線性系統 Linear Systems

Chapter 06 Controllability \＆Observability

Feng－Li Lian
NTU－EE
Sep07－Jan08

＂Linear System Theory \＆Design，＂3rd．Ed．，by C．－T．Chen（1999）
－Introduction
－Controllability（6．2）
－Observability（6．3）
－Canonical Decomposition（6．4）
－Conditions in Jordan－Form Equations（6．5）
－Discrete－Time State Equations（6．6）
－Controllability after Sampling（6．7）

1 input: u
2 states: x_{1}, x_{2}
1 output: y

The state x_{2} is NOT "controllable" by the input u
The state x_{1} is NOT "observable" at the output $y=-x_{2}+2 u$

Controllability and observability reveal the internal structure of the system (model)

Definition 6.1 $\quad \dot{\mathbf{x}}=\mathbf{A x}+\mathbf{B u}$ or the pair (\mathbf{A}, \mathbf{B}) is said to be controllable iffor any initial state $\mathbf{x}(0)=\mathbf{x}_{0}$ and any final state \mathbf{x}_{1}, there exists an input that transfers \mathbf{x}_{0} to \mathbf{x}_{1} in a finite time. Otherwise (\mathbf{A}, \mathbf{B}) is said to be uncontrollable.

- Un-Controllable Examples:

if $x(0)=0$, then $x(t)=0, \quad \forall t \geq 0$, no matter what $u(t)$ is

if $x_{1}(0)=x_{2}(0)$,
then $x_{1}(t)=x_{2}(t), \quad \forall t \geq 0$,
no matter what $u(t)$ is
- Controllable Example:

$$
\left\{\begin{aligned}
\dot{\mathbf{x}}(t) & =\mathbf{A} \mathbf{x}(t)+\mathbf{B} \mathbf{u}(t) \\
\mathbf{y}(t) & =\mathbf{C} \mathbf{x}(t)+\mathbf{D} \mathbf{u}(t)
\end{aligned}\right.
$$

$$
\begin{aligned}
& \mathbf{A}_{p}=\left[\begin{array}{rrr}
-6 & 0 & -6 \\
0 & 0 & \frac{3}{5} \\
\frac{5}{3} & -\frac{5}{3} & 0
\end{array}\right] \quad \mathbf{B}_{p}=\left[\begin{array}{l}
6 \\
0 \\
0
\end{array}\right] \quad \mathbf{C}_{p}=\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right] \quad \mathbf{D}_{p}=\left[\begin{array}{l}
0
\end{array}\right] \\
& \mathbf{A}_{c}=\left[\begin{array}{rrr}
0 & 1 & 0 \\
0 & 0 & 1 \\
-6 & -11 & -6
\end{array}\right] \quad \mathbf{B}_{c}=\left[\begin{array}{l}
0 \\
0 \\
6
\end{array}\right] \quad \mathbf{C}_{c}=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right] \quad \mathbf{D}_{c}=\left[\begin{array}{l}
0
\end{array}\right] \\
& \mathbf{A}_{d}=\left[\begin{array}{rrr}
-1 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & -3
\end{array}\right] \quad \mathbf{B}_{d}=\left[\begin{array}{l}
3 \\
-6 \\
3
\end{array}\right] \quad \mathbf{C}_{d}=\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right] \quad \mathbf{D}_{d}=\left[\begin{array}{l}
0
\end{array}\right]
\end{aligned}
$$

$$
\left\{\begin{aligned}
\dot{\mathbf{x}}(t) & =\left[\begin{array}{rrr}
-1 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\left[\begin{array}{r}
3 \\
-6 \\
3
\end{array}\right] \mathbf{u}(t) \\
\mathbf{y}(t) & =\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right] \quad \mathbf{x}(t) \\
& +[0] \mathbf{u}(t) \\
\dot{x}_{1} & =-1 x_{1} \\
\dot{x}_{2} & =3 u \\
\dot{x}_{3} & = \\
y & -2 x_{2} \\
y & -6 u
\end{aligned}\right.
$$

$$
\left\{\begin{aligned}
\dot{\mathbf{x}}(t) & =\left[\begin{array}{rrr}
0 & 1 & 0 \\
0 & 0 & 1 \\
-6 & -11 & -6
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
6
\end{array}\right] \mathbf{u}(t) \\
\mathbf{y}(t) & =\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right] \quad \mathbf{x}(t)+[0] \mathbf{u}(t) \\
\dot{x}_{1} & =\text { x } \\
\dot{x}_{2} & = \\
\dot{x}_{3} & =-6 x_{1}-11 x_{2}-6 x_{3}+6 u \\
y & =x_{1}
\end{aligned}\right.
$$

$$
\left\{\begin{aligned}
& \dot{\mathbf{x}}(t)=\left[\begin{array}{rrr}
-6 & 0 & -6 \\
0 & 0 & \frac{3}{5} \\
\frac{5}{3} & -\frac{5}{3} & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\left[\begin{array}{l}
6 \\
0 \\
0
\end{array}\right] \mathbf{u}(t) \\
& \mathbf{y}(t)=\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right] \quad \mathbf{x}(t)+[0] \mathbf{u}(t) \\
& \dot{x}_{1}=-6 x_{1} \\
& \dot{x}_{2}=-6 x_{3}+6 u \\
& \dot{x}_{3}=\frac{5}{3} x_{1}+-\frac{5}{3} x_{2} \\
& y=\frac{3}{5} x_{3}
\end{aligned}\right.
$$

Theorem 6.1 (6.2)

Theorem 6.1

The following statements are equivalent.

1. The n-dimensional pair (\mathbf{A}, \mathbf{B}) is controllable.
2. The $n \times n$ matrix

$$
\mathbf{W}_{c}(t)=\int_{0}^{t} e^{\mathbf{A} \tau} \mathbf{B} \mathbf{B}^{\prime} e^{\mathbf{A}^{\prime} \tau} d \tau=\int_{0}^{t} e^{\mathbf{A}(t-\tau)} \mathbf{B} \mathbf{B}^{\prime} e^{\mathbf{A}^{\prime}(t-\tau)} d \tau
$$

is nonsingular for any $t>0$.
3. The $n \times n p$ controllability matrix

$$
C=\left[\mathbf{B} \mathbf{A} \mathbf{B} \mathbf{A}^{2} \mathbf{B} \cdots \mathbf{A}^{n-1} \mathbf{B}\right]
$$

has rank n (full row rank).
4. The $n \times(n+p)$ matrix $[\mathbf{A}-\lambda \mathbf{I} \mathbf{B}]$ has full row rank at every eigenvalue, λ, of $\mathbf{A} .{ }^{1}$
5. If, in addition, all eigenvalues of \mathbf{A} have negative real parts, then the unique solution of

$$
\mathbf{A} \mathbf{W}_{c}+\mathbf{W}_{c} \mathbf{A}^{\prime}=-\mathbf{B} \mathbf{B}^{\prime}
$$

is positive definite. The solution is called the controllability Gramian and can be expressed as

$$
\mathbf{W}_{c}=\int_{0}^{\infty} e^{\mathbf{A} \tau} \mathbf{B B}^{\prime} e^{\mathbf{A}^{\prime} \tau} d \tau
$$

Proof:
"1. \Leftrightarrow 2." "(A, B) controllable $\Leftrightarrow \mathbf{W}_{c}(t)$ nonsingular, $\forall t>0 "$

Proof:

Proof:

Proof:

Proof:

Proof:
"3. \Leftrightarrow 4." "C has rank $n \Leftrightarrow \operatorname{rank}[\mathbf{A}-\lambda \mathbf{I} \mathbf{B}]=n, \forall \mathrm{e}-\mathrm{value} \lambda$ of \mathbf{A} "

Proof:

Proof:

Proof:
"2. $\Leftrightarrow 5$."
"For stable $\mathbf{A}, \mathbf{W}_{c}(t)$ nonsingular, $\forall t>0$
$\mathbf{A W}_{c}+\mathbf{W}_{c} \mathbf{A}^{\prime}=-\mathbf{B B} \mathbf{B}^{\prime}$ has a unique P.D. sol. $\mathbf{W}_{c}(\infty) "$

$$
\begin{aligned}
& \dot{\mathbf{x}}=\left[\begin{array}{rrrr}
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 5 & 0
\end{array}\right] \mathbf{x}+\left[\begin{array}{c}
0 \\
1 \\
0 \\
-2
\end{array}\right] u \\
& y=\left[\begin{array}{llll}
1 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{W}_{c}\left(t_{1}\right) & =\int_{0}^{t_{1}} e^{\mathrm{A} \tau} \mathrm{~B} \mathrm{~B}^{\top} e^{\mathrm{A}^{\top} \tau} d \tau \\
\mathbf{W}_{c}(2) & =\int_{0}^{2}\left(\left[\begin{array}{cc}
e^{-0.5 \tau} & 0 \\
0 & e^{-\tau}
\end{array}\right]\left[\begin{array}{c}
0.5 \\
1
\end{array}\right]\left[\begin{array}{cc}
0.5 & 1
\end{array}\right]\left[\begin{array}{cc}
e^{-0.5 \tau} & 0 \\
0 & e^{-\tau}
\end{array}\right]\right) d \tau \\
& =\left[\begin{array}{ll}
0.2162 & 0.3167 \\
0.3167 & 0.4908
\end{array}\right] \\
\mathrm{u}(t) & =-\mathrm{B}^{\top} e^{\mathrm{A}^{\top}\left(t_{1}-t\right)} \mathrm{W}_{c}^{-1}\left(t_{1}\right)\left[e^{\mathrm{A} t_{1}} \mathbf{x}_{0}-\mathrm{x}_{1}\right] \\
u_{1}(t) & =-\left[\begin{array}{ll}
0.5 & 1]\left[\begin{array}{cc}
e^{-0.5(2-t)} & 0 \\
0 & e^{-(2-t)}
\end{array}\right] \mathbf{W}_{c}^{-1}(2)\left[\begin{array}{cc}
e^{-1} & 0 \\
0 & e^{-2}
\end{array}\right]\left[\begin{array}{c}
10 \\
-1
\end{array}\right] \\
& =-58.82 e^{0.5 t}+27.96 e^{t}
\end{array}\right.
\end{aligned}
$$

"Larger" u_{1} transfers $\mathbf{x}(0)=[10-1]$ ' to $\mathbf{x}(2)=0$ in 2 seconds, \& "Smaller" u_{2} transfers $\mathbf{x}(0)=[10-1]^{\prime}$ to $\mathbf{x}(4)=0$ in 4 seconds.

Note: Given the same $\mathbf{x}(0), t_{1}$, and $\mathbf{x}\left(t_{1}\right)$, the formula in Theorem 6.1 for $\mathbf{u}(\cdot)$ gives the minimal energy control than other $\overline{\mathbf{u}}(\cdot)$:

$$
\int_{t_{0}}^{t_{1}} \overline{\mathbf{u}}^{\prime}(t) \overline{\mathbf{u}}(t) d t \geq \int_{t_{0}}^{t_{1}} \mathbf{u}^{\prime}(t) \mathbf{u}(t) d t
$$

$$
\dot{\mathrm{x}}=\mathrm{Ax}+\mathrm{Bu}
$$

$$
\begin{aligned}
& +\left[\begin{array}{llll}
\mathbf{b}_{1} & \mathbf{b}_{2} & \cdots & \mathbf{b}_{\mathbf{p}}
\end{array}\right]\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{p}
\end{array}\right] \\
& +\mathbf{b}_{1} u_{1}+\mathbf{b}_{2} u_{2}+\cdots+\mathbf{b}_{\mathbf{p}} u_{p}
\end{aligned}
$$

Given a controllable pair $(\mathbf{A}, \mathbf{B}) \in \mathrm{R}^{n \times n} \times \mathrm{R}^{n \times p}$ and rank $\mathbf{B}=p$

$$
C=\left[\begin{array}{llllllll}
\mathbf{b}_{1} & \cdots & \mathbf{b}_{p} \vdots & \vdots \mathbf{b}_{1} & \cdots & \mathbf{A} \mathbf{b}_{p} \vdots & \cdots & \vdots \mathbf{A}^{n-1} \mathbf{b}_{1}
\end{array} \cdots \mathbf{A}^{n-1} \mathbf{b}_{p}\right]
$$

-........ search for n L.I. columns from left to right •.........

$\left\{\mathbf{b}_{i}, \mathbf{A b}_{i}, \mathbf{A}^{2} \mathbf{b}_{i}, \ldots, \mathbf{A}^{\mu_{i}-1} \mathbf{b}_{i}, i=1,2, \ldots, p\right\}$
is a set of n L.I. columns, and the set
$\left\{\mu_{1}, \mu_{2}, \ldots, \mu_{p}\right\}$ with $\mu_{1}+\mu_{2}+\cdots+\mu_{p}=n$
is the set of controllability indices
$\mu=\max \left\{\mu_{1}, \mu_{2}, \ldots, \mu_{p}\right\}$ is called the controllability index of (A,B)

$$
\rho\left(C_{\mu}\right)=\rho\left(\left[\begin{array}{l}
\mathbf{B}
\end{array} \mathbf{A B} \cdots \mathbf{A}^{\mu-1} \mathbf{B}\right]\right)=n
$$

If $\mu_{1}=\mu_{2}=\cdots=\mu_{p}$, then $n / p=\mu$.

If $\mu_{i}=1$ for all $i \neq i_{0}$, then $\mu=\mu_{i_{0}}=n-(p-1)$

If \bar{n} is the degree of the minimal polynomial of \mathbf{A}, then $\mathbf{A}^{\bar{n}}=\tilde{\alpha}_{1} \mathbf{A}^{\bar{n}-1}+\tilde{\alpha}_{2} \mathbf{A}^{\bar{n}-2}+\cdots+\tilde{\alpha}_{\bar{n}}$ I and $\quad \mathbf{A}^{\bar{n}} \mathbf{B}=\tilde{\alpha}_{1} \mathbf{A}^{\bar{n}-1} \mathbf{B}+\tilde{\alpha}_{2} \mathbf{A}^{\bar{n}-2} \mathbf{B}+\cdots+\tilde{\alpha}_{\bar{n}} \mathbf{B}$.
Thus $\mu \leq \bar{n}$.

$$
n / p \leq \mu \leq \min (\bar{n}, n-p+1)
$$

Corollary 6.1

The n-dimensional pair (\mathbf{A}, \mathbf{B}) is controllable if and only if the matrix

$$
C_{n-p+1}:=\left[\begin{array}{llll}
\mathbf{B} & \mathbf{A B} & \cdots & \mathbf{A}^{n-p} \mathbf{B}
\end{array}\right]
$$

where $\rho(\mathbf{B})=p$, has rank n or the $n \times n$ matrix $C_{n-p+1} C_{n-p+1}^{\prime}$ is nonsingular.

$$
\begin{aligned}
& \dot{\mathbf{x}}=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
3 & 0 & 0 & 2 \\
0 & 0 & 0 & 1 \\
0 & -2 & 0 & 0
\end{array}\right] \mathbf{x}+\left[\begin{array}{ll}
0 & 0 \\
1 & 0 \\
0 & 0 \\
0 & 1
\end{array}\right] \mathbf{u} \\
& \mathbf{y}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \mathbf{x}
\end{aligned}
$$

$\Rightarrow\left[\begin{array}{lll}\mathbf{B} & \mathbf{A B} & \mathbf{A}^{2} \mathbf{B}\end{array}\right]=\left[\begin{array}{rrrrrr}0 & 0 & 1 & 0 & 0 & 2 \\ 1 & 0 & 0 & 2 & -1 & 0 \\ 0 & 0 & 0 & 1 & -2 & 0 \\ 0 & 1 & -2 & 0 & 0 & -4\end{array}\right]$

$$
\mu_{1}=\mu_{2}=\mu=2
$$

Theorem 6.2

The controllability property is invariant under any equivalence transformation.

Proof:

Theorem 6.3

The set of the controllability indices of (\mathbf{A}, \mathbf{B}) is invariant under any equivalence transformation and any reordering of the columns of \mathbf{B}.

Proof:

$$
\begin{aligned}
& \dot{\mathbf{x}}=\mathbf{A x}+\mathbf{B u} \\
& \mathbf{y}=\mathbf{C x}+\mathbf{D u}
\end{aligned}
$$

Definition 6.01 The state equation above is said to be observable if for any unknown initial state $\mathbf{x}(0)$, there exists a finite $t_{1}>0$ such that the knowledge of the input \mathbf{u} and the output \mathbf{y} over $\left[0, t_{1}\right]$ suffices to determine uniquely the initial state $\mathbf{x}(0)$. Otherwise, the equation is said to be unobservable.

- Un-Observable Examples:

if $u(t)=0, \quad \forall t \geq 0$,
then $y(t)=0, \quad \forall t \geq 0$, no matter what $x(0)$ is

if $\quad u(t)=0, \quad \forall t \geq 0$ and $x_{2}(0)=0$,
then $y(t)=0, \forall t \geq 0$,
no matter what $x_{1}(0)$ is

Observability - 3

- Observable Example:

$\left\{\begin{array}{l}\dot{\mathbf{x}}(t)=\mathbf{A} \mathbf{x}(t)+\mathbf{B u}(t) \\ \mathbf{y}(t)=\mathbf{C x}(t)+\mathbf{D u}(t)\end{array}\right.$
$\left.\begin{array}{l}\mathbf{A}_{p}=\left[\begin{array}{rrr}-6 & 0 & -6 \\ 0 & 0 & \frac{3}{5} \\ \frac{5}{3} & -\frac{5}{3} & 0\end{array}\right] \quad \mathbf{B}_{p}=\left[\begin{array}{l}6 \\ 0 \\ 0\end{array}\right] \quad \mathbf{C}_{p}=\left[\begin{array}{lll}0 & 1 & 0\end{array}\right] \quad \mathbf{D}_{p}=\left[\begin{array}{l}0\end{array}\right] \\ \mathbf{A}_{c}=\left[\begin{array}{rrr}0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6\end{array}\right] \quad \mathbf{B}_{c}=\left[\begin{array}{l}0 \\ 0 \\ 6\end{array}\right] \quad \mathbf{C}_{c}=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right] \quad \mathbf{D}_{c}=\left[\begin{array}{l}0\end{array}\right] \\ \mathbf{A}_{d}=\left[\begin{array}{rr}-1 & 0 \\ 0 & -2\end{array}\right] \\ 0\end{array}\right] \quad \mathbf{B}_{d}=\left[\begin{array}{l}3 \\ -6 \\ 3\end{array}\right] \mathbf{C}_{d}=\left[\begin{array}{lll}1 & 1 & 1\end{array}\right] \quad \mathbf{D}_{d}=\left[\begin{array}{l}0\end{array}\right]$,

$$
\left\{\begin{aligned}
\dot{\mathrm{x}}(t) & =\left[\begin{array}{rrr}
-1 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\left[\begin{array}{r}
3 \\
-6 \\
3
\end{array}\right] \mathbf{u}(t) \\
\mathbf{y}(t) & =\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right] \quad \mathbf{x}(t) \\
& +[0] \mathbf{u}(t) \\
\dot{x}_{1} & =-1 x_{1} \\
\dot{x}_{2} & =3 u \\
\dot{x}_{3} & = \\
y & -2 x_{2} \\
y & -6 u
\end{aligned}\right.
$$

$$
\left\{\begin{aligned}
\dot{\mathbf{x}}(t) & =\left[\begin{array}{rrr}
0 & 1 & 0 \\
0 & 0 & 1 \\
-6 & -11 & -6
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
6
\end{array}\right] \mathbf{u}(t) \\
\mathbf{y}(t) & =\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right] \quad \mathbf{x}(t)+[0] \mathbf{u}(t) \\
\dot{x}_{1} & = \\
\dot{x}_{2} & = \\
\dot{x}_{3} & =-6 x_{1}-11 x_{2}-6 x_{3}+6 u \\
y & =x_{1}
\end{aligned}\right.
$$

$$
\left\{\begin{aligned}
& \dot{\mathbf{x}}(t)= {\left[\begin{array}{rrr}
-6 & 0 & -6 \\
0 & 0 & \frac{3}{5} \\
\frac{5}{3} & -\frac{5}{3} & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\left[\begin{array}{l}
6 \\
0 \\
0
\end{array}\right] \mathbf{u}(t) } \\
& \mathbf{y}(t)=\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right] \mathbf{x}(t)+[0] \mathbf{u}(t) \\
& \dot{x}_{1}=-6 x_{1} \\
& \dot{x}_{2}=+-6 x_{3}+6 u \\
& \dot{x}_{3}= \frac{3}{5} x_{3} \\
& y=\begin{array}{ll}
\frac{5}{3} x_{1}+-\frac{5}{3} x_{2}
\end{array} \\
& y x_{2}
\end{aligned}\right.
$$

$$
\mathbf{y}(t)=\mathbf{C} e^{\mathbf{A} t} \underbrace{\mathbf{x}(0)}+\mathbf{C} \int_{0}^{t} e^{\mathbf{A}(t-\tau)} \mathbf{B u}(\tau) d \tau+\mathbf{D u}(t)
$$

the only unknown

Re-write:

$$
\mathbf{C} e^{\mathbf{A} t} \mathbf{x}(0)=\overline{\mathbf{y}}(t) \quad:=\mathbf{y}(t)-\mathbf{C} \int_{0}^{t} e^{\mathbf{A}(t-\tau)} \mathbf{B u}(\tau) d \tau-\mathbf{D u}(t)
$$

total response - zero-state response
\Rightarrow Observability involves only zero-input response, and is decided by \mathbf{A} and \mathbf{C}

Because $\mathbf{x}(0)$ generates $\overline{\mathbf{y}}(t)$, the linear equations always have solutions, and the problem is to determine $\mathbf{x}(0)$ uniquely

For $q<n$, need $\overline{\mathbf{y}}(t)$ at an interval of t to find the unique solution.

Theorem 6.4

The system (A, B, C, D) is observable if and only if the $n \times n$ matrix

$$
\mathbf{W}_{o}(t)=\int_{0}^{t} e^{\mathbf{A}^{\prime} \tau} \mathbf{C}^{\prime} \mathbf{C} e^{\mathbf{A} \tau} d \tau
$$

is nonsingular for any $t>0$.

Proof:

" $\Leftarrow "$
${ }^{4} \Rightarrow$ "

Theorem 6.5 (Theorem of duality)

The pair (\mathbf{A}, \mathbf{B}) is controllable if and only if the pair $\left(\mathbf{A}^{\prime}, \mathbf{B}^{\prime}\right)$ is observable.

Proof:

1. The n-dimensional pair (\mathbf{A}, \mathbf{C}) is observable.
2. The $n \times n$ matrix

$$
\mathbf{W}_{o}(t)=\int_{0}^{t} e^{\mathbf{A}^{\prime} \tau} \mathbf{C}^{\prime} \mathbf{C} e^{\mathbf{A} \tau} d \tau
$$

is nonsingular for any $t>0$.
3. The $n q \times n$ observability matrix

$$
O=\left[\begin{array}{c}
\mathbf{C} \\
\mathbf{C A} \\
\vdots \\
\mathbf{C A}^{n-1}
\end{array}\right]
$$

has rank n (full column rank). This matrix can be generated by calling obsv in MATLAB.
4. The $(n+q) \times n$ matrix

$$
\left[\begin{array}{c}
\mathbf{A}-\lambda \mathbf{I} \\
\mathbf{C}
\end{array}\right]
$$

has full column rank at every eigenvalue, λ, of \mathbf{A}.
5. If, in addition, all eigenvalues of \mathbf{A} have negative real parts, then the unique solution of

$$
\mathbf{A}^{\prime} \mathbf{W}_{o}+\mathbf{W}_{o} \mathbf{A}=-\mathbf{C}^{\prime} \mathbf{C}
$$

is positive definite. The solution is called the observability Gramian and can be expressed as

$$
\mathbf{W}_{o}=\int_{0}^{\infty} e^{\mathbf{A}^{\prime} \tau} \mathbf{C}^{\prime} \mathbf{C} e^{\mathbf{A} \tau} d \tau
$$

Given an observable pair $(\mathbf{A}, \mathbf{C}) \in \mathrm{R}^{n \times n} \times \mathrm{R}^{q \times n}$ and rank $\mathbf{C}=q$

$\left\{\mathbf{c}_{i}, \mathbf{c}_{i} \mathbf{A}, \mathbf{c}_{i} \mathbf{A}^{2}, \ldots, \mathbf{c}_{i} \mathbf{A}^{v_{i}-1}, \quad i=1,2, \ldots, q\right\}$
is a set of n L.I. rows, and
the set $\left\{v_{1}, v_{2}, \ldots, v_{q}\right\}$ with $v_{1}+v_{2}+\cdots+v_{q}=n$ is the set of observability indices

Search for

$$
v=\max \left\{v_{1}, v_{2}, \ldots, v_{q}\right\} \text { is called }
$$

the observability index of (\mathbf{A}, \mathbf{C}), and is the least integer such that

$$
\rho\left(O_{v}\right):=\left[\begin{array}{c}
\mathbf{C} \\
\mathbf{C A} \\
\mathbf{C A}^{2} \\
\vdots \\
\mathbf{C A}^{v-1}
\end{array}\right]=n \quad \text { also, } n / q \leq v \leq \min (\bar{n}, n-q+1)
$$

Corollary 6.01

The n-dimensional pair (\mathbf{A}, \mathbf{C}) is observable if and only if the matrix

$$
O_{n-q+1}=\left[\begin{array}{c}
\mathbf{C} \\
\mathbf{C A} \\
\vdots \\
\mathbf{C A}^{n-q}
\end{array}\right]
$$

where $\rho(\mathbf{C})=q$, has rank n or the $n \times n$ matrix $O_{n-q+1}^{\prime} O_{n-q+1}$ is nonsingular.

Theorem 6.02

The observability property is invariant under any equivalence transformation.

Theorem 6.03

The set of the observability indices of (\mathbf{A}, \mathbf{C}) is invariant under any equivalence transformation and any reordering of the rows of \mathbf{C}.

- An Alternative Way to Decide $\mathbf{x}(0)$

Differentiate $\mathbf{C} e^{\mathbf{A} t} \mathbf{x}(0)=\overline{\mathbf{y}}(t)$ repeatedly and set $t=0$ to get

$$
\left[\begin{array}{c}
\mathbf{C} \\
\mathbf{C A} \\
\vdots \\
\mathbf{C A}^{\nu-1}
\end{array}\right] \mathbf{x}(0)=\left[\begin{array}{c}
\overline{\mathbf{y}}(0) \\
\dot{\mathbf{y}}(0) \\
\vdots \\
\overline{\mathbf{y}}^{(\nu-1)}(0)
\end{array}\right] \quad \text { or } \quad O_{v} \mathbf{x}(0)=\tilde{\mathbf{y}}(0)
$$

$$
O_{v} \mathbf{x}(0)=\tilde{\mathbf{y}}(0)
$$

The linear equations have solutions because $\tilde{\mathbf{y}}(0)$ is generated by $\mathbf{x}(0)$, and have a unique sol.

$$
\mathbf{x}(0)=\left[O_{v}^{\prime} O_{v}\right]^{-1} O_{v}^{\prime} \tilde{\mathbf{y}}(0)
$$

if and only if (\mathbf{A}, \mathbf{C}) is observable (rank $O_{v}=n$)
But the method is not very practical, because derivatives of $\mathbf{y}(0)$ are needed

Canonical Decomposition (6.4)

- The Example:

$$
\left\{\begin{array}{l}
\dot{\mathbf{x}}(t)=\mathbf{A x}(t)+\mathbf{B u}(t) \\
\mathbf{y}(t)=\mathbf{C x}(t)+\mathbf{D} \mathbf{u}(t)
\end{array}\right.
$$

$$
\begin{aligned}
& \mathbf{A}_{p}=\left[\begin{array}{rrr}
-6 & 0 & -6 \\
0 & 0 & \frac{3}{5} \\
\frac{5}{3} & -\frac{5}{3} & 0
\end{array}\right] \quad \mathbf{B}_{p}=\left[\begin{array}{l}
6 \\
0 \\
0
\end{array}\right] \quad \mathbf{C}_{p}=\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right] \quad \mathbf{D}_{p}=\left[\begin{array}{l}
0
\end{array}\right] \\
& \mathbf{A}_{c}=\left[\begin{array}{rrr}
0 & 1 & 0 \\
0 & 0 & 1 \\
-6 & -11 & -6
\end{array}\right] \quad \mathbf{B}_{c}=\left[\begin{array}{l}
0 \\
0 \\
6
\end{array}\right] \quad \mathbf{C}_{c}=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right] \quad \mathbf{D}_{c}=\left[\begin{array}{l}
0
\end{array}\right] \\
& \mathbf{A}_{d}=\left[\begin{array}{rrr}
-1 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & -3
\end{array}\right] \quad \mathbf{B}_{d}=\left[\begin{array}{r}
3 \\
-6 \\
3
\end{array}\right] \quad \mathbf{C}_{d}=\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right] \quad \mathbf{D}_{d}=\left[\begin{array}{l}
0
\end{array}\right]
\end{aligned}
$$

- With appropriate equivalence transformations,
we may obtain new state equations with following property
$\overline{\mathbf{X}}=\left[\begin{array}{l}\overline{\mathbf{x}}_{c o} \\ \overline{\mathbf{X}}_{c \bar{o}} \\ \overline{\mathbf{X}}_{\bar{c} o} \\ \overline{\mathbf{X}}_{\overline{c o}}\end{array}\right] \longleftarrow$ controllable and observable part

$\left\{\begin{array}{l}\dot{\overline{\mathbf{x}}}=\overline{\mathrm{A}} \overline{\mathrm{x}}+\overline{\mathrm{B}} \mathbf{u} \\ \mathbf{y}=\overline{\mathrm{C}} \overline{\mathbf{x}}+\overline{\mathrm{D}} \mathbf{u}\end{array}\right.$

$\left\{\begin{array}{l}\dot{\mathrm{x}}=\mathrm{Ax}+\mathrm{Bu} \\ \mathrm{y}=\mathrm{Cx}+\mathrm{Du}\end{array}\right.$
$\overline{\mathbf{A}}=\mathbf{P} \mathbf{A P}^{-1}$
$\overline{\mathrm{B}}=\mathbf{P B}$
$\overline{\mathrm{C}}=\mathrm{CP}^{-1} \quad \overline{\mathcal{C}}=\mathbf{P} \mathcal{C}$
$\overline{\mathrm{D}}=\mathrm{D}$
$\overline{\mathcal{O}}=$
$\mathcal{O} \mathbf{P}^{-1}$

Theorem 6.6

Consider the n-dimensional state equation (A, B, C, D) with

$$
\rho(C)=\rho\left(\left[\mathbf{B} \mathbf{A B} \cdots \mathbf{A}^{n-1} \mathbf{B}\right]\right)=n_{1}<n
$$

We form the $n \times n$ matrix

$$
\mathbf{P}^{-1}:=\left[\begin{array}{lllll}
\mathbf{q}_{1} & \cdots & \mathbf{q}_{n_{1}} & \cdots & \mathbf{q}_{n}
\end{array}\right]
$$

where the first n_{1} columns are any n_{1} linearly independent columns of C, and the remaining columns can arbitrarily be chosen as long as \mathbf{P} is nonsingular. Then the equivalence transformation $\overline{\mathbf{x}}=\mathbf{P x}$ or $\mathbf{x}=\mathbf{P}^{-1} \overline{\mathbf{x}}$ will transform ($\left.\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}\right)$ into

$$
\begin{aligned}
{\left[\begin{array}{c}
\dot{\mathbf{x}}_{c} \\
\dot{\mathbf{x}}_{\bar{c}}
\end{array}\right] } & =\left[\begin{array}{cc}
\overline{\mathbf{A}}_{c} & \overline{\mathbf{A}}_{12} \\
\mathbf{0} & \overline{\mathbf{A}}_{\bar{c}}
\end{array}\right]\left[\begin{array}{l}
\overline{\mathbf{x}}_{c} \\
\overline{\mathbf{x}}_{\bar{c}}
\end{array}\right]+\left[\begin{array}{c}
\overline{\mathbf{B}}_{c} \\
\mathbf{0}
\end{array}\right] \mathbf{u} \\
\mathbf{y} & =\left[\begin{array}{ll}
\overline{\mathbf{C}}_{c} & \overline{\mathbf{C}}_{\bar{c}}
\end{array}\right]\left[\begin{array}{l}
\overline{\mathbf{x}}_{c} \\
\overline{\mathbf{x}}_{\bar{c}}
\end{array}\right]+\mathbf{D u}
\end{aligned}
$$

where $\overline{\mathbf{A}}_{c}$ is $n_{1} \times n_{1}$ and $\overline{\mathbf{A}}_{\bar{c}}$ is $\left(n-n_{1}\right) \times\left(n-n_{1}\right)$, and the n_{1}-dimensional subequation

$$
\begin{aligned}
\dot{\mathbf{x}}_{c} & =\overline{\mathbf{A}}_{c} \overline{\mathbf{x}}_{c}+\overline{\mathbf{B}}_{c} \mathbf{u} \\
\overline{\mathbf{y}} & =\overline{\mathbf{C}}_{c} \overline{\mathbf{x}}_{c}+\mathbf{D} \mathbf{u}
\end{aligned}
$$

is controllable and has the same transfer matrix as ($\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}$).

Proof:

$\left\{\mathbf{q}_{1}, \cdots, \mathbf{q}_{n_{1}}\right\} \subset\left\{b_{1}, b_{2}, \cdots, b_{p}, \mathbf{A} b_{1}, \cdots, \mathbf{A} b_{p}, \mathbf{A}^{2} b_{1}, \cdots, \mathbf{A}^{2} b_{p}, \cdots, \mathbf{A}^{n-1} b_{p}\right\}$ $\operatorname{rank}\left[\mathbf{q}_{1} \cdots \mathbf{q}_{n_{1}}\right]=\operatorname{rank}\left[b_{1}, b_{2}, \cdots, b_{p}, \mathbf{A} b_{1}, \cdots, \mathbf{A} b_{p}, \mathbf{A}^{2} b_{1}, \cdots, \mathbf{A}^{2} b_{p}, \cdots, \mathbf{A}^{n-1} b_{p}\right]$ $\operatorname{span}\left[\mathbf{q}_{1} \cdots \mathbf{q}_{n_{1}}\right]=\operatorname{span}\left[b_{1}, b_{2}, \cdots, b_{p}, \mathbf{A} b_{1}, \cdots, \mathbf{A} b_{p}, \mathbf{A}^{2} b_{1}, \cdots, \mathbf{A}^{2} b_{p}, \cdots, \mathbf{A}^{n-1} b_{p}\right]$
$\left\{\mathbf{A q}_{1}, \cdots, \mathbf{A q}_{n_{1}}\right\} \subset \operatorname{span}\left[\mathbf{q}_{1} \cdots \mathbf{q}_{n_{1}}\right]$

$$
\left\{\mathbf{q}_{n_{1}+1}, \cdots, \mathbf{q}_{n}\right\} \notin \operatorname{span}\left[\mathbf{q}_{1} \cdots \mathbf{q}_{n_{1}}\right]
$$

$$
\begin{array}{rllll}
\mathbf{A q}_{i} & =\mathbf{q}_{1}+\mathbf{q}_{2}+\cdots+\mathbf{q}_{n_{1}}+\mathbf{q}_{n_{1}+1}+\cdots+ & \mathbf{q}_{n} \\
b_{i} & =\mathbf{q}_{1}+\mathbf{q}_{2}+\cdots+\mathbf{q}_{n_{1}}+\mathbf{q}_{n_{1}+1}+\cdots+ \\
\mathbf{q}_{n}
\end{array}
$$

Proof:

$$
\mathbf{A}\left[\mathbf{q}_{1} \cdots \mathbf{q}_{n_{1}} \mathbf{q}_{n_{1}+1} \cdots \mathbf{q}_{n}\right]=\left[\mathbf{q}_{1} \cdots \mathbf{q}_{n_{1}} \mathbf{q}_{n_{1}+1} \cdots \mathbf{q}_{n}\right] \overline{\mathbf{A}}
$$

$$
\left.\begin{array}{l}
\mathbf{B}=\left[\begin{array}{llll}
\mathbf{q}_{1} & \cdots & \mathbf{q}_{n_{1}} & \mathbf{q}_{n_{1}+1}
\end{array} \cdots\right. \\
\mathbf{q}_{n}
\end{array}\right] \overline{\mathbf{B}}=\left[\begin{array}{llll}
\mathbf{q}_{1} & \cdots & \mathbf{q}_{n_{1}} \mathbf{q}_{n_{1}+1} & \cdots
\end{array} \mathbf{q}_{n}\right]\left[\begin{array}{ccc}
* & \cdots & * \\
\vdots & & \vdots \\
* & \cdots & * \\
0 & \cdots & 0 \\
\vdots & & \vdots \\
0 & \cdots & 0
\end{array}\right]
$$

Proof:

$$
\overline{\mathbf{C}}=\mathbf{C}\left[\begin{array}{lllll}
\mathbf{q}_{1} & \cdots & \mathbf{q}_{n_{1}} \mathbf{q}_{n_{1}+1} & \cdots & \mathbf{q}_{n}
\end{array}\right]=\left[\begin{array}{cccccc}
* & \cdots & * & * & \cdots & * \\
\vdots & & \vdots & \vdots & & \vdots \\
* & \cdots & * & * & \cdots & *
\end{array}\right]
$$

The controllability matrix of the new state equations is
$\bar{C}=\left[\begin{array}{cccccc}\overline{\mathbf{B}}_{c} & \overline{\mathbf{A}}_{c} \overline{\mathbf{B}}_{c} & \cdots & \overline{\mathbf{A}}_{c}^{n_{1}} \overline{\mathbf{B}}_{c} & \cdots & \overline{\mathbf{A}}_{c}^{n-1} \overline{\mathbf{B}}_{c} \\ \mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} & \cdots & \mathbf{0}\end{array}\right]$

Proof:

Thus $\rho(C)=\rho(\bar{C})=n_{1}$ implies that $\left(\overline{\mathbf{A}}_{c}, \overline{\mathbf{B}}_{c}\right)$ is controllable

$$
\begin{aligned}
{\left[\begin{array}{l}
\dot{\overrightarrow{\mathbf{x}}}_{c} \\
\dot{\mathbf{x}}_{\bar{c}}
\end{array}\right] } & =\left[\begin{array}{cc}
\overline{\mathbf{A}}_{c} & \overline{\mathbf{A}}_{12} \\
\mathbf{0} & \overline{\mathbf{A}}_{\bar{c}}
\end{array}\right]\left[\begin{array}{l}
\overline{\mathbf{x}}_{c} \\
\overline{\mathbf{x}}_{\bar{c}}
\end{array}\right]+\left[\begin{array}{c}
\overline{\mathbf{B}}_{c} \\
\mathbf{0}
\end{array}\right] \mathbf{u} \\
\mathbf{y} & =\left[\overline{\mathbf{C}}_{c} \overline{\mathbf{C}}_{\bar{c}]}\right]\left[\begin{array}{l}
\overline{\mathbf{x}}_{c} \\
\overline{\mathbf{x}}_{\bar{c}}
\end{array}\right]+\mathbf{D u}
\end{aligned}
$$

Transfer Matrix:
$\mathbf{M}=\left(s \mathbf{I}-\overline{\mathbf{A}}_{c}\right)^{-1} \overline{\mathbf{A}}_{12}\left(s \mathbf{I}-\overline{\mathbf{A}}_{\bar{c}}\right)^{-1}$

$$
\begin{aligned}
& {\left[\overline{\mathbf{C}}_{c} \overline{\mathbf{C}}_{\bar{c}}\right]\left[\begin{array}{cc}
s \mathbf{I}-\overline{\mathbf{A}}_{c} & -\overline{\mathbf{A}}_{12} \\
\mathbf{0} & s \mathbf{I}-\overline{\mathbf{A}}_{\bar{c}}
\end{array}\right]^{-1}\left[\begin{array}{c}
\overline{\mathbf{B}}_{c} \\
\mathbf{0}
\end{array}\right]+\mathbf{D}} \\
& =\left[\begin{array}{ll}
\overline{\mathbf{C}}_{c} & \left.\overline{\mathbf{C}}_{\bar{c}}\right]\left[\begin{array}{cc}
\left(s \mathbf{I}-\overline{\mathbf{A}}_{c}\right)^{-1} & \mathbf{M} \\
\mathbf{0} & \left(s \mathbf{I}-\overline{\mathbf{A}}_{\bar{c}}\right)^{-1}
\end{array}\right]\left[\begin{array}{c}
\overline{\mathbf{B}}_{c} \\
\mathbf{0}
\end{array}\right]+\mathbf{D} \\
=\overline{\mathbf{C}}_{c}\left(s \mathbf{I}-\overline{\mathbf{A}}_{c}\right)^{-1} \overline{\mathbf{B}}_{c}+\mathbf{D}
\end{array} .\right.
\end{aligned}
$$

$$
\dot{\overline{\mathbf{x}}}_{c}=\overline{\mathbf{A}}_{c} \overline{\mathbf{x}}_{c}+\overline{\mathbf{B}}_{c} \mathbf{u}
$$

$$
\overline{\mathbf{y}}=\overline{\mathbf{C}}_{c} \overline{\mathbf{x}}_{c}+\mathbf{D u}
$$

In the new state equations

$$
\left[\begin{array}{c}
\dot{\mathbf{x}}_{c} \\
\dot{\overline{\mathbf{x}}}_{\bar{c}}
\end{array}\right]=\left[\begin{array}{cc}
\overline{\mathbf{A}}_{c} & \overline{\mathbf{A}}_{12} \\
\mathbf{0} & \overline{\mathbf{A}}_{\bar{c}}
\end{array}\right]\left[\begin{array}{l}
\overline{\mathbf{x}}_{c} \\
\overline{\mathbf{x}}_{\bar{c}}
\end{array}\right]+\left[\begin{array}{c}
\overline{\mathbf{B}}_{c} \\
\mathbf{0}
\end{array}\right] \mathbf{u}
$$

The state space is divided into a subspace for $\overline{\mathbf{x}}_{c}\left(\operatorname{dim} .=n_{1}\right)$
And a subspace for $\overline{\mathbf{x}}_{\bar{c}}$ (dim. $=n-n_{1}$);
$\overline{\mathbf{x}}_{c}$ is controllable by \mathbf{u}, while $\overline{\mathbf{x}}_{\bar{c}}$ is not controllable

After dropping the uncontrollable subspace,

$$
\begin{aligned}
\dot{\overline{\mathbf{x}}}_{c} & =\overline{\mathbf{A}}_{c} \overline{\mathbf{x}}_{c}+\overline{\mathbf{B}}_{c} \mathbf{u} \\
\overline{\mathbf{y}} & =\overline{\mathbf{C}}_{c} \overline{\mathbf{x}}_{c}+\mathbf{D u}
\end{aligned}
$$

becomes a controllable realization of smaller dimension which is zero-state equivalent to (A, B, C, D)

$$
\dot{\mathbf{x}}=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right] \mathbf{x}+\left[\begin{array}{ll}
0 & 1 \\
1 & 0 \\
0 & 1
\end{array}\right] u \quad y=\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right] \mathbf{x}
$$

Because rank $\mathbf{B}=2$, use $C_{2}=\left[\begin{array}{ll}\mathbf{B} & \mathbf{A B}\end{array}\right]$ to check controllability:

$$
\rho\left(C_{2}\right)=\rho\left(\left[\begin{array}{ll}
\mathbf{B} & \mathbf{B}
\end{array}\right]\right)=\rho\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1
\end{array}\right]=2<3 \quad \text { : uncontrollable }
$$

Choose $\quad \mathbf{P}^{-1}=\mathbf{Q}:=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$
$\overline{\mathbf{A}}=\mathbf{P} \mathbf{A} \mathbf{P}^{-1}=\left[\begin{array}{rrr}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & -1\end{array}\right]\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1\end{array}\right]\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]=\left[\begin{array}{cccc}1 & 0 & \vdots & 0 \\ 1 & 1 & \vdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \vdots & 1\end{array}\right]$

$$
\begin{aligned}
& \overline{\mathbf{A}}=\mathbf{P A P}^{-1}=\left[\begin{array}{rrr}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & -1
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & \vdots & 0 \\
1 & 1 & \vdots & 0 \\
\cdots & \cdots & \cdots & \cdots \\
0 & 0 & \vdots & 1
\end{array}\right] \\
& \overline{\mathbf{B}}=\mathbf{P B}=\left[\begin{array}{rrr}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & -1
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
0 & 1 \\
\cdots & \cdots \\
0 & 0
\end{array}\right] \\
& \overline{\mathbf{C}}=\mathbf{C P}^{-1}=\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]=\left[\begin{array}{llll}
1 & 2 & \vdots & 1
\end{array}\right]
\end{aligned}
$$

A two-dimensional controllable realization:

$$
\dot{\overline{\mathbf{x}}}_{c}=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right] \overline{\mathbf{x}}_{c}+\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \mathbf{u} \quad y=\left[\begin{array}{ll}
1 & 2
\end{array}\right] \overline{\mathbf{x}}_{c}
$$

Theorem 6.06
Consider the n-dimensional state equation (A, B, C, D) with

We form the $n \times n$ matrix

$$
\mathbf{P}=\left[\begin{array}{c}
\mathbf{p}_{1} \\
\vdots \\
\mathbf{p}_{n_{2}} \\
\vdots \\
\mathbf{p}_{n}
\end{array}\right]
$$

where the first n_{2} rows are any n_{2} linearly independent rows of O, and the remaining rows can be chosen arbitrarily as long as \mathbf{P} is nonsingular. Then the equivalence transformation $\overline{\mathbf{x}}=\mathbf{P x}$ will transform ($\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$) into

$$
\begin{aligned}
{\left[\begin{array}{c}
\dot{\mathbf{x}}_{o} \\
\dot{\mathbf{x}}_{\bar{j}}
\end{array}\right] } & =\left[\begin{array}{cc}
\overline{\mathbf{A}}_{o} & \mathbf{0} \\
\overline{\mathbf{A}}_{21} & \overline{\mathbf{A}}_{\bar{o}}
\end{array}\right]\left[\begin{array}{l}
\overline{\mathbf{x}}_{o} \\
\overline{\mathbf{x}}_{\bar{o}}
\end{array}\right]+\left[\begin{array}{c}
\overline{\mathbf{B}}_{o} \\
\overline{\mathbf{B}}_{\bar{o}}
\end{array}\right] \mathbf{u} \\
\mathbf{y} & =\left[\begin{array}{l}
\overline{\mathbf{C}}_{o}
\end{array} \mathbf{0}\right]\left[\begin{array}{c}
\overline{\mathbf{x}}_{o} \\
\overline{\mathbf{x}}_{\bar{o}}
\end{array}\right]+\mathbf{D u}
\end{aligned}
$$

where $\overline{\mathbf{A}}_{o}$ is $n_{2} \times n_{2}$ and $\overline{\mathbf{A}}_{\bar{o}}$ is $\left(n-n_{2}\right) \times\left(n-n_{2}\right)$, and the n_{2}-dimensional subequation

$$
\begin{aligned}
\dot{\mathbf{x}}_{o} & =\overline{\mathbf{A}}_{c} \overline{\mathbf{x}}_{o}+\overline{\mathbf{B}}_{o} \mathbf{u} \\
\overline{\mathbf{y}} & =\overline{\mathbf{C}}_{o} \overline{\mathbf{x}}_{o}+\mathbf{D u}
\end{aligned}
$$

is observable and has the same transfer matrix as (A, B, C, D).

$$
\overline{\mathbf{x}}=\left[\begin{array}{l}
\overline{\mathbf{X}}_{c o} \\
\overline{\mathbf{X}}_{c \bar{o}} \\
\overline{\mathbf{X}}_{\overline{c o}} \\
\overline{\mathbf{X}}_{\overline{c o}}
\end{array}\right] \longleftarrow \text { controllable } \begin{array}{ll}
\text { and observable } & \text { part } \\
\text { controllable } & \text { and unobservable part } \\
\text { uncontrollable and observable } & \text { part }
\end{array}
$$

Theorem 6.7

Every state-space equation can be transformed, by an equivalence transformation, into the following canonical form

$$
\begin{align*}
{\left[\begin{array}{c}
\dot{\mathbf{x}}_{c o} \\
\dot{\overline{\mathbf{x}}}_{c \bar{o}} \\
\dot{\mathbf{x}}_{\bar{c} o} \\
\dot{\overline{\mathbf{x}}}_{\bar{c}}
\end{array}\right] } & =\left[\begin{array}{cccc}
\overline{\mathbf{A}}_{c o} & \mathbf{0} & \overline{\mathbf{A}}_{13} & \mathbf{0} \\
\overline{\mathbf{A}}_{21} & \overline{\mathbf{A}}_{c \bar{o}} & \overline{\mathbf{A}}_{23} & \overline{\mathbf{A}}_{24} \\
\mathbf{0} & \mathbf{0} & \overline{\mathbf{A}}_{\bar{c} o} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \overline{\mathbf{A}}_{43} & \overline{\mathbf{A}}_{\bar{c} o}
\end{array}\right]\left[\begin{array}{c}
\overline{\mathbf{x}}_{c o} \\
\overline{\mathbf{x}}_{c \bar{o}} \\
\overline{\mathbf{x}}_{\bar{c} o} \\
\overline{\mathbf{x}}_{\bar{c} \bar{o}}
\end{array}\right]+\left[\begin{array}{c}
\overline{\mathbf{B}}_{c o} \\
\overline{\mathbf{B}}_{c \bar{o}} \\
\mathbf{0} \\
\mathbf{0}
\end{array}\right] \mathbf{u} \tag{6.45}\\
\mathbf{y} & =\left[\begin{array}{lll}
\overline{\mathbf{C}}_{\bar{c}} & \mathbf{0}
\end{array}\right] \overline{\mathbf{x}}+\mathbf{D u}
\end{align*}
$$

where the vector $\overline{\mathbf{x}}_{c o}$ is controllable and observable, $\overline{\mathbf{x}}_{c o}$ is controllable but not observable, $\overline{\mathbf{x}}_{\bar{c} o}$ is observable but not controllable, and $\overline{\mathbf{x}}_{\bar{c} \bar{o}}$ is neither controllable nor observable. Furthermore, the state equation is zero-state equivalent to the controllable and observable state equation

$$
\begin{aligned}
\dot{\mathbf{x}}_{c o} & =\overline{\mathbf{A}}_{c o} \overline{\mathbf{x}}_{c o}+\overline{\mathbf{B}}_{c o} \mathbf{u} \\
\mathbf{y} & =\overline{\mathbf{C}}_{c o} \overline{\mathbf{x}}_{c o}+\mathbf{D u}
\end{aligned}
$$

and has the transfer matrix

$$
\hat{\mathbf{G}}(s)=\overline{\mathbf{C}}_{c o}\left(s \mathbf{I}-\overline{\mathbf{A}}_{c o}\right)^{-1} \overline{\mathbf{B}}_{c o}+\mathbf{D}
$$

$$
\begin{aligned}
& y=u \\
& \hat{g}(s)=1
\end{aligned}
$$

$$
\dot{\mathbf{x}}=\left[\begin{array}{cccc}
0 & -0.5 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & -0.5 & 0 \\
0 & 0 & 0 & -1
\end{array}\right] \mathbf{x}+\left[\begin{array}{c}
0.5 \\
0 \\
0 \\
0
\end{array}\right] u \quad \begin{aligned}
\dot{\mathbf{x}}_{c} & =\left[\begin{array}{cc}
0 & -0.5 \\
1 & 0
\end{array}\right] \mathbf{x}_{c}+\left[\begin{array}{c}
0.5 \\
0
\end{array}\right] u \\
y & =\left[\begin{array}{ll}
0 & 0
\end{array} \mathbf{x}_{c}+u\right.
\end{aligned}
$$

$$
y=\left[\begin{array}{llll}
0 & 0 & 0 & 1
\end{array}\right] \mathbf{x}+u
$$

$$
\begin{aligned}
& \dot{\mathbf{x}}=\mathbf{J x}+\mathbf{B x} \\
& \mathbf{y}=\mathbf{C x}
\end{aligned}
$$

Without loss of generality, consider only the case

the last row of $\mathbf{B}_{i j}$ is denoted as $\mathbf{b}_{1 i j}$
the first column of
$\mathbf{C}_{i j}$ is denoted as $\mathbf{c}_{f i j}$

$$
\begin{aligned}
& \mathbf{C}=\left[\begin{array}{lllll}
\mathbf{C}_{11} & \mathbf{C}_{12} & \mathbf{C}_{13} & \mathbf{C}_{21} & \mathbf{C}_{22}
\end{array}\right]
\end{aligned}
$$

Theorem 6.8

1. The state equation $(\mathbf{J}, \mathbf{B}, \mathbf{C})$ is controllable if and only if the three row vectors $\left\{\mathbf{b}_{l 11}, \mathbf{b}_{l 12}, \mathbf{b}_{l 13}\right\}$ are linearly independent and the two row vectors $\left\{\mathbf{b}_{l 21}, \mathbf{b}_{l 22}\right\}$ are linearly independent.
2. The state equation (J, B, C) is observable if and only if the three column vectors $\left\{\mathbf{c}_{f 11}, \mathbf{c}_{f 12}, \mathbf{c}_{f 13}\right\}$ are linearly independent and the two column vectors $\left\{\mathbf{c}_{f 21}, \mathbf{c}_{f 22}\right\}$ are linearly independent.

Proof:

(for a case where λ_{1} has only 2 blocks $\& \lambda_{2}$ has only 1 block)

1. Use the controllability condition

Substitute s by λ_{1} and get

$$
\left[\begin{array}{cccccccc}
0 & -1 & 0 & 0 & 0 & 0 & 0 & \mathbf{b}_{111} \\
0 & 0 & -1 & 0 & 0 & 0 & 0 & \mathbf{b}_{211} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \mathbf{b}_{l 11} \\
0 & 0 & 0 & 0 & -1 & 0 & 0 & \mathbf{b}_{112} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \mathbf{b}_{l 12} \\
0 & 0 & 0 & 0 & 0 & \lambda_{1}-\lambda_{2} & -1 & \mathbf{b}_{121} \\
0 & 0 & 0 & 0 & 0 & 0 & \lambda_{1}-\lambda_{2} & \mathbf{b}_{l 21}
\end{array}\right]
$$

Examination of the rows reveals that
\mathbf{b}_{111} and \mathbf{b}_{112} should be L.I. for the matrix to have full row rank.
Similarly, substituting s by λ_{2} requires that \mathbf{b}_{121} be L.I. ($\neq \mathbf{0}$ for one vector).
2. Proof is similar for observability

$$
\left.\begin{array}{l}
\dot{\mathbf{x}}=\left[\begin{array}{ccccccc}
\lambda_{1} & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & \lambda_{1} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \lambda_{1} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \lambda_{1} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \lambda_{2} & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & \lambda_{2} & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & \lambda_{2}
\end{array}\right] \mathbf{x}+\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 1 & 1 \\
1 & 2 & 3 \\
0 & 1 & 0 \\
1 & 1 & 1
\end{array}\right] \mathbf{u} \\
\mathbf{y}
\end{array}\right]\left[\begin{array}{lllllll}
1 & 1 & 2 & 0 & 0 & 2 & 1 \\
1 & 0 & 1 & 2 & 0 & 1 & 1 \\
1 & 0 & 2 & 3 & 0 & 2 & 0
\end{array}\right] \mathbf{x} \text { land }
$$

Corollary 6.8

A single-input Jordan-form state equation is controllable if and only if there is only one Jordan block associated with each distinct eigenvalue and every entry of \mathbf{B} corresponding to the last row of each Jordan block is different from zero.

Corollary 6.08

A single-output Jordan-form state equation is observable if and only if there is only one Jordan block associated with each distinct eigenvalue and every entry of \mathbf{C} corresponding to the first column of each Jordan block is different from zero.

$$
\begin{aligned}
& \dot{\mathbf{x}}=\left[\begin{array}{lll:l}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
\hdashline 0 & 0 & 0 & -2
\end{array}\right] \mathbf{x}+\left[\begin{array}{c}
10 \\
9 \\
\hdashline 0 \\
\hdashline 1
\end{array}\right] u \\
& y=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right] \mathbf{x} \mathbf{x}
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{x}[k+1] & =\mathbf{A} \mathbf{x}[k]+\mathbf{B u}[k] \\
\mathbf{y}[k] & =\mathbf{C x}[k]
\end{aligned}
$$

n-dimensional p-input q-output

Definition 6.D1 The above discrete-time state equation or the pair (\mathbf{A}, \mathbf{B}) is said to be controllable if for any initial state $\mathbf{x}(0)=\mathbf{x}_{0}$ and any final state \mathbf{x}_{1}, there exists an input sequence of finite length that transfers \mathbf{x}_{0} to \mathbf{x}_{1}. Otherwise the equation or (\mathbf{A}, \mathbf{B}) is said to be uncontrollable.

Theorem 6.DI

The following statements are equivalent:

1. The n-dimensional pair (\mathbf{A}, \mathbf{B}) is controllable.
2. The $n \times n$ matrix

$$
\mathbf{W}_{d c}[n-1]=\sum_{m=0}^{n-1}(\mathbf{A})^{m} \mathbf{B} \mathbf{B}^{\prime}\left(\mathbf{A}^{\prime}\right)^{m}
$$

is nonsingular.
3. The $n \times n p$ controllability matrix

$$
C_{d}=\left[\begin{array}{lllll}
\mathbf{B} & \mathbf{A B} & \mathbf{A}^{2} \mathbf{B} & \cdots & \mathbf{A}^{n-1} \mathbf{B}
\end{array}\right]
$$

has rank n (full row rank). The matrix can be generated by calling ctrb in MATLAB.
4. The $n \times(n+p)$ matrix $[\mathbf{A}-\lambda \mathbf{I} \mathbf{B}]$ has full row rank at every eigenvalue, λ, of \mathbf{A}.
5. If, in addition, all eigenvalues of \mathbf{A} have magnitudes less than 1, then the unique solution of

$$
\mathbf{W}_{d c}-\mathbf{A W}_{d c} \mathbf{A}^{\prime}=\mathbf{B B}^{\prime}
$$

is positive definite. The solution is called the discrete controllability Gramian and can be obtained by using the MATLAB function dgram. The discrete Gramian can be expressed as

$$
\mathbf{W}_{d c}=\sum_{m=0}^{\infty} \mathbf{A}^{m} \mathbf{B B}^{\prime}\left(\mathbf{A}^{\prime}\right)^{m}
$$

Proof:

"1. $\Leftrightarrow 3$."
" (A, B) controllable $\Leftrightarrow C_{d}$ has rank n "

$$
\mathbf{x}[n]=\mathbf{A}^{n} \mathbf{x}[0]+\sum_{m=0}^{n-1} \mathbf{A}^{n-1-m} \mathbf{B u}[m] \quad \text { i.e., }
$$

"2. \Leftrightarrow 3."

$$
" \mathrm{~W}_{d c}[n-1] \text { nonsingular (P.D.) } \Leftrightarrow C_{d} \text { has rank } n "
$$

$$
\mathbf{W}_{d c}[n-1]=\left[\begin{array}{llll}
\mathbf{B} & \mathbf{A B} & \cdots & \mathbf{A}^{n-1} \mathbf{B}
\end{array}\right]\left[\begin{array}{c}
\mathbf{B}^{\prime} \\
\mathbf{B}^{\prime} \mathbf{A}^{\prime} \\
\vdots \\
\mathbf{B}^{\prime}\left(\mathbf{A}^{\prime}\right)^{n-1}
\end{array}\right]
$$

"3. $\Leftrightarrow 4$." "C C_{d} has rank $n \Leftrightarrow \operatorname{rank}[\mathbf{A}-\lambda \mathbf{I} \mathbf{B}]=n, \forall \mathrm{e}$-value λ of \mathbf{A} "

The proof is exactly the same as that for the C.T. systems
" $2 . \Leftrightarrow 5$."
"Suppose A has eigenvalues with magnitudes < 1 . $\mathbf{W}_{d c}[n-1]$ nonsingular $\Leftrightarrow \mathbf{W}_{d c}-\mathbf{A W} \mathbf{W}_{d c} \mathbf{A}^{\prime}=\mathbf{B B} \mathbf{B}^{\prime}$ has \mathbf{a} unique positive definite solution $W_{d c}(\infty)$ "

Theorem 5.D6 says that
$\mathbf{W}_{d c}-\mathbf{A W}_{d c} \mathbf{A}^{\prime}=\mathbf{B B}^{\prime}$ has the unique solution

$$
\mathbf{W}_{d c}=\underbrace{\sum_{m=0}^{\infty} \mathbf{A}^{m} \mathbf{B B}^{\prime}\left(\mathbf{A}^{\prime}\right)^{m}}_{>0}=\mathbf{W}_{d c}(\infty)=\underbrace{\mathbf{W}_{d c}[n-1]}_{>0}+\underbrace{\sum_{m=n}^{\infty} \mathbf{A}^{m} \mathbf{B B}^{\prime}\left(\mathbf{A}^{\prime}\right)^{m}}_{\geq 0}
$$

$$
\begin{aligned}
\mathbf{x}[k+1] & =\mathbf{A} \mathbf{x}[k]+\mathbf{B u}[k] \\
\mathbf{y}[k] & =\mathbf{C x}[k]
\end{aligned}
$$

n-dimensional p-input q-output

Definition 6.D2 The above discrete-time state equation or the pair $\mathbf{(A , C)}$ is said to be observable iffor any unknown initial state $\mathbf{x}[0]$, there exists a finite integer $k_{1}>0$ such that the knowledge of the input sequence $\mathbf{u}[k]$ and output sequence $\mathbf{y}[k]$ from $k=0$ to k_{1} suffices to determine uniquely the initial state $\mathbf{x}[0]$. Otherwise, the equation is said to be unobservable.

Theorem 6.DOI(dual to Theorem 6.D1)

The following statements are equivalent:

1. The n-dimensional pair (\mathbf{A}, \mathbf{C}) is observable.
2. The $n \times n$ matrix

$$
\mathbf{W}_{d o}[n-1]=\sum_{m=0}^{n-1}\left(\mathbf{A}^{\prime}\right)^{m} \mathbf{C}^{\prime} \mathbf{C A}^{m}
$$

is nonsingular or, equivalently, positive definite.
3. The $n q \times n$ observability matrix

$$
O_{d}=\left\lceil\begin{array}{c}
\mathbf{C} \\
\mathbf{C A} \\
\vdots
\end{array}\right\rceil
$$

4. The $(n+q) \times n$ matrix

$$
\left[\begin{array}{c}
\mathbf{A}-\lambda \mathbf{I} \\
\mathbf{B}
\end{array}\right]
$$

has full column rank at every eigenvalue, λ, of \mathbf{A}.
5. If, in addition, all eigenvalues of \mathbf{A} have magnitudes less than 1, then the unique solution of

$$
\mathbf{W}_{d o}-\mathbf{A}^{\prime} \mathbf{W}_{d o} \mathbf{A}=\mathbf{C}^{\prime} \mathbf{C}
$$

is positive definite. The solution is called the discrete observability Gramian and can be expressed as

$$
\mathbf{W}_{d o}=\sum_{m=0}^{\infty}\left(\mathbf{A}^{\prime}\right)^{m} \mathbf{C}^{\prime} \mathbf{C A}^{m}
$$

Controllability/Observability Indices, Kalman Decomposition, \& Jordan-Form Controllability/Observability Conditions for discrete-time systems parallels those for C.T. systems

For discrete-time systems,

Controllability Index =
 Length of the shortest input sequence that can transfer any state to any other state

Observability Index =
Lengths of the shortest input and output sequences needed to determine the initial state uniquely

In addition to the regular controllability,
there are two other "weaker" definitions of controllability:

1. Controllability to the origin:
transfer any state to the zero state;
2. Controllability from the origin:
transfer the zero state to any other state, also called reachability.

It can be shown that for continuous-time systems, all definitions of controllability are equivalent, but not for discrete-time systems

$$
\mathbf{x}[k+1]=\left[\begin{array}{ll}
2 & 1 \\
0 & 0
\end{array}\right] \mathbf{x}[k]+\left[\begin{array}{c}
-1 \\
0
\end{array}\right] u[k]
$$

$\operatorname{rank} C_{d}=\operatorname{rank}\left[\begin{array}{cc}-1 & -2 \\ 0 & 0\end{array}\right]=1$:
not controllable, not reachable,

But controllable to the origin:

$$
u[0]=2 \alpha+\beta \quad \text { transfers } \quad \mathbf{x}[0]=\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right] \text { to } \mathbf{x}[1]=0
$$

$$
\begin{gathered}
\dot{\mathbf{x}}(t)=\mathbf{A x}(t)+\mathbf{B u}(t) \\
\mathbf{u}(t)=\mathbf{u}(k T)=: \mathbf{u}[k] \quad \text { for } k T \leq t<(k+1) T \\
\overline{\mathbf{x}}[k+1]=\overline{\mathbf{A}} \overline{\mathbf{x}}[k]+\overline{\mathbf{B}} \mathbf{u}[k] \\
\overline{\mathbf{A}}=e^{\mathbf{A} T} \quad \overline{\mathbf{B}}=\left(\int_{0}^{T} e^{\mathbf{A} t} d t\right) \mathbf{B}
\end{gathered}
$$

Theorem 6.9

Suppose (A, B) is controllable. A sufficient condition for its discretized equation: ($\overline{\mathbf{A}}, \overline{\mathbf{B}}$), with sampling period T, to be controllable is that $\left|\operatorname{Im}\left[\lambda_{i}-\lambda_{j}\right]\right| \neq 2 \pi m / T$ for $m=1,2, \ldots$, whenever $\operatorname{Re}\left[\lambda_{i}-\lambda_{j}\right]=0$. For the single-input case, the condition is necessary as well.

Theorem 6.10

If a continuous-time linear time-invariant state equation is not controllable, then its discretized state equation, with any sampling period, is not controllable.

$$
\dot{\mathbf{x}}=\left[\begin{array}{ccc}
-3 & -7 & -5 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] \mathbf{x}+\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] u
$$

Eigenvalues: $-1,-1 \pm j 2$

$$
y=\left[\begin{array}{lll}
0 & 1 & 2
\end{array}\right] \mathbf{x}
$$

Discretized systems will be controllable if and only if the sampling period

$$
T \neq \frac{2 \pi m}{2}=\pi m \quad \text { and } \quad T \neq \frac{2 \pi m}{4}=0.5 \pi m \quad \text { for } m=1,2, \ldots
$$

Let us try $T=0.5 \pi(m=1)$:

$$
\begin{aligned}
& \mathrm{a}=\left[\begin{array}{ccccc}
-3 & -7 & -5 ; 1 & 0 & 0 ; 0 \\
1 & 0
\end{array}\right] ; \mathrm{b}=[1 ; 0 ; 0] ; \\
& {[\mathrm{ad}, \mathrm{bd}]=\mathrm{c} 2 \mathrm{~d}(\mathrm{a}, \mathrm{~b}, \mathrm{pi} / 2)}
\end{aligned}
$$

$\overline{\mathbf{x}}[k+1]=\left[\begin{array}{rrr}-0.1039 & 0.2079 & 0.5197 \\ -0.1390 & -0.4158 & -0.5197 \\ 0.1039 & 0.2079 & 0.3118\end{array}\right] \overline{\mathbf{x}}[k]+\left[\begin{array}{c}-0.1039 \\ 0.1039 \\ 0.1376\end{array}\right] u[k]$
$C_{d}=\left[\begin{array}{rrr}-0.1039 & 0.1039 & -0.0045 \\ 0.1039 & -0.1039 & 0.0045 \\ \hline 0.1376 & 0.0539 & 0.0059\end{array}\right]$
and rank $C_{d}=2$, uncontrollable

