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Introduction (6.1)
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+ 1input: u
¥ 2 states: Xy, X,
i— 1 output: y

The state x, is NOT *“controllable” by the input u

The state x, is NOT “observable” at the output y = —x, +2u

=» Controllability and observability reveal

the internal structure of the system (model)

Controllability (6.2)
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Definition 6.1

any initial state x(0) = Xo and any final state Xy, there exists an input that transfers X,
to X, in a finite time. Otherwise (A, B) is said to be uncontrollable.

x = Ax + Bu

or the pair (A, B) is said to be controllable if for




Controllability — 2

e Un-Controllable Examples:

19 mg :[
ATl
) 1o mg
11 1+
+ IF ;4]_ IF _f
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if x(0) = 0,

then x(t) = 0, Vt>0,
no matter what u(t) is

if Xl(o) = X2(0)1

then x,(t) = x,(t), vt>0,
no matter what u(t) is

Controllability — 3

e Controllable Example:

e
et e, & vL
 UTe ef
-6 0 -6
5 5
3 3 O
0 1 O
A(_{ — 0 0 1 B(_: -
-6 —11 -6
-1 0 O
Aj=| 0 -2 o0 B, =
O O -3

Feng-Li Lian © 2007
NTUEE-LS6-CtrbObsv-6

{}'c(t) = Ax(t)+But)

y(t) = Cx(t)+ D u(t)

6

0 Cp=[010] Dy=]0]
0

0

0 Cc=1[100] De = [0]
6

T3

-6 C;=[111] Dyj=[0]
3




Controllability — 4: Diagonal Representation

x(t)
y(t)
T1
o

T3

-1 0 O
0 -2 0
0O 0 -3
[111}
—13,‘1
—2 x
1

1 3
o | 4+ | —6 | u(t)
3 3

x(t) 4+ |0 u()

+ 3u
— 6u

-3 23 + 3u
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Controllability — 5: Controllable Representation

x(t)
y(t)
T
%)

T3

0 1 0

0 0O 1

-6 —11 -6
(10 0|

L2

-6z —11 29

1

1 0
o | + | 0| u(t)
T3 6

x(t) 4+ |0 u()

L3

—6z3 + 6u
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Controllability — 6: Physical Representation

s

Feng-Li Lian © 2007
NTUEE-LS6-CtrbObsv-9

—6 0O -6 o 6 |
-1
x(t) = 0 0 2| |z |+]|0]u®
5 5 x 0
| 3 3 O ? :
ly®) = [o1 0] x(® + [o]u®
1 = —6x + 623 + 6u
:i"2 = %ZL‘g
r3 = %371 + _% 2
Yy = L2
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Theorem 6.1

The following statements are equivalent.

2.

. The n-dimensional pair (A, B) is controllable.

The n x » matrix

¢ !
WC(I) — f EAIBBIEA-"[ dt = f eA(E—t]BB.FEA'{:—T] dz
0 0

is nonsingular for any ¢ > 0.
The n x np mnsmﬂdbii'i!y matrix
C=[BABA’B --- A" 'B]
has rank #n (full row rank).
The n x (n + p) matrix [A — AI B] has full row rank at every eigenvalue, A, of A.!

5. If, in addition, all eigenvalues of A have negative real parts, then the unique solution of

AW, + WA = —BB’

is positive definite. The solution is called the contrellability Gramian and can be expressed as

x r
W, = f eABB e dr
0




Theorem 6.2 -2
Proof:

“l. 27
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“(A, B) controllable < w,_(t) nonsingular, Vvt > 0"

Theorem 6.2 -3
Proof:
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Proof:
F -Li Lian © 2007
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Proof:

“2. 37 “W_(t) nonsingular, vVt >0 < C hasrankn”
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Proof:
F -Li Lian © 2007
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Proof:

“3. 4. |[“Chasrankn < rank [A—Al B]=n,V e-value A of A”
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Proof:
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Proof:




Theorem 6.2 — 10
Proof:
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H2. @ 5.”

“For stable A, W_(t) nonsingular, Vt >0
AW, + W A’

=

= -BB' has a unique P.D. sol. W ()"

Example 6.2 (6.2)

001 0
i 0 0 —1
10 0 0

0 0 5
y=[1 00 0]x

C=[B AB A’B A’B] =

X+
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Example 6.3 (6.2)

x1l

Damping
coefficient

Spring
constant

0.5

p([B AB]) =p [ 1
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i 2 Mass =0
V2
Damping Spring
coefficient constant

—0.25
=2
|

Example 6.3 — 2

WC(fl) —

2 E—-D.Sr 0
wf(2)=fn ([ . E_,][

0.2162 0.3167
0.3167 0.4908

u(t) =

—0.5(2—1)

U @) = —[0.5 1] [E 5

= —58.82¢" + 27.96¢'

0 1 e
E—(Z—I}:I wc (2) [ 0
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t1 T
fO ATBBT A Tdr

0.5 e 03t 0
1 ][0.5 1][ 0 E_r])dr

_BT AT (t1-1) Wc—l(tl) [eAzl Xo — Xl}

15
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Example 6.3 — 2

GD T ].D | | T
| | | I
1 ] | I
T O T R 1 I I \
I 5L-o-- I T TR B
: NG
Wr---- r--—--= 1 [ I
1 I
oy 0 ; . .
¢ . ~R :
X3 ! B . " |
Lz[)»-_---:..m-é_ gy SRR 5 |r' , 1|-
. | 1 I 1 I
—40 : : : ~10 : : '
0 0.5 1 1.5 2 0 1 2 3 4

“Larger” u, transfers x(0) = [10 —1]' to x(2) = 0 in 2 seconds, &

“Smaller” u, transfers x(0) = [10 —1]' to x(4) = 0 in 4 seconds.

Note: Given the same x(0), t;, and x(t,),
the formula in Theorem 6.1 _
for u(:) gives the minimal energy control than other u(:):

I

|
f a'(Hua(t) det > f u'(Hu() dt
fo

o

Controllability Index (6.2.1) i Lian © 2007
x = Ax 4+ Bu
oy
+ [bi by - bp || ”
L ¥p ]

+ byuy + bgus + -+ 4+ bpyy
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Given a controllable pair (A, B) e R™" x R™” and rank B = p

C=[b --- IJPEAIJ] Ahpf oo AT Dy - Aﬂ—lhp]

Feng-Li Lian © 2007
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b1 b2 coe bp
I
A
2 ,Ui—]-b 1 —
22 {b.,Ab. A%, ...A*™d, i=12 ..., p}
A? is a set of n L.l. columns,
. and the set
An—l {/ull Hoy vy lup} Wlth ﬂ1+ﬂ2+"'+ﬂp =n

IS the set of controllability indices

p1=max{uy, ty, ..., 4} is called
the controllability index of (A, B)
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p(C)=p(B AB --- A*"'B))=n

Ifu) = u2 =+ = pp, thenn/p = p.

If 15=1for all'i =iy, then u= g =n-(p-1)

If n is the degree of the minimal polynomial of A,

then A" = A" +@A" +-+al
and A"™B = A" B+aA"°B+---+aB.
Thus u<n.

nfp<u<min#nn-—-p+1)

Corollary 6.1 (6.2.1) Feng-Li Lian © 2007
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Corollary 6.1
The n-dimensional pair (A, B) is controllable if and only if the matrix
Ci—p+1:=[B AB .- A" PB]

where p(B) = p, has rank n or the n x n matrix G, p41C, _ p+1 is nonsingular.
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=0 1 0 07 ~0 0"
" 3 0 0 2 .t 1 0 .
1o 0 01 0 0
0 -2 0 0] 0 1
[t 000 .
Y=o 0o 1 0
00 1 0 0 27
1 0 0 2 =1 0
2 —
"[BABAB]"{JD 01 =2 0
01 -2 0 0 —4_
M= = p=2
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Theorem 6.2

The controllability property is invariant under any equivalence transformation.

Proof:
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Theorem 6.3

The set of the controllability indices of (A, B) is invariant under any equivalence transformation and
any reordering of the columns of B.

Proof:

Observability (6.3) Feng-Li Lian © 2007
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= Ax + Bu

-

y=Cx+Du

Definition 6.01 The state equation aboveis said to be observable if for any unknown
initial state x(0), there exists a finite t; > O such that the knowledge of the input u and
the output ¥ over [0, 1] suffices to determine uniquely the initial state X(0). Otherwise,
the equation is said to be unobservable.




- Feng-Li Lian © 2007
Observability — 2 NTUEE-LS6-CtrbObsv-33

e Un-Observable Examples:

1+ if u() =0, Vt>0,
4+ 162 IF 152
() —— ! then y(t) = 0, Vt> 0,
\ — no matter what x(0) is
162 T‘ lﬂg
L_

_ if  u()=0, vt>0
|+ +  and x,(0) =0,

28
! CD LE: T then y(t) = 0, Vt >0,
l no matter what x,(0) is

- Feng-Li Lian © 2007
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e Observable Example:
_fv QiR ;Fi U'({Z'Q ;I X
+E L R m% +T {;’((t) = Ax(t)+Bu(®)

y(#) = Cx(i)+Du(?)

—6 0 —6 6

Ap=1| 0 0o 2 B, = |0 Cp=[010] Dy=]0]
-3 o 0
o 1 0 0

Ae = 0O O 1] B. = |0 Cc=[100]| Dc= 0]
~-6 —11 -6 6
-1 0 0 3

Aj=1] 0 -2 0 By=|-6|Cs=[111] Dj=][0]
0O 0 -3 3




Observability — 4: Diagonal Representation

-1 0 0] [m=m 3
x(t) = 0 -2 0| |zo|+]|-6]u®
0 0 -3| |z 3

y(t) = [111} x(t) + [o}u(t)

r1 = —1xz + 3u

Ty = —2 x5 — Ou

r3 = -3 23 + 3u
y = Z1

Feng-Li Lian © 2007
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Observability — 5: Controllable Representation

o 1 0] 0
x(t) = 0 o 1 zo |+ | O | u(t)
6 —11 -6 | | 22 6

y(t) = [100} x(t) + [o}u(t)

:i?l - Uiy}
Ty = 3
r3 = —62x1 —1llap —623 + Ou
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Observability — 6: Physical Representation

s

—6
x(t) = 0
\ 5
L 3
L y(t) = _ 01
:i:‘l = —06 Tq

Ty =
:f)3 - %:I?l

’y‘ ==

+1]0
+ |o
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u(t)

Observability — 7
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y(t) = Ce* C f A Bu(r) dt + Du(r)
0

the only unknown

Re-write:

Cex(0) = §(t) :=y()—C f AC-DBu(r) dt — Du(t)
Q

total response — zero-state response

®» Observability involves only zero-input response,
and is decided by A and C
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Ce“’”@ =§(t) :Linear equations

NG

gxn (known) nx1 (unknown) gx1 (known)

Because x(0) generates ¥y(t),
the linear equations always have solutions,
and the problem is to determine x(0) uniquely

For g <n, need ¥(#) at an interval of t
to find the unique solution.

Feng-Li Lian © 2007
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Theorem 6.4

The system (A, B, C, D) is observable if and only if the n X n matrix
f
W,(t) = f eXTC'Cerdr
0
is nonsingular for any ¢ > 0.

Proof:

—
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=

Feng-Li Lian © 2007
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Theorem 6.5 (Theorem of duality)

The pair (A, B) is controllable if and only if the pair (A’, B') is observable.

Proof:
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The following statements are equivalent.

1.
2.

The n-dimensional pair (A, C) is observable.

The 1 X n matrix
13
Wo(t) = f eATC'Cer dr
0

is nonsingular for any ¢ > 0.

. The ng X n observability matrix

C
CA
0= ,
CA" 1
has rank n (full column rank), This matrix can be generated by calling obsv in MATLAB.

s

has full column rank at every eigenvalue, A, of A.

The (n + ¢) X n matrix

If, in addition, all eigenvalues of A have negative real parts, then the unique solution of
AW, +W,A=-CC

is positive definite. The solution is called the observability Gramian and can be expressed as
oQ
W,= [ eA"CCetdr
0

Observability Index (6.3.1) Feng-Li Lian © 2007
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Given an observable pair (A, C) e R""x R*" and rank C = q

{c.cACA? cA i=12 .. q}

iy ¢
o is a set of n L.I. rows, and
; the set {v, vy, ..., v} with vj+1pt-+1, =n

~CArTi ¥ is the set of observability indices

Search for

n L.l. rows v=max{v,, v, ..., vq} Is called

from top to the observability index of (A, C), and

bottom is the least integer such that

e £ 1 v
CA
p(0y) = CA” | =n also, n/q < v <min(ii,n —q + 1)

L CAY ]
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Corollary 6.01
The n-dimensional pair (A, C) is observable if and only if the matrix
C A
CA
O, —-g+1 =
CA" 7

where p(C) = g, has rank n or the n X n matrix 0:1—;;+| On—q+1 is nonsingular.

Theorem 6.02

The observability property is invariant under any equivalence transformation.

Theorem 6.03

The set of the observability indices of (A, C) is invariant under any equivalence transformation and any
reordering of the rows of C.

.- Feng-Li Lian © 2007
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e An Alternative Way to Decide x(0)

Differentiate Ce*'x(0) = ¥(t) repeatedly and set t = 0 to get

- C T C ) -
CA ¥(0) .
_ x(0) = _ or 0,x(0) = y(0)
i C‘A'v—l _ _j‘r{v--.l]l (0} |
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OHX(O) = ?(D)

The linear equations have solutions
because y(0) is generated by x(0), and have a unique sol.

x(0) = [0,0,]”" 0.5(0)

if and only if (A, C) is observable (rank O, = n)
But the method is not very practical,
because derivatives of y(0) are needed

Canonical Decomposition (6.4) U S Lan S 2007

e The Example:

fﬁ VR ;Fi ve2 ;_I
- N It A
+ |B -

in R T c  to2 +T { x(t) = AX(t) + B ll(t)
' y(t) = Cx(t)+ Du(t)

—6 0 —6 6
Ap=1| 0 0o 2 B, = |0 Cp=[010] Dy=]0]
-3 o 0
o 1 0 0
Ae = 0O 0 1| Be= 1|0 Cc=[100]| Dc= 0]
~-6 —11 -6 6
(-1 0 0 3
Aj=1] 0 -2 0 By=|-6|Cs=[111] Dj=][0]
0O 0 -3 3
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Xx = AX+Bu x = Px x = Ax+Bnu
- = S
y = Cx+Du y = Cx+Du
A = PAP!
B = PB )
C — C P—]_ C = PC
— A = -1
B = D @ OP
0 1 0
Xe = Pepxp = O O 0.6 |xp
1 -1 0
0.5 2.5 1.5
Xg = Papxp = | -1 -2 24 1% « Stability
0> 05 09 « Controllability
1 1 1 -
Xe = Poxg = ~1 -2 =3 |xy e Observability
05 4 9 are preserved

. e Feng-Li Lian © 2007
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e With appropriate equivalence transformations,
we may obtain new state equations with following property

Xco | «—— controllable  and observable  part

X5 | «—— controllable  and unobservable part

X|
I

Xg | «—— uncontrollable and observable part

X | «+— uncontrollable and unobservable part

C1=2 R=l
€ :::3
R ,
+
LYY Y
“L=1 g 19 L=1 %

+ X -

1Q 19
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X = AX+Bu x = Px x = Ax+Bu
_ S
y = Cx+Du y = Cx+Du
A = PAP!
B = PB
D = D O = op1
Feng-Li Lian © 2007
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Theorem 6.6

Consider the n-dimensional state equation (A, B, C, D) with
p(C)=p(B AB --- A"'B))=n; <n
We form the n X n matrix
P'i=[q ~ Q- Q]

where the first 717 columns are any 1 linearly independent columns of C, and the remaining columns
can arbitrarily be chosen as long as P is nonsingular. Then the equivalence transformation X = Px or
x = P~'x will transform (A, B, C,D)into

HEREIHENE

Xc
Xz

}’Z[éc E:E]I: ]+Dﬂ

where A, isn| X nj and Azis (n —ny) x (n — ny), and the n,-dimensional subequation

X = ll';H::’_‘.-: .3 ﬁcu
y = C.X. + Du

is controllable and has the same transfer matrix as (A, B, C, D).




Theorem 6.6 — 2
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Proof:

{qll "ty qnl} (@ {bl’ bzy Ty bp’ Abl’ Tty Abp, Azbl, Tty Asz, ttty An_lbp}
rank| d, - q, | = rank[b, b, -, by, Ab,, -, Aby, A’b,, -, A%b,, -, AT ]
span[q1 qnl] = span| b, b,, -+, by, Ab,, -, Ab,, A’b,, -, A%, -, A", |
{Aql’ ey Aqnl} C Span[ql qnl]

{qnl+1’ T qn} & Span[ql qn1:|
Aqi = ql + q2 + -+ qn1 + qnl+1 + -+ qn
bi = ql + q2 + -+ qn1 + qnl+1 + -+ qn
Theorem 6.6 — 2 NTUEFETg_GL-iCI)_tir?)r(])(Ssi(-)SOZ
Proof:

A [ql qnlqn1+1 qn] = [ql qnlqn1+1 qn] ,&

[ * % % |

%k %k %k

:[Aq1 AqnlAqn1+1 Aqn]:[q1 qnlqnl+1 qn] 0 0 )
-, .
B = | 1B = [ |
- ql qnlqn1+1 qn - ql qnlqn1+1 qn 0 0
B = b, = b, I
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Proof:

6 = C [ql qnlqnl+1 qn] =

-H_[Bc. AB. --- A o A"
Lo o .. 0 .. 0

Feng-Li Lian © 2007
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Proof:
Thus p(C) = p(C) = n; implies that (A, B.) is controllable

HEFEINE L

Transfer Matrix: M=(sI—A,) "ApGsI—Ay)~"
= - i | —.dit- —A;g - ﬁf
[Ce Ce] [ 0 sT — AE] [ 0 ] +D
e eq[6I-A0 M B,
=< C“][ 0 (sl—%)"“ﬂ]w

= eC(SI e AL‘}_IBE + D




Controllable Realization (6.4) TUpe S Len D 2007

In the new state equations

!;{,; ic 15-12 ic Ef
[ie]_[ﬂ AE][iE]+[0]u
The state space is divided into a subspace for x, (dim. =n,)

And a subspace for x; (dim. =n-n,);
X, is controllable by u, while Xz is not controllable

After dropping the uncontrollable subspace,

X = fici;: 53 ﬁ;_.ll
y = C.X. + Du

becomes a controllable realization of smaller dimension
which is zero-state equivalent to (A, B, C, D)

Example 6.8 (6.4) Feng-Li Lian © 2007
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1 1 0 0 1
Xx=(0 1 0|x+|1 0 |u y=[11 1]x
0O 1 1 0 1

Because rank B =2, use C, =[B AB] to check controllability:

01 1 1
0(G) = p([B AB])—p'i] 0 1 0}:2{3 - uncontrollable
1

0

01 17
Choose P‘:Q—[l 0 0
01 0]
01 0771 1 0770 1 1 14 0
A:PAP":[UG 1}[0 1 0 [1 00]= L1 0
1 0 —1]L0o 1 1JLo 10
0 0 1




Example 6.8 — 2
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0O 1 o07r1 1 oqro 1 1 ¢ = &8
A=PAP'=(0 0 1||0 1 0|1l 0 0]= 1 0
1 0 -1 0O 1 1 0 1 0
0 0 1
0 1 0 0 1 ! 0
_ 0 1
B=PB=|0 0 1 1 0=
—1 0 1
1 0 0 0
0 1 1
C=CP'=[111]]1 0 0|=[12:1]
0 1 0
A two-dimensional controllable realization:
. 1 0 1 0 ”
X. = X, + u =[1 2]x
‘ [1 1]" [0 1} ’ ‘
Theorem 6.06 jan © 2007
rbObsv-60
Consider the r-dimensional state equation (A, B, C, D) with
C
CA
p(0)=p . =ny <n
CA"-!
We form the 1 X n matrix
[ pi ]
P= P;tz
L P |

where the first ny rows are any 11, linearly independent rows of O, and the remaining rows can be chosen
arbitrarily as long as P is nonsingular. Then the equivalence transformation X = Px will transform

(A, B, C,D)into
[x (A 0% i B,
X; ] LAu As]lx B; "

v=1[C, 0] ["] +Du
g

]

where A, is ny x ny and Aj is (n — na) X (1 — ny), and the ry-dimensional subequation

};(9 = Acig + Boll
¥ = C,%, +Du

is observable and has the same transfer matrix as (A, B, C, D).
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Ci=12

R=1
( ::]
L S _
+
Y Y Y
X2 L];l 1Q 16 Lz"‘—‘l X3

IQ§ 1

X | «—— controllable  and observable  part

X5 | «—— controllable  and unobservable part

X=|_
X | «— uncontrollable and observable part
| X&o | «— uncontrollable and unobservable part
Theorem 6.7 (6.4) Feng-Li Lian © 2007
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Theorem 6.7

Every state-space equation can be transformed, by an equivalence transformation, into the following
canonical form

ia'.:o ficrl 0 A 13 0 ic‘o ﬁca

Xco Ay A Axn Ay Xes B.;

. = ", _ -4 u

Xio 0 0 A 0 Xéo 0 (6.45)
Xz5 0 0 Ai Az Xio 0

. y = [(_:C(-‘ 0 Cc?u 0]3_(+Dl.l

where the vector X., is controllable and observable, X.; is controllable but not observable, Xz, is
observable but not controllable, and X;; is neither controllable nor observable. Furthermore, the state
equation is zero-state equivalent to the controllable and observable state equation

ico = Acaico + Bmu

co
Y= ecoim + Du u r o v

é(") = Cm (SI = A(.‘r’?)_]-ﬁ{.‘:’) +D

and has the transfer matrix

I/O stability only determined
by the controllable and observable parts Ka|mah""[’jé’&j"rﬁb'agi'ﬁaﬁ




Example 6.9 (6.4)
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u (D ) !
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0 0 0 —1 0 y=

y=[000 1]x+u

y =
Q(S) 1

0 -057, [0S
1o |7 o |®

[0 Olx. +u

Conditions in Jordan-Form Equations (6.5)

x=Jx+Bx
y=0Cx
Without loss of generality, consider only the case
- Jordan - - -
‘Jll blocks 0 Bll
for A
‘J12 ! BlZ
J= N , B=|B;
‘J21 BZl
L 0 Jordan blocks\\,‘] 22 | _BZZ _
for A,
the last row of B;,
C=[C, C, Cig 22] |sdenotedasblu ______
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Theorem 6.8

1. The state equation (. B. C) is controllable if and only if the three row vectors {byy1, by12, by3} are
linearly independent and the two row vectors {bya1, by22} are linearly independent.

2. The state equation(J, B, C) is observable if and only if the three column vectors {€11, Cf12, €13}
are linearly independent and the two column vectors {C 21, € ¢22} are linearly independent.

Proof:
(for a case where A, has only 2 blocks & A, has only 1 block)

1. Use the controllability condition
rank[ J-sl B] = rank[sl-J B] = n, fors=A4,, A..

C 5 — Aj -1 0 : 0 0 0 0 by T
0 s—x —1: 0 0 0 0 ban
. O.....8=A..00 . 0... 0 0 bi1
0 0 0 s—Xh =1 : 0 0 b2
0 0 0 0 s—Ai;: 0O 0 b2
0 0 o oo TR
L 0 0 0 0 0 : 0 s —As b -
Theorem 6.8 — 2 NTUEFETg—GL-iCII_tiriT)(ESi(-)gg
Substitute s by A, and get
-0 -1 0 0 0 0 0 b11] ]
0 0 -1 0 O 0 0 b
0 0 0 0 O 0 0 b,
0 0 0 0 -1 0 0 b1z
0O 0 0 0 O 0 0 b1z
0O 0 0 0 0 A—-2x -1 b
0 0 0 0 O 0 Al — Az by

Examination of the rows reveals that
b,;; and b, should be L.I. for the matrix to have full row rank.

Similarly, substituting s by A, requires that
b,,, be L.I. (= O for one vector).

2. Proof is similar for observability
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Example 6.10 (6.5)
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Example 6.10 — 2
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Corollary 6.8

A single-input Jordan-form state equation is controllable if and only if there is only one Jordan block
associated with each distinct eigenvalue and every entry of B corresponding to the last row of each Jordan
block is different from zero.

Corollary 6.08

A single-output Jordan-form state equation is observable if and only if there is only one Jordan block
associated with each distinct eigenvalue and every entry of C corresponding to the first column of each
Jordan block is ditferent from zero.

Example 6.11 (6.5) Feng-Li Lian © 2007
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01 0i0 10

(_|0 0 1:0 i |21,

“lo.0.0:0 0
0 0 0:i-=2 Pl

y = [110 02ix




Feng-Li Lian © 2007
NTUEE-LS6-CtrbObsv-71

Discrete-Time State Equations (6.6): Controllability

x[k + 1] = Ax[k] + Bu[k]

. n-dimensional p-input g-output
ylk] = Cxlk]

Definition 6.D1 The above discrete-time state equation or the pair (A, B) is said to be
controllable if for any initial state X(0) = Xy and any final state X,, there exists an input
sequence of finite length that transfers Xy to X,. Otherwise the equation or (A, B) is
said to be uncontrollable.

Feng-Li Lian © 2007
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Theorem 4.D1

The following statements are equivalent:

1. The n-dimensional pair (A, B) is controllable.
2. The # X B matrix

n—I1
Waeln — 11=") (A)"BB'(A")"

m=()
is nonsingular.
3. The n X np controllability matrix
C;=[B AB A’B ... A" 'B]

has rank » (full row rank). The matrix can be generated by calling ctrb in MATLAB.
4. Then x (n + p) matrix [A — AL B] has full row rank at every eigenvalue, A, of A.

5. If, in addition, all eigenvalues of A have magnitudes less than 1, then the unique solution of
W, — AW, A" = BB

is positive definite. The solution is called the discrete controllability Gramian and can be obtained by
using the MATLAB function dgram. The discrete Gramian can be expressed as

o0
Wy =Y A"BB'(A)"

m=0
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Proof:

“l. © 37 “(A, B) controllable < C, has rank n”
n=1
x[n] = A"x[0] + ) A" '""Bu[m] i.e.,
m=0
uln —1]
uln —2]
x[n] — A"x[0] =[B AB --- A" 'B] ,
arbitrary C, full row rank u(0]
vector < input u[-] can

always be found

2. <3 “Wy,[n-1] nonsingular (P.D.) < C,4 has rank n”
BF
B'A’
Wyln—1]=[B AB --- A" 'B] :
B'(A")"~!
Theorem 6.D1 -3 NTUEFETgGL-ICI‘:tIr?)r(]D(ESi(-)?Z
‘3.4 |“Cyhas rank n < rank [A-Al B] = n, Ve-value A of A”

The proof is exactly the same as that for the C.T. systems

"2.<5."  l4syuppose A has eigenvalues with magnitudes < 1.
W, [n - 1] nonsingular < w,, - AW, A’ =BB’ has a
unique positive definite solution W, («)”

Theorem 5.D6 says that
W,. - AW A’ = BB’ has the unique solution

o0 o0
Wi =Y A"BB'(A)" = W, () = Wy [n—1] 4 A"BB(A)"
m=0 m=r

>0 >0 T




Observability (6.6)

x[k + 1] = Ax[k] + Bu[k]

ylk] = Cx[k]
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n-dimensional p-input g-output

to be unobservable.

Definition 6.D2 The above discrete-time state equation or the pair (A, C) is said to be
observable if for any unknown initial state X[0), there exists a finite integer ki > 0 such
that the knowledge of the input sequence ulk] and output sequence y[k] from k = 0 to
ky suffices to determine uniquely the initial state xX[0]. Otherwise, the equation is said

Theorem 6.DO1 (6.6)

Theorem 6.DO1(dual to Theorem 6.D1)

The following statements are equivalent:

Feng-Li Lian © 2007
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1. The r-dimensional pair (A, C) is observable.

2. The » X »n matrix

n—1

Wln— 1] = Z(A’)"‘C’CA”‘

m=0

is nonsingular or, equivalently, positive definite.

3. The ng x n observability matrix

4. The (n + g) X n matrix

Oy =

[

A—Al

C
CA

]

B

has full column rank at every eigenvalue, A, of A

5. If, in addition, all eigenvalues of A have magnitudes less than 1, then the unique solution of

Wy — A'W4A = C'C

is positive definite. The solution is called the discrete observability Gramian and can be expressed as

Wy, = i(A’)’”C’CA’"

m=0
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Observability

Controllability/Observability Indices, Kalman Decomposition,
& Jordan-Form Controllability/Observability Conditions
for discrete-time systems parallels those for C.T. systems

For discrete-time systems,

I

Controllability Index =

Length of the shortest input sequence
that can transfer any state to any other state

Observability Index =

Lengths of the shortest input and output sequences
needed to determine the initial state uniquely

Controllability to & from the Origin (6.6) Feng-Li Lian © 2007
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In addition to the regular controllability,
there are two other “weaker” definitions of controllability:

1. Controllability to the origin:
transfer any state to the zero state;

2. Controllability from the origin:
transfer the zero state to any other state,
also called reachability.

It can be shown that for continuous-time systems,
all definitions of controllability are equivalent,
but not for discrete-time systems
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Controllability to & from the Origin — 2

x[k+ 1] = [3 ('}] x[k] + [‘; ] u[k]

_ -1 =21 _..
rank C, = rank [0 0}—1.

not controllable, not reachable,

But controllable to the origin:

u[0]=2a + f transfers x[0]= {;} to x[1]=0

Feng-Li Lian © 2007
NTUEE-LS6-CtrbObsv-80

Controllability after Sampling (6.7)

x(t) = Ax(t) + Bu(t)

u(t) = uwk7T) =: u[k] forkT <t < (k+ DT

!

X[k + 1] = Ax[k] + Bu[k]

T
A =T f’o:(f e‘“d:)B
0
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Theorem 6.9

Suppose (A, B)is controllable. A sufficient condition for its discretized equation (A, B), with sampling
period T, to be controllable is that [Im[A; — A;]| # 2mm/T form = 1,2,..., whenever
Re[A; — A;] = 0. For the single-input case, the condition is necessary as well.

Theorem 6.10

If a continuous-time linear time-invariant state equation is not controllable, then its discretized state
equation, with any sampling period, is not controllable.

Example 6.12 (6.7) Feng-Li Lian © 2007
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T
u(r) ulk] ,
>f Hold > e _‘,_

E+DE+1+2006+1-25)

-3 -7 =5 1
)'{“_— 1 0 0 X+ D u

0 1 0 0 Eigenvalues: -1, —-1+j2
y=1[01 2]x

Discretized systems will be controllable
if and only if the sampling period

2
T#?:xm and T#%ﬂlzﬂ.ﬁnm form=1,2, ....

Letustry T=0.57 (m=1):

a=[-3 -7 -5;1 0 0;0 1 0];b=[1;0;0];
[ad,bd]=c2d(a,b,pi/2)
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—0.1039  0.2079  0.5197 —0.1039
X[k +1]=| —0.1390 —0.4158 —0.5197 |x[k]+ | 0.1039 jlu[k]

0.1039  0.2079  0.3118 0.1376

Ci = 0.1039 —-0.1039  0.0045

0.1376  0.0539

]j —0.1039  0.1039 —0.0045

L.D.
and rank C, = 2, uncontrollable




