambda_1, \lambda_2$.

$$\begin{bmatrix} s - \lambda_1 & -1 & 0 & 0 & 0 & 0 & \mathbf{b}_{111} \\ 0 & s - \lambda_1 & -1 & 0 & 0 & 0 & 0 & \mathbf{b}_{211} \\ 0 & 0 & s - \lambda_1 & 0 & 0 & 0 & 0 & \mathbf{b}_{I11} \\ 0 & 0 & s - \lambda_1 & 0 & 0 & 0 & \mathbf{b}_{I11} \\ 0 & 0 & 0 & s - \lambda_1 & -1 & 0 & 0 & \mathbf{b}_{I12} \\ 0 & 0 & 0 & 0 & s - \lambda_1 & 0 & 0 & \mathbf{b}_{I12} \\ 0 & 0 & 0 & 0 & 0 & s - \lambda_2 & -1 & \mathbf{b}_{121} \\ 0 & 0 & 0 & 0 & 0 & s - \lambda_2 & \mathbf{b}_{I21} \end{bmatrix}$$

Theorem 6.8 - 2

Feng-Li Lian © 2007 NTUEE-LS6-CtrbObsv-66

Substitute s by λ_1 and get

$$\begin{bmatrix} 0 & -1 & 0 & 0 & 0 & 0 & 0 & \mathbf{b}_{111} \\ 0 & 0 & -1 & 0 & 0 & 0 & 0 & \mathbf{b}_{211} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \mathbf{b}_{I11} \\ 0 & 0 & 0 & 0 & -1 & 0 & 0 & \mathbf{b}_{I12} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \mathbf{b}_{I12} \\ 0 & 0 & 0 & 0 & 0 & \lambda_1 - \lambda_2 & -1 & \mathbf{b}_{121} \\ 0 & 0 & 0 & 0 & 0 & 0 & \lambda_1 - \lambda_2 & \mathbf{b}_{I21} \end{bmatrix}$$

Examination of the rows reveals that

 \mathbf{b}_{11} and \mathbf{b}_{12} should be L.I. for the matrix to have full row rank.

Similarly, substituting s by λ_2 requires that \mathbf{b}_{l21} be L.I. ($\neq \mathbf{0}$ for one vector).

2. Proof is similar for observability

$$\dot{\mathbf{x}} = \begin{bmatrix} \lambda_1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & \lambda_1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \lambda_1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \lambda_1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \lambda_2 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & \lambda_2 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & \lambda_2 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 2 & 3 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \mathbf{u}$$

$$\mathbf{y} = \begin{bmatrix} 1 & 1 & 2 & 0 & 0 & 2 & 1 \\ 1 & 0 & 1 & 2 & 0 & 1 & 1 \\ 1 & 0 & 2 & 3 & 0 & 2 & 0 \end{bmatrix} \mathbf{x}$$

Example 6.10 - 2

$$\dot{\mathbf{x}} = \begin{bmatrix} \lambda_1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & \lambda_1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \lambda_1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \lambda_1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \lambda_2 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & \lambda_2 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & \lambda_2 & 1 \\ 1 & 0 & 1 & 2 & 0 & 0 & 2 & 1 \\ 1 & 0 & 1 & 2 & 0 & 1 & 1 \\ 1 & 0 & 2 & 3 & 0 & 2 & 0 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix} \mathbf{x}$$

$$\mathbf{y} = \begin{bmatrix} 1 & 1 & 2 & 0 & 0 & 2 & 1 \\ 1 & 0 & 1 & 2 & 0 & 1 & 1 \\ 1 & 0 & 2 & 3 & 0 & 2 & 0 \end{bmatrix} \mathbf{x}$$

$$L.I. \quad L.D. \ (= \mathbf{0})$$

Corollary 6.8

A single-input Jordan-form state equation is controllable if and only if there is only one Jordan block associated with each distinct eigenvalue and every entry of **B** corresponding to the last row of each Jordan block is different from zero.

Corollary 6.08

A single-output Jordan-form state equation is observable if and only if there is only one Jordan block associated with each distinct eigenvalue and every entry of **C** corresponding to the first column of each Jordan block is different from zero.

Example 6.11 (6.5)

$$\dot{\mathbf{x}} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -2 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 10 \\ 9 \\ 0 \\ 1 \end{bmatrix} u$$

$$y = [1 \ 0 \ 0 \ 2]x$$

$$\mathbf{x}[k+1] = \mathbf{A}\mathbf{x}[k] + \mathbf{B}\mathbf{u}[k]$$

 $\mathbf{v}[k] = \mathbf{C}\mathbf{x}[k]$
n-dimensional *p*-input *q*-output

Definition 6.D1 The above discrete-time state equation or the pair (\mathbf{A}, \mathbf{B}) is said to be controllable if for any initial state $\mathbf{x}(0) = \mathbf{x}_0$ and any final state \mathbf{x}_1 , there exists an input sequence of finite length that transfers \mathbf{x}_0 to \mathbf{x}_1 . Otherwise the equation or (\mathbf{A}, \mathbf{B}) is said to be uncontrollable.

Theorem 6.D1 (6.6)

Feng-Li Lian © 2007 NTUEE-LS6-CtrbObsv-72

Theorem 6.D1

The following statements are equivalent:

- 1. The n-dimensional pair (A, B) is controllable.
- 2. The $n \times n$ matrix

$$\mathbf{W}_{dc}[n-1] = \sum_{m=0}^{n-1} (\mathbf{A})^m \mathbf{B} \mathbf{B}' (\mathbf{A}')^m$$

is nonsingular.

3. The $n \times np$ controllability matrix

$$C_d = [\mathbf{B} \ \mathbf{A} \mathbf{B} \ \mathbf{A}^2 \mathbf{B} \ \cdots \ \mathbf{A}^{n-1} \mathbf{B}]$$

has rank n (full row rank). The matrix can be generated by calling ctrb in MATLAB.

- **4.** The $n \times (n+p)$ matrix $[\mathbf{A} \lambda \mathbf{I} \ \mathbf{B}]$ has full row rank at every eigenvalue, λ , of \mathbf{A} .
- 5. If, in addition, all eigenvalues of A have magnitudes less than 1, then the unique solution of

$$\mathbf{W}_{dc} - \mathbf{A}\mathbf{W}_{dc}\mathbf{A}' = \mathbf{B}\mathbf{B}'$$

is positive definite. The solution is called the discrete controllability Gramian and can be obtained by using the MATLAB function dgram. The discrete Gramian can be expressed as

$$\mathbf{W}_{dc} = \sum_{m=0}^{\infty} \mathbf{A}^m \mathbf{B} \mathbf{B}' (\mathbf{A}')^m$$

Proof:

"1. ⇔ 3."

"(**A**, **B**) controllable \Leftrightarrow C_d has rank n"

$$\mathbf{x}[n] = \mathbf{A}^{n}\mathbf{x}[0] + \sum_{m=0}^{n-1} \mathbf{A}^{n-1-m}\mathbf{B}\mathbf{u}[m] \quad \text{i.e.,}$$

$$\underline{\mathbf{x}[n] - \mathbf{A}^{n}\mathbf{x}[0]} = [\mathbf{B} \ \mathbf{A}\mathbf{B} \ \cdots \ \mathbf{A}^{n-1}\mathbf{B}] \begin{bmatrix} \mathbf{u}[n-1] \\ \mathbf{u}[n-2] \\ \vdots \\ \mathbf{u}[0] \end{bmatrix}$$
arbitrary
$$C_{d} \text{ full row rank} \\
\mathbf{vector} \\
\mathbf{u}[0]$$

vector

⇔ input u[·] can always be found

" $\mathbf{W}_{dc}[n-1]$ nonsingular (P.D.) \Leftrightarrow C_d has rank n" **"2.** ⇔ **3.**"

$$\mathbf{W}_{dc}[n-1] = [\mathbf{B} \ \mathbf{A}\mathbf{B} \ \cdots \ \mathbf{A}^{n-1}\mathbf{B}] \begin{bmatrix} \mathbf{B}' \\ \mathbf{B}'\mathbf{A}' \\ \vdots \\ \mathbf{B}'(\mathbf{A}')^{n-1} \end{bmatrix}$$

Theorem 6.D1 – 3

Feng-Li Lian © 2007 NTUEE-LS6-CtrbObsv-74

" C_d has rank $n \Leftrightarrow \text{rank} [\mathbf{A} - \lambda \mathbf{I} \mathbf{B}] = n$, $\forall e$ -value λ of \mathbf{A} "

The proof is exactly the same as that for the C.T. systems

"Suppose A has eigenvalues with magnitudes < 1.

 $\mathbf{W}_{dc}[n-1]$ nonsingular $\Leftrightarrow \mathbf{W}_{dc} - \mathbf{A}\mathbf{W}_{dc}\mathbf{A}' = \mathbf{B}\mathbf{B}'$ has a unique positive definite solution $\mathbf{W}_{dc}(\infty)$ "

Theorem 5.D6 says that

 $\mathbf{W}_{dc} - \mathbf{A}\mathbf{W}_{dc}\mathbf{A}' = \mathbf{B}\mathbf{B}'$ has the unique solution

$$\mathbf{W}_{dc} = \underbrace{\sum_{m=0}^{\infty} \mathbf{A}^m \mathbf{B} \mathbf{B}' (\mathbf{A}')^m}_{\mathbf{B} \mathbf{B}'} = \mathbf{W}_{dc} (\infty) = \underbrace{\mathbf{W}_{dc} [n-1]}_{\mathbf{B} \mathbf{B}'} - \underbrace{\sum_{m=n}^{\infty} \mathbf{A}^m \mathbf{B} \mathbf{B}' (\mathbf{A}')^m}_{\mathbf{B} \mathbf{B}'}$$

$$\mathbf{x}[k+1] = \mathbf{A}\mathbf{x}[k] + \mathbf{B}\mathbf{u}[k]$$
$$\mathbf{y}[k] = \mathbf{C}\mathbf{x}[k]$$

n-dimensional p-input q-output

Definition 6.D2 The above discrete-time state equation or the pair (\mathbf{A}, \mathbf{C}) is said to be observable if for any unknown initial state $\mathbf{x}[0]$, there exists a finite integer $k_1 > 0$ such that the knowledge of the input sequence $\mathbf{u}[k]$ and output sequence $\mathbf{y}[k]$ from k = 0 to k_1 suffices to determine uniquely the initial state $\mathbf{x}[0]$. Otherwise, the equation is said to be unobservable.

Theorem 6.DO1 (6.6)

Feng-Li Lian © 2007 NTUEE-LS6-CtrbObsv-76

Theorem 6.DO (dual to Theorem 6.D1)

The following statements are equivalent:

- 1. The n-dimensional pair (A, C) is observable.
- 2. The $n \times n$ matrix

$$\mathbf{W}_{do}[n-1] = \sum_{m=0}^{n-1} (\mathbf{A}')^m \mathbf{C}' \mathbf{C} \mathbf{A}^m$$

is nonsingular or, equivalently, positive definite.

3. The $nq \times n$ observability matrix

$$O_d = \left[\begin{array}{c} \mathbf{C} \\ \mathbf{C}\mathbf{A} \\ \vdots \end{array} \right]$$

4. The $(n+q) \times n$ matrix

$$\begin{bmatrix} \mathbf{A} - \lambda \mathbf{I} \\ \mathbf{B} \end{bmatrix}$$

has full column rank at every eigenvalue, λ , of A.

5. If, in addition, all eigenvalues of A have magnitudes less than 1, then the unique solution of

$$\mathbf{W}_{do} - \mathbf{A}' \mathbf{W}_{do} \mathbf{A} = \mathbf{C}' \mathbf{C}$$

is positive definite. The solution is called the discrete observability Gramian and can be expressed as

$$\mathbf{W}_{do} = \sum_{m=0}^{\infty} (\mathbf{A}')^m \mathbf{C}' \mathbf{C} \mathbf{A}^m$$

Controllability/Observability Indices, Kalman Decomposition, & Jordan-Form Controllability/Observability Conditions for discrete-time systems parallels those for C.T. systems

For discrete-time systems,

Controllability Index =

Length of the shortest input sequence that can transfer any state to any other state

Observability Index =

Lengths of the shortest input and output sequences needed to determine the initial state uniquely

Controllability to & from the Origin (6.6)

Feng-Li Lian © 2007 NTUEE-LS6-CtrbObsv-78

In addition to the regular controllability, there are two other "weaker" definitions of controllability:

- Controllability to the origin: transfer any state to the zero state;
- 2. Controllability from the origin: transfer the zero state to any other state, also called reachability.

It can be shown that for continuous-time systems, all definitions of controllability are equivalent, but not for discrete-time systems

$$\mathbf{x}[k+1] = \begin{bmatrix} 2 & 1 \\ 0 & 0 \end{bmatrix} \mathbf{x}[k] + \begin{bmatrix} -1 \\ 0 \end{bmatrix} u[k]$$

rank
$$C_d$$
 = rank $\begin{bmatrix} -1 & -2 \\ 0 & 0 \end{bmatrix}$ =1:

not controllable, not reachable,

But controllable to the origin:

$$u[0] = 2\alpha + \beta$$
 transfers $\mathbf{x}[0] = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$ to $\mathbf{x}[1] = \mathbf{0}$

Controllability after Sampling (6.7)

$$\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t)$$

$$\mathbf{u}(t) = \mathbf{u}(kT) =: \mathbf{u}[k]$$
 for $kT \le t < (k+1)T$

$$\bar{\mathbf{x}}[k+1] = \bar{\mathbf{A}}\bar{\mathbf{x}}[k] + \bar{\mathbf{B}}\mathbf{u}[k]$$

$$\bar{\mathbf{A}} = e^{\mathbf{A}T}$$
 $\bar{\mathbf{B}} = \left(\int_0^T e^{\mathbf{A}t} dt\right) \mathbf{B}$

Theorem 6.9

Suppose (A, B) is controllable. A sufficient condition for its discretized equation (\bar{A}, B) with sampling period T, to be controllable is that $|\text{Im}[\lambda_i - \lambda_j]| \neq 2\pi m/T$ for $m = 1, 2, \ldots$, whenever $\text{Re}[\lambda_i - \lambda_j] = 0$. For the single-input case, the condition is necessary as well.

Theorem 6.10

If a continuous-time linear time-invariant state equation is not controllable, then its discretized state equation, with any sampling period, is not controllable.

Example 6.12 (6.7)

Feng-Li Lian © 2007 NTUEE-LS6-CtrbObsv-82

$$\dot{\mathbf{x}} = \begin{bmatrix} -3 & -7 & -5 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \mathbf{u}$$
$$y = \begin{bmatrix} 0 & 1 & 2 \end{bmatrix} \mathbf{x}$$

Eigenvalues: -1, -1±j2

Discretized systems will be controllable if and only if the sampling period

$$T \neq \frac{2\pi m}{2} = \pi m$$
 and $T \neq \frac{2\pi m}{4} = 0.5\pi m$ for $m = 1, 2, ...$

Let us try
$$T = 0.5\pi \ (m = 1)$$
:

$$a=[-3 -7 -5;1 0 0;0 1 0];b=[1;0;0];$$
[ad,bd]=c2d(a,b,pi/2)

$$\bar{\mathbf{x}}[k+1] = \begin{bmatrix} -0.1039 & 0.2079 & 0.5197 \\ -0.1390 & -0.4158 & -0.5197 \\ 0.1039 & 0.2079 & 0.3118 \end{bmatrix} \bar{\mathbf{x}}[k] + \begin{bmatrix} -0.1039 \\ 0.1039 \\ 0.1376 \end{bmatrix} u[k]$$

$$C_d = \begin{bmatrix} -0.1039 & 0.1039 & -0.0045 \\ 0.1039 & -0.1039 & 0.0045 \\ 0.1376 & 0.0539 & 0.0059 \end{bmatrix}$$

L.D.

and rank $C_d = 2$, uncontrollable