Fall 2007

線性系統 Linear Systems

Chapter 08
State Feedback & State Estimators
(SISO)

Feng-Li Lian NTU-EE Sep07 – Jan08

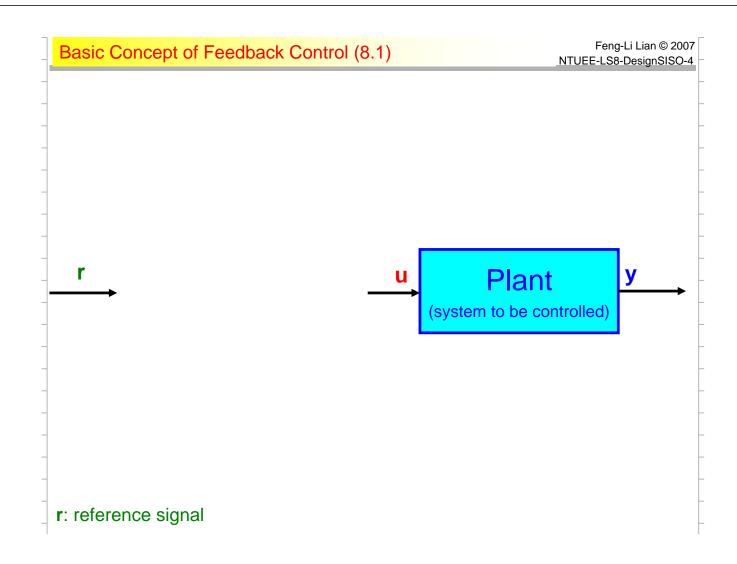
Materials used in these lecture notes are adopted from "Linear System Theory & Design," 3rd. Ed., by C.-T. Chen (1999)

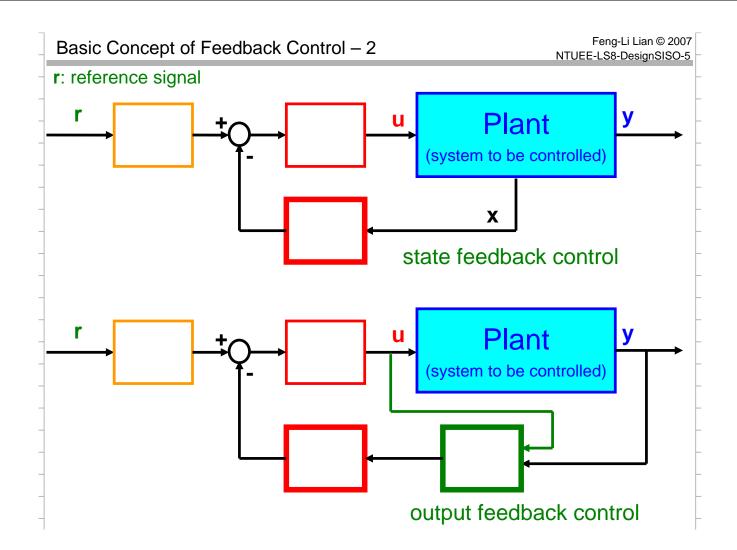
Outline

- Introduction
- State Feedback (8.2)
- Regulation & Tracking (8.3)
- State Estimator (8.4)
- Feedback from Estimated States (8.5)
- State Feedback Multivariable Case (8.6)
- State Estimators Multivariable Case (8.7)
- Feedback from Estimated States –
 Multivariable Case (8.8)

Outline

- State Feedback (8.2)
 - State Feedback in Controllable Canonical Form
 - Eigenvalue Assignment by Solving the Lyapunov Eqn
- Regulation & Tracking (8.3)
 - Robust Tracking and Disturbance Rejection
 - Stabilization
- State Estimator (8.4)
 - Full-Dimensional State Estimator
 - Reduced-Dimensional State Estimator
- Feedback from Estimated States (8.5)





State Feedback (SISO Systems) (8.2)

Feng-Li Lian © 2007 NTUEE-LS8-DesignSISO-6

$$\begin{cases} \dot{\mathbf{x}}(t) = \mathbf{A} \, \mathbf{x}(t) + \mathbf{b} \, \mathbf{u}(t) \\ \mathbf{y}(t) = \mathbf{c} \, \mathbf{x}(t) \end{cases}$$

$$\mathbf{u}(t) =$$

• Closed-loop system:

$$\begin{cases} \dot{\mathbf{x}}(t) = \mathbf{A} \mathbf{x}(t) + \mathbf{b} \mathbf{u}(t) = \\ \mathbf{y}(t) = \mathbf{c} \mathbf{x}(t) \end{cases}$$

Theorem 8.1 (8.2)

Feng-Li Lian © 2007 NTUEE-LS8-DesignSISO-8

Theorem 8.1

The pair $(\mathbf{A} - \mathbf{bk}, \mathbf{b})$, for any $1 \times n$ real constant vector \mathbf{k} , is controllable if and only if (\mathbf{A}, \mathbf{b}) is controllable.

Proof:

$$\dot{\mathbf{x}} = \begin{bmatrix} 1 & 2 \\ 3 & 1 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \mathbf{u}$$

$$y = \begin{bmatrix} 1 & 2 \end{bmatrix} \mathbf{x}$$

Observability: $\mathcal{O} =$

controllable and observable

State feedback: u = r - [x

Feedback system:

Example 8.1 – 2

Feng-Li Lian © 2007 NTUEE-LS8-DesignSISO-10

$$\dot{\mathbf{x}} = \begin{bmatrix} 1 & 2 \\ 3 & 1 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{pmatrix} \mathbf{r} - \begin{bmatrix} \\ \\ 1 \end{bmatrix} \mathbf{x} \\ = \begin{bmatrix} 1 & 2 \\ 3 & 1 \end{bmatrix} \mathbf{x} + \begin{bmatrix} \\ \\ \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \mathbf{r} \\ = \begin{bmatrix} \\ \\ \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ \\ 1 \end{bmatrix} \mathbf{r}$$

Controllability: $C_f =$

Observability: $\mathcal{O}_f =$

Observability may change after state feedback

Feng-Li Lian © 2007

NTUEE-LS8-DesignSISO-12

$$\dot{\mathbf{x}} = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} \mathbf{u}$$

Characteristic Polynomial:

$$\det \left(s \, \mathbf{I} \, - \, \left[\begin{array}{cc} 1 & 3 \\ 3 & 1 \end{array} \right] \right) \, = \,$$

State feedback:

$$u = r - \begin{bmatrix} k_1 & k_2 \end{bmatrix} \mathbf{x}$$

Feedback system:

$$\dot{\mathbf{x}} = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{pmatrix} \mathbf{r} - \begin{bmatrix} k_1 & k_2 \end{bmatrix} \mathbf{x} \end{pmatrix}$$

Example 8.2 - 2 $= \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} x + \begin{bmatrix} -k_1 & -k_2 \\ 0 & 0 \end{bmatrix} x + \begin{bmatrix} 1 \\ 0 \end{bmatrix} r$ $= \begin{bmatrix} 1 - k_1 & 3 - k_2 \\ 3 & 1 \end{bmatrix} x + \begin{bmatrix} 1 \\ 0 \end{bmatrix} r$

Characteristic Polynomial:

$$\det \left(s \, \mathbf{I} \, - \, \left[\begin{array}{cc} 1 - k_1 & 3 - k_2 \\ 3 & 1 \end{array} \right] \right) \, = \,$$

State Feedback in Controllable Canonical Form (8.2)

Feng-Li Lian © 2007 NTUEE-LS8-DesignSISO-13

$$\{A_1,b_1,c_1,d_1\} \iff \{A_2,b_2,c_2,d_2\}$$

$$\mathbf{x}_2 = \mathbf{P}\mathbf{x}_1$$

$$\dot{\mathbf{x}}_1 = \mathbf{A}_1 \mathbf{x}_1 + \mathbf{b}_1 u$$

$$\mathbf{y} = \mathbf{c}_1 \mathbf{x}_1 + \mathbf{d}_1 u$$

$$\longleftrightarrow$$

$$\dot{\mathbf{x}}_2 = \mathbf{A}_2 \mathbf{x}_2 + \mathbf{b}_2 u$$

$$y = c_2 x_2 + d_2 u$$

$$A_2 = PA_1P^{-1}$$

 $b_2 = Pb_1$
 $c_2 = c_1P^{-1}$

State Feedback in Controllable Canonical Form – 2

Feng-Li Lian © 2007 NTUEE-LS8-DesignSISO-14

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{b}u$$

If $\{A, b\}$ controllable

$$y = cx + du$$

$$\Delta(s) = s^4 + a_1 s^3 + a_2 s^2 + a_3 s + a_4$$

$$\mathcal{C} = \left[\begin{array}{ccc} \mathbf{b} & \mathbf{A}\mathbf{b} & \mathbf{A^2}\mathbf{b} & \mathbf{A^3}\mathbf{b} \end{array} \right]$$
 is invertible

$$\mathbf{P_1} = \mathcal{C}^{-1} = \begin{bmatrix} b & Ab & A^2b & A^3b \end{bmatrix}^{-1}$$

$$A[b Ab A^{2}b A^{3}b] = [b Ab A^{2}b A^{3}b]$$

$$= \left[Ab AAb AA^2b AA^3b \right] =$$

$$\mathbf{P_1} \mathbf{A} \mathbf{P_1}^{-1} = \begin{bmatrix} 0 & 0 & 0 & -a_4 \\ 1 & 0 & 0 & -a_3 \\ 0 & 1 & 0 & -a_2 \\ 0 & 0 & 1 & -a_1 \end{bmatrix} =: \mathbf{A_1}$$

$$\mathbf{b} = \left[\begin{array}{ccc} \mathbf{b} & \mathbf{A}\mathbf{b} & \mathbf{A}^2\mathbf{b} & \mathbf{A}^3\mathbf{b} \end{array} \right]$$

$$\mathbf{P_1} \mathbf{b} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} =: \mathbf{b_1}$$

$$\mathrm{c} \; P_1^{-1} \; = \; \mathrm{c} \left[\; \; b \; \; Ab \; \; A^2b \; \; A^3b \; \; \right] \; = \; \left[\; \; \mathrm{cb} \; \; \mathrm{c}Ab \; \; \mathrm{c}A^2b \; \; \mathrm{c}A^3b \; \; \right] \; =: \; c_1$$

State Feedback in Controllable Canonical Form - 4

$$\mathbf{P_2} = \begin{bmatrix} 1 & a_1 & a_2 & a_3 \\ 0 & 1 & a_1 & a_2 \\ 0 & 0 & 1 & a_1 \\ 0 & 0 & 0 & 1 \end{bmatrix}^{-1}$$

$$\begin{bmatrix} 1 & a_1 & a_2 & a_3 \\ 0 & 1 & a_1 & a_2 \\ 0 & 0 & 1 & a_1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -a_1 & -a_2 & -a_3 & -a_4 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & -a_4 \\ 1 & 0 & 0 & -a_3 \\ 0 & 1 & 0 & -a_2 \\ 0 & 0 & 1 & -a_1 \end{bmatrix} \begin{bmatrix} 1 & a_1 & a_2 & a_3 \\ 0 & 1 & a_1 & a_2 \\ 0 & 0 & 1 & a_1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & a_1 & a_2 & a_3 \\ 0 & 1 & a_1 & a_2 \\ 0 & 0 & 1 & a_1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\mathbf{A_2} = \mathbf{P_2 A_1 P_2^{-1}}$$

$$\mathbf{b_2} = \mathbf{P_2 b_1}$$

$$\mathbf{c_1} \mathbf{P_2}^{-1} = \begin{bmatrix} \mathbf{cb} \ \mathbf{cAb} \ \mathbf{cA^2b} \ \mathbf{cA^3b} \end{bmatrix} \begin{bmatrix} 1 & a_1 & a_2 & a_3 \\ 0 & 1 & a_1 & a_2 \\ 0 & 0 & 1 & a_1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

=
$$[(cb) (a_1cb + cAb) \cdots]$$
 = $[b_1 b_2 b_3 b_4] =: c_2$

$$\{\mathbf{A}, \mathbf{b}, \mathbf{c}, d\}$$

$$\iff \left\{ \begin{bmatrix} 0 & 0 & 0 & -a_4 \\ 1 & 0 & 0 & -a_3 \\ 0 & 1 & 0 & -a_2 \\ 0 & 0 & 1 & -a_1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \mathbf{cb} \ \mathbf{cAb} \ \mathbf{cA^2b} \ \mathbf{cA^3b} \end{bmatrix}, d \right\}$$

$$\mathbf{P_2} = \begin{bmatrix} 1 & a_1 & a_2 & a_3 \\ 0 & 1 & a_1 & a_2 \\ 0 & 0 & 1 & a_1 \\ 0 & 0 & 0 & 1 \end{bmatrix}^{-1} \qquad \mathbf{P} = \mathbf{P}$$

$$\iff \left\{ \begin{bmatrix} -a_1 & -a_2 & -a_3 & -a_4 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, [b_1 \ b_2 \ b_3 \ b_4], d \right\}$$

State Feedback in Controllable Canonical Form - 6

$$\dot{\mathbf{x}}_c = \mathbf{A}_c \mathbf{x}_c + \mathbf{b}_c u = \begin{bmatrix} -a_1 & -a_2 & -a_3 & -a_4 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \mathbf{x}_c + \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} u$$

$$\Delta(s) = s^4 + a_1 s^3 + a_2 s^2 + a_3 s + a_4$$

$$\Delta_d(s) = s^4 + d_1 s^3 + d_2 s^2 + d_3 s + d_4$$

$$\dot{\mathbf{x}}_c = \mathbf{A}_d \mathbf{x}_c + \mathbf{b}_d u = egin{bmatrix} -d_1 & -d_2 & -d_3 & -d_4 \ 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \end{bmatrix} \mathbf{x}_c + egin{bmatrix} 1 \ 0 \ 0 \ 0 \ 0 \end{bmatrix} r$$

$$u = r - [k_1 k_2 k_3 k_4] \mathbf{x}_c$$

$$\dot{\mathbf{x}}_c = egin{bmatrix} -a_1 & -a_2 & -a_3 & -a_4 \ 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \end{bmatrix} \mathbf{x}_c + egin{bmatrix} 1 \ 0 \ 0 \ 0 \end{bmatrix} (r - [k_1 \ k_2 \ k_3 \ k_4 \] \mathbf{x}_c)$$

$$= \left(\begin{bmatrix} -a_1 & -a_2 & -a_3 & -a_4 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} + \begin{bmatrix} -k_1 & -k_2 & -k_3 & -k_4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \right) \mathbf{x}_c + \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} r$$

$$= \begin{bmatrix} (-a_1 - k_1) & (-a_2 - k_2) & (-a_3 - k_3) & (-a_4 - k_4) \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} x_c + \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} r$$

$$\dot{\mathbf{x}}_c = \begin{bmatrix} -d_1 & -d_2 & -d_3 & -d_4 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \mathbf{x}_c + \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} r$$

State Feedback in Controllable Canonical Form - 8

$$\Delta(s) = s^4 + a_1 s^3 + a_2 s^2 + a_3 s + a_4$$

$$\Delta_d(s) = s^4 + d_1 s^3 + d_2 s^2 + d_3 s + d_4$$

$$u = r - [k_1 \ k_2 \ k_3 \ k_4] \mathbf{x}_c$$

$$k_i = (d_i - a_i)$$

State Feedback in Controllable Canonical Form – 9

Feng-Li Lian © 2007 NTUEE-LS8-DesignSISO-21

$$\{\mathbf{A},\mathbf{b},\mathbf{c},d\} egin{array}{c} \mathbf{x}_c &= \mathbf{P}\mathbf{x} \ \{\mathbf{A},\mathbf{b},\mathbf{c},d\} & \iff \left\{ egin{bmatrix} -a_1 & -a_2 & -a_3 & -a_4 \ 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \end{array}
ight], egin{bmatrix} 1 \ 0 \ 0 \ 0 \ 0 \end{array} , c_c,d
ight\}$$

$$u = r - \mathbf{k}\mathbf{x}$$

$$\mathbf{P}^{-1} = \begin{bmatrix} \mathbf{b} & \mathbf{A}\mathbf{b} & \mathbf{A}^2\mathbf{b} & \mathbf{A}^3\mathbf{b} \end{bmatrix} \begin{bmatrix} 1 & a_1 & a_2 & a_3 \\ 0 & 1 & a_1 & a_2 \\ 0 & 0 & 1 & a_1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\Delta(s) = s^4 + a_1 s^3 + a_2 s^2 + a_3 s + a_4$$

$$\iff \left\{ \begin{bmatrix} -d_1 & -d_2 & -d_3 & -d_4 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, c_c - d\mathbf{k_c}, d \right\}$$

$$\mathbf{k} = \mathbf{k}_c \mathbf{P}$$

$$u = r - \mathbf{k}_c \mathbf{x}_c$$

$$\Delta_d(s) = s^4 + d_1 s^3 + d_2 s^2 + d_3 s + d_4$$

In Summary - 1

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{b}u$$

$$u = r - \mathbf{k}\mathbf{x}$$

$$\iff$$

$$\begin{bmatrix} 0 & 1 & a_1 & a_2 \\ 0 & 1 & a_1 & a_2 \\ 0 & 0 & 1 & a_1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\dot{\mathbf{x}}_c = \mathbf{A}_c \mathbf{x}_c + \mathbf{b}_c u = egin{bmatrix} -a_1 & -a_2 & -a_3 & -a_4 \ 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \end{bmatrix} \mathbf{x}_c + egin{bmatrix} 1 \ 0 \ 0 \ 0 \ 0 \end{bmatrix} u$$

$$\Delta(s) = s^4 + a_1 s^3 + a_2 s^2 + a_3 s + a_4$$

$$\iff$$

$$u = r - \mathbf{k}_c \mathbf{x}_c$$

$$\dot{\mathbf{x}}_c = \mathbf{A}_d \mathbf{x}_c + \mathbf{b}_d u = \begin{bmatrix} -d_1 & -d_2 & -d_3 & -d_4 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \mathbf{x}_c + \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} r$$

$$\Delta_d(s) = s^4 + d_1 s^3 + d_2 s^2 + d_3 s + d_4$$

$$\iff$$

$$u = r - \mathbf{k}_c \mathbf{x}_c = r - \mathbf{k}_c \mathbf{P} \mathbf{x} = r - \mathbf{k} \mathbf{x}$$

$$\mathbf{k} = \mathbf{k}_c \mathbf{P}$$

$$\mathbf{x}_c = \mathbf{P}\mathbf{x}$$

$$\mathbf{x}_c \in \mathbb{R}^n$$

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{b}u$$

$$s^{4} + a_{1}s^{3} + a_{2}s^{2} + a_{3}s + a_{4}$$

$$u = r - kx$$

$$s^4 + d_1s^3 + d_2s^2 + d_3s + d_4$$

$$\dot{\mathbf{x}} = \bar{\mathbf{A}}\mathbf{x} + \bar{\mathbf{b}}r$$

$$\bar{A} = A - bk$$

$$\dot{\mathbf{x}}_c = \mathbf{A}_c \mathbf{x}_c + \mathbf{b}_c u$$

$$s^4 + a_1 s^3 + a_2 s^2 + a_3 s + a_4$$

 $u = r - \mathbf{k}_c \mathbf{x}_c$

$$s^4 + d_1 s^3 + d_2 s^2 + d_3 s + d_4$$

$$\dot{\mathbf{x}}_c = \mathbf{A}_d \mathbf{x}_c + \mathbf{b}_d r$$

$$\mathbf{k} = \mathbf{k}_c \mathbf{P}$$

$$\mathbf{A}_d = \mathbf{A}_c - \mathbf{b}_c \mathbf{k}_c$$

Theorem 8.2 (8.2)

Feng-Li Lian © 2007 NTUEE-LS8-DesignSISO-24

Theorem 8.2

Consider the state equation (A,b,c) with n=4 and the characteristic polynomial

$$\Delta(s) = \det(s\mathbf{I} - \mathbf{A}) = s^4 + \alpha_1 s^3 + \alpha_2 s^2 + \alpha_3 s + \alpha_4$$

If (A,b) is controllable, then it can be transformed by the transformation $\bar{\mathbf{x}} = \mathbf{P}\mathbf{x}$ with

$$\mathbf{Q} := \mathbf{P}^{-1} = [\mathbf{b} \ \mathbf{A} \mathbf{b} \ \mathbf{A}^2 \mathbf{b} \ \mathbf{A}^3 \mathbf{b}] \begin{bmatrix} 1 & \alpha_1 & \alpha_2 & \alpha_3 \\ 0 & 1 & \alpha_1 & \alpha_2 \\ 0 & 0 & 1 & \alpha_1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

into the controllable canonical form

$$\dot{\bar{\mathbf{x}}} = \bar{\mathbf{A}}\bar{\mathbf{x}} + \bar{\mathbf{b}}u = \begin{bmatrix} -\alpha_1 & -\alpha_2 & -\alpha_3 & -\alpha_4 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \bar{\mathbf{x}} + \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} u$$

$$y = \bar{\mathbf{c}}\bar{\mathbf{x}} = [\beta_1 \ \beta_2 \ \beta_3 \ \beta_4]\bar{\mathbf{x}}$$

Furthermore, the transfer function of (A,b,c) with n=4 equals

$$\hat{g}(s) = \frac{\beta_1 s^3 + \beta_2 s^2 + \beta_3 s + \beta_4}{s^4 + \alpha_1 s^3 + \alpha_2 s^2 + \alpha_3 s + \alpha_4}$$

Proof:

If with the transformation \mathbf{Q} , the state equation $(\mathbf{A}, \mathbf{b}, \mathbf{c})$ is transformed into $(\mathbf{\bar{A}}, \mathbf{\bar{b}}, \mathbf{\bar{c}})$, then $\hat{g}(s)$ is as shown.

Let
$$\mathbf{Q}_1 = [\mathbf{b} \ \mathbf{Ab} \ \mathbf{A}^2 \mathbf{b} \ \mathbf{A}^3 \mathbf{b}],$$

$$\mathbf{Q}_2 = \begin{bmatrix} 1 & \alpha_1 & \alpha_2 & \alpha_3 \\ 0 & 1 & \alpha_1 & \alpha_2 \\ 0 & 0 & 1 & \alpha_1 \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

$$\mathbf{x} = \mathbf{Q}_1 \, \tilde{\mathbf{x}} = \mathbf{Q}_1 \, \mathbf{Q}_2 \, \overline{\mathbf{x}} = \mathbf{Q} \, \overline{\mathbf{x}}$$

Then
$$\tilde{\mathbf{A}} = \mathbf{Q}_{1}^{-1} \mathbf{A} \mathbf{Q}_{1} = \begin{bmatrix} 0 & 0 & 0 & -\alpha_{4} \\ 1 & 0 & 0 & -\alpha_{3} \\ 0 & 1 & 0 & -\alpha_{2} \\ 0 & 0 & 1 & -\alpha_{1} \end{bmatrix}, \qquad \tilde{\mathbf{b}} = \mathbf{Q}_{1}^{-1} \mathbf{b} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix},$$

$$\tilde{\mathbf{c}} = \mathbf{c} \mathbf{Q}_1 = [\mathbf{c} \mathbf{b} \ \mathbf{c} \mathbf{A} \mathbf{b} \ \mathbf{c} \mathbf{A}^2 \mathbf{b} \ \mathbf{c} \mathbf{A}^3 \mathbf{b}]$$

Theorem 8.2 - 3

Feng-Li Lian © 2007 NTUEE-LS8-DesignSISO-26

And
$$\mathbf{Q}_{2} \bar{\mathbf{A}} = \tilde{\mathbf{A}} \mathbf{Q}_{2} = \begin{bmatrix} 0 & 0 & 0 & -\alpha_{4} \\ 1 & \alpha_{1} & \alpha_{2} & 0 \\ 0 & 1 & \alpha_{1} & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\Rightarrow \quad \bar{\mathbf{A}} = \begin{bmatrix} -\alpha_1 & -\alpha_2 & -\alpha_3 & -\alpha_4 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\mathbf{Q}_2 \ \overline{\mathbf{b}} = \widetilde{\mathbf{b}} = [1 \ 0 \ 0 \ 0]'$$

$$\Rightarrow$$
 $\overline{\mathbf{b}}$ = [1 0 0 0]', $\overline{\mathbf{c}}$ = $\tilde{\mathbf{c}} \mathbf{Q}_2$ = [β_1 β_2 β_3 β_4]

Note: (1) $\beta_1 = \mathbf{c} \, \mathbf{b}$, $\beta_2 = \alpha_1 \mathbf{c} \, \mathbf{b} + \mathbf{c} \, \mathbf{A} \, \mathbf{b}$, ..., but not so important here (2) $\mathbf{Q}_1 = \mathbf{e}$, $\mathbf{Q}_2 = \overline{\mathbf{e}}^{-1}$.

Theorem 8.3

If the *n*-dimensional state equation $(\mathbf{A}, \mathbf{b}, \mathbf{c})$ is controllable, then by state feedback $u = r - \mathbf{k}\mathbf{x}$, where \mathbf{k} is a $1 \times n$ real constant vector, the eigenvalues of $\mathbf{A} - \mathbf{b}\mathbf{k}$ can arbitrarily be assigned provided that complex conjugate eigenvalues are assigned in pairs.

Proof:

$$\dot{\bar{\mathbf{x}}} = \bar{\mathbf{A}}\,\bar{\mathbf{x}} + \bar{\mathbf{b}}\,u \qquad \dot{\mathbf{x}} = \mathbf{A}\,\mathbf{x} + \mathbf{b}\,u$$

$$u = r - \mathbf{k} \mathbf{x} =$$

$$\bar{A} - \bar{b} \bar{k} =$$

Theorem 8.3 - 2

Feng-Li Lian © 2007 NTUEE-LS8-DesignSISO-28

Choose P such that

$$\dot{\bar{\mathbf{x}}} = \bar{\mathbf{A}}\bar{\mathbf{x}} + \bar{\mathbf{b}}u = \begin{bmatrix} -\alpha_1 & -\alpha_2 & -\alpha_3 & -\alpha_4 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \bar{\mathbf{x}} + \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} u$$

Use the state feedback gain

$$\mathbf{\bar{k}} = [\bar{\alpha}_1 - \alpha_1 \ \bar{\alpha}_2 -, \alpha_2 \ \bar{\alpha}_3 - \alpha_3 \ \bar{\alpha}_4 - \alpha_4]$$

Can obtain any desired characteristic polynomial after state feedback

$$\Delta_f(s) = s^4 + \bar{\alpha}_1 s^3 + \bar{\alpha}_2 s^2 + \bar{\alpha}_3 s + \bar{\alpha}_4$$

And get

$$\dot{\bar{\mathbf{x}}} = (\bar{\mathbf{A}} - \bar{\mathbf{b}}\bar{\mathbf{k}})\bar{\mathbf{x}} + \bar{\mathbf{b}}r = \begin{bmatrix} -\bar{\alpha}_1 & -\bar{\alpha}_2 & -\bar{\alpha}_3 & -\bar{\alpha}_4 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \bar{\mathbf{x}} + \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} r$$

Thus
$$\mathbf{k} = \bar{\mathbf{k}}\mathbf{P} = \bar{\mathbf{k}}\bar{C}C^{-1}$$

Double check:

$$\Delta_f(s) = \det(s\mathbf{I} - \mathbf{A} + \mathbf{b}\mathbf{k}) = \det\left((s\mathbf{I} - \mathbf{A})[\mathbf{I} + (s\mathbf{I} - \mathbf{A})^{-1}\mathbf{b}\mathbf{k}]\right)$$

$$= \det(s\mathbf{I} - \mathbf{A})\det\left[\mathbf{I} + (s\mathbf{I} - \mathbf{A})^{-1}\mathbf{b}\mathbf{k}\right]$$

$$= \Delta(s)[1 + \mathbf{k}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{b}]$$

$$\Delta_{f}(s) - \Delta(s) = \Delta(s)\mathbf{k}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{b} = \Delta(s)\bar{\mathbf{k}}(s\mathbf{I} - \bar{\mathbf{A}})^{-1}\bar{\mathbf{b}} = \bar{k}_{1}s^{3} + \bar{k}_{2}s^{2} + \bar{k}_{3}s + \bar{k}_{4}$$

$$\frac{\bar{k}_{1}s^{3} + \bar{k}_{2}s^{2} + \bar{k}_{3}s + \bar{k}_{4}}{\Delta(s)}$$

Theorem 8.3 - 4

Feng-Li Lian © 2007 NTUEE-LS8-DesignSISO-30

- Zeros are not affected by state feedback

• Before state feedback:
$$\dot{\bar{\mathbf{x}}} = \bar{\mathbf{A}}\bar{\mathbf{x}} + \bar{\mathbf{b}}u = \begin{bmatrix} -\alpha_1 & -\alpha_2 & -\alpha_3 & -\alpha_4 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \bar{\mathbf{x}} + \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} u$$

$$y = \bar{\mathbf{c}}\bar{\mathbf{x}} = [\beta_1 \ \beta_2 \ \beta_3 \ \beta_4]\bar{\mathbf{x}}$$

$$\hat{g}(s) = \mathbf{c}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{b} = \frac{\beta_1 s^3 + \beta_2 s^2 + \beta_3 s + \beta_4}{s^4 + \alpha_1 s^3 + \alpha_2 s^2 + \alpha_3 s + \alpha_4}$$

• After state feedback: $\dot{\bar{\mathbf{x}}} = (\bar{\mathbf{A}} - \bar{\mathbf{b}}\bar{\mathbf{k}})\bar{\mathbf{x}} + \bar{\mathbf{b}}r = \begin{bmatrix} -\alpha_1 & -\alpha_2 & -\alpha_3 & -\alpha_4 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \bar{\mathbf{x}} + \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} r$

$$y = [\beta_1 \ \beta_2 \ \beta_3 \ \beta_4] \bar{\mathbf{x}}$$

$$\hat{g}_f(s) = \bar{\mathbf{c}}(s\mathbf{I} - \bar{\mathbf{A}} + \bar{\mathbf{b}}\bar{\mathbf{k}})^{-1}\bar{\mathbf{b}} = \frac{\beta_1 s^3 + \beta_2 s^2 + \beta_3 s + \beta_4}{s^4 + \bar{\alpha}_1 s^3 + \bar{\alpha}_2 s^2 + \bar{\alpha}_3 s + \bar{\alpha}_4}$$

Observability may change with possible new pole-zero relation

$$\dot{\mathbf{x}} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 5 & 0 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ 1 \\ 0 \\ 2 \end{bmatrix} u \qquad \Delta(s) = s^2(s^2 - 5) = s^4 + 0 \cdot s^3 - 5s^2 + 0 \cdot s + 0$$

$$\Delta(s) = s^2(s^2 - 5) = s^4 + 0 \cdot s^3 - 5s^2 + 0 \cdot s + 0$$

$$y = [1 \ 0 \ 0 \ 0]\mathbf{x}$$

$$\mathbf{P}^{-1} = C\bar{C}^{-1} = \begin{bmatrix} 0 & 1 & 0 & 2 \\ 1 & 0 & 2 & 0 \\ 0 & -2 & 0 & -10 \\ -2 & 0 & -10 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & -5 & 0 \\ 0 & 1 & 0 & -5 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & -3 \\ 1 & 0 & -3 & 0 \\ 0 & -2 & 0 & 0 \\ -2 & 0 & 0 & 0 \end{bmatrix}$$

If the desired eigenvalues are $-1.5\pm0.5i$ and $-1\pm i$, then

$$\Delta_f(s) = (s+1.5-0.5j)(s+1.5+0.5j)(s+1-j)(s+1+j)$$
$$= s^4 + 5s^3 + 10.5s^2 + 11s + 5$$

$$\bar{\mathbf{k}} = [5 - 0 \ 10.5 + 5 \ 11 - 0 \ 5 - 0] = [5 \ 15.5 \ 11 \ 5]$$

$$\mathbf{k} = \bar{\mathbf{k}}\mathbf{P} = \begin{bmatrix} -\frac{5}{3} & -\frac{11}{3} & -\frac{103}{12} & -\frac{13}{3} \end{bmatrix}$$

Design Guidelines (8.2)

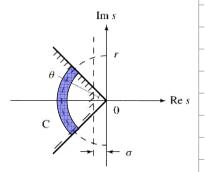
Feng-Li Lian © 2007 NTUEE-LS8-DesignSISO-32

- Guidelines for selecting "desired eigenvalues"
 - More negative real parts of eigenvalues
 - \rightarrow Faster response y(t),

Larger system bandwidth (noise problem), and Larger input u(t) (actuator saturation problem)

- Clustered eigenvalues
 - Response y(t) sensitive to parameter change, and Larger input u(t)

- Suggested methods:
 - (1) Let the eigenvalues uniformly spread over the crescent region

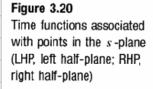


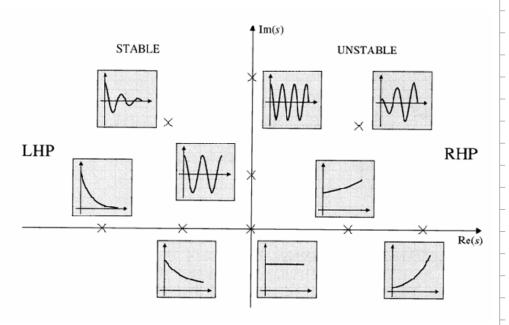
- (2) Find k to minimize the "performance index" J
 - Optimal Control

$$J = \int_0^\infty [\mathbf{x}'(t)\mathbf{Q}\mathbf{x}(t) + \mathbf{u}'(t)\mathbf{R}\mathbf{u}(t)] dt$$
weighting matrices

Design Guidelines – 3

Feng-Li Lian © 2007 NTUEE-LS8-DesignSISO-34





Feedback Control of Dynamic Systems, 4th Ed., By Franklin, Powell, Emami-Naeini, 2002

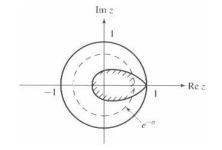
State Feedback of Discrete-Time Systems (SISO Systems) (8.2)

$$\mathbf{x}[k+1] = \mathbf{A} \mathbf{x}[k] + \mathbf{b} u[k]$$

 $u[k] = r[k] - \mathbf{k} \mathbf{x}[k]$

$$\Rightarrow$$
 x[k+1] = (A-bk) x[k] + b r[k]

Thus everything is the same, except that the desired eigenvalues are different from the C.T. case.



For example, the hatched area in the figure is suggested.

Eigenvalue Assignment by Solving the Lyapunov Equation (8.2.1)

- A different method of computing state feedback gain for eigenvalue assignment
- Restriction: Different sets of eigenvalues wrt eig(A)

Procedure 8.1

Consider controllable (\mathbf{A}, \mathbf{b}) , where \mathbf{A} is $n \times n$ and \mathbf{b} is $n \times 1$. Find a $1 \times n$ real \mathbf{k} such that $(\mathbf{A} - \mathbf{b}\mathbf{k})$ has any set of desired eigenvalues that contains no eigenvalues of \mathbf{A} .

- 1. Select an $n \times n$ matrix \mathbf{F} that has the set of desired eigenvalues. The form of \mathbf{F} can be chosen arbitrarily and will be discussed later.
- 2. Select an arbitrary $1 \times n$ vector $\bar{\mathbf{k}}$ such that $(\mathbf{F}, \bar{\mathbf{k}})$ is observable.
- 3. Solve the unique **T** in the Lyapunov equation $AT TF = b\bar{k}$.
- **4.** Compute the feedback gain $\mathbf{k} = \bar{\mathbf{k}} \mathbf{T}^{-1}$.

Note that:

In the procedure if a solution **T** exists and is nonsingular, Then from steps **3** and **4**, we have

$$(\mathbf{A} - \mathbf{b}\mathbf{k})\mathbf{T} = \mathbf{T}\mathbf{F}$$
 or $\mathbf{A} - \mathbf{b}\mathbf{k} = \mathbf{T}\mathbf{F}\mathbf{T}^{-1}$

Thus A-bk and F have the same (assigned) eigenvalues.

A sufficient condition for T to exist is that

A and F have no common eigenvalues

(i.e., every eigenvalue must move).

Theorem 8.4 (8.2.1)

Feng-Li Lian © 2007 NTUEE-LS8-DesignSISO-38

Theorem 8.4

If **A** and **F** have no eigenvalues in common, then the unique solution **T** of $AT - TF = b\bar{k}$ is nonsingular if and only if (A, b) is controllable and (F, \bar{k}) is observable.

Proof: (for n = 4 only)

Let the characteristic polynomial of A be

$$\Delta(s) = s^4 + \alpha_1 s^3 + \alpha_2 s^2 + \alpha_3 s + \alpha_4$$

Then
$$\Delta(\mathbf{A}) = \mathbf{A}^4 + \alpha_1 \mathbf{A}^3 + \alpha_2 \mathbf{A}^2 + \alpha_3 \mathbf{A} + \alpha_4 \mathbf{I} = \mathbf{0}$$

And $\Delta(\bar{\lambda}_i) \neq 0$ for all eigenvalues λ_i of **F**

Thus
$$\Delta(\mathbf{F}) := \mathbf{F}^4 + \alpha_1 \mathbf{F}^3 + \alpha_2 \mathbf{F}^2 + \alpha_3 \mathbf{F} + \alpha_4 \mathbf{I}$$

has nonzero eigenvalues and is nonsingular

Gain Selection (8.2.1)

∴ T is

Feng-Li Lian © 2007 NTUEE-LS8-DesignSISO-40

Given a set of desired eigenvalues, how to set \mathbf{F} and $\overline{\mathbf{k}}$?

(1) Using the observable canonical form,

$$\begin{bmatrix} -\alpha_1 & 1 & 0 & 0 \\ -\alpha_2 & 0 & 1 & 0 \\ -\alpha_3 & 0 & 0 & 1 \\ -\alpha_4 & 0 & 0 & 0 \end{bmatrix}$$

set **F** to the companion form

with the desired eigenvalues, and let $k = [1 \ 0 \ \cdots \ 0];$

(2) Using the modal form, set **F** to the diagonal form with the desired eigenvalues, and Let $\frac{1}{k}$ have at least one nonzero element associated with each diagonal block of **F**,

such as k = [11010], [11001], [11111].

(the same as Example 8.3)

$$\dot{\mathbf{x}} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 5 & 0 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ 1 \\ 0 \\ -2 \end{bmatrix} u$$

 $y = [1 \ 0 \ 0 \ 0]x$

The desired eigenvalues are $-1.5\pm0.5j$ and $-1\pm j$, thus set

$$\mathbf{F} = \begin{bmatrix} -1 & 1 & 0 & 0 \\ -1 & -1 & 0 & 0 \\ 0 & 0 & -1.5 & 0.5 \\ 0 & 0 & -0.5 & -1.5 \end{bmatrix}$$

No matter $\bar{\mathbf{k}}$ is set to [1 0 1 0] or [1 1 1 1], the resulting \mathbf{k} is the same as the one obtained in Example 8.3 (different $\bar{\mathbf{k}}$, different $\bar{\mathbf{t}}$, but the same $\bar{\mathbf{k}}\bar{\mathbf{t}}^{-1}$).

Theorem 8.4 - 3

Feng-Li Lian © 2007 NTUEE-LS8-DesignSISO-42

For single-input systems,

the state feedback gain k corresponding to a set of pre-assigned eigenvalues is unique.

$$\begin{cases} \dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix} u \\ y = \begin{bmatrix} c_1 & c_2 & c_3 & c_4 \end{bmatrix} \mathbf{x} \end{cases}$$

$$u = r - \begin{bmatrix} k_1 & k_2 & k_3 & k_4 \end{bmatrix} \mathbf{x}$$

$$\begin{pmatrix} \mathbf{A} - \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix} \begin{bmatrix} k_1 & k_2 & k_3 & k_4 \end{bmatrix} \end{pmatrix}$$

$$s^4 + a_1 s^3 + a_2 s^2 + a_3 s + a_4$$

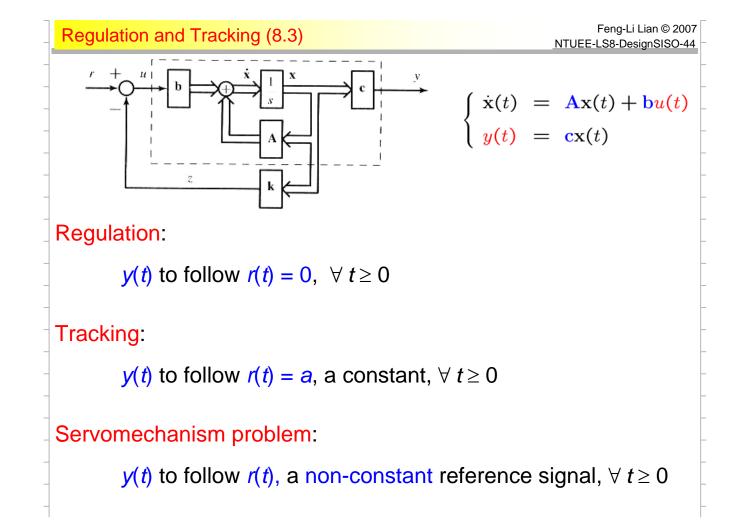
 $\lambda_1, \ \lambda_2, \ \lambda_3, \ \lambda_4,$

$$s^{4} + d_{1}s^{3} + d_{2}s^{2} + d_{3}s + d_{4}$$
$$\lambda_{1}^{c}, \ \lambda_{2}^{c}, \ \lambda_{3}^{c}, \ \lambda_{4}^{c},$$

State Feedback and State Estimation (MIMO) (8.6 & 8.7)

Feng-Li Lian © 2007

$$s^4 + a_1 s^3 + a_2 s^2 + a_3 s + a_4$$
 $\dot{x} = Ax + bu$
 $\dot{x} = ax + bu$



To solve the regulation problem is

 $\int \dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{b}\mathbf{u}(t)$

to find a state feedback gain k

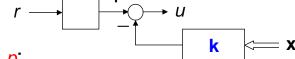
such that A - bk is a stable matrix,

$$r(t) = 0$$

$$\frac{u(t)}{} = -k x(t)$$

$$y(t) = \mathbf{c} e^{(\mathbf{A} - \mathbf{b}\mathbf{k})t} \mathbf{x}(0)$$

To solve the tracking problem,



we need an extra feedforward gain p:

$$r(t) = a$$

$$u(t) = p r(t) - k x(t)$$

$$y(t) = \mathbf{c} \left(e^{(\mathbf{A} - \mathbf{b}\mathbf{k})t} \mathbf{x}(0) + \int_0^t e^{(\mathbf{A} - \mathbf{b}\mathbf{k})(t-\tau)} \mathbf{b} \, p \, r(\tau) \, d\tau \right)$$

Regulation and Tracking – 3

Feng-Li Lian © 2007 NTUEE-LS8-DesignSISO-46

With the feedforward gain and state feedback, the transfer function is

$$\hat{g}_f(s) = \frac{\hat{y}(s)}{\hat{r}(s)} = p \frac{\beta_1 s^3 + \beta_2 s^2 + \beta_3 s + \beta_4}{s^4 + \bar{\alpha}_1 s^3 + \bar{\alpha}_2 s^2 + \bar{\alpha}_3 s + \bar{\alpha}_4}$$

Thus for y(t) to follow r(t) = a, a constant, choose k such that A – bk is stable, and p such that

$$1 = \hat{g}_f(0) = p \frac{\beta_4}{\bar{\alpha}_4} \quad \text{or} \quad p = \frac{\bar{\alpha}_4}{\beta_4}$$

Which requires $\beta_4 \neq 0$, i.e., the plant has no zeros at s = 0

In practical applications, there will be disturbance,
i.e., exogenous input affecting the system, and
there will be uncertainty regarding the exact values
of A, b, and c.

Robust Tracking:

Tracking with parameter uncertainty $(\beta_4 \text{ and } \overline{\alpha}_4 \text{ not known exactly})$

Disturbance Rejection:

Elimination of the effect by disturbance

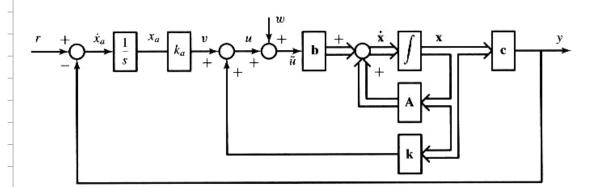
Robust Tracking and Disturbance Rejection - 2

Feng-Li Lian © 2007 NTUEE-LS8-DesignSISO-48

Plant nominal equation:

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{b}u + \mathbf{b}w$$
 constant disturbance

y = cx



An internal model control configuration with state feedback

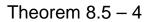
$$\dot{x}_{a} = r - y = r - \mathbf{c}\mathbf{x}$$

$$u = \begin{bmatrix} \mathbf{k} & k_{a} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ x_{a} \end{bmatrix} = \begin{bmatrix} \mathbf{A} + \mathbf{b}\mathbf{k} & \mathbf{b}k_{a} \\ -\mathbf{c} & 0 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ x_{a} \end{bmatrix} + \begin{bmatrix} \mathbf{0} \\ 1 \end{bmatrix} r + \begin{bmatrix} \mathbf{b} \\ 0 \end{bmatrix} w$$

$$y = \begin{bmatrix} \mathbf{c} & 0 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ x_{a} \end{bmatrix}$$

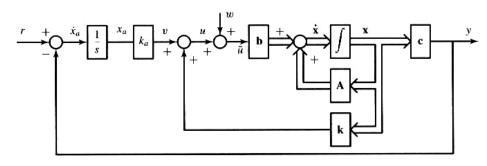
Theorem 8.5 (8.3.1)	Feng-Li Lian © 200 NTUEE-LS8-DesignSISO-4
Theorem 8.5	
If (\mathbf{A}, \mathbf{b}) is controllable and if $\hat{g}(s) = \mathbf{c}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{I}$ closed-loop system can be assigned arbitrarily by selections.	
Proof:	

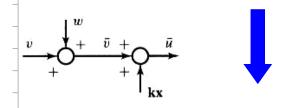
Theorem 8.5 – 2



Feng-Li Lian © 2007 NTUEE-LS8-DesignSISO-52

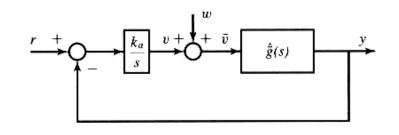
Block diagram manipulation:





$$\frac{\bar{N}(s)}{\bar{D}(s)} := \mathbf{c}(s\mathbf{I} - \mathbf{A} - \mathbf{b}\mathbf{k})^{-1}\mathbf{b}$$

$$\bar{D}(s) = \det(s\mathbf{I} - \mathbf{A} - \mathbf{bk})$$



Taking determinants of the identity

$$\begin{bmatrix} \mathbf{I} & \mathbf{0} \\ -\mathbf{c}(s\mathbf{I} - \mathbf{A} - \mathbf{b}\mathbf{k})^{-1} & 1 \end{bmatrix} \begin{bmatrix} s\mathbf{I} - \mathbf{A} - \mathbf{b}\mathbf{k} & -\mathbf{b}k_a \\ \mathbf{c} & s \end{bmatrix}$$

$$= \begin{bmatrix} s\mathbf{I} - \mathbf{A} - \mathbf{b}\mathbf{k} & -\mathbf{b}k_a \\ 0 & s + \mathbf{c}(s\mathbf{I} - \mathbf{A} - \mathbf{b}\mathbf{k})^{-1}\mathbf{b}k_a \end{bmatrix}$$

$$\hat{g}_{yw}(s) = \frac{\frac{\bar{N}(s)}{\bar{D}(s)}}{1 + \frac{k_a \bar{N}(s)}{s \bar{D}(s)}} = \frac{s \bar{N}(s)}{s \bar{D}(s) + k_a \bar{N}(s)} = \frac{s \bar{N}(s)}{\Delta_f(s)}$$

Theorem 8.5 - 6

Feng-Li Lian © 2007 NTUEE-LS8-DesignSISO-54

For constant (step-type) disturbance $\hat{w}(s) = \bar{w}/s$

$$\hat{y}_w(s) = \frac{s\bar{N}(s)}{\Delta_f(s)} \frac{\bar{w}}{s} = \frac{\bar{w}\bar{N}(s)}{\Delta_f(s)}$$

.: Even with (small) parameter uncertainty,

$$\lim_{t\to\infty}y_w(t)=0,$$

as long as roots of $\Delta_f(s)$ all have negative real parts

→ Robust constant-disturbance rejection

Also,
$$\hat{g}_{yr}(s) = \frac{\frac{k_a}{s} \frac{\bar{N}(s)}{\bar{D}(s)}}{1 + \frac{k_a}{s} \frac{\bar{N}(s)}{\bar{D}(s)}} = \frac{k_a \bar{N}(s)}{s \bar{D}(s) + k_a \bar{N}(s)} = \frac{k_a \bar{N}(s)}{\Delta_f(s)}$$

Thus even with parameter uncertainty

$$\hat{g}_{yr}(0) = \frac{k_a \bar{N}(0)}{0 \cdot \bar{D}(0) + k_a \bar{N}(0)} = \frac{k_a \bar{N}(0)}{k_a \bar{N}(0)} = 1$$

→ robust tracking for constant reference

Stabilization (8.3.2)

Feng-Li Lian © 2007 NTUEE-LS8-DesignSISO-56

$$\begin{cases} \dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{b}u(t) \\ y(t) = \mathbf{c}\mathbf{x}(t) \end{cases}$$

• Stable systems

• Stabilizable systems

Without loss of generality, consider

$$\begin{bmatrix} \dot{\bar{\mathbf{x}}}_c \\ \dot{\bar{\mathbf{x}}}_{\bar{c}} \end{bmatrix} = \begin{bmatrix} \bar{\mathbf{A}}_c & \bar{\mathbf{A}}_{12} \\ \mathbf{0} & \bar{\mathbf{A}}_{\bar{c}} \end{bmatrix} \begin{bmatrix} \bar{\mathbf{x}}_c \\ \bar{\mathbf{x}}_{\bar{c}} \end{bmatrix} + \begin{bmatrix} \bar{\mathbf{b}}_c \\ \mathbf{0} \end{bmatrix} u$$

$$u = r - \mathbf{k}\mathbf{x} = r - [\bar{\mathbf{k}}_1 \ \bar{\mathbf{k}}_2] \begin{bmatrix} \bar{\mathbf{x}}_c \\ \bar{\mathbf{x}}_{\bar{c}} \end{bmatrix}$$

$$\qquad \qquad \left[\begin{array}{c} \dot{\bar{\mathbf{x}}}_c \\ \dot{\bar{\mathbf{x}}}_{\bar{c}} \end{array} \right] = \left[\begin{array}{cc} \bar{\mathbf{A}}_c - \bar{\mathbf{b}}_c \bar{\mathbf{k}}_1 & \bar{\mathbf{A}}_{12} - \bar{\mathbf{b}}_c \bar{\mathbf{k}}_2 \\ \mathbf{0} & \bar{\mathbf{A}}_{\bar{c}} \end{array} \right] \left[\begin{array}{c} \bar{\mathbf{x}}_c \\ \bar{\mathbf{x}}_{\bar{c}} \end{array} \right] + \left[\begin{array}{c} \bar{\mathbf{b}}_c \\ \mathbf{0} \end{array} \right] r$$

.: Uncontrollable systems are stabilizable by state feedback if and only if the uncontrollable part of the system is stable

State Estimator (Observer) for SISO Systems (8.4)

Feng-Li Lian © 2007 NTUEE-LS8-DesignSISO-58

$$\begin{cases} \dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{b}u(t) \\ y(t) = \mathbf{c}\mathbf{x}(t) \end{cases}$$

Given A, b, c,

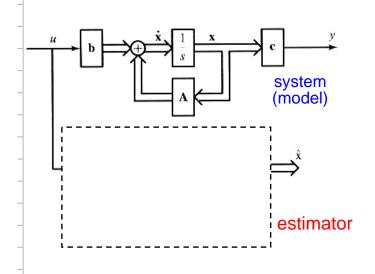
Can we estimate $\mathbf{x}(t)$

by measuring $y(\tau)$ and $u(\tau)$ for $\tau \in [0, t]$?

• Open-Loop Estimator:

$$\begin{cases} \dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{b}u(t) \\ y(t) = \mathbf{c}\mathbf{x}(t) \end{cases}$$

and use $y(\tau)$ and $u(\tau)$ for $\tau \in [0, t]$ to compute $\hat{\mathbf{x}}(0) = \mathbf{x}(0)$



Disadvantage 1:

Any inaccuracy in the determination of $\mathbf{x}(0)$ will make $\lim_{t\to\infty} ||\mathbf{\hat{x}}(t) - \mathbf{x}(t)|| = \infty$ for unstable A

Disadvantage 2:

Very sensitive to parameter uncertainty in **A** and **b**

State Estimator (Observer) for SISO Systems - 3

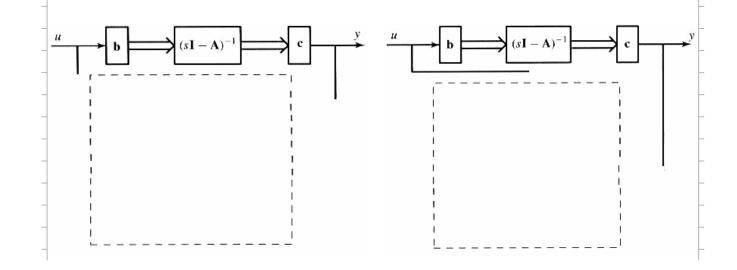
Feng-Li Lian © 2007 NTUEE-LS8-DesignSISO-60

• Closed-Loop Estimator:

$$\begin{cases} \dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{b}u(t) \\ y(t) = \mathbf{c}\mathbf{x}(t) \end{cases}$$

$$\dot{\hat{x}}(t) = A\hat{x}(t) + bu(t)$$

=



• Estimator Error:

$$\mathbf{e}(t) := \mathbf{x}(t) - \hat{\mathbf{x}}(t)$$

Theorem 8.O3 (8.4)

Feng-Li Lian © 2007 NTUEE-LS8-DesignSISO-62

Theorem 8.O3

Consider the pair (A, c). All eigenvalues of (A - lc) can be assigned arbitrarily by selecting a real constant vector l if and only if (A, c) is observable.

Proof:

• A different method for designing state estimators:

Procedure 8.01

- 1. Select an arbitrary $n \times n$ stable matrix **F** that has no eigenvalues in common with those of **A**.
- **2.** Select an arbitrary $n \times 1$ vector **I** such that (\mathbf{F}, \mathbf{I}) is controllable.
- 3. Solve the unique **T** in the Lyapunov equation $\mathbf{TA} \mathbf{FT} = \mathbf{lc}$. This **T** is nonsingular following the dual of Theorem 8.4.
- 4. Then the state equation

$$\dot{\mathbf{z}} = \mathbf{F}\mathbf{z} + \mathbf{T}\mathbf{b}\mathbf{u} + \mathbf{l}\mathbf{y}$$
$$\hat{\mathbf{x}} = \mathbf{T}^{-1}\mathbf{z}$$

generates an estimate of x.

$$e := z - Tx$$

$$\dot{\mathbf{e}} = \dot{\mathbf{z}} - \mathbf{T}\dot{\mathbf{x}}$$

$$= \mathbf{F}\mathbf{z} + \mathbf{T}\mathbf{b}u + \mathbf{l}\mathbf{c}\mathbf{x} - \mathbf{T}\mathbf{A}\mathbf{x} - \mathbf{T}\mathbf{b}u$$

$$= \mathbf{F}\mathbf{z} + \mathbf{l}\mathbf{c}\mathbf{x} - (\mathbf{F}\mathbf{T} + \mathbf{l}\mathbf{c})\mathbf{x}$$

$$= \mathbf{F}(\mathbf{z} - \mathbf{T}\mathbf{x})$$

$$= \mathbf{F}\mathbf{e}$$

Reduced-Dimensional State Estimator (8.4.1)

Feng-Li Lian © 2007 NTUEE-LS8-DesignSISO-64

The equation $y(t) = \mathbf{c} \mathbf{x}(t)$ already has one-dimensional information about $\mathbf{x}(t)$, so only an (n-1)-dimensional state estimator is needed to estimate the remaining information about $\mathbf{x}(t)$

Procedure 8.R1

- 1. Select an arbitrary $(n-1) \times (n-1)$ stable matrix **F** that has no eigenvalues in common with those of **A**.
- 2. Select an arbitrary $(n-1) \times 1$ vector \mathbf{l} such that (\mathbf{F}, \mathbf{l}) is controllable.
- 3. Solve the unique **T** in the Lyapunov equation TA FT = lc. Note that **T** is an $(n-1) \times n$ matrix.
- **4.** Then the (n-1)-dimensional state equation

$$\dot{\mathbf{z}} = \mathbf{F}\mathbf{z} + \mathbf{T}\mathbf{b}u + \mathbf{l}\mathbf{y}$$

$$\hat{\mathbf{x}} = \begin{bmatrix} \mathbf{c} \\ \mathbf{T} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{y} \\ \mathbf{z} \end{bmatrix}$$

is an estimate of x.

Theorem 8.6 (8.4.1)

Feng-Li Lian © 2007 NTUEE-LS8-DesignSISO-65

Theorem 8.6

If A and F have no common eigenvalues, then the square matrix

$$\mathbf{P} = \left[\begin{array}{c} \mathbf{c} \\ \mathbf{T} \end{array} \right]$$

where **T** is the unique solution of $\mathbf{TA} - \mathbf{FT} = \mathbf{lc}$, is nonsingular if and only if (\mathbf{A}, \mathbf{c}) is observable and (\mathbf{F}, \mathbf{l}) is controllable.

Theorem 8.6 - 2

Feng-Li Lian © 2007 NTUEE-LS8-DesignSISO-66

Proof: (necessity for general *n*) If (**F**, **I**) not controllable

If (A, c) not observable

Proof: (sufficiency for n = 4)

As in Theorem 8.4,

 $\Delta(s) = \det(s\mathbf{I} - \mathbf{A}) = s^4 + \alpha_1 s^3 + \alpha_2 s^2 + \alpha_3 s + \alpha_4$ Let

Then

$$-\Delta(\mathbf{F})\mathbf{T} = \begin{bmatrix} \mathbf{l} \mathbf{F} \mathbf{l} \mathbf{F}^2 \mathbf{l} \mathbf{F}^3 \mathbf{l} \end{bmatrix} \begin{bmatrix} \alpha_3 & \alpha_2 & \alpha_1 & 1 \\ \alpha_2 & \alpha_1 & 1 & 0 \\ \alpha_1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{c} \\ \mathbf{c} \mathbf{A} \\ \mathbf{c} \mathbf{A}^2 \\ \mathbf{c} \mathbf{A}^3 \end{bmatrix}$$

$$\therefore \mathbf{T} = -\Delta^{-1}(\mathbf{F}) C_4 \mathbf{\Lambda} O$$

$$\mathbf{P} = \begin{bmatrix} \mathbf{c} \\ \mathbf{T} \end{bmatrix} = \begin{bmatrix} \mathbf{c} \\ -\Delta^{-1}(\mathbf{F}) C_4 \mathbf{\Lambda} O \end{bmatrix} = \begin{bmatrix} 1 & \mathbf{0} \\ \mathbf{0} & -\Delta^{-1}(\mathbf{F}) \end{bmatrix} \begin{bmatrix} \mathbf{c} \\ C_4 \mathbf{\Lambda} O \end{bmatrix}$$

Theorem 8.6 - 4

Feng-Li Lian © 2007 NTUEE-LS8-DesignSISO-68

If there is a nonzero vector \mathbf{r} , such that $\mathbf{Pr} = \mathbf{0}$, i.e.,

$$\begin{bmatrix} \mathbf{c} \\ C_4 \mathbf{\Lambda} O \end{bmatrix} \mathbf{r} = \begin{bmatrix} \mathbf{c} \mathbf{r} \\ C_4 \mathbf{\Lambda} O \mathbf{r} \end{bmatrix} = \mathbf{0}$$

Then consider

$$\mathbf{a} := \mathbf{\Lambda}O\mathbf{r} = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{bmatrix} = \begin{bmatrix} \alpha_3 & \alpha_2 & \alpha_1 & 1 \\ \alpha_2 & \alpha_1 & 1 & 0 \\ \alpha_1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{cr} \\ \mathbf{cAr} \\ \mathbf{cA}^2 \mathbf{r} \\ \mathbf{cA}^3 \mathbf{r} \end{bmatrix} = \begin{bmatrix} x \\ x \\ x \\ \mathbf{cr} \end{bmatrix}$$

$$C_4 \Lambda O \mathbf{r} = C_4 \mathbf{a} = C \bar{\mathbf{a}} = \mathbf{0}$$
 \Rightarrow $\bar{\mathbf{a}} = \mathbf{0}$ \Rightarrow $\mathbf{a} = \mathbf{0}$.

(F, I) controllable (A, c) observable and A nonsingular In the reduced-dimensional state estimator

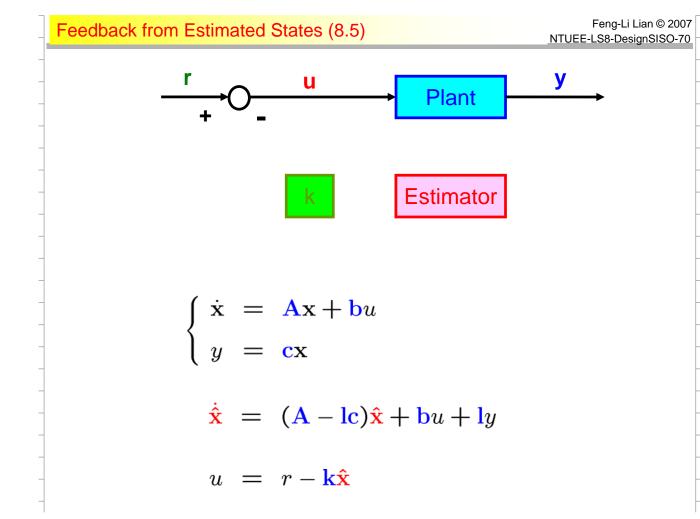
$$\begin{cases} \dot{\mathbf{z}} = \mathbf{F}\mathbf{z} + \mathbf{T}\mathbf{b}u + \mathbf{l}y \\ \hat{\mathbf{x}} = \begin{bmatrix} \mathbf{c} \\ \mathbf{T} \end{bmatrix}^{-1} \begin{bmatrix} y \\ \mathbf{z} \end{bmatrix}$$

Define the error signal e = z - Tx, then

$$\dot{\mathbf{e}} = \dot{\mathbf{z}} - \mathbf{T}\dot{\mathbf{x}} = \mathbf{F}\mathbf{z} + \mathbf{T}\mathbf{b}u + \mathbf{l}\mathbf{c}\mathbf{x} - \mathbf{T}\mathbf{A}\mathbf{x} - \mathbf{T}\mathbf{b}u = \mathbf{F}\mathbf{e}$$

Thus $\lim_{t\to\infty} \mathbf{e}(t) = 0$ if **F** is chosen to be stable, and

$$\lim_{t\to\infty} \hat{\mathbf{x}}(t) = \lim_{t\to\infty} \begin{bmatrix} \mathbf{c} \\ \mathbf{T} \end{bmatrix}^{-1} \begin{bmatrix} y(t) \\ \mathbf{z}(t) \end{bmatrix} = \begin{bmatrix} \mathbf{c} \\ \mathbf{T} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{c}\mathbf{x}(t) \\ \mathbf{T}\mathbf{x}(t) \end{bmatrix} = \begin{bmatrix} \mathbf{c} \\ \mathbf{T} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{c} \\ \mathbf{T} \end{bmatrix} \mathbf{x}(t) = \mathbf{x}(t)$$



Feedback from Estimated States - 2

Feng-Li Lian © 2007 NTUEE-LS8-DesignSISO-71

$$\begin{cases} \dot{\mathbf{x}} = \mathbf{A}\mathbf{x} - \mathbf{b}\mathbf{k}\hat{\mathbf{x}} + \mathbf{b}r \\ \dot{\hat{\mathbf{x}}} = (\mathbf{A} - \mathbf{l}\mathbf{c})\hat{\mathbf{x}} + \mathbf{b}(r - \mathbf{k}\hat{\mathbf{x}}) + \mathbf{l}\mathbf{c}\mathbf{x} \end{cases}$$

$$\begin{bmatrix} \dot{\mathbf{x}} \\ \dot{\hat{\mathbf{x}}} \end{bmatrix} = \begin{bmatrix} \mathbf{A} & -\mathbf{b}\mathbf{k} \\ \mathbf{l}\mathbf{c} & \mathbf{A} - \mathbf{l}\mathbf{c} - \mathbf{b}\mathbf{k} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \hat{\mathbf{x}} \end{bmatrix} + \begin{bmatrix} \mathbf{b} \\ \mathbf{b} \end{bmatrix} r$$
$$y = \begin{bmatrix} \mathbf{c} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \hat{\mathbf{x}} \end{bmatrix}$$

Consider the equivalence transformation

$$\begin{bmatrix} \mathbf{x} \\ \mathbf{e} \end{bmatrix} = \begin{bmatrix} \mathbf{x} \\ \mathbf{x} - \hat{\mathbf{x}} \end{bmatrix} = \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{I} & -\mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \hat{\mathbf{x}} \end{bmatrix}$$

Feedback from Estimated States - 3

Feng-Li Lian © 2007 NTUEE-LS8-DesignSISO-72

We see

$$\begin{bmatrix} \dot{\mathbf{x}} \\ \dot{\mathbf{e}} \end{bmatrix} = \begin{bmatrix} \mathbf{A} - \mathbf{b}\mathbf{k} & \mathbf{b}\mathbf{k} \\ \mathbf{0} & \mathbf{A} - \mathbf{l}\mathbf{c} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{e} \end{bmatrix} + \begin{bmatrix} \mathbf{b} \\ \mathbf{0} \end{bmatrix} r$$

$$y = \begin{bmatrix} \mathbf{c} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{e} \end{bmatrix}$$

$$\hat{g}_f(s) =$$

$$\dot{\mathbf{x}} = (\mathbf{A} - \mathbf{b}\mathbf{k})\mathbf{x} + \mathbf{b} r$$
 $y = \mathbf{c}\mathbf{x}$

State Feedback and State Estimation (MIMO) (8.6 & 8.7)
$$-3 \frac{\text{Feng-Li Lian @ 2007}}{\text{NTUEE-LS8-DesignSISO-73}}$$

$$\begin{cases} \dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{b}\mathbf{u} \\ \mathbf{y} = \mathbf{c}\mathbf{x} \end{cases}$$

$$\mathbf{y} = \mathbf{c}\mathbf{x}$$

$$\mathbf{x} = \mathbf{A}\mathbf{x} + \mathbf{b}\mathbf{u}$$

$$\mathbf{y} = \mathbf{c}\mathbf{x}$$

$$\mathbf{x} = \mathbf{A}\mathbf{a}\mathbf{b}\mathbf{b}\mathbf{b}$$

$$\mathbf{x} = \mathbf{a}\mathbf{b}\mathbf{b}\mathbf{b}$$

$$\mathbf{x} = \mathbf{a}\mathbf{b}\mathbf{b}\mathbf{b}$$

$$\mathbf{x} = \mathbf{a}\mathbf{b}\mathbf{b}$$

$$\mathbf{x$$

State Feedback and State Estimation (MIMO) (8.6 & 8.7) Feng-Li Lian © 2007
$$\frac{s^4 + a_1 s^3 + a_2 s^2 + a_3 s + a_4}{s^4 + a_1 s^3 + a_2 s^2 + a_3 s + a_4} \qquad \lambda_1, \ \lambda_2, \ \lambda_3, \ \lambda_4, \\
\begin{cases}
\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{b}\mathbf{u} & \dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix} \mathbf{u} \\
y = \mathbf{c}\mathbf{x} & y = \begin{bmatrix} c_1 & c_2 & c_3 & c_4 \end{bmatrix} \mathbf{x}
\end{cases}$$

$$\frac{\dot{\mathbf{x}}}{\dot{\mathbf{x}}} = (\mathbf{A} - \mathbf{l}\mathbf{c})\hat{\mathbf{x}} + \mathbf{b}\mathbf{u} + \mathbf{l}\mathbf{y} \\
\frac{s^4 + c_1 s^3 + c_2 s^2 + c_3 s + c_4}{s^3 + c_2 s^2 + c_3 s + c_4} \qquad \lambda_1^0, \ \lambda_2^0, \ \lambda_3^0, \ \lambda_4^0, \qquad \begin{pmatrix} \mathbf{A} - \begin{bmatrix} l_1 \\ l_2 \\ l_3 \\ l_4 \end{bmatrix} \begin{bmatrix} c_1 & c_2 & c_3 & c_4 \end{bmatrix} \end{pmatrix}$$

$$\mathbf{u} = \mathbf{r} - \mathbf{k} \hat{\mathbf{x}} \qquad \begin{pmatrix} \mathbf{A} - \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix} \begin{bmatrix} k_1 & k_2 & k_3 & k_4 \end{bmatrix} \end{pmatrix}$$

$$\mathbf{A} - \mathbf{k} \hat{\mathbf{x}} \qquad \begin{pmatrix} \mathbf{A} - \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix} \begin{bmatrix} k_1 & k_2 & k_3 & k_4 \end{bmatrix}$$

$$\mathbf{A} - \mathbf{k} \hat{\mathbf{x}} \qquad \begin{pmatrix} \mathbf{A} - \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{pmatrix} \begin{bmatrix} k_1 & k_2 & k_3 & k_4 \end{bmatrix}$$

```
State Feedback and State Estimation (MIMO) (8.6 & 8.7) -2 \frac{\text{Feng-Li Lian} \otimes 2007}{\text{NTUEE-LS8-DesignSISO-75}}
\begin{array}{l} \dot{s}^4 + a_1 s^3 + a_2 s^2 + a_3 s + a_4 \\ \dot{x} &= A x + B u \\ y &= C x \\ \\ \dot{\hat{x}} &= (A - LC) \hat{x} + B u + L y \\ \\ \dot{s}^4 + c_1 s^3 + c_2 s^2 + c_3 s + c_4 \\ \end{array}
\begin{array}{l} \dot{\lambda}_1^c, \ \lambda_2^c, \ \lambda_3^c, \ \lambda_4^c, \\ \\ \dot{u} &= r - K \hat{x} \\ \\ (A - BK) \\ \\ \dot{s}^4 + b_1 s^3 + b_2 s^2 + b_3 s + b_4 \\ \end{array}
\begin{array}{l} \lambda_1^c, \ \lambda_2^c, \ \lambda_3^c, \ \lambda_4^c, \\ \\ \dot{\lambda}_1^c, \ \lambda_2^c, \ \lambda_3^c, \ \lambda_4^c, \\ \\ \dot{\lambda}_1^c, \ \lambda_2^c, \ \lambda_3^c, \ \lambda_4^c, \\ \end{array}
```

