線性系統 Linear Systems

Chapter 07
Minimal Realization \＆Coprime Fractions

Feng－Li Lian
NTU－EE
Sep07－Jan08

Materials used in these lecture notes are adopted from
＂Linear System Theory \＆Design，＂3rd．Ed．，by C．－T．Chen（1999）
－Introduction（7．1）
－Implications of Coprimeness（7．2）
－Computing Comprime Fractions（7．3）
－Balanced Realization（7．4）
－Degree of Transfer Matrices（7．6）
－Minimal Realizations－Matrix Case （7．7，7．8，7．9）

- In Example 4.6:

$$
\begin{aligned}
\hat{\mathbf{G}}(s) & =\left[\begin{array}{cc}
\frac{4 s-10}{2 s+1} & \frac{3}{s+2} \\
\frac{1}{(2 s+1)(s+2)} & \frac{s+1}{(s+2)^{2}}
\end{array}\right] \\
& =\left[\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right]+\left[\begin{array}{cc}
\frac{-12}{2 s+1} & \frac{3}{s+2} \\
\frac{1}{(2 s+1)(s+2)} & \frac{s+1}{(s+2)^{2}}
\end{array}\right] \\
\hat{\mathbf{G}}_{s p}(s) & =\frac{\mathrm{N}(s)}{s^{3}+4.5 s^{2}+6 s+2} \\
& =\frac{1}{d(s)}(\underbrace{\left[\begin{array}{cc}
-6 & 3 \\
0 & 1
\end{array}\right]}_{\mathbf{N}_{1}} s^{2}+\underbrace{\left[\begin{array}{cc}
-6(s+2)^{2} & 3(s+2)(s+0.5) \\
0.5(s+2) & (s+1)(s+0.5)
\end{array}\right]}_{\mathbf{N}_{2}} \text { [-24.5} \begin{array}{ll}
-24 & 7.5 \\
0.5 & 1.5
\end{array}]+\underbrace{\left[\begin{array}{cc}
-24 & 3 \\
1 & 0.5
\end{array}\right]}_{\mathbf{N}_{3}})
\end{aligned}
$$

- The first realization is a six-dimensional realization

$$
\left.\begin{array}{l}
-\alpha_{1} I_{2} \\
\dot{\mathbf{x}}=\left[\begin{array}{cccccccc}
-4.5 & 0 & \vdots & -6 & 0 & \vdots & -2 & 0 \\
0 & -4.5 & \vdots & 0 & -6 & \vdots & 0 & -2 \\
\cdots & \cdots \\
1 & 0 & \vdots & 0 & 0 & \vdots & 0 & 0 \\
0 & 1 & \vdots & 0 & 0 & \vdots & 0 & 0 \\
\cdots & \cdots \\
0 & 0 & \vdots & 1 & 0 & \vdots & 0 & 0 \\
0 & 0 & \vdots & 0 & 1 & \vdots & 0 & 0
\end{array}\right] \mathbf{x}+\left[\begin{array}{ccc}
1 & 0 \\
0 & 1 \\
\cdots & \cdots \\
0 & 0 \\
0 & 0 \\
\cdots & \cdots \\
0 & 0 \\
0 & 0
\end{array}\right] \\
\mathbf{y}=\left[\begin{array}{cccccc}
u_{1} \\
u_{2}
\end{array}\right] \\
\left.\begin{array}{ccccccc}
-6 & 3 & \vdots & -24 & 7.5 & \vdots & -24 \\
0 & 1 & \vdots & 0.5 & 1.5 & \vdots & 1
\end{array}\right] \mathbf{0 . 5}
\end{array}\right] \mathbf{x}+\left[\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] .
$$

- In Example 4.7

- The second realization is a four-dimensional realization

$$
\begin{aligned}
& \dot{\mathbf{x}}_{1}=\mathbf{A}_{1} \mathbf{x}_{1}+\mathbf{b}_{1} u_{1}=\left[\begin{array}{cc}
-2.5 & -1 \\
1 & 0
\end{array}\right] \mathbf{x}_{1}+\left[\begin{array}{l}
1 \\
0
\end{array}\right] u_{1} \\
& \mathbf{y}_{c 1}=\mathbf{C}_{1} \mathbf{x}_{1}+\mathbf{d}_{1} u_{1}=\left[\begin{array}{cc}
-6 & -12 \\
0 & 0.5
\end{array}\right] \mathbf{x}_{1}+\left[\begin{array}{l}
2 \\
0
\end{array}\right] u_{1} \\
& \dot{\mathbf{x}}_{2}=\mathbf{A}_{2} \mathbf{x}_{2}+\mathbf{b}_{2} u_{2}=\left[\begin{array}{cc}
-4 & -4 \\
1 & 0
\end{array}\right] \mathbf{x}_{2}+\left[\begin{array}{l}
1 \\
0
\end{array}\right] u_{2} \\
& \mathbf{y}_{c 2}=\mathbf{C}_{2} \mathbf{x}_{2}+\mathbf{d}_{2} u_{2}=\left[\begin{array}{cc}
3 & 6 \\
1 & 1
\end{array}\right] \mathbf{x}_{2}+\left[\begin{array}{l}
0 \\
0
\end{array}\right] u_{2}
\end{aligned}
$$

Overall Realization:

$$
\begin{aligned}
{\left[\begin{array}{l}
\dot{\mathbf{x}}_{1} \\
\dot{\mathbf{x}}_{2}
\end{array}\right] } & =\left[\begin{array}{cc}
\mathbf{A}_{1} & \mathbf{0} \\
\mathbf{0} & \mathbf{A}_{2}
\end{array}\right]\left[\begin{array}{l}
\mathbf{x}_{1} \\
\mathbf{x}_{2}
\end{array}\right]+\left[\begin{array}{cc}
\mathbf{b}_{1} & \mathbf{0} \\
\mathbf{0} & \mathbf{b}_{2}
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] \\
\mathbf{y} & =\mathbf{y}_{c 1}+\mathbf{y}_{c 2}=\left[\begin{array}{ll}
\mathbf{C}_{1} & \mathbf{C}_{2}
\end{array}\right] \mathbf{x}+\left[\begin{array}{ll}
\mathbf{d}_{1} & \mathbf{d}_{2}
\end{array}\right] \mathbf{u}
\end{aligned}
$$

- The third, fourth, fifth, ... realizations are
$n_{3}, n_{4}, n_{5}, \ldots$-dimensional realizations

$$
\left\{\begin{aligned}
\dot{\mathbf{x}}(t) & =\mathbf{A} \mathbf{x}(t)+\mathbf{B u}(t) \\
\mathbf{y}(t) & =\mathbf{C} \mathbf{x}(t)+\mathbf{D} \mathbf{u}(t)
\end{aligned}\right.
$$

- The question is
what is the minimal (-dimensional) realization if exists.

$$
\begin{aligned}
\frac{\widehat{y}(s)}{\widehat{u}(s)} & =\hat{g}(s)=\frac{N(s)}{D(s)} \\
& =\frac{b_{0} s^{4}+b_{1} s^{3}+b_{2} s^{2}+b_{3} s+b_{4}}{s^{4}+a_{1} s^{3}+a_{2} s^{2}+a_{3} s+a_{4}}
\end{aligned}
$$

$$
\hat{g}(s)=\widehat{g}(\infty)+\hat{g}_{s p}(s)
$$

Direct transmission part,
"D-matrix" in realization
Without loss of generality, only discuss

$$
\begin{aligned}
& \widehat{g}(s)=\frac{N(s)}{D(s)}=\frac{b_{1} s^{3}+b_{2} s^{2}+b_{3} s+b_{4}}{s^{4}+a_{1} s^{3}+a_{2} s^{2}+a_{3} s+a_{4}} \\
& \widehat{y}(s)=N(s) D^{-1}(s) \widehat{u}(s)
\end{aligned}
$$

Define $\widehat{v}(s)=D^{-1}(s) \widehat{u}(s)$

$$
\text { Then } \begin{aligned}
\hat{y}(s) & =N(s) \hat{v}(s) \\
& \Rightarrow\left(s^{4}+a_{1} s^{3}+a_{2} s^{2}+a_{3} s+a_{4}\right) \hat{v}(s)=\widehat{u}(s) \\
& \Rightarrow\left(b_{1} s^{3}+b_{2} s^{2}+b_{3} s+b_{4}\right) \hat{v}(s)=\widehat{y}(s)
\end{aligned}
$$

Define $\quad \mathbf{x}(t):=\left[\begin{array}{c}x_{1}(t) \\ x_{2}(t) \\ x_{3}(t) \\ x_{4}(t)\end{array}\right]:=\left[\begin{array}{c}\dddot{v}(t) \\ \ddot{v}(t) \\ \dot{v}(t) \\ v(t)\end{array}\right]$

$$
\text { Or } \widehat{\mathbf{x}}(s):=\left[\begin{array}{l}
\hat{x}_{1}(s) \\
\widehat{x}_{2}(s) \\
\widehat{x}_{3}(s) \\
\widehat{x}_{4}(s)
\end{array}\right]:=\left[\begin{array}{c}
s^{3} \\
s^{2} \\
s \\
1
\end{array}\right] \widehat{v}(s)
$$

We have
$\dot{x}_{2}=$
$\dot{x}_{3}=$
$\dot{x}_{4}=$
$\dot{x}_{1}=$

Also, $\hat{y}(s)=N(s) \hat{v}(s)=\left(b_{1} s^{3}+b_{2} s^{2}+b_{3} s+b_{4}\right) \hat{v}(s)$

$$
=[\quad] \widehat{\mathbf{x}}(s)
$$

$$
y(t)=[\quad] \widehat{\mathbf{x}}(s)
$$

- Thus, a realization is

$$
\begin{aligned}
& \dot{\mathbf{x}}=\mathbf{A x}+\mathbf{b} u=\left[\begin{array}{cccc}
-a_{1} & -a_{2} & -a_{3} & -a_{4} \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \mathbf{x}+\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right] u \\
& y=\mathbf{c x}=\left[\begin{array}{llll}
b_{1} & b_{2} & b_{3} & b_{4}
\end{array}\right] \mathbf{x}
\end{aligned}
$$

- Which is called a controllable canonical form because

$$
\begin{aligned}
C= & {\left[\begin{array}{cccc}
1 & -a_{1} & a_{1}^{2}-a_{2} & -a_{1}^{3}+2 a_{1} a_{2}-a_{3} \\
0 & 1 & -a_{1} & a_{1}^{2}-a_{2} \\
0 & 0 & 1 & -a_{1} \\
0 & 0 & 0 & 1
\end{array}\right] } \\
& \text { with } \operatorname{det}(C)=1
\end{aligned}
$$

Theorem 7.1

Theorem 7.1

The controllable canonical form above is observable if and only if $D(s)$ and $N(s)$ in (7.1) are coprime.

Proof:

- More canonical realizations:

$$
\hat{g}(s)=\hat{g}^{\top}(s)
$$

$$
\dot{\mathbf{x}}=\mathbf{A}^{\top} \mathbf{x}+\mathbf{c}^{\top} u=\left[\begin{array}{cccc}
-a_{1} & 1 & 0 & 0 \\
-a_{2} & 0 & 1 & 0 \\
-a_{3} & 0 & 0 & 1 \\
-a_{4} & 0 & 0 & 0
\end{array}\right] \mathbf{x}+\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4}
\end{array}\right] u
$$

$$
y=\mathbf{b}^{\top} \mathbf{x}=\left[\begin{array}{llll}
1 & 0 & 0 & 0
\end{array}\right] \mathbf{x} \quad \text { Observable canonical form }
$$

- Which may become another observable canonical form

$$
\left\{\begin{array}{l}
\dot{\mathbf{x}}=\left[\begin{array}{llll}
0 & 0 & 0 & -a_{4} \\
1 & 0 & 0 & -a_{3} \\
0 & 1 & 0 & -a_{2} \\
0 & 0 & 1 & -a_{1}
\end{array}\right] \mathbf{x}+\left[\begin{array}{l}
b_{4} \\
b_{3} \\
b_{2} \\
b_{1}
\end{array}\right] u \\
y=\left[\begin{array}{llll}
0 & 0 & 0 & 1
\end{array}\right] \mathbf{x}
\end{array}\right.
$$

- And, another controllable canonical form

$$
\left\{\begin{array}{c}
\dot{\mathbf{x}}=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-a_{4} & -a_{3} & -a_{2} & -a_{1}
\end{array}\right] \mathbf{x}+\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right] u \\
y=\left[\begin{array}{llll}
b_{4} & b_{3} & b_{2} & b_{1}
\end{array}\right] \mathbf{x} \\
\text { - With the equivalence transformation } \mathbf{P}=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]
\end{array}\right.
$$

- Realizations with the Lowest Dimension :
- Polynomial fraction: $N(s) / D(s)$
- Coprime fraction: coprime $N(s) / D(s)$
- Characteristic polynomial of $N(s) / D(s)$:

$$
\begin{aligned}
& \text { the part of } D(\mathrm{~s}) \text { after the g.c.d. of } N(s) \text { and } D(s) \\
& \text { is factored out }
\end{aligned}
$$

- Degree of $N(\mathrm{~s}) / D(\mathrm{~s})$: degree of its characteristic polynomial

- Example:

$$
\frac{s^{2}-1}{4\left(s^{3}-1\right)}
$$

the coprime fraction:

the characteristic polynomial:

and degree

Theorem 7.2

Theorem 7.2

A state equation $(\mathbf{A}, \mathbf{b}, \mathbf{c}, d$) is a minimal realization of a proper rational function $\hat{g}(s)$ if and only if (A, b) is controllable and (\mathbf{A}, \mathbf{c}) is observable or if and only if

$$
\operatorname{dim} \mathbf{A}=\operatorname{deg} \hat{g}(s)
$$

Proof:

1.

(a) $\left\{\begin{array}{c}\text { NOT controllable } \\ \text { OR } \\ \text { NOT observable }\end{array} \Longleftrightarrow\right.$ minimal realization
(b) $\left\{\begin{array}{c}\text { controllable } \\ \text { AND } \\ \text { observable }\end{array} \Longleftrightarrow\right.$ NOT minimal realization
2.

Theorem 7.3

All minimal realizations of $\hat{g}(s)$ are equivalent.

Proof:

$$
\frac{\widehat{y}(s)}{\widehat{u}(s)}=\hat{g}(s)=\frac{N(s)}{D(s)}=\mathbf{c}(s \mathbf{I}-\mathbf{A})^{-1} \mathbf{b}
$$

$\operatorname{deg} \hat{g}(s)=$
$\operatorname{deg} D(s)=$
coprime

A, $\quad \mathrm{b}, \quad \mathrm{c}, \quad \mathrm{d}\}$ $\operatorname{dim}=$

$\left\{\begin{array}{llll}\mathrm{A}_{\mathrm{c}} & \mathrm{b}_{\mathrm{c}}, & \mathrm{c}_{\mathrm{c}}, & \mathrm{d}_{\mathrm{c}}\end{array}\right\}$

$$
\operatorname{dim}=
$$

$\left\{\begin{array}{llll}\mathrm{A}_{\mathbf{o}} & \mathrm{b}_{\mathbf{o}}, & \mathrm{c}_{\mathbf{o}}, & \mathrm{d}_{\mathbf{o}}\end{array}\right\}$
$\operatorname{dim}=$
$\{\mathbf{A}, \mathbf{b}, \mathbf{c}, d\}$
is a minimal (controllable and observable) realization
$\Leftrightarrow \quad \mathbf{c}(\text { sl-A })^{-1} \mathbf{b}$ is a coprime fraction
$\left(\Leftrightarrow \quad \operatorname{dim} \mathbf{A}=\operatorname{deg} \hat{g}(s)=\operatorname{deg} \mathbf{c}(\mathbf{s l}-\mathbf{A})^{-1} \mathbf{b}\right)$

Controllable/observable canonical forms
based on the coprime fraction of a transfer function are minimal realizations

Every minimal realization of a T.F. may be transformed to the same controllable/observable canonical forms

Previous definition: pole $p_{i}: \hat{g}\left(p_{i}\right)=\infty, \quad$ zero $z_{j}: \hat{g}\left(z_{j}\right)=0$.
\therefore Poles (Zeros) $=$
roots of denominator (numerator) polynomial of the coprime fraction of a transfer function
\therefore Poles of a coprime transfer function equal to the eigenvalues of the A-matrix of any minimal realization, and

$$
\frac{6 s^{3}+s^{2}+3 s-20}{2 s^{4}+7 s^{3}+15 s^{2}+16 s+10}
$$

$$
f(s)=2 s^{4}+7 s^{3}+15 s^{2}+16 s+10
$$

- Computationally, it is not easy to identify
the common roots of $N(s)$ and $D(s)$ for a given $N(s) / D(s)$
- Example:

Roots of $\mathrm{N}(\mathrm{s})$: \{
$0,15.3$,
$\left.1 \times 10^{8}\right\}$

Roots of $D(s): \quad\left\{0.00001,21.9,7732.345,1.00001 \times 10^{8}\right\}$

- Without loss of generality, consider N(s) and D(s) with

$$
\operatorname{deg} N(s) \leq \operatorname{deg} D(s)=n=4
$$

and let

$$
\frac{N(s)}{D(s)}=\frac{\bar{N}(s)}{\bar{D}(s)} \quad \text { OR } \quad D(s)(-\bar{N}(s))+N(s) \bar{D}(s)=0
$$

$N(s)$ and $D(s)$ are not coprime \Longleftrightarrow

$$
\begin{aligned}
& D(s)=D_{0}+D_{1} s+D_{2} s^{2}+D_{3} s^{3}+D_{4} s^{4} \quad D_{4} \neq 0 \\
& N(s)=N_{0}+N_{1} s+N_{2} s^{2}+N_{3} s^{3}+N_{4} s^{4} \\
& \bar{D}(s)=\bar{D}_{0}+\bar{D}_{1} s+\bar{D}_{2} s^{2}+\bar{D}_{3} s^{3} \\
& \bar{N}(s)=\bar{N}_{0}+\bar{N}_{1} s+\bar{N}_{2} s^{2}+\bar{N}_{3} s^{3}
\end{aligned}
$$

$$
\begin{aligned}
& D(s)(-\bar{N}(s))+N(s) \bar{D}(s)=0 \Longleftrightarrow \\
& {\left[\begin{array}{ccccccccccc}
D_{0} & N_{0} & \vdots & 0 & 0 & \vdots & 0 & 0 & \vdots & 0 & 0 \\
D_{1} & N_{1} & \vdots & D_{0} & N_{0} & \vdots & 0 & 0 & \vdots & 0 & 0 \\
D_{2} & N_{2} & \vdots & D_{1} & N_{1} & \vdots & D_{0} & N_{0} & \vdots & 0 & 0 \\
D_{3} & N_{3} & \vdots & D_{2} & N_{2} & \vdots & D_{1} & N_{1} & \vdots & D_{0} & N_{0} \\
D_{4} & N_{4} & \vdots & D_{3} & N_{3} & \vdots & D_{2} & N_{2} & \vdots & D_{1} & N_{1} \\
0 & 0 & \vdots & D_{4} & N_{4} & \vdots & D_{3} & N_{3} & \vdots & D_{2} & N_{2} \\
0 & 0 & \vdots & 0 & 0 & \vdots & D_{4} & N_{4} & \vdots & D_{3} & N_{3} \\
0 & 0 & \vdots & 0 & 0 & \vdots & 0 & 0 & \vdots & D_{4} & N_{4}
\end{array}\right]\left[\begin{array}{c}
-\bar{N}_{0} \\
\bar{D}_{0} \\
\cdots \\
-\bar{N}_{1} \\
\bar{D}_{1} \\
\cdots \\
-\bar{N}_{2} \\
\bar{D}_{2} \\
\cdots \\
-\bar{N}_{3} \\
\bar{D}_{3}
\end{array}\right]=\mathbf{0}}
\end{aligned}
$$

Sylvester Resultant S: $2 n \times 2 n$

- When $N(s)$ and $D(s)$ are not coprime,

Search the L.I. columns of \mathbf{S} from left to right:
D-columns, all L.I., since $D_{4} \neq 0$
$\left[\begin{array}{ccccccccccc}D_{0} & N_{0} & \vdots & 0 & 0 & \vdots & 0 & 0 & \vdots & 0 & 0 \\ D_{1} & N_{1} & \vdots & D_{0} & N_{0} & \vdots & 0 & 0 & \vdots & 0 & 0 \\ D_{2} & N_{2} & \vdots & D_{1} & N_{1} & \vdots & D_{0} & N_{0} & \vdots & 0 & 0 \\ D_{3} & N_{3} & \vdots & D_{2} & N_{2} & \vdots & D_{1} & N_{1} & \vdots & D_{0} & N_{0} \\ D_{4} & N_{4} & \vdots & D_{3} & N_{3} & \vdots & D_{2} & N_{2} & \vdots & D_{1} & N_{1} \\ 0 & 0 & \vdots & D_{4} & N_{4} & \vdots & D_{3} & N_{3} & \vdots & D_{2} & N_{2} \\ 0 & 0 & \vdots & 0 & 0 & \vdots & D_{4} & N_{4} & \vdots & D_{3} & N_{3} \\ 0 & 0 & \vdots & 0 & 0 & \vdots & 0 & 0 & \vdots & D_{4} & N_{4}\end{array}\right]$

If an N -column linearly depends on its LHS columns, then all subsequent N-columns depend on their LHS columns

The first L.D. N-column is called the primary dependent N -column
N-columns, may be L.D.
Thus, $\operatorname{deg} N(s) / D(s)=\mu$, the number of L.I. N-columns, and rank $\mathbf{S}=n+\mu$ for non-coprime $N(s)$ and $D(s)$

$$
\begin{aligned}
& {\left[\begin{array}{ccccccccccc}
D_{0} & N_{0} & \vdots & 0 & 0 & \vdots & 0 & 0 & \vdots & 0 & 0 \\
D_{1} & N_{1} & \vdots & D_{0} & N_{0} & \vdots & 0 & 0 & \vdots & 0 & 0 \\
D_{2} & N_{2} & \vdots & D_{1} & N_{1} & \vdots & D_{0} & N_{0} & \vdots & 0 & 0 \\
D_{3} & N_{3} & \vdots & D_{2} & N_{2} & \vdots & D_{1} & N_{1} & \vdots & D_{0} & N_{0} \\
D_{4} & N_{4} & \vdots & D_{3} & N_{3} & \vdots & D_{2} & N_{2} & \vdots & D_{1} & N_{1} \\
0 & 0 & \vdots & D_{4} & N_{4} & \vdots & D_{3} & N_{3} & \vdots & D_{2} & N_{2} \\
0 & 0 & \vdots & 0 & 0 & \vdots & D_{4} & N_{4} & \vdots & D_{3} & N_{3} \\
0 & 0 & \vdots & 0 & 0 & \vdots & 0 & 0 & \vdots & D_{4} & N_{4}
\end{array}\right]\left[\begin{array}{c}
-\bar{N}_{0} \\
\bar{D}_{0} \\
\cdots \\
-\bar{N}_{1} \\
\bar{D}_{1} \\
\cdots \\
-\bar{N}_{2} \\
\bar{D}_{2} \\
\cdots \\
-\bar{N}_{3} \\
\bar{D}_{3}
\end{array}\right]=\mathbf{0}} \\
& \mathbf{S}_{1}: 2 n \times 2(\mu+1) \text {, } \\
& \operatorname{rank} \mathbf{S}_{1}=2 \mu+1
\end{aligned}
$$

$$
\frac{N(s)}{D(s)}=\frac{6 s^{3}+s^{2}+3 s-20}{2 s^{4}+7 s^{3}+15 s^{2}+16 s+10}
$$

$\left[\begin{array}{cccccccc}10 & -20 & 0 & 0 & 0 & 0 & 0 & 0 \\ 16 & 3 & 10 & -20 & 0 & 0 & 0 & 0 \\ 15 & 1 & 16 & 3 & 10 & -20 & 0 & 0 \\ 7 & 6 & 15 & 1 & 16 & 3 & 10 & -20 \\ 2 & 0 & 7 & 6 & 15 & 1 & 16 & 3 \\ 0 & 0 & 2 & 0 & 7 & 6 & 15 & 1 \\ 0 & 0 & 0 & 0 & 2 & 0 & 7 & 6 \\ 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0\end{array}\right]\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right]$

Theorem 7.4

Theroem 7.4

Consider $\hat{g}(s)=N(s) / D(s)$. We use the coefficients of $D(s)$ and $N(s)$ to form the Sylvester resultant \mathbf{S} in (7.28) and search its linearly independent columns in order from left to right. Then we have

$$
\operatorname{deg} \hat{g}(s)=\text { number of linearly independent } N \text {-columns }=: \mu
$$

and the coefficients of a coprime fraction $\hat{g}(s)=\bar{N}(s) / \bar{D}(s)$ or

$$
\left[\begin{array}{llllll}
-\bar{N}_{0} & \bar{D}_{0} & -\bar{N}_{1} & \bar{D}_{1} \cdots-\bar{N}_{\mu} & \bar{D}_{\mu}
\end{array}\right]^{\prime}
$$

equals the monic null vector of the submatrix that consists of the primary dependent N-column and all its LHS linearly independent columns of \mathbf{S}.

- A good numerical algorithm for searching L.I. columns of S

— The QR decomposition (details omitted)

$$
\begin{array}{rr}
\text { Given } \mathbf{M} \in \mathbb{R}^{n \times m} & \text { Exist an orthogonal } \overline{\mathbf{Q}} \in \mathbb{R}^{n \times n} \\
\overline{\mathbf{Q}} \mathbf{M}=\mathbf{R} & \bar{Q}^{-1}=\bar{Q}^{T}=: Q
\end{array}
$$

$$
\mathrm{M}=\mathrm{QR}
$$

$\frac{N(s)}{D(s)}=\frac{6 s^{3}+s^{2}+3 s-20}{2 s^{4}+7 s^{3}+15 s^{2}+16 s+10}$
$\left[\begin{array}{cccccccc}10 & -20 & 0 & 0 & 0 & 0 & 0 & 0 \\ 16 & 3 & 10 & -20 & 0 & 0 & 0 & 0 \\ 15 & 1 & 16 & 3 & 10 & -20 & 0 & 0 \\ 7 & 6 & 15 & 1 & 16 & 3 & 10 & -20 \\ 2 & 0 & 7 & 6 & 15 & 1 & 16 & 3 \\ 0 & 0 & 2 & 0 & 7 & 6 & 15 & 1 \\ 0 & 0 & 0 & 0 & 2 & 0 & 7 & 6 \\ 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0\end{array}\right]\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right]$

In Matlab: $[\mathrm{Q}, \mathrm{R}]=\operatorname{qr}(\mathrm{S})$

$$
\mathbf{R}=\left[\begin{array}{rrrrrrrr}
-25.1 & 3.7 & -20.6 & 10.1 & -11.6 & 11.0 & -4.1 & 5.3 \\
0 & -20.7 & -10.3 & 4.3 & -7.2 & 2.1 & -3.6 & 6.7 \\
0 & 0 & -10.2 & -15.6 & -20.3 & 0.8 & -16.8 & 9.6 \\
0 & 0 & 0 & 8.9 & -3.5 & -17.9 & -11.2 & 7.3 \\
0 & 0 & 0 & 0 & -5.0 & 0 & -12.0 & -15.0 \\
0 & 0 & 0 & 0 & 0 & 0 & -2.0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -4.6 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

- Example

$$
\begin{aligned}
& \dot{\mathbf{x}}=\left[\begin{array}{cc}
-1 & \frac{-4}{\alpha} \\
4 \alpha & -2
\end{array}\right] \mathbf{x}+\left[\begin{array}{c}
1 \\
2 \alpha
\end{array}\right] u \quad \alpha \neq 0 \\
& y=\left[\begin{array}{ll}
-1 & \frac{2}{\alpha}
\end{array}\right] \mathbf{x}
\end{aligned}
$$

transfer function $\hat{g}(\mathbf{s})=\mathbf{c}(s \mathbf{I}-\mathbf{A})^{-1} \mathbf{b}=\frac{3 s+18}{s^{2}+3 s+18}$
controllability matrix $\mathcal{C}=\left[\begin{array}{ll}\mathbf{b} & \mathbf{A b}\end{array}\right]=\left[\begin{array}{cc}1 & -9 \\ 2 \alpha & 0\end{array}\right]$
observability matrix $\mathcal{O}=\left[\begin{array}{c}\mathbf{c} \\ \mathbf{c A}\end{array}\right]=\left[\begin{array}{cc}1 & \frac{2}{\alpha} \\ 9 & 0\end{array}\right]$
\Rightarrow The above realization is \qquad and \qquad .

- Since A is stable,

the solutions of the following equations are positive definite
$A W_{c}+W_{c} A^{\top}=-b^{\top}$
$\mathrm{A}^{\top} \mathrm{W}_{\mathrm{o}}+\mathrm{W}_{\mathrm{o}} \mathrm{A}=-\mathrm{c}^{\top} \mathbf{c}$
controllability Gramian $\quad \mathbf{W}_{\mathbf{c}}=\left[\begin{array}{cc}0.5 & 0 \\ 0 & \alpha^{2}\end{array}\right]$
observability Gramian $\quad W_{o}=\left[\begin{array}{cc}0.5 & 0 \\ 0 & \frac{1}{\alpha^{2}}\end{array}\right]$
$\Rightarrow \alpha>1$: "more controllable", and $\alpha<1$: "more observable" Also,

$$
W_{c} W_{o}=\left[\begin{array}{cc}
0.5 & 0 \\
0 & \alpha^{2}
\end{array}\right]\left[\begin{array}{cc}
0.5 & 0 \\
0 & \frac{1}{\alpha^{2}}
\end{array}\right]=
$$

For the general case,
is there a minimal realization
which is "balanced" in controllability and observability?

Theorem 7.5

Theorem 7.5

Let $(\mathbf{A}, \mathbf{b}, \mathbf{c})$ and $(\overline{\mathbf{A}}, \overline{\mathbf{b}}, \overline{\mathbf{c}})$ be minimal and equivalent and let $\mathbf{W}_{s} \mathbf{W}_{g}$ and $\overline{\mathbf{W}}_{c} \overline{\mathbf{W}}_{o}$ be the products of their controllability and observability Gramians. Then $\mathbf{W}_{c} \mathbf{W}_{o}$ and $\overline{\mathbf{W}}_{c} \overline{\mathbf{W}}_{o}$ are similar and their eigenvalues are all real and positive.

Proof:

$\mathbf{A} \mathbf{W}_{\mathbf{c}}+\mathbf{W}_{\mathbf{c}} \mathbf{A}^{\top}=-\mathbf{b b}^{\top}$
$\overline{\mathrm{A}} \overline{\mathrm{W}}_{\mathrm{c}}+\overline{\mathrm{W}}_{\mathrm{c}} \overline{\mathrm{A}}^{\top}=-\overline{\mathrm{b}} \overline{\mathrm{b}}^{\top}$
$A^{\top} W_{o}+W_{o} A=-c^{\top} c$
$\overline{\mathrm{A}}^{\top} \overline{\mathrm{W}}_{\mathrm{o}}+\overline{\mathrm{W}}_{\mathrm{o}} \overline{\mathrm{A}}=-\overline{\mathrm{c}}^{\top} \overline{\mathrm{c}}$

Theorem 7.5-3

- Corollary:

For any stable realization,
$\mathbf{W}_{c} \mathbf{W}_{o}$ is similar to Σ^{2},
where $\quad \Sigma=\operatorname{diag}\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right)$
and $\quad \sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n}>0$
are positive square roots of the eigenvalues of $\mathbf{W}_{c} \mathbf{W}_{0}$,
and these eigenvalues are called the Hankel singular values

Theorem 7.6 (The balanced realization)

For any n-dimensional minimal state equation ($\mathbf{A}, \mathbf{b}, \mathbf{c}$), there exists an equivalence transformation $\overline{\mathbf{x}}=\mathbf{P x}$ such that the controllability Gramian $\overline{\mathbf{W}}_{c}$ and observability Gramian $\overline{\mathbf{W}}_{o}$ of its equivalent state equation have the property

$$
\overline{\mathbf{W}}_{c}=\overline{\mathbf{W}}_{o}=\mathbf{\Sigma}
$$

Proof:

It is also possible to find \mathbf{P} such that
$\overline{\mathbf{W}}_{c}=\mathbf{I}$ and $\overline{\mathbf{W}}_{o}=\Sigma^{2}$ (input-normal realization), or such that
$\overline{\mathbf{W}}_{o}=\mathbf{I}$ and $\overline{\mathbf{W}}_{c}=\Sigma^{2}$ (output-normal realization).

Suppose

$$
\begin{aligned}
{\left[\begin{array}{l}
\dot{\mathbf{x}}_{1} \\
\dot{\mathbf{x}}_{2}
\end{array}\right] } & =\left[\begin{array}{ll}
\mathbf{A}_{11} & \mathbf{A}_{12} \\
\mathbf{A}_{21} & \mathbf{A}_{22}
\end{array}\right]\left[\begin{array}{l}
\mathbf{x}_{1} \\
\mathbf{x}_{2}
\end{array}\right]+\left[\begin{array}{l}
\mathbf{b}_{1} \\
\mathbf{b}_{2}
\end{array}\right] u \\
y & =\left[\begin{array}{ll}
\mathbf{c}_{1} & \left.\mathbf{c}_{2}\right] \mathbf{x}
\end{array}\right.
\end{aligned}
$$

is a balanced minimal realization of a stable $\hat{g}(s)$ with

$$
\mathbf{W}_{c}=\mathbf{W}_{o}=\operatorname{diag}\left(\boldsymbol{\Sigma}_{1}, \boldsymbol{\Sigma}_{2}\right)
$$

If the Hankel singular values σ_{i} in Σ_{1} and Σ_{2} are different, then

$$
\begin{aligned}
\dot{\mathbf{x}}_{1} & =\mathbf{A}_{11} \mathbf{x}_{1}+\mathbf{b}_{1} u \\
y & =\mathbf{c}_{1} \mathbf{x}_{1}
\end{aligned}
$$

is balanced and A_{11} is stable, and
If the σ_{i} in Σ_{1} are much larger than those in Σ_{2},
Then $\mathbf{c}_{1}\left(\mathrm{sl}-\mathbf{A}_{11}\right)^{-1} \mathbf{b}_{1} \approx \hat{g}(\mathrm{~s})$
System Reduction

- For MIMO cases:

$$
\widehat{\mathbf{G}}(s)=\left[\begin{array}{ccc}
\frac{s}{s+1} & \frac{1}{(s+1)(s+2)} & \frac{1}{s+3} \\
\frac{-1}{s+1} & \frac{1}{(s+1)(s+2)} & \frac{1}{s}
\end{array}\right]
$$

Definition 7.1 The characteristic polynomial of a proper rational matrix $\hat{\mathbf{G}}(s)$ is defined as the least common denominator of all minors of $\hat{\mathbf{G}}(s)$. The degree of the characteristic polynomial is defined as the McMillan degree or, simply, the degree of $\hat{\mathbf{G}}(s)$ and is denoted by $\delta \hat{\mathbf{G}}(s)$.

$$
\widehat{\mathrm{G}}_{1}(s)=\left[\begin{array}{cc}
\frac{1}{s+1} & \frac{1}{s+1} \\
\frac{1}{s+1} & \frac{1}{s+1}
\end{array}\right]
$$

Minor of order 1 :
Minor of order 2 :
\Rightarrow Characteristic polynomial:

Degree:

Minor of order 1:
Minor of order 2:
Characteristic polynomial:

Degree:

Characteristic polynomial of a transfer matrix is in general different from the least common denominator of all its elements

$$
\widehat{\mathbf{G}}(s)=\left[\begin{array}{ccc}
\frac{s}{s+1} & \frac{1}{(s+1)(s+2)} & \frac{1}{s+3} \\
\frac{-1}{s+1} & \frac{1}{(s+1)(s+2)} & \frac{1}{s}
\end{array}\right]
$$

Minors of order 1: all six elements
Minors of order 2:

$$
\begin{aligned}
& \frac{s}{(s+1)^{2}(s+2)}+\frac{1}{(s+1)^{2}(s+2)}=\frac{s+1}{(s+1)^{2}(s+2)}=\frac{1}{(s+1)(s+2)} \\
& \frac{s}{s+1} \cdot \frac{1}{s}+\frac{1}{(s+1)(s+3)}=\frac{s+4}{(s+1)(s+3)} \\
& \frac{1}{(s+1)(s+2) s}-\frac{1}{(s+1)(s+2)(s+3)}=\frac{3}{s(s+1)(s+2)(s+3)}
\end{aligned}
$$

Characteristic polynomial: $s(s+1)(s+2)(s+3) ;$ Degree: 4

$$
\widehat{\mathbf{G}}(s)=\left[\begin{array}{cc}
\frac{1}{(s+1)^{2}(s+2)} & \frac{s+2}{s^{2}} \\
\frac{s-1}{s+3} & \frac{s}{(s+5)(s-3)}
\end{array}\right]
$$

Every element has different poles

\Rightarrow Characteristic polynomial equals the product of the denominators of all elements

Let $(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})$ be a controllable and observable realization of $\hat{\mathbf{G}}(s)$:

- Monic least common denominator of all minors of $\hat{\mathbf{G}}(s)$
$=$ Characteristic polynomial of A
- Monic least common denominator of all entries of $\hat{\mathbf{G}}(s)$
$=$ Minimal polynomial of A

Theorem 7.M2

A state equation $(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})$ is a minimal realization of a proper rational matrix $\hat{\mathbf{G}}(s)$ if and only if (A, B) is controllable and (A, C) is observable or if and only if

$$
\operatorname{dim} \mathbf{A}=\operatorname{deg} \hat{\mathbf{G}}(s)
$$

Proof:

For "minimality \Leftrightarrow controllability and observabiltiy" only
" \Rightarrow " If $(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})$ is not controllable OR not observable, Then can find a reduced dimensional realization (Thm 6.7)

Thus $(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})$ is not minimal

Proof:

" \Leftarrow " If (A, B, C, D) is n-dimensional, controllable \& observable, BUT there is another \bar{n}-dimensional realization $\overline{(A,},-\mathbf{B}^{-}, \mathbf{D}$) with $\bar{n}<n$, then $\quad \mathbf{C A}^{m} \mathbf{B}=\overline{\mathbf{C}} \overline{\mathbf{A}}^{m} \overline{\mathbf{B}} \quad$ for $m=0,1,2, \ldots$

Theorem 7.M3

All minimal realizations of $\hat{\mathbf{G}}(s)$ are equivalent.

Proof:

Consider any two n-dimensional minimal realizations (A $, \mathrm{B}, \mathrm{C}, \mathrm{D}$) and ($\overline{\mathrm{A}}, \overline{\mathrm{B}}, \overline{\mathrm{C}}, \overline{\mathrm{D}}$), thus,
$\mathcal{O C}=\left[\begin{array}{c}\mathrm{C} \\ \mathrm{CA} \\ \vdots \\ \mathrm{CA}^{\mathrm{n}-1}\end{array}\right]\left[\begin{array}{llll}\mathrm{B} & \mathbf{A B} & \cdots & \mathbf{A}^{\mathrm{n}-1} \mathbf{B}\end{array}\right]=\left[\begin{array}{c}\overline{\mathbf{C}} \\ \overline{\mathrm{C}} \overline{\mathbf{A}} \\ \vdots \\ \overline{\mathrm{C}} \overline{\mathbf{A}}^{\mathrm{n}-1}\end{array}\right]\left[\begin{array}{llll}\overline{\mathbf{B}} & \overline{\mathbf{A}} \overline{\mathrm{B}} & \cdots & \overline{\mathbf{A}}^{\mathrm{n}-1} \overline{\mathbf{B}}\end{array}\right]=\overline{\mathcal{O}} \overline{\mathrm{C}}$

$$
\text { and } \quad \mathcal{O A C}=\overline{\mathcal{O}} \overline{\mathbf{A}} \overline{\mathcal{C}}
$$

Therefore, from $\mathcal{O C}=\overline{\mathcal{O}} \overline{\mathcal{C}}$ we have

$$
\begin{aligned}
& \overline{\mathcal{C}}=\overline{\mathcal{O}}^{+} \mathcal{O C}=\left(\overline{\mathcal{O}}^{\top} \overline{\mathcal{O}}\right)^{-1} \overline{\mathcal{O}}^{\top} \mathcal{O C}=\mathbf{P C} \\
& \overline{\mathcal{O}}=\mathcal{O C} \overline{\mathcal{C}}^{+}=\mathcal{O C} \overline{\mathcal{C}}^{\top}\left(\overline{\mathcal{C}} \overline{\mathcal{C}}^{\top}\right)^{-1}=\mathcal{O} \mathbf{P}^{-1}
\end{aligned}
$$

which imply $\overline{\mathrm{B}}=\mathrm{PB}$ and $\overline{\mathrm{C}}=\mathrm{CP}^{-1}$

Also, from $\overline{\mathcal{O}} \overline{\mathrm{A}} \overline{\mathcal{C}} \quad=\quad \mathcal{O A C} \quad$ we have

$$
\overline{\mathbf{A}}=\left(\overline{\mathcal{O}}^{\top} \overline{\mathcal{O}}\right)^{-1} \overline{\mathcal{O}}^{\top} \mathcal{O} \mathbf{A C} \overline{\mathcal{C}}^{\top}\left(\overline{\mathcal{C}} \overline{\mathcal{C}}^{\top}\right)^{-1}=\mathbf{P A} \mathbf{P}^{-1}
$$

- In Example 4.6:

$$
\hat{\mathbf{G}}(s)=\left[\begin{array}{cc}
\frac{4 s-10}{2 s+1} & \frac{3}{s+2} \\
\frac{1}{(2 s+1)(s+2)} & \frac{1}{(s+2)^{2}}
\end{array}\right]
$$

Characteristic polynomial: $(2 s+1)(s+2)^{2} ; \quad$ Degree: 3 In Matlab: [Am, Bm, Cm, Dm] = minreal(A, B, C, D)

$$
\begin{aligned}
& \dot{\mathbf{x}}=\left[\begin{array}{rrr}
-0.8625 & -4.0897 & 3.2544 \\
0.2921 & -3.0508 & 1.2709 \\
-0.0944 & 0.3377 & -0.5867
\end{array}\right] \mathbf{x}+\left[\begin{array}{rr}
0.3218 & -0.5305 \\
0.0459 & -0.4983 \\
-0.1688 & 0.0840
\end{array}\right] \mathbf{u} \\
& \mathbf{y}=\left[\begin{array}{lll}
0 & -0.0339 & 35.5281 \\
0 & -2.1031 & -0.5720
\end{array}\right] \mathbf{x}+\left[\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right] \mathbf{u}
\end{aligned}
$$

- Example 7.7:

$$
\begin{aligned}
& \hat{\mathrm{g}}(s)=\frac{n(s)}{d(s)}= \\
& \hat{\mathbf{G}}(s)=\left[\begin{array}{cc}
\frac{4 s-10}{2 s+1} & \frac{3}{s+2} \\
\frac{1}{(2 s+1)(s+2)} & \frac{s+1}{(s+2)^{2}}
\end{array}\right]= \\
& \hat{\mathbf{G}}(s)=\left[\begin{array}{cc}
(2 s+1)(s+2) & 0 \\
0 & (2 s+1)(s+2)^{2}
\end{array}\right]^{-1} \times\left[\begin{array}{cc}
(4 s-10)(s+2) & 3(2 s+1) \\
(s+2) & (s+1)(2 s+1)
\end{array}\right] \\
& \hat{\mathbf{G}}(s)=\left[\begin{array}{cc}
(2 s-5)(s+2) & (4 s-7) \\
0.5 & 1
\end{array}\right] \times\left[\begin{array}{cc}
(s+2)(s+0.5) & (2 s+1) \\
0 & (s+2)
\end{array}\right]
\end{aligned}
$$

Example 7.8

$$
\begin{aligned}
\hat{\mathbf{G}}(s) & =\left[\begin{array}{cc}
\frac{4 s-10}{2 s+1} & \frac{3}{s+2} \\
\frac{1}{(2 s+1)(s+2)} & \frac{s+1}{(s+2)^{2}}
\end{array}\right] \\
& =\left[\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right]+\left[\begin{array}{cc}
-\frac{12}{2 s+1} & \frac{3}{s+2} \\
\frac{1}{(2 s+1)(s+2)} & \frac{s+1}{(s+2)^{2}}
\end{array}\right] \\
\hat{\mathbf{G}}_{s p}(s) & =\left[\begin{array}{cc}
-6 s-12 & -9 \\
0.5 & 1
\end{array}\right]\left[\begin{array}{cc}
s^{2}+2.5 s+1 & 2 s+1 \\
0 & s+2
\end{array}\right]^{-1}
\end{aligned}
$$

$$
\mathbf{H}(s)=\left[\begin{array}{cc}
s^{2} & 0 \\
0 & s
\end{array}\right] \quad \mathbf{D}(s)=\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right] \mathbf{H}(s)+\left[\begin{array}{ccc}
2.5 & 1 & 1 \\
0 & 0 & 2
\end{array}\right] \mathbf{L}(s)
$$

$$
\mathbf{L}(s)=\left[\begin{array}{ll}
s & 0 \\
1 & 0 \\
0 & 1
\end{array}\right] \quad \mathbf{N}(s)=\left[\begin{array}{ccc}
-6 & -12 & -9 \\
0 & 0.5 & 1
\end{array}\right] \mathbf{L}(s)
$$

$$
\begin{aligned}
& \mathrm{D}(s)=\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right] \mathbf{H}(s)+\quad\left[\begin{array}{ccc}
2.5 & 1 & 1 \\
0 & 0 & 2
\end{array}\right] \mathbf{L}(s) \\
& \mathrm{D}_{h c}^{-1}=\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right]^{-1}=\left[\begin{array}{cc}
1 & -2 \\
0 & 1
\end{array}\right] \\
& \mathbf{H}(s)=\left[\begin{array}{cc}
s^{2} & 0 \\
0 & s
\end{array}\right] \\
& \mathrm{D}_{h c}^{-1} \mathrm{D}_{l c}=\left[\begin{array}{cc}
1 & -2 \\
0 & 1
\end{array}\right]\left[\begin{array}{ccc}
2.5 & 1 & 1 \\
0 & 0 & 2
\end{array}\right]=\left[\begin{array}{ccc}
2.5 & 1 & -3 \\
0 & 0 & 2
\end{array}\right] \\
& s^{2}+2.5 s+1 \quad \ddot{x}+2.5 \dot{x}+x \\
& x_{1}=\dot{x} \\
& x_{2}=x \\
& \dot{x}_{1}= \\
& \dot{x}_{2}=
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{H}(s) & =-\left[\begin{array}{ccc}
2.5 & 1 & -3 \\
0 & 0 & 2
\end{array}\right] \mathbf{L}(s)+\left[\begin{array}{cc}
1 & -2 \\
0 & 1
\end{array}\right] \mathbf{D}(s) \\
\mathbf{N}(s) & =\left[\begin{array}{ccc}
-6 & -12 & -9 \\
0 & 0.5 & 1
\end{array}\right] \mathbf{L}(s) \\
\dot{\mathbf{x}} & =\left[\begin{array}{cccc}
-2.5 & -1 & \vdots & 3 \\
1 & 0 & \vdots & 0 \\
\cdots & \cdots & \cdots & \cdots \\
0 & 0 & \vdots & -2
\end{array}\right] \mathbf{x}+\left[\begin{array}{cc}
1 & -2 \\
0 & 0 \\
\cdots & \cdots \\
0 & 1
\end{array}\right] \mathbf{u} \\
\mathbf{y} & =\left[\begin{array}{cccc}
-6 & -12 & \vdots & -9 \\
0 & 0.5 & \vdots & 1
\end{array}\right] \mathbf{x}+\left[\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right] \mathbf{u}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{H}(s)=\left[\begin{array}{cc}
s^{4} & 0 \\
0 & s^{3}
\end{array}\right] \\
& \mathbf{L}(s)=\left[\begin{array}{cc}
s^{3} & 0 \\
s^{2} & 0 \\
s & 0 \\
1 & 0 \\
0 & s^{2} \\
0 & s \\
0 & 1
\end{array}\right] \\
& \mathrm{D}(s)=\mathrm{D}_{h c} \mathbf{H}(s)+\mathrm{D}_{l c} \mathbf{L}(s) \\
& \mathbf{D}_{h c}^{-1} \mathbf{D}_{l c}=\left[\begin{array}{lllllll}
a_{11}^{1} & a_{12}^{1} & a_{13}^{1} & a_{14}^{1} & a_{21}^{1} & a_{22}^{1} & a_{23}^{1} \\
a_{11}^{2} & a_{12}^{2} & a_{13}^{2} & a_{14}^{2} & a_{21}^{2} & a_{22}^{2} & a_{23}^{2}
\end{array}\right] \mathbf{L}(s) \\
& \mathbf{N}(s)=\left[\begin{array}{lllllll}
b_{11}^{1} & b_{12}^{1} & b_{13}^{1} & b_{14}^{1} & b_{21}^{1} & b_{22}^{1} & b_{23}^{1} \\
b_{11}^{2} & b_{12}^{2} & b_{13}^{2} & b_{14}^{2} & b_{21}^{2} & b_{22}^{2} & b_{23}^{2}
\end{array}\right] \mathbf{L}(s)
\end{aligned}
$$

$-\dot{\mathbf{x}}=\left[\begin{array}{cccccccc}-a_{11}^{1} & -a_{12}^{1} & -a_{13}^{1} & -a_{14}^{1} & : & -a_{21}^{1} & -a_{22}^{1} & -a_{23}^{1} \\ 1 & 0 & 0 & 0 & : & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & : & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & : & 0 & 0 & 0 \\ \cdots & \cdots \\ -a_{11}^{2} & -a_{12}^{2} & -a_{13}^{2} & -a_{14}^{2} & : & -a_{21}^{2} & -a_{22}^{2} & -a_{23}^{2} \\ 0 & 0 & 0 & 0 & : & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & : & 0 & 1 & 0\end{array}\right] \mathbf{x}+\left[\begin{array}{cc}1 & b_{12} \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ \cdots & \cdots \\ 0 & 1 \\ 0 & 0 \\ 0 & 0\end{array}\right] \mathbf{u}$
$\mathbf{y}=\left[\begin{array}{llllllll}b_{11}^{1} & b_{12}^{1} & b_{13}^{1} & b_{14}^{1} & : & b_{21}^{1} & b_{22}^{1} & b_{23}^{1} \\ b_{11}^{2} & b_{12}^{2} & b_{13}^{2} & b_{14}^{2} & : & b_{21}^{2} & b_{22}^{2} & b_{23}^{2}\end{array}\right] \mathbf{x}+\mathbf{D} \mathbf{u}$

